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Abstract

In this note we present answers to the open problems posed by Brualdi,
Kiernan, Meyer and Schroeder in [Cyclic matching sequencibility of
graphs, Australas. J. Combin. 53 (2012), 245-256].

1 Discussion and response

Let G C K, be a graph of order n with m edges. The matching number of G is the
maximum number of edges in a matching. The matching number of a linear ordering
€1,€3, ..., €, of the edges of G is the largest number d such that every d consecutive
edges in the ordering form a d-matching of G. The matching sequencibility of G,
denoted MS(G), is the maximum matching number of a linear ordering of the edges
of G. The cyclic matching sequencibility of G, denoted cMS(G), is the largest integer
d such that there exists a cyclic ordering of the edges so that every d consecutive edges
in the ordering form a matching of G. In [1] Brualdi, Kiernan, Meyer, and Schroeder
pose three questions concerning the relationship between MS(G) and ¢MS(G). In this
note we use the graph Y,, in Figure 1 to provide answers to each of these questions.
If G is any simple graph, kG denotes the multi-graph in which every edge of G is
replicated k times.

If we consider the linear ordering « as a function
a: E(G)—{1,..,m}
we can define the linear distance in a between two edges e;, e; as:
da(ei; €5) = |a(e;) — afe;)]
Similarly if we consider the cyclic ordering 5 as a function:

p:EG)—{1,..,m}
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Figure 1: The graph Y,

we can define the cyclic distance in 8 between two edges e;, e; as:

dg(ei; ¢;) = min{|B(e;) — Bley)], m — |B(er) — B(e;)[}

Question 1: Given a graph G with matching number p, is there a positive integer

k such that MS(kG) =p (cMS(kG) =p)?

The graph Y,, has diameter n and hence because no two of the edges

{Uly vQ}a {'Ula Un-i—l}v {'Ulvn—i-Q}

are in a matching it is easy to see the matching number of Y, is n/2 if n is even;
(n+1)/2 if n is odd. However when n is odd the largest matching containing vyvs is
(n—1)/2. Hence, MS(Y,,) < (n—1)/2. Now consider kG = kY,,, n odd. Any of the k
edges between the vertices {v;}, {va} can be in a matching of size at most (n —1)/2.
Thus, MS(kY,) < (n —1)/2 for any k.

The answer to Question 1 is no.

Question 2: For a graph G, we have MS(G) > cMS(G). How large can MS(G) —
cMS(G) be? Is cMS(G) > Ms(G) — 17

Consider the graph Y,,, when n is even. Label the edges according to the following
table:

Edge Label

{vgi, 901} — i+1, 1<i<?
{voiy1, Vaiga} — s+1+14, 1<i<3
{/UTL+27U1} = %+ 1
{v1,v9} — n+1
{vng1,01} 1

This labelling gives us Ms(Y;,) > § — 1.

Let 8 be a cyclic ordering of Y,, and let e, 1, es be the three edges incident to
the vertex v; ordered such that

1 < B(eo) < Bler) < Blea).

For any i € Zj consider the set {e¢ € E(G) : f(e;) < B(e) < B(eir1)}. This is a set
of size dg(e;, e;+1) + 1 which is not a matching. Therefore the S-distance between
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edges e; and e; ;1 is an upper bound to the matching number of 5. The sum of these
distances is:

dg(eo, e1) + dg(eq, e2) + dg(ea, e9) = n + 1.
Taking the average we obtain:

dg(eo, €1) + dp(er, e2) + ds(ez, e0)  n+1
3 3

Hence for some i we have dg(e;, €;41) < ”TH and the matching number of 5 is at most

24l Therefore cms(Y,) < 2.
Thus,

n+l n-—4

3 6

MS(Y,) — ems(Y,,) > g -1

Thus, we see that

Y, — Y,
lim Ms(Y,,) — ems(Y;,)

n—oo n

1
> —.
6

Consequently our answer to Question 2 is that the difference MS(G) — cMs(G) can
be made as large as desired.

Question 3: Given a graph G, is cMS(2G) = MsS(G)?

From our answer to Question 2 we know that Ms(Ya;) > k — 1, where n = 2k.
Now consider 2Ys,. Let 8 be a cyclic ordering of 2Y5, and let eg, e, e5.. ., e5 be the
six edges incident to the vertex v; ordered such that

1 < Beg) < Bler) < --- < Bles).

