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Abstract

Unique minimum dominating sets in the Cartesian product of a graph
and a Hamming graph are considered. A characterization of such sets
is given, when they exist. A necessary and sufficient condition for the
existence of a unique minimum dominating set is given in the special
case of the Cartesian product of a tree and multiple copies of the same
complete graph.

1 Introduction

Unique minimum vertex dominating sets have been studied in many classes of graphs,
including trees [4], block graphs [2], and cactus graphs [3]. In [6], the author con-
sidered unique minimum dominating sets in the Cartesian product of a graph and
a complete graph. In particular, a necessary and sufficient condition for the exis-
tence of a unique minimum dominating set was given for the product of a tree and
a complete graph.

In the present work, we continue this study by considering unique minimum
dominating sets in graphs G�Kn1 �Kn2 � · · · �Knm , where
Kn1 , Kn2, . . . , Knm denote the complete graphs on n1, n2, . . . , nm vertices respectively.
In Section 3, we first develop a characterization of the unique minimum dominating
sets in such graphs when they exist. We then consider changing the cardinalities
of the complete graphs, and show that the property of having a unique minimum
dominating set is preserved when the cardinalities are decreased. In Section 4, we
specialize to the case of ni = nj for i �= j, and prove a necessary and sufficient
condition for the existence of a unique minimum dominating set in T �Km

n where
T is a tree. We conclude by noting that unique minimum dominating sets in the
Cartesian product of a tree and a hypercube can be considered by setting ni = 2 for
1 ≤ i ≤ m.
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2 Notation

In our work to follow, G denotes a finite, simple graph with vertex set V (G) and edge
set E(G). If v ∈ V (G), then the open neighborhood of v is defined by N(v) = {u | uv ∈
E(G)} while the closed neighborhood of v is defined by N [v] = N(v)∪{v}. A vertex
x of G dominates every vertex in N [x]. Given S ⊆ V (G), the open neighborhood
of S, denoted N(S), is the set ∪v∈SN(v), while the closed neighborhood, denoted
N [S], is the set S ∪ N(S). If S ⊆ V (G) satisfies N [S] = V (G), then S is called a
dominating set. The cardinality of a minimum dominating set is referred to as the
domination number of G and is denoted by γ(G), while a dominating set of minimum
cardinality is referred to as a γ-set. If D is a dominating set of G and x ∈ D, then
a private neighbor of x with respect to D is any vertex u that is dominated by x and
by no other vertex of D, and if u �= x, then u is called an external private neighbor
of x with respect to D. For notational purposes, we let epn(x,D) denote the set of
external private neighbors of x with respect to D. We note that epn(x,D) may be
empty.

Given two graphs G1 and G2, their Cartesian product, denoted G1�G2, is the
graph whose vertex set is the Cartesian product of the sets V (G1) and V (G2) with two
vertices (u1, u2) and (v1, v2) in G1�G2 adjacent if either u1 = v1 and u2v2 ∈ E(G2),
or u2 = v2 and u1v1 ∈ E(G1). The projections
πGi

: V (G1�G2) → V (Gi), for i = 1 and i = 2, defined by πGi
((u1, u2)) = ui will be

extensively used. Finally, for (u1, u2) ∈ V (G1�G2), the Gi-layer through (u1, u2) is
defined to be the induced subgraph

G
(u1,u2)
i = 〈{(v1, v2) : πG3−i

((v1, v2)) = πG3−i
((u1, u2))}〉.

We follow [5] for any other graph product terminology.

We consider graphs G�Kn1 �Kn2 � · · · �Knm where G is a connected, finite,
simple graph, and where Kn1 , Kn2, . . . , Knm are nontrivial complete graphs on n1, n2,
. . . , nm vertices respectively. We note, in passing, that a Cartesian product of com-
plete graphs is called a Hamming graph. Thus, we are considering the Cartesian
product of a graph with a Hamming graph. If a Cartesian product with G and m
Kn-factors is performed, we simplify our notation to G�Km

n . In particular, note
that Km

2 is the m-dimensional hypercube, denoted Qm. We assume that the vertex
set of Kn is {1, 2, . . . , n} which we denote by [n]. We denote by U the class of graphs
G which have a unique minimum dominating set. Furthermore, if G ∈ U , we let
UD(G) denote the unique γ-set of G.

