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Abstract

We consider the enumeration of pattern-avoiding involutions, focusing
in particular on sets defined by avoiding a single pattern of length 4.
We directly enumerate the involutions avoiding 1342 and the involutions
avoiding 2341. As we demonstrate, the numerical data for these problems
exhibits some surprising behavior. This strange behavior even provides
some very unexpected data related to the number of 1324-avoiding per-
mutations.

1 Introduction

For the past twenty-five years, there has been considerable interest in the enumeration
of pattern-avoiding permutations. Much less work has been devoted to pattern-
avoiding involutions, the topic of this paper. We begin with preliminary definitions.

Given permutations 7 and o, considered as sequences of positive integers (one-line
notation), we say that m contains o, and write 0 < =, if 7 has a subsequence
7(11) - - - w(ig) of the same length as ¢ which is order isomorphic to o (i.e., 7(is) <
7(4;) if and only if o(s) < o(t) for all 1 < s,¢ < k); otherwise, we say that m avoids
o. For example, m = 391867452 contains o = 51342, as can be seen by considering
the subsequence 7(2)7(3)w(5)7w(6)7(9) = 91672.
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12-1-0207 and the National Science Foundation under Grant Number DMS-1301692. The US Gov-
ernment is authorized to reproduce and distribute reprints not-withstanding any copyright notation
herein.
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Containment is a partial order on permutations, and we refer to downsets of permu-
tations as permutation classes. Thus if C is a permutation class containing 7 and
o < 7 then o € C. Given a set B of permutations, we denote by Av(B) the class of
permutations defined by avoiding every permutation in B, i.e.,

Av(B) = {r : 7 avoids every 5 € B}.

Conversely, for every class C there is a unique antichain B such that C = Av(B),
which is called the basis of the class.

For any permutation class C, we denote by C, the subset of permutations in C of
length n. The generating function (by length) of C is then

Z |Cp|2™ = Z !,

n>1 el

(Our generating functions do not count the empty permutation.) Two permutation
classes with the same enumerations are said to be Wilf-equivalent.

In this paper we are interested in counting pattern-avoiding involutions. Thus adapt-
ing our notation from permutation classes we write

Av!(B) = {involutions 7 : 7 avoids every 3 € B},

however, two important caveats should be made. The first is that Av’(B) is not a
permutation class in general. Also, note that the choice of B is not unique. We
define the generating functions and the notion of Wilf-equivalence for sets sets of the
form Av’(B) as we did for permutation classes.

The case where B is a singleton has received considerable attention; we call such
classes principal. Much of the early work in the area of permutation patterns con-
cerned principal classes for short patterns 5. For || = 3, there are only two different
permutation classes up to symmetry, and both are well-known to be counted by the
Catalan numbers (for 5 = 123, it can be argued that this is due to MacMahon [24,
Volume I, Section III, Chapter V], while the § = 231 case was first studied by
Knuth [21, Section 2.2.1, Exercises 4 and 5]).

The enumeration of sets of involutions avoiding a pattern § of length 3 was first
considered in the seminal paper of Simion and Schmidt [28]. They showed that for

g e {123,132,213, 321},
s [ n
@)1= ()
while for 5 € {231, 312},
| AVL(B) = 2,

The situation gets much more complicated when |3| = 4. In this case, it follows
from the work of Stankova [29] and Backelin, West, and Xin [7] that there are three
Wilf-equivalence classes for permutations, represented by

Av(1342), Av(1234), and Av(1324).
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1324 1234 4231 2431 1342 2341 3421 2413

|AVE(B) 21 21 21 24 24 25 25 24

|AvE(3) 51 51 51 62 62 66 66 64

|AVI(B)] 126 127 128 154 156 170 173 166
|Avi(B)] 321 323 327 396 406 441 460 456
|AVi(B)] 820 835 858 992 1040 1124 1218 1234
| AV (B)] 2160 2188 2272 2536 2714 2870 3240 3454
| AV (B)] 5654 5798 6146 6376 7012 7273 8602 9600

Table 1: The enumerations of involutions avoiding a pattern S of length 4 for
n=>5, ..., 11, as presented by Jaggard [20].

The class Av(1342) was first enumerated by Béna [11], who showed that it has an
algebraic generating function. (Recently, a much simpler proof has been given by
Bloom and Elizalde [9].) The class Av(1234) was first enumerated by Gessel [17], who
showed that it has a D-finite but nonalgebraic generating function. Unlike the other
two classes, Av(1324) has resisted all attempts to determine its exact enumeration.

Extending the work of Guibert [18] and Guibert, Pergola, and Pinzani [19], Jag-
gard [20] completed the classification of Wilf-equivalence classes of sets of involu-
tions avoiding a pattern of length 4, showing that there are seven Wilf-equivalence
classes that contain only a pattern and its involution-preserving symmetries, while
the eighth Wilf-equivalence class contains the patterns

1234, 1423, 1432, 2143, 3412, 4321

and their involution-preserving symmetries. Of these eight Wilf-classes, only two
enumerations have been computed so far. Gessel [17] showed that Av’(1234) is
counted by the Motzkin numbers, while Brignall, Huczynska, and Vatter [13] counted
AVI(2413). It should be remarked that presenting such sets as “principal” is a bit
disingenuous; any involution which avoids 2413 must also avoid 24137! = 3142,
so Av'(2413) = Av'(2413,3142). Still, we keep with the established tradition and
present the (or more accurately, one of the) shortest possible bases for such sets.

Jaggard concluded his paper by presenting the first few terms of the enumerations of
these Wilf-equivalence classes, which we show in Table 1. The order of the columns
of this table is determined by the number of permutations of length 11 which avoid
each pattern. Our interest in the topic of pattern-avoiding involutions was first
piqued when we noticed that this ordering is incredibly misleading (through no fault
of Jaggard’s).

In the next section we discuss the asymptotic enumeration of pattern-avoiding per-
mutations and involutions and show why the order of the columns of Table 1 must be
incorrect (for large values of n). Then in Section 3 we give an overview of the method
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Figure 2: The sum and skew sum operations.

we use to provide two new enumerations—those of Av’(1342) and Av’(2341). Sec-
tion 4 contains some rather technical calculations which we will need to prove these
results while the results themselves are proved in Sections 5 and 6.

2 Growth Rates and the Deceptiveness of Table 1

To explain why the ordering of the columns of Table 1 must be incorrect, we want
to look at the asymptotic, rather than exact, enumeration of such sets. The Marcus-
Tardos Theorem [25] (formerly the Stanley-Wilf Conjecture) states that all permuta-
tion classes other than the class of all permutations have at most exponential growth,
i.e., for every class C with a nonempty basis, there is a constant K > 0 so that C
contains at most K™ permutations of length n for all n. Thus every nondegenerate
permutation class C has finite upper and lower growth rates defined, respectively, by
gr(C) = limsup {/]C,| and gr(C) = lim inf R/1Cl.
n—0o0 n—
It is conjectured that every permutation class has a proper growth rate, and when we
are dealing with a class for which gr(C) = gr(C), we denote this quantity by gr(C).
Clearly, sets of the form Av’(B) have analogous upper and lower growth rates, which
we denote similarly, and if these two quantities agree, we call that quantity the proper
growth rate of the set.