For any i € Zg consider the set {e € E(G) : f(e;) < B(e) < B(eir1)}. This is a set
of size dg(e;, e;11) + 1 which is not a matching. Therefore the g-distance between
edges e; and e; 1 is an upper bound to the matching number of 5. The sum of these
distances is:

dﬂ(eo, 61) —|— dlg(eh 62) —|— s + d5(65, 60) = 4k5 + 2
Taking the average we obtain:

dﬁ(eo, 61) + dﬂ(el, 62) + -+ d5(65, 60) . 4k + 2
6 6

Hence for some ¢ we have dg(e;, e;41) < &gz and the matching number of § is at

most #2. Therefore cMS(2Ya;) < 2 <k — 1 < MS(2Y2,), and the answer to the
Question 3 is no.
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2 Further results

Given the answer to Question 2 one might ask how small can cMS(G) be? We now
provide an answer.

Lower Bound for cms(G)

Theorem 2.1 |MS(G)/2] < cMS(G).

PrOOF: Let MS(G) = n and write |E(G)| = kn + r for some k > 1 and 7 < n.
Choose an ordering « : E(G) — {1,...,kn + r} of the edges of G with matching
number n. For 1 <i <k, let:

Ay = {n(i —) 41 V(Q;‘”J} and A;_, = { L"%‘”J 41, m}

Also let

Apprs = {/m+ 1o kn+ {gJ } A {1, kn 4 1)

and

n
2
Define the ordering 5 : E(G) — {1,....,kn+r} by

[ alr)—(i—1)[2 if a(z) € A;q
B(x) = { nk+r — o) LJ 2] +1 ifa(z) € 4; 1.

A1 1 = {kn—i— { J 1 (ko 1)n} N {1, ... kn+ 7).

We chose to define 5 in this way so that g will satisfy the following three conditions:
(i) If a(x),a(y) € Ufill A; 1, then B(x) < B(y) if and only if a(z) < a(y).

(i) If a(z) € UM Asn, aly) € UM A1, then B(z) < B(y) always.

(iti) If a(z), a(y) € U Ai 1, then B(z) < B(y) if and only if a(z) > a(y).

For any set B of cyclically consecutive edges with respect to the ordering [ with

|B| = | 2], we want to show that B is a matching. If a(B) C A; the result is trivial.
Otherwise we have three cases:

Case 1: a(B) C Aje U Ajq1,c
If «(B) C A;jcU Aiq1,, consider A = BU a ! (Az‘—%,—e)- As A is a set of
n or fewer consecutive edges with respect to the ordering «, A is a matching.
Hence B is a matching.

Case 2: Oé(B) C Ak+1,1 U Ak+1’_1 U Ak7_1
If a(B) C Apy11UAgy11UAg 1, consider A = BUa ™ (Agy11). As Alis aset
of n or fewer consecutive edges with respect to the ordering o, A is a matching.
Hence B is a matching.
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Case 3: a(B) C A1,_1 U A1
If «(B) C Ay 1 U A, consider A =a ' (A; _jUA; ;). As Ais a set of n or
fewer consecutive edges with respect to the ordering «, A is a matching and so

is B because B C A. 0

We will now provide an example that shows that this bound is sharp when MS(G) =

2k and almost sharp when MS(G) = 2k + 1.
Let L, be the disjoint union of P, the path of length two, with n — 1 copies of

Kg,i.e.l
sl
< B B
T2

n — 1 copies of Ky

If the edges of P; are 1, x9, then any ordering « such that a(x;) = 1 and a(z5) = n+1
has matching number n. This is clearly an upper bound to Ms(L,), as it has n + 1
edges. Therefore MS(L,,) = n.

The determination of ¢MS(L,,) is similar to the way cms(Y;,) was determined.
Here any ordering  will have dg(z1, z2) < ng +1= [%W . But this number is achieved
by any ordering § that satisfies 5(z1) = 1, f(x2) = [%1 +1. Hence cMS(L,) = (%W =

"Ms(Ln)—‘
—5 |-

Notice that for n = 2k, {
sharp for even n. When n =
it is only off by 1.

= 4, thus the bound given in Theorem 2.1 is
= LgJ + 1 and so if the bound is not sharp
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