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Abstract

In this note we present answers to the open problems posed by Brualdi,
Kiernan, Meyer and Schroeder in [Cyclic matching sequencibility of
graphs, Australas. J. Combin. 53 (2012), 245–256].

1 Discussion and response

Let G ⊆ Kn be a graph of order n with m edges. The matching number of G is the
maximum number of edges in a matching. The matching number of a linear ordering
e1, e2, . . . , em of the edges of G is the largest number d such that every d consecutive
edges in the ordering form a d-matching of G. The matching sequencibility of G,
denoted ms(G), is the maximum matching number of a linear ordering of the edges
of G. The cyclic matching sequencibility of G, denoted cms(G), is the largest integer
d such that there exists a cyclic ordering of the edges so that every d consecutive edges
in the ordering form a matching of G. In [1] Brualdi, Kiernan, Meyer, and Schroeder
pose three questions concerning the relationship between ms(G) and cms(G). In this
note we use the graph Yn in Figure 1 to provide answers to each of these questions.
If G is any simple graph, kG denotes the multi-graph in which every edge of G is
replicated k times.

If we consider the linear ordering α as a function

α : E(G) 7→ {1, ...,m}

we can define the linear distance in α between two edges ei, ej as:

dα(ei, ej) = |α(ei)− α(ej)|

Similarly if we consider the cyclic ordering β as a function:

β : E(G) 7→ {1, ...,m}
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Figure 1: The graph Yn

we can define the cyclic distance in β between two edges ei, ej as:

dβ(ei, ej) = min{|β(ei)− β(ej)|,m− |β(ei)− β(ej)|}

Question 1: Given a graph G with matching number p, is there a positive integer
k such that ms(kG) = p (cms(kG) = p)?

The graph Yn has diameter n and hence because no two of the edges

{v1, v2}, {v1, vn+1}, {v1vn+2}

are in a matching it is easy to see the matching number of Yn is n/2 if n is even;
(n+ 1)/2 if n is odd. However when n is odd the largest matching containing v1v2 is
(n−1)/2. Hence, ms(Yn) ≤ (n−1)/2. Now consider kG = kYn, n odd. Any of the k
edges between the vertices {v1}, {v2} can be in a matching of size at most (n− 1)/2.
Thus, ms(kYn) ≤ (n− 1)/2 for any k.

The answer to Question 1 is no.

Question 2: For a graph G, we have ms(G) ≥ cms(G). How large can ms(G) −
cms(G) be? Is cms(G) ≥ ms(G)− 1?

Consider the graph Yn, when n is even. Label the edges according to the following
table:

Edge Label
{v2i, v2i+1} 7→ i+ 1, 1 ≤ i < n

2

{v2i+1, v2i+2} 7→ n
2

+ 1 + i, 1 ≤ i < n
2

{vn+2, v1} 7→ n
2

+ 1
{v1, v2} 7→ n+ 1
{vn+1, v1} 7→ 1

This labelling gives us ms(Yn) ≥ n
2
− 1.

Let β be a cyclic ordering of Yn and let e0, e1, e2 be the three edges incident to
the vertex v1 ordered such that

1 ≤ β(e0) < β(e1) < β(e2).

For any i ∈ Z3 consider the set {e ∈ E(G) : β(ei) ≤ β(e) ≤ β(ei+1)}. This is a set
of size dβ(ei, ei+1) + 1 which is not a matching. Therefore the β-distance between
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edges ei and ei+1 is an upper bound to the matching number of β. The sum of these
distances is:

dβ(e0, e1) + dβ(e1, e2) + dβ(e2, e0) = n+ 1.

Taking the average we obtain:

dβ(e0, e1) + dβ(e1, e2) + dβ(e2, e0)

3
=
n+ 1

3
.

Hence for some i we have dβ(ei, ei+1) ≤ n+1
3

and the matching number of β is at most
n+1
3

. Therefore cms(Yn) ≤ n+1
3

.

Thus,

ms(Yn)− cms(Yn) ≥ n

2
− 1− n+ 1

3
=
n− 4

6
.

Thus, we see that

lim
n→∞

ms(Yn)− cms(Yn)

n
≥ 1

6
.

Consequently our answer to Question 2 is that the difference ms(G) − cms(G) can
be made as large as desired.

Question 3: Given a graph G, is cms(2G) = ms(G)?

From our answer to Question 2 we know that ms(Y2k) ≥ k − 1, where n = 2k.
Now consider 2Y2k. Let β be a cyclic ordering of 2Y2k and let e0, e1, e2 . . . , e5 be the
six edges incident to the vertex v1 ordered such that

1 ≤ β(e0) < β(e1) < · · · < β(e5).

For any i ∈ Z6 consider the set {e ∈ E(G) : β(ei) ≤ β(e) ≤ β(ei+1)}. This is a set
of size dβ(ei, ei+1) + 1 which is not a matching. Therefore the β-distance between
edges ei and ei+1 is an upper bound to the matching number of β. The sum of these
distances is:

dβ(e0, e1) + dβ(e1, e2) + · · ·+ dβ(e5, e0) = 4k + 2.