Arratia [5] showed that principal classes always have proper growth rates, which are
in this case sometimes called Stanley- Wilf limits. We briefly recount his proof now,
partly because we need to use this machinery in our proofs. The direct sum (or just
sum for short) of the permutations o of length m and 7 of length n is the permutation
o @ 7 defined by

N o (1) for 1 <i<m,
(a®7)<l)—{7(i_m)+m form+1<i<m+n.

There is also an obvious symmetry of the sum operation called skew sum; both
of these operations are shown in Figure 2. The permutation 7 is said to be sum
(respectively, skew) indecomposable if it cannot be expressed as a sum (respectively,
skew sum) of two proper subpermutations.

The permutation class C is said to be sum closed if c @ 7 € C for every o,7 € C
(the term skew closed is defined analogously). It is not hard to see that the class
Av(B) is sum (respectively, skew) closed if and only if every permutation 5 € B is
sum (respectively, skew) indecomposable. Note that every permutation is either sum
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or skew indecomposable. Therefore, a principal class must be either sum or skew
closed.

It is then easy to see that principal classes have proper growth rates. Suppose that
C is a principal class. By symmetry we may assume that C is sum closed. Therefore
the sum operation defines an injection

® : Cp xCp — Crisn.

Therefore the sequence {|C,|} is supermultiplicative, i.e., |Cpyin| = |Cin||Cnl- It then
follows from Fekete’s Lemma that the growth rate of C exists (though Fekete’s Lemma
allows the limit to be infinite, this possibility is ruled out by the Marcus-Tardos
Theorem).

For counting involutions, we cannot make such a strong claim. Indeed, 1612 = 312 is
not an involution, so no nontrivial sets of the form Av’(B) are skew closed. However,
it is still true that o @ 7 is an involution whenever both ¢ and 7 are, so we can get
roughly half of Arratia’s result:

Proposition 2.1. If every permutation in B is sum indecomposable then AVI(B)
has a proper growth rate.

For |5| = 4 there are three possible growth rates of principal classes of the form
Av(p). Regev [26] showed that gr(Av(1234)) = 9, while Béna’s work [11] shows
that gr(Av(1342)) = 8. The final value, that of gr(Av(1324)), is currently unknown,
although we have bounds in both directions. For the upper-bound, Béna [10, 12]
has extended an argument of Claesson, Jelinek, and Steingrimsson [14] to show that
gr(Av(1324)) < 13.74. The best current lower bound on gr(Av(1324)) is 9.81, due
to Bevan [8], while Conway and Guttmann [15] have estimated that gr(Av(1324)) ~
11.60.

Next we provide a relation between S-avoiding permutations and (S-avoiding involu-
tions in the case where [ is a skew indecomposable involution (such as § = 1324,
which is the case we want it for).

Proposition 2.2. For every skew indecomposable involution [, we have
gr(Av'(8)) = Ve (Av(B)).

Proof. Suppose that 3 is a skew indecomposable involution and take a permutation
7 € Av,(8). Because 3 is an involution, 7! must also avoid 3. Moreover, because
B is skew indecomposable, 7 © 7~ will avoid 3. Note that 7 © 7! is an involution
for every permutation 7, so under our hypotheses the mapping 7 — 7 © 7! defines
an injection from Av,(53) to Avl (). It follows that

gr(Av!(8)) = limsup F/| Avg, (8)] = limsup R/| Ava(8)] = +/er(Av(B)),

n—00

as desired. O
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Bevan’s bound on gr(Av(1324)) and Proposition 2.2 therefore imply that
gr(Av (1324)) > 3.13,

and thus the number of 1324-avoiding involutions must overtake the number of 1234-
avoiding involutions at some point (these have the growth rate 3 by Regev [26]).
Moreover, the number of 1324-avoiding involutions should overtake the number of
2413-avoiding involutions (which have a growth rate of approximately 3.15), unless
gr(Av(1324)) < 9.9, which seems incredibly unlikely.

We conclude this section by updating Jaggard’s table to include data up to n = 20 in
Table 3, which was computed using Albert’s PermLab package [1]. This data shows
that the number of 1324-avoiding involutions first overtakes the number of 1234-
avoiding involutions at n = 18, and does not overtake the number of 2413-avoiding
involutions for n < 20. Thus by our remarks above, the ordering of the columns in
Table 3 is likely still incorrect.

3 Simple Permutations and Separable Involutions

Our principal tool in what follows is the substitution decomposition of permuta-
tions into intervals. An interval in the permutation 7 is a set of contiguous indices
I = [a,b] = {a,a + 1,...,b} such that the set of values 7w(I) = {n(i) : i € I} is
also contiguous. Given a permutation ¢ of length m and nonempty permutations
Qi, ..., Qp, the inflation of o by oy, ..., a,, denoted ofay, ..., a,], is the permuta-
tion of length |ay| + -+ + |au,| obtained by replacing each entry o (i) by an interval
that is order isomorphic to «; in such a way that the permutation of the intervals is
order isomorphic to o. For example,

2413[1, 132, 321,12] = 4 798 321 56.

We have already introduced two special inflations: «; @ «p is the same as 12[ay, as],
and a; © ay is the same as 21[ay, as].

Every permutation of length n > 1 has trivial intervals of lengths 0, 1, and n; all
other intervals are termed proper. A permutation of length at least 2 is called simple
if it has no proper intervals. The shortest simple permutations are thus 12 and 21,
there are no simple permutations of length three, and the simple permutations of
length four are 2413 and 3142.

Simple permutations and inflations are linked by the following result.

Proposition 3.1 (Albert and Atkinson [2]). Every permutation 7 except 1 is the
inflation of a unique simple permutation o. Moreover, if T = ola,..., ] for a
simple permutation o of length m > 4, then each interval «; is unique. If m is an
inflation of 12 (i.e., is sum decomposable), then there is a unique sum indecomposable
ay such that m = ay @ an. The same holds, mutatis mutandis, with 12 replaced by 21
and sum replaced by skew.
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.’ @5

Figure 4: The inverse of 41352[aq, o, a3, aug, ] is
25314[a; !, a5 a5yt ag ).

To give an easy example of using the substitution decomposition to count a per-
mutation class, we apply it to the class Av(2413,3142), known also as the separable
permutations (this enumeration was first performed by Shapiro and Stephens [27]).
It is well-known that every simple permutation of length at least four contains either
2413 or 3142, so the only simple permutations in this class are 12 and 21, i.e., every
nontrivial separable permutation is either a sum or a skew sum. Let us denote by f
the generating function for the separable permutations, fg the generating function
for sum decomposable separable permutations, and fg the generating function for
skew decomposable separable permutations. Quite trivially, we see that

=2+ fo+ fo

(If this class contained more simple permutations, the equation above would also
include terms counting their inflations.) By Proposition 3.1, we can write every sum
decomposable permutation uniquely in the form a; @as where «; is sum indecompos-
able and a4 is arbitrary. Since the generating function for the sum indecomposable
separable permutations is f — fg and the class of separable permutations is closed
under sums, we have fg = (f — fg)f, and thus it follows that fg = f2/(1 + f). By
symmetry, fo = fe, and thus f = x +2f2/(1+ f). Solving this equation shows that
the separable permutations are indeed counted by the (large) Schréder numbers.

The substitution decomposition has proved to be a powerful tool for describing the
structure of permutation classes. However, it seems to have been used to count
pattern-avoiding involutions only once, when Brignall, Huczynska, and Vatter [13]
enumerated the separable involutions. We first review the general principles and
then (re)apply them to this case.