3 Repeated Products

To begin our work with repeated products, we first recall three results: one from [4]
and two from [6]. We note that the proof of Proposition 1 below is as it appears in
[6]. We have included the proof here for completeness.



J. HEDETNIEMI /AUSTRALAS. J. COMBIN. 62 (1) (2015), 91–99 93

Lemma 1 ([4]). Let G be a graph with a unique γ-set D. Let [u, v] be any edge in
G other than an edge connecting a vertex in D to one of its private neighbors. Let
G− be the graph obtained from G by deleting the edge [u, v]. Then G− has D as the
unique γ-set.

Lemma 2 ([6]). If G�Kn ∈ U , then there exists S ⊆ V (G) such that UD(G�Kn)
= S × [n].

Proposition 1 ([6]). If G�Kn ∈ U , then G ∈ U . Moreover, G�Km ∈ U for
1 ≤ m ≤ n.

Proof. Denote UD(G�Kn) by D. By Lemma 2, there exists S ⊆ V (G) such that
D = S × [n]. Thus, for any (x, i) ∈ D, the external private neighbors of (x, i) with
respect to D all belong to G(x,i). Define H to be the graph

G�Kn − {(v, n)(v, j) : v ∈ V (G), 1 ≤ j ≤ n− 1}.
We see that H is isomorphic to (G�Kn−1) ∪G. By Lemma 1, D is still the unique
γ-set for H . The proposition follows by induction.

Taken together, Lemma 2 and the proof of Proposition 1 imply that if G�Kn ∈
U , then πG(UD(G�Kn)) = UD(G). When considering repeated products, a similar
statement holds.

Lemma 3. If G�Km
n ∈ U , then UD(G�Km

n ) = UD(G)× V (Km
n ).

Proof. As noted above, if G�Kn ∈ U , then UD(G�Kn) = UD(G)× [n]. Thus, we
see that

UD(G�Km
n ) = UD(G�Km−1

n �Kn) = UD(G�Km−1
n )× [n].

By induction, we see that UD(G�Km
n ) = UD(G)× V (Km

n ).

Since the Cartesian product is both commutative and associative, Proposition 1
gives us the following result.

Proposition 2. If G�Km
n ∈ U , then G�Kn1 �Kn2 � · · · �Knr ∈ U for 1 ≤ ni ≤

n and 1 ≤ i ≤ r ≤ m.

Proof. Suppose that G�Km
n ∈ U . By associativity, (G�Km−1

n )�Kn ∈ U . By
Proposition 1, we then have that (G�Km−1

n )�Kn1 ∈ U so long as 1 ≤ n1 ≤ n.
By commutativity, we have that (G�Kn1)�Km−1

n ∈ U . By induction, our result
follows.

As a result of Proposition 2, in order to determine whether

G�Kn1 �Kn2 � · · · �Knr ∈ U ,
it may suffice to consider whether G�Kr

n ∈ U where n = max{n1, n2, . . . , nr}. Thus,
we are motivated to define the following parameter.
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Definition 1. Let G ∈ U and let U �
n (G) denote the integer m such that G�Km

n ∈
U , but G�Km+1

n �∈ U . If G�Km
n �∈ U for any m ≥ 1, define U �

n (G) = 0, while if
G�Km

n ∈ U for all m ≥ 1, define U �
n (G) = ∞.

As an illustration of this definition, consider the following examples. The graph
K1,2 ∈ U but K1,2�K2 �∈ U (see Figure 1). Thus, U �

2 (K1,2) = 0. When we
consider the graph K1,3, we see that K1,3�K2 ∈ U but K1,3�K2

2 �∈ U . Hence,
U �
2 (K1,3) = 1. Finally, when considering the graph K1,4, we see that K1,4�K2

2 ∈ U ,
but K1,4�K3

2 �∈ U . Thus, U �
2 (K1,4) = 2.

