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Abstract

It is well-known that, given a Steiner triple system, a quasigroup can
be formed by defining an operation - by the identities x - * = x and
x-y = z where z is the third point in the block containing the pair {z,y}.
The same is true for a Mendelsohn triple system where the pair (x,y) is
considered to be ordered. But it is not true in general for directed triple
systems. However directed triple systems which form quasigroups under
this operation do exist and we call these Latin directed triple systems.
The quasigroups associated with Steiner and Mendelsohn triple systems
satisfy the flexible law z - (y - ) = (x - y) - « but those associated with
Latin directed triple systems need not. A directed triple system is said
to be pure if when considered as a twofold triple system it contains no
repeated blocks. In a previous paper, [Discrete Math. 312 (2012), 597—
607], we studied non-pure Latin directed triple systems. In this paper we
turn our attention to pure non-flexible and pure flexible Latin directed
triple systems.
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1 Introduction

In [5], the present authors introduced the concepts of a Latin directed triple system
and a DTS-quasigroup and determined their existence spectrum. The latter, an
algebraic structure, may be obtained from the former, a combinatorial structure, by a
standard procedure explained below. A DTS-quasigroup does not necessarily satisfy
the flexible law, i.e. z- (y-x) = (x-y) -z, and a necessary and sufficient condition for
it to do so was also given in [5]. The existence spectrum of flexible DT'S-quasigroups
was determined in [8]. These systems also possess a certain structure in terms of their
topology and this is discussed in [6] and [7]. However in both [5] and [8] the Latin
directed triple systems constructed are not pure, i.e. when considered as a twofold
triple system they contain repeated blocks. Equivalently the DTS-quasigroups are
not anti-commutative, i.e. they do not satisfy -y = y-x = = = y. The construction
of pure Latin directed triple systems is more challenging than for non-pure systems
and the purpose of this paper is to present such constructions both non-flexible and
flexible. We are able to adapt some of the methods used for non-pure systems,
though greater care must be taken. However most of the approach in this paper uses
different techniques. For pure, non-flexible Latin directed triple systems, we are able
to determine the existence spectrum completely. For pure, flexible Latin directed
triple systems we leave six orders unresolved. These seem to be difficult even with
the aid of a computer.

First we recall some definitions. A Steiner triple system of order n, STS(n),
is a pair (V,B) where V is a set of n points and B is a collection of triples of
distinct points, also called blocks, taken from V' such that every pair of distinct
points from V appears in precisely one block. Such systems exist if and only if n = 1
or 3 (mod 6) [14]. A Steiner quasigroup or squag or idempotent totally symmetric
quasigroup is a pair (@, -) where @) is a set and - is an operation on () satisfying the
identities

rrx=x, y-(rv-y==zx xz-y=y-z.

If (V,B) is an STS(n), then a Steiner quasigroup (@, -) is obtained by letting @ = V'
and defining x - y = z where {x,y,z} € B. The process is reversible; if Q) is a
Steiner quasigroup, then a Steiner triple system is obtained by letting V = @) and
{z,y,2} € B where z-y = z for all x,y € @, x # y. Thus there is a one-one
correspondence between all Steiner triple systems and all Steiner quasigroups [19,
Theorem V.1.11]. All Steiner quasigroups satisfy the flexible law.

Next consider ordered triples. There are two possibilities. A cyclically ordered
triple, denoted by (z,y,z), contains the ordered pairs (z,y), (v,2), (z,2) and a
transitively ordered triple, denoted by (x,y, z) contains the ordered pairs (x,y), (v, 2),
(z, 2).

A Mendelsohn triple system of order n, MTS(n), is a pair (V, B) where V is a set
of n points and B is a collection of cyclically ordered triples of distinct points taken
from V such that every ordered pair of distinct points from V' appears in precisely one
triple. Such systems exist if and only if n = 0 or 1 (mod 3), n # 6 [18]. Quasigroups
can be obtained from Mendelsohn triple systems by precisely the same procedures as
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described above for Steiner triple systems. Note that the law y - (x - y) = x is usually
called semi-symmetric. So the quasigroups are known as idempotent semisymmetric
quasigroups |2, Remark 2.12] or Mendelsohn quasigroups; they satisfy the same prop-
erties as their Steiner counterparts with the exception of commutativity. Similarly
there is a one-one correspondence between Mendelsohn triple systems and Mendel-
sohn quasigroups. Again, all Mendelsohn quasigroups satisfy the flexible law.

A directed triple system of order n, DTS(n), is a pair (V,B) where V is a set of
n points and B is a collection of transitively ordered triples of distinct points taken
from V such that every ordered pair of distinct points from V' appears in precisely
one triple. Such systems exist if and only if n = 0 or 1 (mod 3) [13]. Given a
DTS(n), an algebraic structure (V,-) can be obtained as above by defining = -z = x
and x -y = z for all x,y € V, x # y where z is the third element in the transitive
triple containing the ordered pair (x,y). However the structure obtained need not
necessarily be a quasigroup. If (u,z,y) and (y,v,z) € B then u-x =v-x =y. But
some DTS(n)s do yield quasigroups. Such a DTS(n) will be called a Latin directed
triple system, denoted by LDTS(n), to reflect the fact that in this case the operation
table forms a Latin square. We call the quasigroup so obtained a DT'S-quasigroup.

In [5] the following two theorems were proved.