We begin by considering the effect of inversion on the substitution decomposition.
As illustrated in Figure 4, we have

(O-[Q]_, “ e ,Oém])il = 0_1[04;,11(1), e ,CY;,ll(m)].

If |o] = 4, then the uniqueness conditions in Proposition 3.1 show that o[a, ..., ay,]

is an involution if and only if ¢ is an involution and «a; = oz;_ll(i) = oz;(li) for all
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1 <4 < m. This rule also applies to sum decomposable permutations; a; @ s is an
involution if and only if both oy and ay are. We collect these observations below.

Proposition 3.2 (Brignall, Huczynska, and Vatter [13]). Let o # 21 be a simple per-
mutation. Then m = olay,...,qy] is an involution if and only if o is an involution
and o; = oz;_ll(i) = a;(li) foralll <i<m.

The skew decomposable involutions require a bit more care. If a; and ay are both
skew indecomposable, then ay©as is an involution if and only if oy = a5 L Otherwise
(in the case where we have more than two skew components) we decompose these
permutations as a; © as © a3. The characterization is below.

Proposition 3.3 (Brignall, Huczynska, and Vatter [13]). The skew decomposable
involutions are precisely those of the form

o 2l[ay, as] for skew indecomposable ay and ag with ay = oz2_1 and

o 321[ay, s, as], where oy and as are skew indecomposable, oy = a3*, and ay is
an tnvolution.

To provide a gentle introduction to the techniques used in this paper, we now rederive
the enumeration of the separable involutions from [13]. Note that in Tables 1 and 3,
these are listed as the 2413-avoiding involutions, because if an involution avoids 2413
then it must also avoid 24137! = 3142. We retain the definitions of f, fg, and fg
from above, and additionally let g denote the generating function for Av’ (2413), gg
the generating function for the sum decomposable permutations in Av’(2413), and gg
the generating function for the skew decomposable permutations in Av’(2413). From
Propositions 3.1 and 3.2 we see that as in the non-involution case, gp = (9 — 9g)9,
50 go = 9%/(1 + g).

Next we count skew decomposable permutations. By Proposition 3.3, the involutions
in Av’(2413) of the form a © a~" for a skew indecomposable are counted by

f(@®) = fola?).
The skew decomposable inflations of 321 in Av’(2413) are counted by
(f(=*) = fo(z®)) - g-

Accounting for the trivial permutation 1, we have the equation

2

g=x+ + (f(2?) = fo(z?) 1 +9).

1+g

Rearranging terms gives

g (f(@*) = fo(@®)) + g (z = 1+ 2 (f(2%) = fo(2?))) + (v + f(z*) — fo(a?)) = 0.



M. BONA ET AL./AUSTRALAS. J. COMBIN. 64 (1) (2016), 88-119 97

Finally, solving for g yields the desired generating function,

1Bz’ + a2 +r(l+a) -\

9= 2(1 —r —2?)
where
r=41— 622+ x4
and

q=—6— 20z + 382% + 242° — 18z* — 42° + 22° + r(10 + 12z — 122° — 42° + 22).

The growth rate of this generating function is the reciprocal of the singularity closest
to the origin, and is therefore

1

m:\/ﬁﬁ-\/g%?).l&

4 Simple Involutions Avoiding 123

In both of the sets we enumerate, (nearly all of) the simple involutions avoid 123, and
in order to count the sets we are interested in, we need the enumeration of the simple
123-avoiding involutions by their number of fixed points, fp(¢), number of left-to-
right minima, lrmin(o), and number of right-to-left maxima, rlmax (o). Since every
123-avoiding permutation can be expressed as the union of two decreasing sequences,
every entry of such a permutation is either a left-to-right minimum, a right-to-left
maximum, or both. Moreover, no entry of a simple 123-avoiding permutation of
length at least four can be both a left-to-right minimum and a right-to-left maximum
(because then the permutation would be skew decomposable). Thus the generating
functions we are interested in are

é\(z) (U, ?J) _ Z ulrmin(o)vrlmax(a).

simple o € Av! (123)
with fp(o) =4

Note that 5% = 0 for i > 3, because the fixed points of a permutation form an
increasing subsequence.

The staircase decomposition was introduced by Albert, Atkinson, Brignall, Ruskuc,
Smith, and West [3] as part of the study of subclasses of Av(321). This decompo-
sition was later used by Albert and Vatter [4] to explicitly enumerate the simple
permutations of Av(321). As Av(123) is a symmetry of Av(321), we follow the same
approach, using much of the same terminology. Before moving on to involutions, we
first give a brief summary of the techniques used in [4] by mirroring their methods
to enumerate the simple permutations in Av(123).

Every simple permutation in the class Av(123) can be uniquely written as the union of
two decreasing sequences. We can further partition the entries of such a permutation
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Figure 6: The evolution of the permutation 759381642 by our recurrence.

into the cells of a “staircase decomposition”, whose precise definition we opt to omit
in favor of an illustration, namely Figure 5. We will however carefully define one
particular type of staircase decomposition, which we call the greedy gridding. The
greedy gridding ensures that each permutation o € Av(123) can only be partitioned
in exactly one way. To find the greedy gridding of o € Av(123), take the first cell to
consist of the longest decreasing prefix of o. Then, each new eastward cell contains
all entries whose value is greater than any previously included entry, and each new
southward cell contains all entries whose index is less than any previously included
entry.

The iterative construction of a simple 123-avoiding permutation can then be de-
scribed using a sequence of hollow dots and filled dots. A hollow dot represents a
space where we must add a nonempty decreasing sequence of entries in the next step,
while the filled dots represent the entries themselves once they have been placed. Hol-
low dots can only exist in the outermost nonempty cell of each step in the recurrence.
To preserve simplicity, whenever a hollow dot is filled by two or more entries in the
next step of the recurrence, each neighboring pair of these entries must be split by
a hollow dot. Figure 6 demonstrates the steps of the recurrence which would build
the permutation shown in Figure 5.

Formally, let s;(x,y) count the possible configurations in the ith stage of the recur-
rence, where hollow dots are counted by y and filled dots are counted by z. For
ease of explanation, we follow the exposition in [4] by first giving a “mostly correct”
derivation, and then correcting two small errors to obtain the correct result.

The first stage of the recurrence is obviously counted by
si(z,y) = y.

In the second step, we may inflate this entry y by some decreasing sequence of entries.
Each pair of these entries must be separated by a hollow dot in the next cell, and
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°
[ ] ° )
Figure 7: The hollow triangle Figure 8: The hollow square rep-
represents the location of the hol- resents the location of the hollow
low dot which is required. dot which is forbidden.

we have the option of having a hollow dot above the first entry. (This is the source
of both small errors mentioned above, and will be corrected below.) Therefore, the
second step can be counted by the generating function

1+
a:(1+y)+x2(y+y2)+x3(y2+y3)+...:5’71(_363;)7

so that
$2(2,) = 51 (x

Each subsequent step has the same recurrence, so that

Sner (5,5) = 5 (x l‘“*y)) .

1—2xy

1 -2y

The desired generating function s(x) is found by taking the limit as n — oo (a
procedure which is explained in more detail by Albert and Vatter [4]).

We now correct the two aforementioned small errors in the above reasoning. In the
second step, the optional hollow dot above the first entry is actually required; other-
wise the permutation starts with its biggest element and is not simple. Furthermore,
when this hollow dot is inflated by entries (which spawn more hollow dots in the third
cell), it is forbidden to have the optional hollow dot to its left, as this violates the
definition of greediness. In Figures 7 and 8, the required hollow dot is represented
by a triangle, while the forbidden hollow dot is represented by a square. Thankfully,
neither of these issues occur after the third cell.