K1,2 K1,2�K2

Figure 1: K1,2 ∈ U but K1,2�K2 �∈ U

We now determine U �
n (K1,p) for n ≥ 2. For notational purposes, let V (K1,p) =

{0, 1, . . . , p} with 0 denoting the support vertex. Additionally, denote the vertices of
Km

n as strings of length m over the alphabet [n]. By the jth cube of K1,p�Km
n , we

mean the subgraph of K1,p�Km
n induced by {j}× V (Km

n ). The zeroth cube will be
referred to as the central cube, while all other cubes will be referred to as the outer
cubes.

Proposition 3. If 2 ≤ p ≤ n, then U �
n (K1,p) = 0. If p > n ≥ 2, then U �

n (K1,p) =⌊
p−2
n−1

⌋
.

Proof. First, suppose that 2 ≤ p ≤ n, and consider the graph K1,p �Kn. If p < n,
then V (K1,p)×{1} and V (K1,p)×{2} are two distinct minimum dominating sets for
K1,p �Kn. If p = n, then we see that the sets {0}× [n] and {(1, 1), (2, 2), . . . , (p, p)}
are two distinct minimum dominating sets forK1,p�Kn. Thus, we see thatK1,p�Kn

does not have a unique γ-set when 2 ≤ p ≤ n, giving us the first part of our result.

Suppose then that p > n. Let m = � p−2
n−1


, and consider K1,p�Km
n . Let D be

the set {0} × V (Km
n ), and note that D is certainly a dominating set for K1,p �Km

n .
Suppose that D′ is a γ-set for K1,p�Km

n and that for some k > 0, |D − D′| = k.
In Km

n , every vertex is of degree (n − 1)m. Thus, D′ contains at least � k
(n−1)m+1

�
vertices from each of the p outer cubes of K1,p�Km

n . Hence, we see that

|D′| ≥ nm − k + (p)

⌈
k

(n− 1)m+ 1

⌉
.

Since m < p−1
n−1

, we see that (n − 1)m + 1 < p in which case (p)
⌈

k
(n−1)m+1

⌉
> k.

Hence |D′| > nm, a contradiction. Thus, D is the unique γ-set for K1,p �Km
n .
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Now consider K1,p�Km+1
n . Once again, D = {0} × V (Km+1

n ) is a dominating
set for K1,p�Km+1

n . Construct a new set D′ from D by deleting (0, 11 · · ·1) and
all of its neighbors in the central cube from D. Since (m + 1) ≥ 2, |D′| > 0.
Thus, the only vertex of the central cube not dominated by D′ is (0, 11 · · ·1). Let
D′′ = D′ ∪ {(i, 11 · · ·1) | 1 ≤ i ≤ p}. D′′ is a dominating set for K1,p�Km+1

n .
Additionally, we see that

|D′′| = |D| − [1 + (n− 1)(m+ 1)] + p

≤ |D| −
[
1 + (n− 1)

p− 1

n− 1

]
+ p

= |D| − p+ p

= |D|.
Hence, we have constructed a dominating set D′′ distinct from D of cardinality at
most |D|. Thus, K1,p �Km+1

n cannot have a unique γ-set by Lemma 3. Our result
now follows.

Proposition 3 will be used in the section to follow. However, before we proceed,
we note that Proposition 3 can be used to find a lower bound for γ(Qm). While
the lower bound produced is not of practical value, it is nevertheless interesting
that analysis of unique γ-sets could potentially be used to produce lower bounds for
domination numbers that are otherwise difficult to obtain.

Corollary 1. For p ≥ 2, γ(Qp−2) ≥ 2p−2

p+1
.

Proof. Taking n = 2, Proposition 3 implies that U �
2 (K1,p) = p − 2. That is,

K1,p �Qp−2 ∈ U . Moreover, |UD(K1,p�Qp−2)| = 2p−2. Hence, if γ(Qp−2) < 2p−2

p+1
,

then taking a γ-set of Qp−2 in each of the p + 1 cubes of K1,p�Qp−2 would yield a
dominating set of cardinality smaller than 2p−2. Thus, our result follows.

4 Trees

Proposition 3 provides us with the following result.