Theorem 1.1 Let D = (V,B) be a DTS(n). Then D is an LDTS(n) if and only if
(x,y,2) € B= (w,y,z) € B for somew € V.

Theorem 1.2 A DTS-quasigroup obtained from an LDTS(n), D = (V,B), satisfies
the flexible law if and only if (x,y,z) € B= (x,z-x,y-x) € B.

Let (V,B) be a pure LDTS(n). Denote by F, the set of all unordered triples
{z,y,2}, where (z,y,z) runs through all triples of B. Now consider F' as a set
of faces. Each edge {x,y} is incident to two faces and hence we get a generalized
pseudosurface. By separating pinch points we obtain a set of one or more components
which are an invariant of the LDTS(n) and are very useful in determining whether
two DTS-quasigroups are isomorphic.

Consider a transitive triple (21, z, z9) € B. Then, using Theorem 1.1, there exists
k > 3 and points zg, 21, 22, ..., 2x_1 such that

<z17 xz, ZO>7 <22,33', Zl>7 tety <Zk717x7 Zkf2>7 <207 xz, zk71> € B.

If (V, B) is also flexible, using Theorem 1.2,

<Zlay7 22>7 <Z27 Y, Z3>7 E) <Zk717 Y, ZO>7 <207y7 Zl) € B

where y = 29- 2y = 2129 = +++ = Zk_9 - Zx_1 = Zk_1 -+ 20- Lhese 2k transitive triples
define a k-gonal bipyramid; denoted by Oy, i.e. a graph of k + 2 vertices with a cycle
of length k£, the points of which can be thought of as situated around the equator of
a sphere, and two middle vertex points which are connected to all points of the cycle
and which can be thought of as situated at the poles of the sphere. Thus we have
the following important result.
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Theorem 1.3 A pure flexible LDTS(n) exists if and only if the complete graph K,
can be decomposed into k-gonal bipyramid graphs Oy, k > 3.

Unlike Steiner and Mendelsohn triple systems and their algebraic counterparts,
there is not a one-one correspondence between Latin directed triple systems and DTS-
quasigroups. This is because if the LDTS(n) is not pure, then it will contain a pair
of triples (z,y, z) and (z,y, z). Replacing these with the pair of triples (y, z, x) and
(x, z,y) gives a system which yields the same DTS-quasigroup as the first and yet the
two LDTS(n)s may be non-isomorphic [5, Example 2.4]. However if the LDTS(n) is
pure then this situation does not arise and there is a one-one correspondence between
pure Latin directed triple systems and anti-commutative D'T'S-quasigroups.

2 Recursive constructions

In this section we present some recursive constructions for pure Latin directed triple
systems. We start with two elementary recursive constructions adapted from stan-
dard design-theoretic techniques and appropriate for our purposes.

Proposition 2.1
(i) If there exists a pure LDTS(n), then there exists a pure LDTS(3n).

(ii) If there exists a pure LDTS(n), then there exists a pure LDTS(3n —2).

Proof.

(i) Take three copies of the LDTS(n) on point sets {0;, 1;, ..., (n — 1);}, where
i € {0, 1, 2} respectively. Then take two disjoint Latin squares L(i,j) and
M(i,j) of order n on the set {0, 1, ..., n — 1} and adjoin all transitive triples
(i0, j1, L(7, j)2) and (M(i,5)2, j1,70), 0 <i<n—1,0<j<n—1

(ii) Take three copies of the LDTS(n) on point sets {oo, 0;, 1;, ..., (n—2);}, where
i € {0, 1, 2} respectively. Then take two disjoint Latin squares L(i,j) and
M(i,7) of order n — 1 on the set {0, 1, ..., n — 2} and adjoin all transitive
triples (ig, 71, L(7, j)2) and (M (i, 7)2, j1,%0), 0<i<n—2,0<j<n—2.

O

We now present some recursive constructions for pure flexible LDTSs. The fol-
lowing is a doubling construction which employs a Hamiltonian decomposition of the
complete graph Ky, 1. In the proof we represent the k-gonal bipyramids Oy by the
notation [N : Ey, Es, ..., Ej : S| where N and S are the poles and (E, Es, ..., Ey)
is the equator cycle.

Proposition 2.2 If there exists a pure LDTS(2n), then there ezists a pure
LDTS(An +1). The LDTS(4n+1) is flexible if and only if the LDTS(2n) is flexible.
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Proof. Let D = (V,B) be a pure LDTS(2n) where V = {1, 2, ..., 2n} and Ko, 41
be the complete graph on the set W, disjoint from V. Take a decomposition of
Ky, 41 into n disjoint Hamiltonian cycles H;, 1 < i < n. For each i, construct a
(2n + 1)-gonal bipyramid [2i — 1 : H; : 2i] and let B’ be the set of transitive triples
obtained from these bipyramids. Then D’ = (VUW, BUB') is a pure LDTS(4n+1).
Since D' contains D as a subsystem, D’ is flexible only if D is flexible. Conversely,
whenever D is flexible, D’ will be flexible as well, because B’ consists of bipyramid
components which satisfy the flexible law. U

Proposition 2.3 If there exists a pure LDTS(2n), then there exists a pure
LDTS(4n +19). The LDTS(4n + 19) is flexible if and only if the LDTS(2n) is
flezible.

Proof. Let (V,B) be a pure LDTS(2n) where V' = {001, 009, ..., 009,}. Construct
a set of triples B’ on the point set Zs, 119 UV from the following set of starter blocks
under the action of the mapping ¢ — ¢ + 1 with the elements of V' as fixed points.