The recurrence can be fixed by modifying ss to require that the uppermost hollow
dot is added; moreover, we represent it by a z instead of y so that we can handle it
separately in the third cell. Thus we have

xz

so(w,y,2) = w2 + 22yz + 23y + - = .
1—zy

To prevent adding the leftmost optional hollow dot in the third cell, we substitute
z=x+ 2%y +23y* + -, so that

53($7y) = 52 (I7

z(l4+y) = )

1—ay '1—ay
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Figure 9: Three stages of the recurrence, in the case when the single fixed
point is a right-to-left maximum.

The correct generating function is then found as before by taking the limit as n — o
of the recurrence
x(1+ y))

Sni1(T,y) = sp (m, 1y
Whereas the recurrence above started in the northwest corner and proceeded south-
east, our recurrence will instead begin in the “middle” of the permutation and pro-
ceed outward in two directions simultaneously so that the permutations at every
intermediate step are involutions. When we place a hollow dot outside of the initial
cell, we of course also must place its inverse image in a different cell. However, in
the generating functions that we build, we count only the first of these hollow dots.
Then, to build an involution, when we fill each hollow dot with permutation entries
in the next step of the recurrence, each such entry is counted by z? to account for
both the entry and its inverse image. In other words, hollow dots on one side of
the fixed point are ignored until they become permutation entries. Due to this, the
substitution y = x(y + 1)/(1 — xy) used in [4] becomes y = x?(y + 1)/(1 — 22y).

We begin by giving a detailed analysis of the case where o has precisely one fixed
point (and hence must be of odd length). This analysis is accompanied by Figure 9.
We first find the generating function s")(z) which counts these permutations by
length alone, and then refine it to obtain 5™ (u,v).

The single fixed point in o may be either a right-to-left maximum or a left-to-right
minimum, but not both because o is not skew decomposable. These two cases are
depicted in Figure 10. Because reflection across the anti-diagonal is a bijection
between these two cases, we may restrict our attention to the case where the fixed
point is a right-to-left maximum (and then multiply by 2 at the end). The simplest
way to define greediness in this context is to focus exclusively on the cells below and
to the right of the initial cell (which has already been defined). Greediness for these
cells is defined analogously to the non-involution case, and determines greediness for
the cells above and to the left of the initial cell.
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Figure 10: The diagrams on which we can draw simple permutations o €
Av!(123) that contain a single fixed point, depending on whether the fixed
point is a right-to-left maximum or a left-to-right maximum. The starting
point of the recurrence is the shaded cell.

Figure 11: An example of a bad placement of splitting entries that leads to a
skew decomposable permutation.

Suppose that the initial cell (which contains the fixed point) contains a total of
2k + 1 entries. It follows that k of these entries lie below and to the right of the fixed
point. Because o is simple, each of the 2k adjacent pairs of entries in this cell must
be separated by entries in the cell below, in cell to the left, or by entries in both
locations. Each adjacent pair lying above and to the left of the fixed point has a
corresponding adjacent pair (its image under inversion) which lies below and to the
right of the fixed point; if we split the former to the left, then the inverse image of
the separating entry splits the latter below, and vice versa.

We can split all 2k of these adjacent pairs with as few as 2k hollow dots, k in the
cell below and k in the cell to the left. The number of ways to split these pairs in
this minimal way is 2%, because it suffices to choose which of each two corresponding
pairs of entries is split below. Of course these adjacent pairs can also be split using
more hollow dots. In general, the number of ways to have k + ¢ hollow dots in the
cell below is given by 2+~ (';), since we first choose which of the ¢ corresponding pairs
of gaps between entries are split both to the left and below, then we choose which of
each of the remaining k£ — ¢ corresponding pairs are split below.

The only problem we can have in this construction is if the resulting permutation is
skew decomposable. This occurs precisely when we split precisely the pairs of entries
to the right of the fixed point by entries below the initial cell, as shown in Figure 11.
We compensate for these “bad cases” by subtracting the term z/(1 — 2?y).
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It follows that

) 2z [ < 2%k+1 : ki (KN ki z
S9 (ZL‘,y,Z) = ; Z x 22 i ) - 1_x2y
k=0 i=0

22%2(1 + y)
(1 —a?y)(1 — 222y — 2?y?)’

The 2 in 5(21) accounts for both cases shown in Figure 10, while the z/y factor counts
the topmost hollow dot in the cell below the fixed point by z instead of y. By our
definition of greediness, this topmost hollow dot is not allowed to lie below an entry
to its right in the next cell. Therefore, when substituting for z to obtain sgl), we
substitute z?/(1 — z%y) instead of 2%(1 + y)/(1 — 2%y). As such, we obtain

2 2
(1) _ . x (1 + y) x

After finding sél), all later s(!) are easy to compute:

2
1 z*(y + 1)
swi(@,y) = s (w’ 1— 22y ) .

To find sV, we substitute the fixed point
1—a2? — /1222324
212 ’
which satisfies y = 2%(y + 1)/(1 — 2%y) into sél), obtaining
22°(1 + 22 + /1 — 222 — 32%)
L+ 22 (1= 32 + (1 — 202)vI — 207 — 327)

= 22° + 227 4+ 102° + 222" + 682" + 1842 + 53027 + 15022 + - - .

y:

3(1)(95)

Next we refine s(!) to count simple 123-avoiding involutions with a single fixed point
by their number of left-to-right minima and right-to-left maxima. We assume that
the fixed point is a right-to-left maximum, and so all entries in the first cell are
right-to-left maxima and the entries in the cells directly below and to the left are
left-to-right minima. We call the generating function for these involutions 81 (u,v);
the generating function for the case where the fixed point is a left-to-right minimum
is given by 8 (v,u). Adjusting our formula above, using v and ¥, to represent
filled and hollow dots (respectively) which are left-to-right minima and v and ¥, to
represent filled and hollow dots (respectively) which are right-to-left maxima, we
obtain

0 k
~(1) z 2k+1 i (K gt v
S (U7U7yu7y7z) = v 2 ()yu - T 9
’ ’ Yo (,25 ( 20 i L%y,

'U3Z(yu + 1)
(1 —v%y,)(1 — 202y, — v2y2)
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Occurrences of y, in this generating function account for hollow dots which will
become left-to-right minima when filled. Thus §§1) is obtained by the substitution

2(1+y,) v3(1 +y, 2
é\gl)(uavmyiuy’u) :ggl) U’7U7u( J )JU( Y )7 = .
1—w?y, ~ 1—0%, 1—u?y,

The general substitution rule is

2 2
A1) 1) u (1 +y,) v*(1+yu)
Sn+1(u7 U, Yu, yv) =Sy <u7 ) 1 — U2yv ) 1 — U2yu :

Note that §§1) depends only on u, v, and y,. Hence, to compute ! we need only
substitute the solution of

(14 y) v*(1 + u?)

1 — 2y, 1 —w?v? — u?y, — uv?y,

v

into SA(;). This solution is

11— u?v? — /1 — 6uv? — 4du2vt — 4ut? — 3utv?
B 2u2(1 4 v?) ’

Yo

(1)

and upon substituting this into 331 we obtain

w? (1 + u?) (1 + 20 + u*o? + 1)
(14 v2)(1 — 6u?v? — duv* — du*o? — 3utvt + (1 — 3u?v? — 2utv?)r)

W (u,v) =

where

r=+1—6u2v? — 4u2v* — 4uv? — 3utvt.

