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Abstract

A loop satisfies Moufang’s theorem whenever the subloop generated by
three associating elements is a group. Moufang loops (loops that satisfy
the Moufang identities) satisfy Moufang’s theorem, but it is possible for
a loop that is not Moufang to nevertheless satisfy Moufang’s theorem.
Steiner loops that are not Moufang loops are known to arise from Steiner
triple systems in which some triangle does not generate a subsystem of
order 7, while Steiner loops that do not satisfy Moufang’s theorem are
shown to arise from Steiner triple systems in which some quadrilateral
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(Pasch configuration) does not generate a subsystem of order 7. Con-
sequently, the spectra of values of v for which a Steiner loop exists are
determined when the loop is also Moufang; when the loop is not Moufang
yet satisfies Moufang’s theorem; and when the loop does not satisfy Mo-
ufang’s theorem. Furthermore, examples are given of non-commutative
loops that satisfy Moufang’s theorem yet are not Moufang loops.

1 Introduction

Let V be a finite set, and ⊕ be a binary operation ⊕ : V × V �→ V . When for every
a, b ∈ V there exists a unique x for which a⊕x = b and a unique y for which y⊕a = b,
(V,⊕) is a quasigroup. When there is an element e ∈ V for which e⊕ x = x = x⊕ e
for all x ∈ V , (V,⊕) is a loop and e is its identity element. If the binary operation ⊕
satisfies the associative property x⊕(y⊕z) = (x⊕y)⊕z for all x, y, z ∈ V , the loop is
a group. The operation ⊕ is commutative if x⊕ y = y⊕x for all x, y ∈ V . A subloop
of loop (V,⊕) is a loop (W,⊕) with W ⊆ V . The subloop generated by Y ⊆ V is the
smallest subloop (W,⊕) for which Y ⊆ W . See [20] for related background.

A Moufang identity is any one of the identities z⊕(x⊕(z⊕y)) = ((z⊕x)⊕z)⊕y,
x ⊕ (z ⊕ (y ⊕ z)) = ((x ⊕ z) ⊕ y) ⊕ z, (z ⊕ x) ⊕ (y ⊕ z) = (z ⊕ (x ⊕ y)) ⊕ z, or
(z ⊕ x)⊕ (y⊕ z) = z ⊕ ((x⊕ y)⊕ z). These are equivalent for loops [3, 12]. When a
loop has the property that the Moufang identities hold for every choice of x, y, z, it
is a Moufang loop. In 1935, Moufang [19] showed that in a Moufang loop, whenever
three elements satisfy associativity (x⊕y)⊕z = x⊕(y⊕z), the subloop generated by
{x, y, z} is a group. Are there other loops for which the same conclusion holds? This
is related closely to a question posed by Andrew Rajah at the Loops’11 conference:
“Is every variety that satisfies Moufang’s theorem contained in the variety of Moufang
loops?”

A loop satisfies Moufang’s theorem if, for every three elements for which (x ⊕
y)⊕ z = x⊕ (y⊕ z), the subloop generated by {x, y, z} is a group. In this paper, we
examine a large class of commutative loops, the Steiner loops, to establish that many
non-Moufang loops nevertheless satisfy Moufang’s theorem. A loop is ruthless if it
is a Steiner loop, it is not a Moufang loop, and it satisfies Moufang’s theorem. (In
[8], a loop is said to have Moufang’s property MP if it satisfies Moufang’s theorem
but is not a Moufang loop; hence ruthless loops are Steiner loops that have property
MP .)

Let V be a finite set, and B be a set of subsets of V each of cardinality three
(triples), so that every subset of V of cardinality two is a subset of exactly one of
the triples in B. Then (V,B) is a Steiner triple system of order v, denoted STS(v).
See [7] for extensive background on triple systems. Existence of STSs was settled
in 1847 by Kirkman [17], who showed that an STS(v) exists if and only if v ≡ 1, 3
(mod 6). A configuration in an STS(v) (V,B) is a pair (W,D) with W ⊆ V , D ⊆ B,
and B ⊆ W whenever B ∈ D. Configuration (W,D) is a

• subdesign or sub-STS(|W |) if it is a Steiner triple system of order |W |;
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• triangle configuration if D is isomorphic to

{{x, y, a}, {x, z, b}, {y, z, c}};

• Pasch configuration or quadrilateral if D is isomorphic to

{{x, y, a}, {x, z, b}, {y, z, c}, {a, b, c}}.