{(2,0,6), (6,0,9),(9,0,2),(2,1,9),(9,1,6), (6,1,2) }U{ (0,00, 947) : r =1,...,2n}

Then (Zgn110 UV, B UB’) is a pure LDTS(4n + 19). To see that the constructed
system is flexible whenever (V, B) is flexible, it suffices to check that the triples in B’
define a set of bipyramids satisfying the flexible law. U

Proposition 2.4 [f there ezists a pure LDTS(6n + 1), then there exists a pure
LDTS(12n +22). The LDTS(12n + 22) is flexible if and only if the LDTS(6n + 1)
is flexible.

Proof. Let (V,B) be a pure LDTS(6n + 1) where V' = {00, 001, ..., 006, } and let
W ={i;: i € Zopyr, j =0,1,2}. Construct a set of triples B’ from the following
set of starter blocks under the action of the mapping ¢; — (i +1); with the elements
of V' as fixed points.

(00, 09,11), (11,09,25), (22,02,00), (00,32,22), (22,32,11), (11,32,00), (00,30, lo),
(10,30,02), (02,30,21), (21,30,01), (01,30,00), (00,31,01), (01,31,21), (21,31,09),
(02,31, 10), (1o,31,00), (01,32,02), (02,32,20), (20,32,01), (01,000,20), (02,000,01),
<2 OOQ,OQ)

<007OOT7(3+T>0>7 <01,OO1~,(3+7")1>, <027OOT7(3+T)2>7
<007 XO2n4-r; (3 + T)1>7 <017 OO2n 41 (3 + 7")2), <027 OQC2n+4r; (3 + 7")0),
<(3+T)17oo4n+7‘700>a <(3+T)2,004n+r,01>, <(3+T)07oo4n+7‘a02>7

where r = 1,...,2n. Then (VU W,BUB') is a pure LDTS(12n 4 22). The triples
in B’ define a set of bipyramids satisfying the flexible law. U

Proposition 2.5 If there ezists a pure LDTS(6n + 1), then there exists a pure
LDTS(12n +28). The LDTS(12n + 28) is flexible if and only if the LDTS(6n + 1)
is flexible.
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Proof. Let (V,B) be a pure LDTS(6n + 1) where V' = {00, 001, ..., 006, } and let
W ={i;: i € Zopyo, j =0,1,2}. Construct a set of triples B’ from the following
set of starter blocks under the action of the mapping ¢; — (i +1); with the elements
of V as fixed points.

<1170073 >7 <31700741 )

> 41700742>7 <427007
12700740 <407007 2>7
)

9 <027327 >7 <12732730>7 <30732702>7
2 007 >7 <017317 2/ <427317 >7 <10731701>7 <117027 2>7
1), 1)

( 1)
( )
<31,027 1), (01,40,30), (00, 10,30), (30, 10,1
2 (

( )

<4 02741> <417027317 <417407 )

(30,22, 01), (01,22,41), (21,02,40), (40,02, 10), (01,000, o), (1o, 000, 42), (42, 000, 01)
<00aoo7“a(4+r)0>7 <OlaOOT7(4+T)1>’ <027OOT”(4+T)2>’
(00, XO2n+r) (4 + 7“)1>, (Oh R2n4-r (4 + 7")2>7 <027 OO2n+r) (4 + 7")0>7
<(4+T)1aoo4n+7"700>a <(4+T)2,004n+r,01>, <(4+T)ano4n+ra02>7

where r = 1,...,2n. Then (VU W,BUB') is a pure LDTS(12n 4 28). The triples
in B’ define a set of bipyramids satisfying the flexible law. U

Proposition 2.6 If there ezists a pure LDTS(6n + 3), then there exists a pure
LDTS(12n +24). The LDTS(12n + 24) is flexible if and only if the LDTS(6n + 3)
is flexible.

Proof. Let (V,B) be a pure LDTS(6n + 3) where V' = {o0g, 001, ..., 00gn+2} and
let W ={i;: i€ Zopir, j=0,1,2}. Construct a set of triples B from the following
set of starter blocks under the action of the mapping ¢; — (i +1); with the elements
of V as fixed points.

(01,00,31), (31,00, 11), (21,10,00), (00,10,30), (20,00,22), (22,00,32), (32,00,01),
(01,09,32), (32,09,22), (29,02,20), (30,12,00), (00, 12,21), (11,02,31), (31,02,01),
(11,01, 29), (22,01, 30), (30,01, 11), (01, 00, 20), (20, 000, 12), (12, 000, 01), (02, 001,21),
<21,001,30>, <30,001,02>, <02,00Q,30>, <30,00Q,21>, <21,00Q,02>,

(0, 00742, (34 T)0), (01, 00542, (3+1)1), (03, 00,42, (347)2),
<007 X2n+r+2; (3 + 7")1>7 <01, R2n+r+25 (3 + 7“)2>7 <O27 OO2n4r425 (3 + 7")0>a
((34 7)1, 004n+r+2, 00), ((3+1)2, 004ntrt2,01), ((3+ 7)o, 04ntri2,02),

where r = 1,...,2n. Then (VU W,BUB') is a pure LDTS(12n 4 24). The triples
in B’ define a set of bipyramids satisfying the flexible law. U

The last recursive construction we present can only be used to produce non-
flexible LDT'Ss.