For the next two computations, of s() and s, we explain only how to count the
permutations according to length, as the refinements of these enumerations to count
left-to-right minima and right-to-left maxima are analogous to the case of s(). When
enumerating s) we assumed (by symmetry) that the fixed point was a right-to-
left maximum, and thus our initial cell was an upper-right corner of the staircase
decomposition. When counting s® we of course do not have a fixed point, and for
s one fixed point will be a right-to-left maximum while the other will be a left-
to-right minimum, so we must adjust this convention. In the case of 5% we assume
that the diagonal line about which inversion reflects the permutation passes through
the middle of an upper-right corner of the staircase decomposition, and we take this
cell to be our initial cell. In the case of s, we choose our initial cell in this case
to contain the right-to-left maximum fixed point, and slightly tweak our conventions
by considering the other fixed point to also lie in the southwest corner of this cell.

We begin by showing that

(0) 2 [ < 2%k = peic1 (B =1\ rus z%y
S (5137:%2:) ; Z x 22 i ) - 1—£L'2y
k=1 i=0

rlyz(1 + y)
(1 —2%y)(1 — 2%y — 2%y?)
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The justification of this equality is almost identical to the justification of sél); in

particular the same adjustment is required to avoid producing a skew decomposable
permutation. Adjacent pairs are split in the same manner as the sgl) case, except
that for sgo) we must separate the central adjacent pair, and because we are building
an involution, this means that it must be split both by an entry in the cell below
and by an entry in the cell to the left. (We do not need to multiply by 2 because in
the case of zero (or two) fixed points, every such permutation can be drawn on both
shapes in Figure 10.) We then produce subsequent s and thus also s (z) in the
same manner as the one-fixed-point case, leading to

22%(1 + 2% — /1 — 222 — 3a4)

2 — 222 — 102* — 625 + (2 — 624 — 425)v/1 — 222 — 324
= 28+ 2210 + 8212 4+ 222 + 6821¢ + 19828 + 58622 + - - - .

sO(z) =

The corresponding bivariate generating function is then

20?0t (1 + u?) (1 + 2u® + v?0o® — 1)

5O (u,v) = ;
(1 —uv? 4+ r)(1 — 6uv? — 4u?v? — 4utv? — 3utv? + (1 + 202 + w?v?)r)

where r is the same radical as before.

Finally, we move on to counting simple 123-avoiding involutions with two fixed points.
The presence of a second fixed point allows us to include the former “bad cases”
which we had previously excluded, as the resulting permutation will no longer be
skew decomposable. Furthermore, the entry which was previously marked by z to
prevent adding an entry above it in the cell to its right is now allowed to have this
entry because the fixed point which is a left-to-right minimum prevents this added
point from violating greediness.

Instead, we are now allowed to insert an entry in the cell below the initial cell which
lies immediately to the right of the leftmost fixed point. However, if we choose to
insert such an entry then we are required have an entry above it in the cell to its
right (to prevent the inserted entry from forming an interval with the leftmost fixed
point). So, if this entry exists we mark it by w instead of y. Then, in calculating
s?). we substitute 22y/(1 — 2%y) for w instead of z%(1 + y)/(1 — 2%y). It follows that

8§2) is counted by the generating function

0 k
(k .
852)(1;7 Y, IU) = IQ(l + U)) <Z x2k Z 2k_l <Z)yk+z> N $2
=0

k=0
2% (w + 2%y + 2%y?)
1 — 222y — 22?2

while s;(f) is

(2) (a: ?(1+y) 2% )

2
S§)<x7y)zs2 1—£C2y 71_1.23/



M. BONA ET AL./AUSTRALAS. J. COMBIN. 64 (1) (2016), 88-119 105

All later 37(12) and then s itself are produced as in the previous cases, leading to

(2 + 52% + 32t — (2 + 2?)V/1 — 222 — 32?)
1 —a? -5z — 328 + (14 222 + 24)v/1 — 222 — 3a*

= 3% + 428 + 152'° + 3622 + 1052 + 28826 + 819218 + - - - .

5@ (x)

Accounting for right-to-left maxima and left-to-right minima separately, we obtain

w24 Te? + 4o + dut 4 3uto® — (2 + uP)r)
1 — 6u0? — duvt — dute? — 3utot + (1 + 202 + ue?)r’

5@ (u,v)

where r is the same radical as in the previous two cases.

5 Involutions Avoiding 1342

Obviously, every involution avoiding 1342 must also avoid 134271 = 1423. Our first
goal in this section is to show that the simple permutations in the class Av(1342,1423)
all avoid 123. Thanks to a result in the literature, we are able to prove this result
quite easily. Given a class C, we define its substitution closure, {C), to be the largest
class with the same simple permutations as C.

In their investigation of substitution closures of principal classes, Atkinson, Ruskuc,
and Smith [6] showed that very few of these substitution closures are finitely based.
Fortunately for us, (Av(123)) is an exception: by bounding the length of potential
basis elements of this class and then conducting an exhaustive computer search, they
established that

(Av(123)) = Av(24153,25314, 31524, 41352, 246135, 415263).

By inspection, it is clear that each of the basis elements of (Av(123)) contains either
1342 or 1423, and thus Av(1342,1423) < (Av(123)). Going in the other direction,
it follows trivially that every 123-avoiding simple permutation avoids both 1342 and
1423. Thus we have the following result.

Proposition 5.1. The simple permutations of Av(1342,1423) are precisely the same
as the simple permutations of Av(123).

To enumerate the set Av’(1342), we combine the generating functions of Section 4
with the unique decompositions introduced in Section 3. We retain our conventions
from Section 3 by defining f to be the generating function for the class Av(1342, 1423)
and fg (respectively, fo) the generating function for the sum (respectively, skew)
decomposable permutations of this class. We then define g to be the generating
function for the set Av’(1342) and gg (respectively, go) the generating function for
the sum (respectively, skew) decomposable 1342-avoiding involutions.



M. BONA ET AL./AUSTRALAS. J. COMBIN. 64 (1) (2016), 88-119 106

First we describe the sum decomposable permutations m = a;®as counted by gg. By
Proposition 3.1, we can assure the uniqueness of this decomposition by requiring that
aq is sum indecomposable. To produce an involution, a; and s must be involutions
as well. In order for 7w to avoid the patterns 1342 and 1423, it is necessary and
sufficient that a; avoids these patterns and that «s avoids the patterns 231 and
312 = 2317L.

In fact, the class Av(231,312), known as the class of layered permutations, consists
entirely of involutions because a permutation lies in Av(231,312) if and only if it
can be expressed as a sum of some number of decreasing permutations. The layered
permutations of length n are in bijection with compositions of n, and hence there are
2"~1 permutations of length n in Av(231,312). Therefore, gq satisfies the equation

9o = (9 — 9a) <1 _332x> :

qgr
= . 1
Jo=71_ - (1)

from which it follows that

Next we must briefly consider the class Av(1342,1423). Kremer [22, 23] showed
that this class is counted by the large Schroder numbers, sequence A006318 in the
OEIS [30], and has generating function

1—2—+1-—6x+ 22
) = 5 .

Since the class Av(1342,1423) is skew closed (because both 1342 and 1423 are skew
indecomposable), it follows by Proposition 3.3 that

fe=(—1a)f,
and thus 1
f@:m7
w0 f 1+ x—-v1-6x+2?
f_f@_1+f_ 4 )

the generating function for the small Schréder numbers, sequence A001003 in the
OEIS [30].

