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Abstract

We give a simple formal proof of a formula for the generating function of
partitions with bounded differences between largest and smallest part.

1 Introduction

In [3] Breuer and Kronholm gave in effect two proofs for an explicit formula for the
generating function for partitions where the difference between largest and small-
est part is bounded by a given integer t. Their first proof is geometric, involving
counting lattice points within a polyhedral region; their second proof constructs an
explicit bijection. In this paper we give another proof, a formal calculation involving
elementary q-series manipulation, involving no results deeper than the q-binomial
theorem.

The results of [3] imply a theorem of Andrews, Beck and Robbins [2] on partitions
where the difference between largest and smallest part is a fixed integer t. They use
formal q-series methods which go beyond ours, for instance Heine’s transformation
for basic hypergeometric series.

2 The main result

Recall that a partition λ of an integer n is a finite sequence (λ1, . . . , λk) where the
integers λi satisfy λ1 ≥ λ2 ≥ · · · ≥ λk > 0 and n = λ1 + λ2 + · · ·+ λk. Its parts are
λ1, . . . , λk. We write |λ| = λ1 + · · · + λk. It is convenient to allow trailing zeros in
partition notation: we regard (λ1, . . . , λk, 0) as the same partition as (λ1, . . . , λk).

We use standard q-series notation. For integers n ≥ 0 we define

(a)n =

n−1∏
j=0

(1− aqj).
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For integers n ≥ k ≥ 0 define

[n
k

]
q
=

(q)n
(q)k(q)n−k

=
(qn−k+1)k

(q)k
.

Let Pt be the generating function for nonempty partitions where the difference
between the largest and smallest part is ≤ t. Write

Pt(q) =
∑
λ∈Pt

q|λ|

for the generating function of Pt. As Breuer and Kronholm [3] point out, P0(q) is not
a rational function, but for t ≥ 1, Pt(q) is a rational function. We give an alternative
proof of this theorem.

Theorem 1 [3] For t ≥ 1

Pt(q) =
1

1− qt

(
1

(q)t
− 1

)

where (a)t =
∏t−1

j=0(1− aqj).

Proof The set Pt is the disjoint union of sets Pt,r,m for r, m ≥ 1 where Pt,r,m is the
set of λ ∈ Pt with r parts and smallest part m (and so largest part ≤ m+ t). Then

Pt(q) =
∞∑

r,m=1

Pt,r,m(q)

where Pt,r,m(q) =
∑

λ∈Pt,r,m
q|λ|. Each element of Pt,r,m has the form λ = (λ1, . . . , λr)

where m + t ≥ λ1 ≥ · · · ≥ λr = m. Then μ = (λ1 −m, . . . , λr−1 −m) is a partition
of |λ| − rm with at most r− 1 parts and greatest part ≤ t. The generating function
for such partitions is the q-binomial coefficient

[
r+t−1

t

]
q
[1, Theorem 3.1] and so

Pt,r,m(q) = qrm
[
r + t− 1

t

]
q

.

Therefore

Pt(q) =
∞∑

r,m=1

qrm
[
r + t− 1

t

]
q

=
∞∑
r=1

qr

1− qr
(qr)t
(q)t

=
1

(q)t

∞∑
r=1

qr(qr+1)t−1.

At this point we use the q-binomial theorem in the form [1, Theorem 3.3]

(x)n =

n∑
j=0

(−1)jqj(j−1)/2

[
n

j

]
q

xn−j .
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We get

Pt(q) =
1

(q)t

t−1∑
j=0

∞∑
r=1

(−1)jq(j+1)rqj(j+1)/2

[
t− 1

j

]
q

=
1

(q)t

t−1∑
j=0

(−1)j
qj+1

1− qj+1
qj(j+1)/2

[
t− 1

j

]
q

=
1

(q)t(1− qt)

t−1∑
j=0

(−1)jq(j+1)(j+2)/2

[
t

j + 1

]
q

=
1

(q)t(1− qt)

t∑
k=1

(−1)k−1qk(k+1)/2

[
t

k

]
q

=
1− (q)t

(q)t(1− qt)
=

1

1− qt

(
1

(q)t
− 1

)
.

at the last stage using the q-binomial theorem again. �

3 Remarks

In [2, Theorem 1] Andrews, Beck and Robbins prove a formula for P̃t(q) =
∑

λ∈P̃t
q|λ|

where P̃t is the set of partitions in which the difference between largest and smallest
part is exactly t, valid when t ≥ 2. As pointed out in in [3], P̃t(q) = Pt(q)− Pt−1(q)
and so this formula follows immediately from Theorem 1.

Andrews, Beck and Robbins [2, Theorem 3] also give a generalization to partitions
with a set of specified distances. The author is uncertain whether the methods of
the present paper can be extended to prove such generalizations.
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