Proposition 2.7 If there exists a pure LDTS(6n+ 3), then there exists a pure non-
flexible LDTS(12n + 18).
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Proof. Let (V,B) be a pure LDTS(6n + 3) where V' = {o0g, 001, ..., 0gn+2} and
let W ={i;: i€ Zopys, j=0,1,2}. Construct a set of triples B from the following
set of starter blocks under the action of the mapping i; — (i +1); with the elements
of V as fixed points.

<002a00502>7 <00701722>7 <22701710>a <11502722>a <21502a11>7 <22502a21>7 <12710702>a
<20711700>7 <01720702>7 <027207OO2>7 <12720701>7 <00721720>7 <10721700>7 <007OOO710>7
<017000711>7 <027000712>7 <007001712>7 <017001721>7 <227001700>7 <21,00Q,01>,

(00, 0012, (24 7)0), (01, 00,42, (2 +7)1), (02, 00,42, (2 +17)2),
(00, 002n4ri2, (2+7)1), (01,0004 r42, (2+7)2), (02,0020 1142, (2 +7)0),
((24 7)1, 004n+r42, 00), ((2+1)2, 004ntrt2,01), ((2+ 7)o, 004ntrt2,02),

where r = 1,...,2n. Then (VUW,BUB’) is a pure LDTS(12n + 18). The triples
in B’ do not satisfy the flexible law. For example (0g - 21) - 0p = 29 - 0p = 11, whilst
OO'(21'00):OO‘10:OOO. U

3 Pure non-flexible Latin directed triple systems

In this section we determine the existence spectrum of pure non-flexible LDTS(n).
It was shown in [5] that there is no pure LDTS(n) for 3 < n < 12. Part of the exis-
tence proof in this section uses a standard technique known as Wilson’s fundamental
construction for which we need the concept of a group divisible design (GDD). A
3-GDD of type g* is an ordered triple (V, G, B) where V is a base set of cardinality
v = gu, G is a partition of V' into u subsets of cardinality g called groups and B is a
family of triples called blocks which collectively have the property that every pair of
elements from different groups occur in precisely one block but no pair of elements
from the same group occur at all. We will also need 3-GDDs of type g“m'. These
are defined analogously, with the base set V' being of cardinality v = gu + m and
the partition G being into u subsets of cardinality g and one subset of cardinality m.
Necessary and sufficient conditions for 3-GDDs of type ¢g* were determined in [12]
and for 3-GDDs of type g“m' in [4]; a convenient reference is [9] where the existence
of all the GDDs that are used can be verified.

We will assume that the reader is familiar with this construction but briefly the
basic idea is as follows. Begin with a 3-GDD of cardinality v = gu or gu + m,
usually called the master GDD. Each point is then assigned a weight, usually the
same weight, say w. In effect, each point is replaced by w points. Each block of
the master GDD is then replaced by a 3-GDD of type w3, called a slave GDD.
We will only need to use the two values w = 2 and w = 3, and instead of slave
GDDs we will use partial Latin directed triple systems. When w = 2 we will employ
the partial LDTS(6), say P, whose blocks are (a,b,c), (a,y,z), {(x,b,2), (x,y,c),
(z,y,x), {¢,b,x), {c,y,a), (z,b,a) and the sets {a,z}, {b,y}, {c, z} play the role of
the groups. As a component of an LDTS(n), it satisfies the flexible law. When w = 3
we will use the partial LDTS(9), say Q, whose blocks are (a,p, ), (b,q,v), {(c,r, 2),

<a’ q? Z>7 <b7/r’ x>’ <C7p’ y>7 <a7/r’ y>7 <b7p’ Z>’ <C’ q?x>7 <x’ Q7 a>7 <y7T’ b>’ <Z7p’ C)) <Z’ r) a))
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(,p,b), (y,q,0), (y,p,a), (z,4,b), (z,7,¢) and {a,b,c}, {p,q,7}, {z,y, 2} play the
role of the groups. It does not satisfy the flexible law, e.g. (a-p)-a =x-a = g but

a-(p-a) =a-y=r. To complete the construction we then “fill in” the groups of
the expanded master GDD, sometimes adjoining an extra point, say oo, to all of the
groups. Thus we may need pure non-flexible Latin directed triple systems of orders
gw, mw, gw+ 1 or mw + 1 as appropriate. For a more elaborate explanation of this
construction see, for example, the proof of Proposition 4.3 in [5].

Type of Orders of Residue classes Missing
master GDD  LDTS(n) needed covered modulo 36  values
6, s>3 13 1,13, 25 25
925+l 5> 1 19 19
925151 5 > 9 19, 31 31 67
925211, § > 2 19, 43 7 79

Table 1: Schema for pure non-flexible LDTS(n), n =1 (mod 6).

Schema of the master GDDs and Latin directed triple systems needed to con-
struct pure non-flexible LDTS(n) for n =1 (mod 6) is given in Table 1. We always
weight with 2 and adjoin an extra point co. Pure non-flexible LDTS(n) for n = 13,
19, 25 and 31 are given as Examples NO.1, NO.3, NO.5 and NO.7 respectively
in the Appendix. The LDTSs of orders n = 43 and 79 can be constructed using
part (ii) of Proposition 2.1 from the LDTS(15) and LDTS(27) which are given as
Examples NO.2 and NO.6 in the Appendix. This just leaves the value n = 67 which
can be constructed using a master GDD of type 4*6' or 634!, assigning weight 3,
adjoining the point co and using the pure non-flexible LDTS(13) and LDTS(19).