The smallest subdesign that contains all triples in D ⊆ B is the subdesign generated
by D.

x
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z
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b

c

Triangle

x

y

z

a

b

c

Pasch

Every STS(v) with v > 3 contains triangles. The situation is different for quadri-
laterals and subsystems:

Theorem 1.1 [10] For every v ≡ 1, 3 (mod 6), there exists a (subsystem-free)
STS(v) having no sub-STS(w) for any 3 < w < v.

Theorem 1.2 [13, 18] For every v ≡ 1, 3 (mod 6), there exists a (quadrilateral-free
or anti-Pasch) STS(v) containing no quadrilateral except when v ∈ {7, 13}.

From an STS(v), we can form a Steiner loop on V ∪{e} with binary operation ⊕,
so that whenever {x, y, z} ∈ B, we have x⊕ y = z, y ⊕ x = z, x⊕ z = y, z ⊕ x = y,
y ⊕ z = x, and z ⊕ y = x; and for every x ∈ V ∪ {e} we have x⊕ x = e, x⊕ e = x,
and e⊕ x = x. A Steiner loop is commutative.

One particular class of Steiner triple systems plays an important role. Treat the
2n − 1 nonzero binary vectors of length n as elements, and form a triple containing
three such vectors whenever their vector sum is the zero vector. The Steiner triple
system that results is the projective triple system, and its Steiner loop is the boolean
loop. Boolean loops are precisely the Steiner loops that are also groups [9]. The
characterization of loops that are both Steiner and Moufang is in [3, Lemma 3.2];
see also [16].

Theorem 1.3 A Steiner loop is a Moufang loop if and only if it is a boolean loop.
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In the vernacular of Steiner triple systems, a Steiner loop is a Moufang loop if
and only if in its associated Steiner triple system every triangle appears in a Pasch
configuration, or equivalently every triangle generates a sub-STS(7). That is, it is
projective [6, 22].

We examine when Steiner loops satisfy Moufang’s theorem, and prove:

Theorem 1.4 A Steiner loop satisfies Moufang’s theorem if and only if its corre-
sponding Steiner triple system has the property that every Pasch configuration gen-
erates a sub-STS(7).

As a consequence, we determine existence spectra for various classes of Steiner
loops:

Theorem 1.5 There is a Steiner loop of order v that

1. is a Moufang loop if and only if v = 2n and n ≥ 0;

2. is ruthless if and only if v ≡ 2, 4 (mod 6), v ≥ 10, and v �= 14;

3. does not satisfy Moufang’s theorem if and only if v ≡ 2, 4 (mod 6) and v ≥ 14.

An STS(v) is ruthless when its loop is ruthless. In [8], ruthless loops of order
3n + 1 are given when n is odd and n �≡ 0 (mod 7). Theorem 1.4 subsumes this
result as follows. Bose [1] gives a construction for STS(3n) when n is odd; Brouwer
[2] and Doyen [11] establish that this system is anti-Pasch precisely when n �≡ 0
(mod 7). Many explicit constructions for anti-Pasch STS(v)s are known [7], and
each yields a class of ruthless loops (by Theorem 1.4). Of particular interest, the
Hall triple systems first defined in [14] provide examples of anti-Pasch STSs with
many subsystems, because every three distinct elements generate a subsystem of
order 3 or 9; see also [5, 21]. The multiplication groups of the corresponding Hall
loops are determined in [23].

Naturally no anti-Pasch STS can have a projective subsystem. However, in Sec-
tion 4 we establish that ruthless STS(v)s exist that have nontrivial projective sub-
systems; to do this, we prove that three recursive constructions for ruthless STS(v)s
either preserve or introduce nontrivial projective subsystems.

In the sequel, we write the binary operation as juxtaposition rather than writ-
ing ⊕.

2 Steiner loops that satisfy Moufang’s theorem

We prove two easy lemmas to begin.

Lemma 2.1 Let (V,B) be an STS(v), and let e be the identity element of its Steiner
loop. For every S ⊆ V ∪ {e}, the following statements are equivalent:

1. S generates a subgroup of order 1, 2, or 4 in the Steiner loop.
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2. There exists a B ∈ B for which S \ {e} ⊆ B.