Taking the average we obtain:

dβ(e0, e1) + dβ(e1, e2) + · · ·+ dβ(e5, e0)

6
=

4k + 2

6
.

Hence for some i we have dβ(ei, ei+1) ≤ 4k+2
6

and the matching number of β is at
most 4k+2

6
. Therefore cms(2Y2k) ≤ 4k+2

6
≤ k − 1 ≤ ms(2Y2k), and the answer to the

Question 3 is no.
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2 Further results

Given the answer to Question 2 one might ask how small can cms(G) be? We now
provide an answer.

Lower Bound for cms(G)

Theorem 2.1 bms(G)/2c ≤ cms(G).

Proof: Let ms(G) = n and write |E(G)| = kn + r for some k ≥ 1 and r < n.
Choose an ordering α : E(G) 7→ {1, ..., kn + r} of the edges of G with matching
number n. For 1 ≤ i ≤ k, let:

Ai,1 =
{
n(i− 1) + 1, ...,

⌊
n(2i−1)

2

⌋}
and Ai,−1 =

{⌊
n(2i−1)

2

⌋
+ 1, ..., ni

}
.

Also let

Ak+1,1 =
{
kn+ 1, ..., kn+

⌊n
2

⌋}
∩ {1, ..., kn+ r}

and

Ak+1,−1 =
{
kn+

⌊n
2

⌋
+ 1, ..., (k + 1)n

}
∩ {1, ..., kn+ r}.

Define the ordering β : E(G) 7→ {1, ..., kn+ r} by

β(x) =

{
α(x)− (i− 1)

⌈
n
2

⌉
if α(x) ∈ Ai,1

nk + r − α(x) + i
⌊
n
2

⌋
+ 1 if α(x) ∈ Ai,−1.

We chose to define β in this way so that β will satisfy the following three conditions:

(i) If α(x), α(y) ∈
⋃k+1
i=1 Ai,1, then β(x) < β(y) if and only if α(x) < α(y).

(ii) If α(x) ∈
⋃k+1
i=1 Ai,1, α(y) ∈

⋃k+1
i=1 Ai,−1, then β(x) < β(y) always.

(iii) If α(x), α(y) ∈
⋃k+1
i=1 Ai,−1, then β(x) < β(y) if and only if α(x) > α(y).

For any set B of cyclically consecutive edges with respect to the ordering β with
|B| =

⌊
n
2

⌋
, we want to show that B is a matching. If α(B) ⊂ Ai,ε the result is trivial.

Otherwise we have three cases:

Case 1: α(B) ⊂ Ai,ε ∪Ai+1,ε

If α(B) ⊂ Ai,ε ∪ Ai+1,ε, consider A = B ∪ α−1
(
Ai−−1+ε

2
,−ε

)
. As A is a set of

n or fewer consecutive edges with respect to the ordering α, A is a matching.
Hence B is a matching.

Case 2: α(B) ⊂ Ak+1,1 ∪Ak+1,−1 ∪Ak,−1

If α(B) ⊂ Ak+1,1∪Ak+1,−1∪Ak,−1, consider A = B∪α−1 (Ak+1,1). As A is a set
of n or fewer consecutive edges with respect to the ordering α, A is a matching.
Hence B is a matching.
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Case 3: α(B) ⊂ A1,−1 ∪A1,1

If α(B) ⊂ A1,−1 ∪ A1,1, consider A = α−1 (A1,−1 ∪ A1,1). As A is a set of n or
fewer consecutive edges with respect to the ordering α, A is a matching and so
is B because B ⊂ A.

2

We will now provide an example that shows that this bound is sharp when ms(G) =
2k and almost sharp when ms(G) = 2k + 1.

Let Ln be the disjoint union of P2, the path of length two, with n − 1 copies of
K2, i.e.:

n− 1 copies of K2

x1

x2
Ln =

If the edges of P2 are x1, x2, then any ordering α such that α(x1) = 1 and α(x2) = n+1
has matching number n. This is clearly an upper bound to ms(Ln), as it has n + 1
edges. Therefore ms(Ln) = n.

The determination of cms(Ln) is similar to the way cms(Yn) was determined.
Here any ordering β will have dβ(x1, x2) ≤

⌊
n
2

⌋
+1 =

⌈
n
2

⌉
. But this number is achieved

by any ordering β that satisfies β(x1) = 1, β(x2) =
⌈
n
2

⌉
+1. Hence cms(Ln) =

⌈
n
2

⌉
=⌈

ms(Ln)
2

⌉
.

Notice that for n = 2k,
⌈
n
2

⌉
=
⌊
n
2

⌋
= n

2
, thus the bound given in Theorem 2.1 is

sharp for even n. When n = 2k + 1,
⌈
n
2

⌉
=
⌊
n
2

⌋
+ 1 and so if the bound is not sharp

it is only off by 1.
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