We can now use these systems to construct pure non-flexible LDTS(n) of order
n =4 (mod 6). By Proposition 2.5 there exists a pure non-flexible LDTS(n) for all
n =4 (mod 12), n > 52. Pure non-flexible systems of orders 16, 28 and 40 are given
as Examples NE.1, NE.5 and NE.9 in the Appendix. By Proposition 2.4 there exists
a pure non-flexible LDTS(n) for all n = 10 (mod 12), n > 46. Pure non-flexible
systems of orders 22 and 34 are given as Examples NE.3 and NE.7 in the Appendix.

These systems may in turn be used to construct pure non-flexible LDTS(n) of
order n = 3 (mod 6). By Proposition 2.2 there exists a pure non-flexible LDTS(n) for
allm =9 (mod 12), n > 33. A pure non-flexible LDTS(21) is given as Example NO.4
in the Appendix. By Proposition 2.3 there exists a pure non-flexible LDTS(n) for
all n =3 (mod 12), n > 51. Pure non-flexible systems of orders 15 and 27 are given
as Examples NO.2 and NO.6 in the Appendix and a pure non-flexible LDTS(39) can
be constructed from the LDTS(13) using part (i) of Proposition 2.1.

Finally we construct pure non-flexible LDTS(n) of order n = 0 (mod 6). By
Proposition 2.6 there exists a pure non-flexible LDTS(n) for all n = 0 (mod 12),
n > 48. Pure non-flexible systems of orders 24 and 36 are given as Examples NE.4
and NE.8 in the Appendix. By Proposition 2.7 there exists a pure non-flexible
LDTS(n) for allmn =6 (mod 12), n > 42. Pure non-flexible systems of orders 18 and
30 are given as Examples NE.2 and NE.6 in the Appendix.
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Collecting all the results together gives the following theorem.

Theorem 3.1 The existence spectrum of pure non-flexible LDTS(n)s isn =0 or 1
(mod 3), n > 13.

4 Pure flexible Latin directed triple systems

In this section we discuss the existence of pure flexible Latin directed triple systems.
The further requirement of flexibility adds another constraint to the constructions.
We are still able, and indeed do, use Wilson’s fundamental construction but we
cannot use weight w = 3 and the partial Latin directed triple system Q because as
shown in the previous section it does not satisfy the flexible law. Another difficulty
is that, as was shown in [5], there is no pure flexible LDTS(n) for 3 < n < 15 or
n = 18. In particular there is no pure flexible LDTS(13) which was very useful in
the non-flexible case. However if the above factors are against us, then we do have
a feature of pure flexible LDTS(n) to help us. This is their geometric structure as
described in Theorem 1.3.

In the case where all the bipyramids have £ = 3, this is a decomposition of K,
into graphs K5 but missing one edge, so-called (K5 \ e)-designs. The spectrum of n
for which these designs exist has been fully determined [10, 15, 16, 20], see also [3].
Itisnm=0or1l (mod9), n>19. When all the bipyramids have k = 4, this is a
decomposition of K, into Pasch configurations. The spectrum of n for which this is
true has also been determined [11, 1]. Tt isn =1 or 9 (mod 24), n > 25.

We first complete the existence spectrum for the residue class n = 1 (mod 6).
Table 2 gives the schema for n = 7 or 13 (mod 18). We use weight w = 2 and
adjoin an extra point. The pure flexible LDTS(n)s of orders n = 1 (mod 18) can

Type of Orders of Residue classes Missing
master GDD  LDTS(n) needed covered modulo 36  values
9% 151 s> 2 19, 31 31 67
926211 s >2 19, 43 7 79
18512, s >3 25, 37 25 61, 97
185241, s >3 37, 49 13 85, 121

Table 2: Schema for pure flexible LDTS(n), n =7 or 13 (mod 18).

be constructed from (K3 \ e)-designs, this includes, in particular, the LDTS(19)
and LDTS(37). Pure flexible LDTS(n)s for n = 31, 43 and 67 are given as Exam-
ples FO.2, FO.4 and FO.5 respectively in the Appendix. For n = 25, 49, 97 and 121
we can use the decompositions of K, into Pasch configurations. The remaining miss-
ing systems can be obtained using 3-GDD constructions. For n = 61 use type 103,
for n = 79 use type 133 and for n = 85 use type 10% 12'. To do this we need systems
of orders 21, 25 and 27. A pure flexible LDTS(21) is given as Example FO.1 and the
pure flexible LDTS(27) can be constructed from a (K \ e)-design.



A. DRAPAL ET AL./AUSTRALAS. J. COMBIN. 62 (1) (2015), 59-75 68

We next consider the residue class n = 4 (mod 6). By Proposition 2.4 there
exists a pure flexible LDTS(n) for n = 22 and for all n = 10 (mod 12), n > 58.
An LDTS(34) is given as Example FE.1 in the Appendix and an LDTS(46) can be
constructed from a (K \ e)-design. By Proposition 2.5 there exists a pure flexible
LDTS(n) for n = 28 and for all n =4 (mod 12), n > 64. A pure flexible LDTS(16)
is given in [5, Example 3.9]. Systems of orders n = 40 and 52 are given as Exam-
ples FE.2 and FE.3 respectively in the Appendix.