Returning to Av’(1342), we see that skew decomposable permutations in this set are
of the form ;60007 ! where o is a skew indecomposable member of Av (1342, 1423)
and a; is an arbitrary (and possibly empty) member of Av’(1342). Therefore we see
that

go = (f(&%) = fola?)) (1 + g). (2)

Lastly, we must enumerate 1342-avoiding involutions which are inflations of simple
permutations of length at least four. Any such simple permutation must have at


http://oeis.org/A006318
http://oeis.org/
http://oeis.org/A001003
http://oeis.org/
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least two right-to-left maxima and by simplicity every right-to-left maximum must
have some entry both below it and to the left. Hence to avoid creating a copy of 1342
or 1423, we may only inflate right-to-left maxima by decreasing intervals. An entry
which is a left-to-right minimum can be inflated by any permutation in the class
Av(1342,1432). However, to ensure that the inflated permutation is an involution,
we must inflate each fixed point by an involution. Additionally, if we inflate the entry
with value (i) by the permutation «, we must make sure to inflate the entry with
value i by a %

Consider 5 (u,v), which is the generating function for simple involutions of length
at least four which avoid 123 and have zero fixed points. To inflate each right-to-
left maximum by a decreasing permutation in a way that yields an involution, we

substitute
2 z°

1— a2
because if o(i) is a right-to-left maximum of the simple 123-avoiding involution o
then the entry with value ¢ will also be a right-to-left maximum, and we must sub-
stitute a permutation and its inverse into this pair of entries of 0. Because the class
Av(1342,1423) is counted by the large Schroder numbers, the inflations of the simple
involutions of length at least four with zero fixed points are counted by

5O (u, v)

v

w=f(?), v?=a2/(1-a?) (3)

Recall that 5™ (u,v) counts only those simple involutions whose single fixed point
is a right-to-left maximum. Since this fixed point must be inflated by a decreasing
permutation, we count inflations of such permutations by

5 (u,v) x
u?=f(a?), v2=22/(1-2?) l-w
To count those simple involutions whose single fixed point is a left-to-right minimum,
we need only swap u and v. Thus, inflations of these are counted by the generating

function
5O (v, u)
U

(4)

(%

9. (5)

u?=f(z?), v2—r2/(1962))

Finally, we must account for inflations of those simple involutions which contain

exactly two fixed points, one of which is a right-to-left maximum while the other is
a left-to-right minimum. These permutations are counted by

5@ (u,v) g (6)

wr=f(a?), 2=a2/(1-a?)) 1T

By summing the contributions of (1)—(6) and accounting for the single permutation
of length 1, one finds that

uv

_93(1—2x+x2+\/1—6z2+x4)

9(@) = 2(1— 3z + 22)
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It can then be computed that the growth rate of involutions avoiding 1342 is 1 plus
the golden ratio,
1++/5
2

1+ ~ 2.62.

6 Involutions Avoiding 2341

Again we begin by noting that every involution avoiding 2341 must also avoid
234171 = 4123. Unlike the case when avoiding 1342, the simple permutations of
Av(2341,4123) are a proper superset of the simple permutations of Av(123). How-
ever, when we restrict our attention to involutions, there is only one simple involution
which avoids 2341 and 4123 but contains 123.

Theorem 6.1. The simple 2341-avoiding involutions consist exactly of the permu-
tation 5274163 along with the simple involutions of the set Av'(123).

Proof. To prove this statement, we must consider several possible cases relating to
the fixed points of a 2341-avoiding simple involution. To assist in visualizing these
arguments, we depict permutations by using permutation diagrams, which consist of
a permutation plotted on top of a grid of cells. A cell is white if we are allowed to
insert a new entry into that cell without creating an occurrence of 2341, a cell is light
gray if we specifically forbid any entries to be placed in that cell, and a cell is dark
gray if inserting an entry into that cell would create an occurrence of 2341.

Define the rectangular hull of a set S of points (in our case, entries of a permutation
plotted on the plane) to be the smallest axis-parallel rectangle which contains all
points of S.

Let o be a 2341-avoiding simple involution and note that ¢ must also avoid 234171 =
4123. If o € Av(123), then there is nothing to prove. Thus, suppose that 123 < o.
Choose the occurrence of 123 for which the ‘3’ is topmost possible entry, the ‘1’ is the
bottommost possible entry for the chosen ‘3’, and the ‘2’ is the rightmost possible
entry for the chosen ‘1’ and ‘3" Let ¢+ < j < k be the position of these entries, so
that the entries forming the chosen 123 pattern are o(i) < o(j) < o(k).

By these assumptions, o can be drawn on the permutation diagram shown in Fig-
ure 12(a). Note that the three shown entries, from left to right, are o (i), o(j), and
o(k). Though this figure makes it seem like these three entries are all fixed points,
this is misleading. Because each white cell could contain many entries, we must
consider separate cases in which some combination of these three entries are fixed
points. We will show that in one case we must have ¢ = 5274163, and in the other
cases no such o can exist.

Case 1: 0(i), 0(j), and o(k) are all fized points
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A
A
(a) (b) (c)
Figure 12: Permutation diagrams corresponding to Case 1 in the proof of
Theorem 6.1.

Assume that (i), 0(j), and o(k) are all fixed points. Then, since o is an involution,
there cannot be any entries in cells A, B, or C'. To see this, suppose there were an
entry in cell A, for example. In order for ¢ to be an involution, there must be an
entry in cell A. It must again be noted that this argument is only valid because
o(i) is assumed in this case to be a fixed point. Therefore, o has the permutation
diagram shown in Figure 12(b).

Since o is simple, the rectangular hull of o(i) and o(j) has a separating entry in
either the white cell above it or the white cell to its right. The fact that o is an
involution forces there to be splitting entries in both of these cells. We choose to plot
the splitting entry in the white cell above this rectangular hull that is the topmost
possible entry and the splitting entry in the white cell to the right of this rectangular
hull that is the rightmost possible entry. At the same time, the rectangular hull of
o(j) and o(k) must similarly be split both below and to the left. This gives the
permutation diagram depicted in Figure 12(c).

There are only four remaining cells where entries can be inserted. However, since no
two of these cells share a row or column any entry in one of these cells would be part
of a proper interval, contradicting the simplicity of o. This shows that in this case
the only permutation that can be obtained is 5274163.

Case 2: o(k) is not a fized point

Suppose that (k) is not a fixed point. It must lie either above or below the “reflection
line”. In other words, it must either be either above and to the left of its inverse
image or below and to the right of its inverse image. Suppose first that it is below
the reflection line. Then, it must have its inverse image somewhere above and to its
left. We see that there is only one place to put such an entry. The result is shown
in Figure 13(a).

We next observe a general fact about involutions.

Fact 6.2. If two entries form an inversion (respectively, a non-inversion), then their
inverse images also form an inversion (respectively, a non-inversion).
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(a) (b) (c) (d)
Figure 13: Permutation diagrams corresponding to Case 2 in the proof of
Theorem 6.1.

(a) (b)
Figure 14: Permutation diagrams corresponding to Case 2 in the proof of
Theorem 6.1.