Lemma 4. If G�Km
n ∈ U , then for all v ∈ UD(G�Km

n ),
|epn(v, UD(G�Km

n ))| ≥ m(n− 1) + 2.

Proof. For notational convenience, let D denote the set UD(G�Km
n ) and let D′

denote the set UD(G). Recall that by Lemma 3, D = D′×V (Km
n ). This implies that

if v ∈ D′ with epn(v,D′) = {p1, p2, . . . , pk}, then for all x ∈ V (Km
n ), (v, x) ∈ D with

epn((v, x), D) = {(p1, x), (p2, x), . . . , (pk, x)}. For the sake of contradiction, suppose
that (u, w) ∈ D has epn((u, w), D) = {(p1, w), (p2, w), . . . , (pj, w)} for some j <
m(n−1)+2. Since U �

n (K1,j) < m, this implies that the subgraph of G�Km
n induced

by {u, p1, p2, . . . , pj} × V (Km
n ) has a γ-set, call it B, distinct from {u} × V (Km

n ). In
that case, (D − ({u} × V (Km

n ))) ∪ B is a γ-set for G�Km
n distinct from D, a

contradiction.
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Before proceeding to our main result, we recall one more theorem from [6].

Theorem 1 ([6]). Let n be a positive integer and let T be a tree. The graph
T �Kn ∈ U if and only if T has a minimum dominating set D such that for all
v ∈ D, |epn(v,D)| ≥ n+ 1.

We are now able to classify the trees T for which T �Km
n has a unique γ-set.

For notational purposes, if v ∈ V (T ), then we let the vth cube of T �Km
n denote the

subgraph of T �Km
n induced by {v} × V (Km

n ).

Theorem 2. Let n ≥ 2, m ≥ 1, and let T be a tree. The Cartesian product T �Km
n

has a unique γ-set if and only if T �Km(n−1)+1 has a unique γ-set.

Proof. First, suppose that T �Km
n ∈ U . By Lemma 3, UD(T �Km

n ) = UD(T ) ×
V (Km

n ). By Lemma 4, we know that for each v ∈ UD(T �Km
n ),

|epn(v, UD(T �Km
n ))| ≥ m(n − 1) + 2. This implies that for each w ∈ UD(T ),

|epn(w,UD(T ))| ≥ m(n− 1) + 2. By Theorem 1, it follows that T �Km(n−1)+1 has
a unique γ-set.

Now suppose that T �Km(n−1)+1 ∈ U . By Proposition 1 and Theorem 1, we see
that T has a unique γ-set S so that every element in S has at least m(n − 1) + 2
external private neighbors with respect to S. Consider then T �Km

n . Note that the
set S × V (Km

n ) is a dominating set for T �Km
n . We must show that it is a γ-set for

T �Km
n , and that it is the unique γ-set for T �Km

n .

We proceed by induction on γ(T ). If γ(T ) = 1, then T is a star K1,p with
p ≥ m(n−1)+2. By Proposition 3, we see that T �Km

n has UD(T )×V (Km
n ) as its

unique γ-set. Thus, suppose the result has been proven whenever γ(T ) < q. Let T
be a tree such that γ(T ) = q and such that T �Km(n−1)+1 has a unique γ-set. Let S
be the unique γ-set for T . We know that for all x ∈ S, |epn(x, S)| ≥ m(n− 1) + 2.
Consider a diametral path x1x2 . . . xt−1xtxt+1 in T . Note that xt ∈ S and that t ≥ 3.

Case One

First, suppose that xt−1 �∈ epn(xt, S). In this case, since |epn(xt, S)| ≥ m(n− 1)+2,
we see that xt is adjacent to at least m(n − 1) + 2 leaves. Thus, by the proof
of Proposition 3, every vertex of the xtth cube in T �Km

n is selected for inclusion
in every γ-set of T �Km

n . Let T ′ denote the tree obtained by removing xt and
all of its private neighbors with respect to S from T . Note that by Lemma 1,
T ′ ∈ U with UD(T ′) = S − {xt}. Additionally, observe that if x ∈ S − {xt}, then
epn(x, S−{xt}) ⊇ epn(x, S). Thus, by Theorem 1, we also see that T ′ �Km(n−1)+1 ∈
U . Since γ(T ′) < γ(T ), our induction hypothesis implies that T ′ �Km

n ∈ U and that
UD(T ′ �Km

n ) = (S − {xt})× V (Km
n ).