The results for n =4 (mod 6) now enable us to deal with the residue class n = 3
(mod 6). By Proposition 2.2 there exists a pure flexible LDTS(n) for all n = 9
(mod 12), n > 33. A pure flexible LDTS(21) is given as Example FO.1 in the
Appendix. By Proposition 2.3 there exists a pure flexible LDTS(n) for all n = 3
(mod 12), n > 51. A pure flexible LDTS(27) can be constructed from a (K5 \ e)-
design and a pure flexible LDTS(39) is given as Example FO.3 in the Appendix.

This just leaves the residue class n =0 (mod 6) to consider. By Proposition 2.6
there exists a pure flexible LDTS(n) for all n = 0 (mod 12), n > 60. A pure flexible
LDTS(36) can be constructed from a (K5 e)-design and a pure flexible LDTS(48) can
be obtained using a 3-GDD of type 83. This leaves n = 24 unresolved. Table 3 gives

Type of Orders of Residue classes Missing

master GDD  LDTS(n) needed covered modulo 108 values
27733, s> 2 o4, 66 66 174
2775511, s> 2 54, 102 102 210
27?5691, s> 2 o4, 138 30 30, 246
2725931 s> 3 54, 186 78 78, 294, 402
97251111, 5 > 3 54, 222 6 114, 330, 438
27251291, s > 3 54, 258 42 42, 150, 366, 474

Table 3: Schema for pure flexible LDTS(n), n = 6 or 30 (mod 36).

the schema for n = 6 or 30 (mod 36). Again we use weight w = 2. The pure flexible
LDTS(n)s of orders n = 18 (mod 36) can be constructed from (K5 \ e)-designs, this
includes, in particular, the LDTS(54). Pure flexible LDTSs of the following orders
can be constructed using 3-GDDs: 66 (use 11%), 102 (use 17%), 138 (use 23%), 174
(use 293), 186 (use 11627'), 210 (use 118 17'), 222 (use 11545'), 246 (use 413), 258
(use 17°27%), 294 (use 17%45'), 330 (use 11%9), 366 (use 23°45'), 402 (use 23°63'),
438 (use 23°81') and 474 (use 17'233'). This leaves n = 30, 42, 78, 114 and 150
unresolved.
Collecting all the results together gives the following theorem.

Theorem 4.1 A pure flexible LDTS(n) exists for alln =0 or 1 (mod 3), n > 16
and n # 18, possibly except n = 24, 30, 42, 78, 114 and 150.
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Appendix. Examples of pure LDTSs

The following examples were obtained by computer with the help of the model builder
Maced [17] using an algebraic description of a DTS-quasigroup, see [6]. We denote
the elements (4, j) € Z, X Zy, as i;. For simplicity, we omit commas from the triples.

Example NO.1 Pure non-flexible LDTS(13).

V =73.

The triples are obtained from the following starter blocks under the action of the
mapping v — 1+ 1.

(105), (507), (703), (301).

The system is non-flezible, for example (0-2)-0 = 8-0 = 9, whilst 0-(2-0) = 0-12 = 4.

Example NO.2 Pure non-flexible LDTS(15).

V = (Z7 x Zs) U {o0}.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.

(200021), (210011), (110051), (510031), (310041), (410061), (610060), (6000 20),
<00 oo 40), <01 o0 31)

The system is non-flexible, for example (0g-1¢)-0¢ = 3-0p = 00, whilst Oy-(1g-09) =
0o - 01 = 5g.

Example NO.3 Pure non-flexible LDTS(19).

V =Zy.

The triples are obtained from the following starter blocks under the action of the
mapping v — 1+ 1.

(1,0,5), (5,0,11), (11,0,7), (7,0,9), (9,0,3), (3,0, 1).

The system is non-flexible, for example (0-6)-0 =14 -0 = 15, whilst 0 - (6 - 0) =
0-16 =17.

Example NO.4 Pure non-flexible LDTS(21).

V= Z7 X Zg.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.

{200021), (210061), (610060), (600020), (200160), (600162), (620151), (5101 2),
(200251), (510241), (410201), (010230), (300262), (620260), (600252), (5202 2),
(601231, (31 1o41), (41 125), (52 1y 60).

The system is non-flexible, for example (62-6p)-62 = 0y-69 = 3¢, whilst 65 (6¢-62) =
69 - 0 = 5.

Example NO.5 Pure non-flexible LDTS(25).

V — Zgg).

The triples are obtained from the following starter blocks under the action of the
mapping © — i+ 1.

(1,0,5), (5,0,16), (16,0,12), (12,0,19), (19,0,8), (8,0,10), (10,0, 3), (3,0,1).

The system is non-flexible, for example (0-2)-0 =17-0 = 11, whilst 0-(2-0) =
0-24=4.
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Example NO.6 Pure non-flexible LDTS(27).

V = (Zlg X Zg) U {OO}

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i +1);.

(100050), (500001), (0:100121), (12:0031), (3:100111), (1110011), (110071),
(710091), (910061), (610021), (210070), (700030), (3000 10), (511961), (6110111),
<1]_1 10 51), <OQ 0.} 20>, <01 oo 1].1)

The system is non-flexible, for example (0g-2¢)-09 = 00-0g = 11g, whilst 0g-(2¢-09) =
OO . 120 — 40.

Example NO.7 Pure non-flexible LDTS(31).

V — Zgl.

The triples are obtained from the following starter blocks under the action of the
mapping © — i+ 1.