Proof When S \ {e} ⊆ B = {x, y, z} ∈ B, {x, y, z, e} generates a boolean subloop
of order 4, in which every subloop is a group. In the other direction, if there is no
block B ∈ B with S \ {e} ⊆ B, then choose {x, y, z} ⊆ S so that {x, y, z} is not
a block (i.e., they are not collinear). The subloop generated contains (at least) the
five elements {e, x, y, z, xy}, which are distinct. So the subloop generated has order
greater than 4. �

Lemma 2.2 Let (V,B) be an STS(v), and let e be the identity element of its Steiner
loop. For every x, y, c ∈ V that are not collinear, the following statements are equiv-
alent:

1. x, y, c satisfy the associativity x(yc) = (xy)c.

2. x, y, c form a Pasch configuration in the STS in which {x, y} and {y, c} appear
in blocks but {x, c} does not.

Proof Suppose that x(yc) = (xy)c. Write yc = z, xy = a, and xz = ac = b. Then
the blocks {x, y, a}, {x, z, b}, {y, z, c}, and {a, b, c} form a Pasch configuration with
no block containing {x, c}. The converse is immediate. �

Proof of Theorem 1.4. For the necessity, consider a Steiner loop for Steiner triple
system (V,B) that satisfies Moufang’s theorem. Select elements {x, y, c} ⊆ V ∪ {e}
for which x(yc) = (xy)c with x, y, c non-collinear. Consider the subgroup generated
by {x, y, c}, and suppose it has element set W . Using Lemma 2.2, because the
Pasch configuration with triples {x, y, a}, {x, z, b}, {y, z, c}, and {a, b, c} is present,
{e, x, y, z, a, b, c} ⊆ W . Then because the subloop on W forms a group, x(yz) =
xc = d = az = (xy)z so {x, c, d} and {z, a, d} are triples. By the same token,
x(zy) = xc = d = by = (xz)y so {y, b, d} is a triple. These seven triples form a
sub-STS(7).

For sufficiency, suppose that every Pasch configuration generates a sub-STS(7).
Consider elements {x, y, c} ⊆ V ∪ {e}. By Lemma 2.1 the conclusion holds when
they are collinear. By Lemma 2.2, if {x, y, c} are non-collinear and do not appear in
a Pasch configuration, they do not associate in the loop. When Pasch configurations
are present, each generates a sub-STS(7), corresponding to a boolean subloop (a
subgroup) of order 8. �

3 Steiner loops: Moufang, ruthless, and neither

Proof of Theorem 1.5. The first statement follows from Theorem 1.3 and the defi-
nition of projective triple systems.

Now we treat the second statement. When v ≡ 2, 4 (mod 6), v ≥ 10, and
v �= 14, apply Theorems 1.3, 1.4, and 1.2. That v �= 8 follows from the observation
that the unique STS(7) is projective, so its loop is Moufang. That v �= 14 follows
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from the fact that both STS(13)s contain Pasch configurations but do not contain a
sub-STS(7).

Finally we treat the third statement. When v ≤ 8, the only Steiner triple systems
are projective. The unique STS(9) has a loop that satisfies Moufang’s theorem. The
two nonisomorphic STS(13)s contain Pasch configurations but no subsystem of order
7, so their loops do not satisfy Moufang’s theorem. Now consider the 6-line 8-element
configuration

x

y

z

a

b

c

d

e

Busted

Pasch

The Pasch configuration in solid lines cannot generate an STS(7) if the two dashed
lines of the configuration are also present. Applying known embedding results for
partial Steiner triple systems [4], there exists an STS(v−1) for every v−1 ≥ 19 that
contains this configuration, and hence the STS does not satisfy Moufang’s theorem.
It remains to treat v = 16. Among the 80 STS(15)s, 23 have sub-STS(7)s and only
one is anti-Pasch [7], so the remaining ones all provide Steiner loops of order 16 that
do not satisfy Moufang’s theorem. �

4 Systems with Pasch configurations

The proof of Theorem 1.5(2) as it stands leaves an important question unanswered:
Can ruthless STSs contain Pasch configurations? According to Theorem 1.4, a loop
is ruthless exactly when every Pasch configuration in its associated STS generates a
sub-STS(7). This permits a ruthless STS to contain subsystems that are projective,
those that are not, or indeed a combination of the two.