For this reason, the third entry from the left shown in Figure 13(a) (which was the
‘2’ in the original 123) cannot lie above the reflection line, nor can it be a fixed point,
from which it follows that this entry lies below the reflection line. Its inverse image
can only lie in one particular white cell, as shown in Figure 13(b). If the leftmost
entry in this figure were a fixed point, then the permutation would start with the
entry 1, violating simplicity. Therefore, this entry has an inverse image above it and
to its left. This yields Figure 13(c). If the entries contained in the six white cells in
the bottom-left corner of Figure 13(c) did not form an interval, then they would have
to be split by either an entry above them or an entry to their right; either splitting
would create a copy of 2341 or 4123. Therefore we can eliminate this case.

We have shown so far that we reach a contradiction if o(k) lies below the reflection
line. Now suppose that this entry lies above the reflection line, so that it has an
inverse image that lies below it and to the right. If this inverse image lies in the
cell which is not immediately below it and to the right, then we end up with a
permutation similar to that of Figure 13(b), yielding the same contradiction as in
that case. Therefore, the inverse image of o (k) must lie in the white cell immediately
below it and to the right, as in Figure 13(d).

Since ¢ is an involution we can forbid placing entries into cells where their inverse
image would lie in an already forbidden cell or into cells where their inverse image
would create a forbidden pattern. For example, if cell D in Figure 13(d) contained
an entry, then by Fact 6.2 there must be an entry in cell D, which is not allowed.
Additionally, if cell E of the same figure contained an entry, then Fact 6.2 implies that
either E or E’ would contain the inverse image of this entry; each scenario is either
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(a) (b) (c) (d)
Figure 15: Permutation diagrams corresponding to Case 3 in the proof of
Theorem 6.1.

forbidden by previous assumptions or else would imply the presence of a forbidden
pattern. Hence, we have Figure 14(a). Now, to preserve simplicity the rectangular
hull of the rightmost two entries must be split, and to preserve involutionhood it
must in fact be split both below and to the left, yielding Figure 14(b). We are
now in a situation similar to Figure 13(c) in that any permutation built from this
permutation diagram (with respect to involution and the forbidden patterns) will be
sum decomposable and hence not simple. Hence, it is not possible that o(k) is not
a fixed point.

Case 3: o(j) is not a fized point

If we assume that o(j) lies above the reflection line, then there are two possible
locations for its inverse image. An application of Fact 6.2 leads us to a situation
identical to Figure 13(b) in one case and a situation identical to a 180 degree rotation
of Figure 13(b) in the other case. Therefore, o(j) must lie below the reflection line.
For almost identical reasons, the inverse image of o(j) can lie in only one particular
white cell. Figure 15(a) shows the resulting image; note the several additional cells
are greyed out because presence of entries in these cells would force the presence of
an inverse image in an already forbidden cell.

If the leftmost entry shown in this diagram is a fixed point, then we have the permu-
tation diagram in Figure 15(b). To maintain simplicity, there must be an entry in
the bottommost white cell whose inverse image is in the leftmost white cell, yielding
Figure 15(c). However, there is now an interval which cannot be split, which is a
contradiction. Therefore, the leftmost entry cannot be a fixed point. If the leftmost
entry were to lie above the reflection line, then its inverse image would have to be in
the bottommost white square of Figure 15(a). However, this violates Fact 6.2 when
comparing these two entries to the middle two entries shown in Figure 15(a). Thus
the inverse image of this leftmost entry must lie above it and to the left, and for
the same reason, can only lie in the white cell immediately above and to the left,
yielding the permutation diagram in Figure 15(d). There are two ways that we could
try to split the rectangular hull of the leftmost two entries. In the first way, we would
place an entry in cell F and its inverse image would lie in cell F, but this creates an
occurrence of both forbidden patterns. In the second way, we would place an entry
in cell G and its inverse image would lie in cell G, but this creates a permutation
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which is necessarily sum decomposable, and hence not simple.
Case 4: o(i) is not a fized point

When o(7) is not a fixed point, its inverse image lies above it and to the left. In
order for ¢ to not be sum decomposable, there must be an entry below and to the
right of o(i), and this entry has an inverse image above and to the left of the inverse
image of o(i). This creates an unsplittable interval, similar to that of Figure 15(c).
Hence this case is not possible, completing the proof. O

As in the previous section, we enumerate the 2341-avoiding involutions by separately
enumerating the sum decomposable permutations, the skew decomposable permu-
tations, and the inflations of simple permutations of length at least four. Again we
define g to be the generating function for the set Av’(2341) and gg (respectively, gg)
the generating function for the sum (respectively, skew) decomposable 2341-avoiding
involutions.

In this case we see that Av’(2341) is sum closed (in the sense that the sum of two
2341-avoiding involutions must also be a 2341-avoiding involution) and so we have

Jo = (9 — 90)9,

and hence )

g
= . 7
9o = T, (7)

By Proposition 3.3, the skew decomposable permutations must have the form
321y, a0, a7 '], where o is skew indecomposable and as is a (possibly empty)
involution. Furthermore, to avoid the occurrence of a 2341 or a 4123 pattern, we
must also have that aq, s € Av(123).

The 123-avoiding permutations are enumerated by the Catalan numbers, which have
generating function

_1—2x—\/1—4x

=x+ 227 + 5% + 142t + - - - .
2

c(x)

Let cg denote the generating function for the skew decomposable 123-avoiding per-
mutations. Since the class Av(123) is skew closed, it follows that

e = c(c = co),

and thus

c—cg = 1j_czx(c—|—1).

As mentioned in the introduction, Simion and Schmidt [28] proved that

k1) = ()
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the central binomial coefficients, sequence A001405 in the OEIS [30]. These permu-
tations thus have the generating function

1 — 422 — /1 — 422

_ 2 3 4
17— on =x+2x°+3x° +6z" +---.

Therefore, the generating function which counts our choices for the pair (a1, a;?) is
2?(c(2?) + 1), and the generating function for all skew decomposable 2341-avoiding
involutions is

1—4x2—\/1—4x2+1) (8)

Next, we consider inflations of the simple permutations in Av’(123). By considering
several cases, it can be shown that every entry of such a simple permutation can only
be inflated by a decreasing permutation, as any inflation by a permutation with a
non-inversion would create a copy of 2341 and 4123. Thus inflations of the simple
permutations counted by 5 contribute

59 (u, v)

u2:’u2:x2/(1712) ) (9)

inflations of the simple permutations counted by 5 contribute

5 50 (u,v) T (10)
v u2=1v2=x2/(1—22) 1 - .T7

and inflations of simple permutations counted by 5 contribute

8 (u,v) . ( T )2. (11)
u2=v2=22/(1—22) -z

uv
Lastly, we consider inflations of 5274163. Again, inflation of any entry by a permuta-
tion containing a non-inversion creates an occurrence of both 2341 and 4123. Because
this permutation has three fixed points, the 2341-avoiding involutions formed by in-
flations of 5274163 are counted by

() () &

Combining the contributions of (7)-(11) and accounting for the single permutation
of length 1, we are able to solve for g:

(z + 1)*(z — 1)1%/1 — 422 — p(z)
2q() ’

g:


http://oeis.org/A001405
http://oeis.org/
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3. | Av! (2413)] .
| Av! (1324)]
| Av,, (1234)|
21 | Av,,(1324)]
I
1 MRSRanas SRS M | Av,, (2413)|
| Av;, (1324)] | Av,, (1324)]
0 e i 0 LNNLINL L O O A N A N O
0 5 10 15 20 25 0 5 10 15 20 25

Figure 16: The number of 1324-avoiding involutions and permutations com-
pared to the number of 1234- and 2413-avoiding involutions and 1234- and
1342-avoiding permutations for n =0, ..., 25.

where

p(z) = 1 -8z + 172% + 242° — 1512 + 1622° + 22125 — 62427 + 2312° + 6842°
— 8012 — 60z + 6272 — 3342 — 1012™ + 158210 — 4821°,

and

q(r) = 1 —6x + 42® + 502° — 1412* + 552° + 3262° — 51427 — 262° + 7252°
— 561" — 2232 + 54022 — 2062 — 1132 + 1202'° — 32216,

From this we find that the growth rate of Av’(2341,4123) is the reciprocal of the
smallest (and only) positive real root of ¢(x), approximately 2.54.