(1,0,5), (5,0,19), (19,0,10), (10,0,18), (18,0,20), (20,0,6), (6,0,15), (15,0,7),
(7,0,3), (3,0,1).

The system is non-flexible, for example (0-2)-0 = 13-0 = 23, whilst 0-(2-0) =
0-30=4.

Example NE.1 Pure non-flexible LDTS(16).

V =7Zg X Zs.

The triples are obtained from the following starter blocks under the action of the
mappings i; — (i +1); and i; — ij41.

<20, 00, 61>, <61, OQ, 31>, <31, OQ, 71), <71, OQ, 70), <70, 00, 20)

The system is non-flexible, for example (71-7¢)-T1 = 00-71 = 31, whilst 71-(7¢-71) =
71 . 01 = 21.

Example NE.2 Pure non-flexible LDTS(18).

V= Zg X ZG~

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i +1);.

(10005, (020001), (010010}, (1021 01), (0121 05), (0521 1s), (152, 00), ( )
(01 0325), (250305), (050301), (010402), (020425), (250401), (020523), (2305 22),
(2505 05), (1500 15), (150004), (040005), (050024, (240025), (250003), )
(0420 15), (152005, (052004), (1301 24), (2401 14), (140125), (2501 15), { )
(140224), (24091

The system is non-flexible, for example (25-01) 25 = 0425 = 0q, whilst 25-(01-25) =
25 . 03 - 05.

Example NE.3 Pure non-flexible LDTS(22).

V = le X ZQ.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.

(10,00, 50), (5o, 00,101), (101,00,61), (61,00,71), (71,00,01), (01,00,30), (30,00, 1o),
(20,01,9), (9,01, 61), (61,01,20), (80,01,100), (109, 01,31), (31,01,21), (21,01, 8p).
The system is non-flexible, for example (0y-20)-09 = 31-09 = 51, whilst 0y~ (2¢-09) =
0p - 109 = 4.

)

)

2
3)-
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Example NE.4 Pure non-flexible LDTS(24).

V =74 X ZG~

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i +1);.

(020022), (220023), (250033), (330004), (040034), (340005), (050035), (350015),
(150025), (250014), (140024), (240013), (130003), (030012), (120002), (3101 14),
(1401 34), (340133), (330135), (3501 23), (2301 03), (030131), (00 1130), (3011 1),
(1011 20), (2011 1s), (1213 1a), (1a1129), (251132), (321100), (1302 14), (1402 15),
(1502 13), (321335), (351334), (341332), (321423), (231435), (351432), (310529),
(2505 1), (140531), (11 1525), (251525, (2 1531), (31 15 1,).

The system is non-flexible, for example (35-14) 35 = 3235 = 13, whilst 35- (14-35) =
35 - 23 = 01.

Example NE.5 Pure non-flexible LDTS(28).

V = Zl4 X ZQ.

The triples are obtained from the following starter blocks under the action of the
mappings i; — (i +1); and i; — ij41.

(10,00,50), (50,00,121), (121,00,41), (41,00,61), (61,00,131), (131,00,91),
(91,00, 31), (31,00, 30), (30,00, 1o)-

The system is non-flexible, for example (31-3¢)-31 = 00-31 = 91, whilst 31-(39-31) =
31-0; =1;.

Example NE.6 Pure non-flexible LDTS(50).

V =75 X Zs.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.

(050035), (350045), (450015), (150005), (0901 1o), (1o0140), (4001 30), (3001 00),
(310042), (420012), (120002), (020032), (320031), (310432), (320442), (420431),
(220033), (330043), (430044), (440014), (140004), (040034), (340025), (250024),
(2400 13), (130003), (030023), (230022), (3101 14), (140125), (250125), (2501 31),
<41 01 35>, <3501 04>, <O401 03>, <0301 42>, <4201 43>, <43 01 23), <23 01 41), <21 05 25>,
<250234>, <3402 15>, <150204>, <O40221>, <410334>, <340344>, <440305>, <O503 12),
(150345), (450541), (220315), (150332), (320324), (2403525), (250322), (410523),
(2505 34), (340544).

The system is non-flexible, for example (25-34)-25 = 05+ 25 = 21, whilst 25-(34-25) =
9% - 0p = 24.

Example NE.7 Pure non-flexible LDTS(534).

V= Zl? X ZQ.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i +1);.

(10,00, 50), (50,00, 70), (70,00,30), (30,00,10), (60,00,11), (11,00,80), (80,00,21),
(21,00,71), (71,00,51), (51,00,01), (01,00,60), (30,11,71), (71,11,40), (4o, 11,144),
(141,11,100), (109,11,91), (91,11,30), (5o, 11,81), (81,11,9), (9, 11,151),
(151,14, 01), (01,14, 50).
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The system is non-flexible, for example (0g-20)-09 = 124-09 = 13¢, whilst 0g-(29-09) =
Op - 169 = 4.

Example NE.8 Pure non-flexible LDTS(36).

V = (Z7 x Zs) U {o0}.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1)

Jr

(2009 2 > <2100 >, <610060>, <600020>, <2001 60>, <6001 1s), <1201 5a9), <5201 51),
<51 01 20>, <300344>, <440352>, <520330>, <0204 13>, <130442>, <420402>, <41 0042>,
<420003>, <030054>, <540024>, <240002>, <020041>, <23 11 34), <34 11 14), <14 11 44),
<44 11 54>, <541 O4>, <O4 11 64>, <64 11 OO>, <OO 11 24>, <24 11 23), <20025 >, <51 02 11>,
(110203), (0302 12), (150254), (540240), (400200), (000920), (422234), (342203),
(03 2242>, <030013>, <1200 34>, <340062>, (6200 33), (3300 53>, <5300 04>, <O40063>,
<630064>, <6400 13>, <130044>, <440023>, <2300 12>, <11 0142), <4201 33), <3301 Og),
(03071 > <23 04 53>, <53 04 43>, <43 01 23>.