The (special) v → 2v + 1 construction, essentially due to Kirkman [17], is as
follows. Let (V,B) be an STS(v). Form an STS(2v+1), (W = (V ×{0, 1})∪{∞},D),
where D consists of the triples

• {{(x, i), (y, j), (z, k)} : {x, y, z} ∈ B, i, j, k ∈ {0, 1}, i+ j + k ≡ 0 mod 2}, and
• {{∞, (x, 0), (x, 1)} : x ∈ V }.

When (V,B) is projective, (W,D) is also projective.

Theorem 4.1 When (V,B) is a ruthless STS(v), and (W,D) is the STS(2v + 1)
obtained by the special v → 2v + 1 construction, (W,D) is ruthless.
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Proof Any Pasch configuration in (W,D) that contains ∞ must contain two triples
{∞, (x, 0), (x, 1)}, {∞, (y, 0), (y, 1)} for some x, y ∈ V . The remaining two triples
must be of the form {(x, i), (y, j), (z, i+ j mod 2)} and {(x, 1 − i), (y, 1 − j), (z, i +
j mod 2)}, so that B = {x, y, z} ∈ B. Then (B×{0, 1})∪{∞} supports a sub-STS(7)
by construction.

So consider a Pasch configuration in (W,D) that does not contain ∞. Suppose
that its elements are {(xj , ij) : 1 ≤ j ≤ 6}, and its triples are

{{(x1, i1), (x3, i3), (x5, i5)}, {(x1, i1), (x4, i4), (x6, i6)},
{(x2, i2), (x3, i3), (x6, i6)}, {(x2, i2), (x4, i4), (x5, i5)}}.

Because ∞ is not one of the points, {x1, x2}, {x3, x4}, and {x5, x6} are disjoint sets.
If it is not the case that all six are distinct, without loss of generality x1 = x2.
Then the structure of the triples requires that x3 = x4 and x5 = x6, and that B =
{x1, x3, x5} ∈ B. Then (B × {0, 1}) ∪ {∞} supports a sub-STS(7) by construction.

If elements {xj : 1 ≤ j ≤ 6} are all distinct, then they form a Pasch configuration
in (V,B). Because this generates a (projective) sub-STS(7) (V ′,B′) of (V,B), the
elements of the Pasch chosen all lie in a projective sub-STS(15) of (W,D) on (V ′ ×
{0, 1}) ∪ {∞}; hence the Pasch generates a sub-STS(7). �

When the STS(v) contains a sub-STS(w), the STS(2v + 1) contains a sub-
STS(2w+1). Thus the STS(2v+1) always contains a sub-STS(7). Iterating Theorem
4.1 n times starting with a ruthless STS(v), one obtains a ruthless STS(2n(v+1)−1)
that contains a sub-STS(2n+2−1). The subsystem is projective here, but the system
is not.

We also develop a tripling construction.

Theorem 4.2 If an STS(v) that satisfies Moufang’s theorem exists, then a ruthless
STS(3v) exists. The STS(3v) contains a Pasch configuration exactly when an STS(v)
that satisfies Moufang’s theorem does.

Proof For i ∈ {0, 1, 2}, let (V,Bi) be an STS(v) that satisfies Moufang’s theo-
rem (it is ruthless or projective). Let L be a v × v Latin square having no 2 × 2
subsquare, which exists by [15]. Index its rows, columns, and symbols by the el-
ements of V . Form an STS(3v) on V × {0, 1, 2} by including the inside triples
{{xi, yi, zi} : {x, y, z} ∈ Bi, i ∈ {0, 1, 2}} and the transverse triples {{a0, b1, c2} :
a, b ∈ V, L(a, b) = c}. Consider a Pasch configuration in the STS(3v). Either it
consists of four inside triples or of four transverse triples. In the latter case, a Pasch
configuration arises only when the four triples correspond to a 2× 2 subsquare in L,
which does not occur. In the former, because each STS(v) is ruthless or projective,
the Pasch configuration generates a sub-STS(7) as required. The STS(3v) is always
ruthless, never projective. �

A more involved “3v − 2” construction also applies.