Suppose then that D is a γ-set for T �Km
n and that D �= S × V (Km

n ). By
our observations above, we know that {xt} × V (Km

n ) ⊆ D. Let B = D − ({xt} ×
V (Km

n )) and note that B ⊆ V (T ′ �Km
n ). If B dominates T ′ �Km

n , then since
UD(T ′ �Km

n ) = (S − {xt}) × V (Km
n ) and since B �= (S − {xt}) × V (Km

n ), this
implies that |B| > |(S −{xt})× V (Km

n )|. This, however, implies that S × V (Km
n ) is

a smaller cardinality dominating set for T �Km
n , a contradiction.
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Thus, assume that B does not dominate T ′ �Km
n . Since D is a dominating

set of T �Km
n , this implies that B fails to dominate some subset of the xt−1-cube

in T ′ �Km
n . In particular, this implies that some subset of the xt−1-cube is not

contained in B. We consider two subcases.

Subcase One

Suppose that xt−1 �∈ S.

• First, suppose that N(xt−1) = {xt−2, xt}. Since xt−1 �∈ epn(xt, S), this implies
that xt−2 ∈ S. Apply Lemma 1 to T , and remove the edge xt−2xt−1. It follows
that T ′−xt−1 ∈ U and that UD(T ′−xt−1) = S−{xt}. This further implies, by
the same logic as above, that (T ′−xt−1)�Km

n ∈ U with unique γ-set given by
(S−{xt})×V (Km

n ). Note that since B does not dominate all of the xt−1-cube
in T ′ �Km

n , this implies that B does not contain all of the xt−2-cube.

If B contains no vertices from the xt−1-cube, then B is a dominating set for
(T ′ − xt−1)�Km

n distinct from (S − {xt}) × V (Km
n ). This contradicts our

assumption that D was a γ-set for T �Km
n .

Hence, we see that B contains some subset of the xt−1-cube. Let
{(xt−1, p1), (xt−1, p2), . . . , (xt−1, pj)} ⊆ B. This implies that

B ∩ {(xt−2, p1), (xt−2, p2), . . . , (xt−2, pj)} = ∅
since otherwise D would not be a γ−set for T �Km

n . Thus, consider the set

(B − {(xt−1, p1), . . . , (xt−1, pj)}) ∪ {(xt−2, p1), . . . , (xt−2, pj)}.
This is a dominating set for (T ′−xt−1)�Km

n distinct from (S−{xt})×V (Km
n ),

a contradiction.

• Now suppose that xt−1 is adjacent to a vertex, call it y, not on the diametral
path. First, note that y ∈ S. If y �∈ S, then since xt−1 �∈ S, y would have
a neighbor in S which, with its external private neighbors, could be used to
create a longer path in T . In particular, any neighbors of xt−1 in T not on
the diametral path are in S and have only leaf neighbors. Since our initial
assumption was that each element of S has at least m(n−1)+2 external private
neighbors, this implies that y has m(n− 1) + 2 leaf-neighbors in T . Hence, by
the same logic as applied to xt above, every vertex of the y-cube is contained in
every γ-set for T �Km

n . However, this implies that {y} × V (Km
n ) ⊆ D which

further implies that B dominates T ′ �Km
n , a contradiction.

Thus, in both cases, xt−1 �∈ S leads to a contradiction.

Subcase Two

Suppose now that xt−1 ∈ S. This implies that |epn(xt−1, S)| ≥ m(n− 1) + 2 by our
earlier assumption. If xt−1 has an external private neighbor other than xt−2 that is
not a leaf, then a longer path in T can be found. Hence, we see that xt−1 has at least
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m(n−1)+1 leaf-neighbors in T , call them l1, l2, . . . , lr. Note that if r ≥ m(n−1)+2,
then every vertex of the xt−1-cube is contained in every γ-set of T �Km

n implying
that B is a dominating set for T ′ �Km

n , a contradiction.