The system is non-flexible, for example (03-43)-03 = 25-03 = 34, whilst 03- (42-03) =
03 . 00 - 54.

Example NE.9 Pure non-flexible LDTS(40).

V = ZQQ X ZQ.

The triples are obtained from the following starter blocks under the action of the
mappings i; — (i +1); and i; — ij41.

(10,00,50), (50,00,11), (11,00,110), (110,00,181), (181,00,81), (81,00,120),
(120,00,31), (31,00,51), (51,00, 14g), (14,00,141), (141,00,70), (70, 00,30),
(30,00, 1o)-

The system is non-flexible, for example (141 - 14g) - 141 = 0y - 149 = by, whilst
14; - (140 - 14;) = 14, - 0p = 7o.

Example FO.1 Pure flexible LDTS(21).

V = (Zs x Z4) U {o0}.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);, with 0o as a fized point.

(10021, (210001, (0100 10), (193201), (013221), (2132 10), (200003, (030000,
(50 0031), (310002), (020020), (203202}, (03231), (313200), (003203, (033220),
(1903 02), 020342>; (4203 01), (010311), (110323), (230310), (103323), (2333 11),
<1 330 > 3342>, <42 33 02> <02 33 10>

/\/\/\/\

)

Example FO.2 Pure flexible LDTS(31).

V — Zgl.

The triples are obtained from the following starter blocks under the action of the
mapping v — &+ 1.

(8,7,13), (13,7,30), (30,7,19), (19,7,10), (10,7,8), (8,23,10), (10,23,19),
(19,23,30), (30,23,13), (13,23,8).
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Example FO.3 Pure flexible LDTS(39).

V= Zlg X Zg.

The triples are obtained from the following starter blocks under the action of the
mapping i; = (i +1);.

(10040 42), (424051), (5140100), (1003151), (513142), (4231100), (218114),
(11180 52), (528021), (218152), (5281 11y), (1118;21), (09109 11p), (119 10g20),
(20100 121), (121109 09), (09 11712;y), (12711172¢), (2011;11g), (119111 0p),
(31 119 125), (12511465), (6211932), (3211931), (318132), (328162), (6281 125),
(12581 31), (309271), (719202), (0292100), (10092 1s), (129230), (3012212),
(15125100), (100125 04), (05125 71), (71125 3y).

Example FO.4 Pure flexible LDTS(43).

V — Z43.

The triples are obtained from the following starter blocks under the action of the
mapping v — 1+ 1.

(6,26,37), (37,26,12), (12,26,6), (6,28,12), (12,28,37), (37,28,6), (4,3,8),
(8,3,16), (16,3,6), (6,3,4), (4,23,6), (6,23,16), (16,23,8), (8,23,4).

Example FO.5 Pure flexible LDTS(67).

V — ZG'Y-

The triples are obtained from the following starter blocks under the action of the
mapping v — i+ 1.

(16,0,25), (25,0,18), (18,0,26), (26,0,30), (30,0,32), (32,0,33), (33,0,22),
(22,0,28), (28,0,31), (31,0,21), (21,0,16), (16,45,21), (21,45,31), (31,45,28),
(28,45,22), (22,45,33), (33,45,32), (32,45,30), (30,45,26), (26,45,18),
(18,45,25), (25,45, 16).

Example FE.1 Pure flexible LDTS(34).

V= Z17 X ZQ.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.

(5081 120), (12081 161), (16181 5¢), (Ho107161), (161107 12¢), (129101 5¢),
(12921 144), (14121 11), (1121 120), (12041 11), (1141 144), (14141 124), (09 8p 11¢),
(11980 90), (9080130), (1308081), (818000), (091071 81), (81107 13p), (139101 9p),
(90 101 110), (114104 0p).

Example FE.2 Pure flexible LDTS(40).

V = ZQQ X ZQ.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i +1);.

(6091 160), (16091 71), (7191 171), (17191 60), (2011031), (31 11g140), (149110 120),
(129 119 160), (16911920), (20121 160), (169127 12¢), (12912 14¢), (149121 34),
(31121 20), (14920191), (19120 150), (15920 171), (17120 11), (112081), (8120 140),
(14921 81), (8121 11), (1121 171), (17121 15¢), (15921 191), (191 21 140).
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Example FE.3 Pure flexible LDTS(52).

V = ZQG X ZQ.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i +1);.

(15980 121), (12189250), (25080 150), (150181 250), (250185 12;), (12718 15¢),
(50200230), (23020021p), (219200250), (25020050), (5o21;125¢), (250214 21¢),
(219211 230), (23021150), (4012131), (3112118p), (18512;9;1), (91121 23y),
(230121 11¢), (119121 24¢), (240121 100), (109121 221), (221121 5¢), (5o 121 164),
(161 121 170), (179121 01), (01121200), (20012144), (4112,23;), (237127 104),
(107 121 174), (171121 7¢), (7o 121 131), (131124 4).
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