7 Involutions Avoiding 1324 Revisited

As stated in the introduction, we were initially interested in pattern-avoiding invo-
lutions because we noticed that gr(Av’(1324)) > gr(Av’(1234)), but that the num-
bers in Table 1 did not obey this relationship. The ratio between | Av! (1234)| and
| Av! (1324)| is plotted on the left of Figure 16. Here we see that for large enough n,
this ratio does indeed go below 1 (and of course we know that it goes to 0).

As observed in Section 2, the ratio between | Av! (2413)| and | Av! (1324)|, which is
also plotted on the left of Figure 16, should also go to 0 (unless gr(Av(1324)) < 9.9,
which would go against every bit of evidence we have about this class). However, as
this plot demonstrates, the first 25 terms of this ratio do not paint a very convincing
picture of a sequence going to 0. This is almost surely just an instance of the “law
of small numbers”, but it is interesting that the empirical data is so much worse
for involutions than it is for permutations in general (as the analogous ratios shown
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on the right of Figure 16 show). This should be taken as further evidence that the
columns of Table 3 are very likely to be in the wrong order.

For the rest of this section we adapt the technique of Béna [12] to derive an upper
bound on the growth rate of Av’(1324). Béna’s technique was itself an improvement
on the techniques of Claesson, Jelinek, and Steingrimsson [14]. They proved that
every 1324-avoiding permutation is the merge of a 132-avoiding permutation and a
213-avoiding permutation. Here we say that 7 is a merge of o and 7 if the entries
of m can be partitioned into two subsequences such that one subsequence is order
isomorphic to o while the other is order isomorphic to 7. This gave an upper bound
of 16 on the growth rate of Av(1324).

Let m € Av(1324). We color the entries of 7 red or blue by the following algorithm.
Proceeding from left to right, color an entry red only if it will not create a red 132
pattern among the entries already colored. Otherwise, color it blue. The resulting
coloring has the property that the red entries avoid 132 and the blue entries avoid
213.

We now label each of the entries of 7 by one of the four letters {a,b,c,d} and use
this to create two words, e, and v,. A red entry is labeled a if it is a left-to-right
minimum, and it is labeled b otherwise. Similarly, a blue entry is labeled d if it is a
right-to-left maximum, and c otherwise. The ith letter of e, is then the label of 7 (37)
while the ith letter of v, is the label of the entry 7 in 7. Béna [12] proved that =
can be reconstructed from the pair (e,, v,) and moreover, that neither e, nor v, can
contain a cb factor. Moreover, the generating function for words of length n over the
alphabet {a, b, c,d} avoiding the factor cb is

1
1 —4x + 22’

from which it follows that

er(Av(1324)) < (2 + \/§>2 =7+ 44/3 < 13.93.

Before adapting this technique to involutions, we alter the coloring algorithm slightly.
Given a permutation 7 € Av(1324), first color it as above. Then, change the color
of all right-to-left maxima to blue. In order to show that the reconstruction given
by Béna [12] still works, we must show that the blue entries still avoid 213 (since we
have not added any red entries, it is clear that the red entries still avoid 132).

Assume to the contrary that there existed some right-to-left maximum 7(m) which
was originally colored red, but is now part of a blue copy of 213. Choose the leftmost
such entry, and say that m(a) is the ‘1’ in the blue copy of 213. Since we chose the
leftmost 7(m), it must be true that 7(a) was chosen to be blue because otherwise it
would be the 2’ in a red copy of 132. Let 7(z) and 7(y) be the entries that would
have been the ‘1’ and ‘3’ (respectively) in such a red copy of 132. If 7(y) < 7(m), then
the entries m(z)m(y)m(a)m(m) form a 1324 pattern, a contradiction. If w(y) > 7(m),
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then the entries m(z)m(y)m(m) form a copy of 132, which contradicts the assumption
that 7(m) was red in the original coloring. Therefore, after all right-to-left maxima
have been changed to blue, the red entries still avoid 132 and the blue entries still
avoid 213. Using the same argument as Boéna [12], it can be shown that the map
from 1324-avoiding permutations to the pairs of words (e, v,) (which have changed
due to the new coloring) is still injective.

We now restrict this map to 1324-avoiding involutions. Recall that in an involution,
the inverse image of a right-to-left maximum is also a right-to-left maximum, and the
inverse image of a left-to-right minimum is also a left-to-right minimum. Hence, given
the pair of words (e, v,) for a permutation 7 € Av! (1324), the words e, and v, have
the letter a in the same positions and have the letter d in the same positions. This is
a significant restriction which yields a much smaller upper bound for gr(Av’(1324))
than the bound for gr(Av(1324)).

Let h(z) be the generating function for pairs of words (e,,v,) over the alphabet
{a, b, c,d} such that neither e, nor v, contain a cb factor and such that e, and v,
have all a entries in identical positions and all d entries in identical positions. It is a
simple exercise in automata theory (for which we refer to Flajolet and Sedgewick [16,
1.4.2]) to prove that

1+x

T 1—Pr+a2—o3

h(x)

Letting 7 = /8 4 64/78, the reciprocal of the smallest positive root of the denomi-
nator of h(z) is 3r/(14 + r — r?). Therefore,

_ 3r

8 Concluding Remarks

In many ways this paper represents an initial foray into the topic of pattern-avoiding
involutions, which has been considered very little in the past. It is natural to ask if
the substitution decomposition might be used to enumerate any other sets of the form
Av!(B) for || = 4. Table 17 shows that numbers of simple -avoiding involutions of
lengths n = 5, ..., 15 (again computed with PermLab [1]). With the exception of
the right-most column, the number of simple permutations does not depend on the
representative chosen for each Wilf-equivalence class of involutions. One may expect
sets with fewer simple permutations to be easier to understand. Therefore this data
suggests that it might be fruitful to apply our techniques to enumerate the 2431- or
3421-avoiding involutions. However, counting the 4231- or 1324-avoiding involutions
using the substitution decomposition appears to be much less promising.
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B 2413 2431 3421 1342 2341 4231 1324 1234

n=>5 0 1 2 2 2 2 2 2

n =206 0 1 2 3 3 2 4 4
n="7 0 2 3 2 3 5 9 10
n=238 0 2 5 5 5 11 17 35
n=29 0 6 7 10 10 30 52 101
n =10 0 6 13 17 17 62 106 261
n=11 0 16 19 22 22 162 292 727
n =12 0 16 31 44 44 377 635 1865
n =13 0 45 51 68 68 973 1753 5127
n =14 0 45 82 127 127 2378 3954 13045
n =15 0 126 135 184 184 6116 10824 35735

Table 17: The number of simple S-avoiding involutions of length n for n = 5,
..., 15, with columns sorted according to the n = 15 data.
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