Theorem 4.3 If an STS(v) that satisfies Moufang’s theorem exists and v �∈ {3, 9},
then a ruthless STS(3v − 2) exists. The STS(3v − 2) always contains a Pasch con-
figuration.
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Proof Let n = (v− 1)/2 and H be a latin square with no 2× 2 subsquare and with
rows, columns, and symbols indexed by an n-set X, which exists because n �∈ {1, 2, 4}
[15]. Let L be a (v−1)×(v−1) latin square with rows, columns, and symbols indexed
by X×{0, 1} so that L((x, i), (y, j)) = (H(x, y), i+ j mod 2) whenever x, y ∈ X and
i, j ∈ {0, 1}. Let V = (X × {0, 1}) ∪ {∞} and (V,B) be an STS(v) satisfying
Moufang’s theorem that contains {{∞, (x, 0), (x, 1)} : x ∈ X} as blocks.

Form an STS(3v − 2) on {∞} ∪ (X × {0, 1} × {0, 1, 2}) by including

1. {{(x, i, σ), (y, j, σ), (z, �, σ)} : {(x, i), (y, j), (z, �)} ∈ B, {x, y, z}⊆ X,
σ ∈ {0, 1, 2}} (inside triples),

2. {{∞, (x, 0, σ), (x, 1, σ)} : x ∈ X, σ ∈ {0, 1, 2}} (infinite triples), and

3. {{(x, i, 0), (y, j, 1), (z, �, 2)} : x, y ∈ X, i, j ∈ {0, 1}, L((x, i), (y, j)) = (z, �)}
(transverse triples).

Consider a Pasch configuration P in the STS(3v− 2). If P contains two triples from
one of the sub-STS(v)s, then P lies inside a sub-STS(v) and hence generates a sub-
STS(7). Other Pasch configurations must contain a transverse triple. So suppose
that {(x, i, 0), (y, j, 1), (z, �, 2)} is a triple of P . Exactly one other triple B of P
contains (x, i, 0).

B is inside: Without loss of generality, B = {(x, i, 0), (w, a, 0), (u, b, 0)}. Then the
remaining triples of P either cover the pairs {(w, a, 0), (y, j, 1)} and {(u, b, 0),
(z, �, 2)}, or the pairs {(w, a, 0), (z, �, 2)} and {(u, b, 0), (y, j, 1)}. Then the
two triples containing these are both transverse. However, the third points
in these triples must have different third coordinates, and hence P is not a
Pasch configuration. Indeed by symmetry no Pasch configuration can contain
both a transverse and an inside triple.

B is infinite: Then B = {∞, (x, i, 0), (x, 1 − i, 0)}. The remaining two triples of
P either cover the pairs {∞, (y, j, 1)} and {(x, 1 − i, 0), (z, �, 2)} or the pairs
{∞, (z, �, 2)} and {(x, 1−i, 0), (y, j, 1)}. For the first, the two remaining triples
are {∞, (y, j, 1), (y, 1−j, 1)} and {(x, 1−i, 0), (y, 1−j, 1), (z, �, 2)}. By construc-
tion, {(x, 1− i, 0), (y, j, 1), (z, 1− �, 2)} and {(x, i, 0), (y, 1− j, 1), (z, 1− �, 2)}
are triples of the STS(3v−2). The triple {∞, (z, �, 2), (z, 1−�, 2)}, which is also
present, completes a sub-STS(7). The second situation is similar. Indeed by
symmetry every Pasch configuration that contains a transverse and an infinite
triple generates a sub-STS(7).

B is transverse: We may suppose that no triple of P is inside or infinite; all are
transverse. If B covers pair {(x, i, 0), (y, 1 − j, 1)} or {(x, i, 0), (z, 1 − �, 2)},
then B = {(x, i, 0), (y, 1 − j, 1), (z, 1 − �, 2)}, and P contains the two further
triples {(x, 1−i, 0), (y, j, 1), (z, 1−�, 2)} and {(x, 1−i, 0), (y, 1−j, 1), (z, �, 2)}; a
sub-STS(7) is generated by P that includes three infinite triples. It remains to
treat the case when B = {(x, i, 0), (w, a, 1), (u, b, 2)} with w �= y and u �= z; this
requires that H(x, y) = z and H(x, w) = u. For the remaining two transverse
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triples to form a Pasch configuration, suppose that the first coordinate of the
final element of P is f . Then H(f, y) = u, and H(f, w) = z. This cannot
happen because u �= z and H has no 2× 2 subsquare.