Thus, we see that xt−1 has exactly m(n − 1) + 1 leaf-neighbors and xt−2 ∈
epn(xt−1, S). Recall that some subset of the xt−1-cube in T �Km

n is not contained
in B. To be specific, assume k vertices of the xt−1-cube are not contained in B. This
implies that at least � k

m(n−1)+1
� vertices from each of the l1, l2, . . . , lr-cubes are con-

tained in B. Additionally, the vertices in the xt−2-cube that are adjacent to vertices
in ({xt−1} × V (Km

n ))−B are dominated by vertices outside of the xt−1-cube. Since

[m(n− 1) + 1] · � k

m(n− 1) + 1
� ≥ k

we see that B contains exactly k vertices from the l1, l2, . . . , lr-cubes in total, since
otherwise a smaller dominating set for T �Km

n could be constructed. Consider the
set obtained from B by removing the k vertices from the l1, l2, . . . , lr-cubes and
including the k missing vertices from the xt−1-cube. This set is a dominating set for
T ′ �Km

n distinct from (S − {xt})× V (Km
n ), a contradiction.

Case Two

Finally, suppose that xt−1 ∈ epn(xt, S). In this case, xt is adjacent to at least
m(n− 1) + 1 leaves, call them l1, l2, . . . , lp. Note that the only neighbors of xt−1 are
xt and xt−2. If xt−1 had any other neighbors, either a longer path in T could be
found, or xt−1 would not be an external private neighbor of xt with respect to S.

Suppose that D is a γ-set of T �Km
n which does not contain k vertices of the

xtth cube. This implies that D contains at least � k
(n−1)m+1

� vertices from each of the

l1, l2, . . . , lp-cubes. In fact, if (m(n− 1) + 1)� k
(n−1)m+1

� > k, then we have reached a
contradiction since a smaller dominating set for T �Km

n could be found simply by
including every vertex of the xtth cube. In particular, this implies that (m(n− 1) +
1)� k

m(n−1)+1
� = k.

We now claim that D contains at least one vertex from the xt−1-cube. To see
this, first note that the tree T ′′ defined by T ′′ = T − {xt, xt−1, l1, . . . , lp} belongs to
U with UD(T ′′) = S − {xt}. Additionally, since epn(x, S − {xt}) = epn(x, S) for
all x ∈ S − {xt}, Theorem 1 implies that T ′′ �Km(n−1)+1 ∈ U . Thus, our induction
hypothesis implies that T ′′ �Km

n has a unique γ-set given by (S − {xt})× V (Km
n ).

If no vertices from the xt−1-cube are included in D, then

D ∩ V (T ′′ �Km
n ) = (S − {xt})× V (Km

n ).

This, however, results in at least k vertices of the xt−1-cube being undominated by
D since xt−2 �∈ S − {xt}. This is a contradiction.

Thus, D contains at least one vertex from the xt−1-cube. If we “shift” these
vertices to their corresponding positions in the xt−2-cube, remove the vertices from D
in the l1, l2, . . . , lp-cubes, and add in the missing vertices from the xt-cube, we create
a γ-set D′ distinct from D which induces a γ-set distinct from (S − {xt})× V (Km

n )
on the subgraph T ′′ �Km

n , a contradiction.
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Hence, if D is a γ-set for T �Km
n , then every vertex of the xt-cube is included in

D. By the logic applied above, this implies that S × V (Km
n ) is the unique γ-set for

T �Km
n .

Thus, we see that if T �Km(n−1)+1 ∈ U , then T �Km
n ∈ U .

Before we conclude, we note that Theorem 2, together with Theorem 1 above,
imply the following corollary concerning hypercubes.

Corollary 2. Let T be a tree on at least four vertices, and let m ≥ 1. The following
conditions are equivalent.

• T �Qm ∈ U .
• T �Km+1 ∈ U .
• T has a γ-set D such that for all v ∈ D, |epn(v,D)| ≥ m+ 2.

We note that a γ-set in a tree can be found in linear time (see [1]). Hence, the
problem of determining for which m, T �Qm ∈ U can be solved in polynomial time.
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