Although the STS(v) may or may not contain sub-STS(7)s, the STS(3v − 2) surely
does. Indeed it has ((v − 1)/2)2 sub-STS(7)s obtained by selecting an infinite triple
from two of the sub-STS(v)s. Nevertheless the STS(3v− 2) is not projective. �

It may be of interest to determine for which orders an STS(v) can be ruthless but
have non-trivial projective subsystems (or, in other words, ruthless STSs contain-
ing Pasch configurations). It appears plausible that this occurs whenever v ≡ 1, 3
(mod 6) and v ≥ 19.

5 Loop Direct Product

We now employ a direct product of loops, which can be seen as a generalization of
the special v → 2v + 1 construction. Let L1 = (X,⊕) and L2 = (Y,⊗) be loops.
The direct product L1 × L2 has elements X × Y and binary operation × defined by
(x1, y1)× (x2, y2) = (x1 ⊕ x2, y1 ⊗ y2).

Theorem 5.1 Let L1 = (X,⊕) and L2 = (Y,⊗) be finite loops. Then L1 × L2

satisfies Moufang’s theorem if and only if both L1 and L2 satisfy Moufang’s theorem.

Proof If L1 does not satisfy Moufang’s theorem, it has three associating elements
a1, a2, a3 that generate a subloop S1 that is not a group. Denoting by e2 the identity
element of L2, {a1, a2, a3} × {e2} associate in L1 × L2 and generate S1 × {e2}, a
subloop which is not a group. Hence L1 × L2 does not satisfy Moufang’s theorem.
Symmetrically, if L2 does not satisfy Moufang’s theorem, neither does L1 × L2.

Now suppose that L1 and L2 both satisfy Moufang’s theorem. Consider three
elements (a1, b1), (a2, b2), (a3, b3) in L1 × L2 that associate as

((a1, b1)× (a2, b2))× (a3, b3) = (a1, b1)× ((a2, b2)× (a3, b3)).

Then (a1 ⊕ a2)⊕ a3 = a1 ⊕ (a2 ⊕ a3) so the elements associate in L1; similarly they
associate in L2. Now let S1 be the subloop of L1 generated by {a1, a2, a3}, and let
S2 be the subloop of L2 generated by {b1, b2, b3}. The subloop of L1 × L2 generated
by {(a1, b1), (a2, b2), (a3, b3)} is a subloop of S1 × S2. Because S1 and S2 are groups,
every subloop of S1×S2 is a group. So whenever three elements associate in L1×L2,
they generate a subgroup. �

Theorem 5.1 gives further examples of ruthless Steiner triple systems that contain
projective subsystems. Perhaps more importantly, if we take L1 to be a ruthless loop
and L2 to be a non-commutative group or Moufang loop, the direct product is not a
Moufang loop, is not commutative (and hence not a Steiner loop), but nonetheless
satisfies Moufang’s theorem.



C.J. COLBOURN ET AL. /AUSTRALAS. J. COMBIN. 63 (1) (2015), 170–181 179

It may be important to observe that direct product of Steiner loops is not the
same as direct product of Steiner triple systems. For the STS(3) with triple {0, 1, 2}
and the STS(7) with triples {{i, i + 1, i + 3} : i ∈ Z7} the STS direct product (an
STS(21)) contains a Pasch configuration on {(0, 0), (5, 0), (1, 1), (2, 1), (3, 2), (6, 2)}
because the STS(7) contains the triples {0, 1, 3}, {0, 2, 6}, {2, 3, 5}, and {1, 5, 6}.
This Pasch configuration generates the additional elements {(4, 0), (4, 1), (4, 2)} and
hence generates a subsystem that is not projective. Hence the STS(21) is neither
projective nor ruthless. Consequently any STS(3v) obtained by the (STS) direct
product of a ruthless STS(v) with a sub-STS(7) and an STS(3) cannot itself be
ruthless.

6 Conclusion

Certain configurations in Steiner triple systems underlie when the corresponding
Steiner loop satisfies Moufang’s theorem. Indeed a rich class of Steiner loops sat-
isfying Moufang’s theorem arises from the anti-Pasch Steiner triple systems, whose
existence has been studied extensively. Nevertheless, we have shown that while all
Steiner loops from anti-Pasch Steiner triple systems satisfy Moufang’s theorem, and
hence provided one for each possible order, these classes do not coincide. Indeed ruth-
less Steiner triple systems can exhibit a rich structure of subsystems, both projective
and non-projective.
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