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Abstract

An early characterization of distance-hereditary graphs is that every cycle
of length 5 or more has crossing chords. A new, stronger, property is that
in every cycle of length 5 or more, some chord has at least two crossing
chords. This new property can be characterized by every block being
complete multipartite, and also by the vertex sets of cycles of length 5 or
more always inducing 3-connected subgraphs. It can also be characterized
by forbidding certain induced subgraphs, as well as by requiring certain
(not necessarily induced) subgraphs.

A second, even stronger property is that, in every cycle of length 5 or
more in a distance-hereditary graph, every chord has at least two crossing
chords. This second property has characterizations that parallel those of
the first property, including by every block being complete bipartite or
complete, and also by the vertex sets of cycles of length 5 or more always
inducing nonplanar subgraphs.

1 Introduction

For k ≥ 3, define a ≥k-cycle to be a cycle of length at least k. A chord of a cycle
(or a path) C is an edge between two vertices of C that is not an edge of C itself.
Two chords x1y1 and x2y2 of C are crossing chords of C if their four endpoints come
in the order x1, x2, y1, y2 along C. A graph G is distance-hereditary [1, 2, 3] if the
distance between two vertices in connected induced subgraphs of G always equals
the distance between them in G. One characterization of being distance-hereditary,
from [3], is that every ≥5-cycle has crossing chords.

A chord x1y1 of a cycle C is a double-crossed chord of C if there are two (or more)
chords x2y2 and x3y3 of C such that x1y1 and xiyi are crossing chords of C for both
i ∈ {2, 3}; see Figure 1.
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Figure 1: Three ways that x1y1 can be a double-crossed chord.

Section 2 below will characterize the subclass of distance-hereditary graphs in which
every ≥5-cycle has a double-crossed chord—equivalently, the graphs in which every
cycle that is long enough to have a double-crossed chord always does have a double-
crossed chord. Section 3 will similarly characterize the even smaller subclass of
distance-hereditary graphs in which every chord of every ≥5-cycle has a double-
crossed chord. The manner in which the characterizations of Section 2 parallel those
of Section 3 is intriguing, such as “3-connected” in Theorem 2 being replaced by
“nonplanar” in Theorem 5.

2 When all ≥5-cycles have double-crossed chords

Theorem 1 will characterize the graphs in which every ≥5-cycle has a double-crossed
chord. (I also mentioned the equivalence of these three conditions at the end of [4],
without proof and in slightly different words, along with a fourth—every vertex
of every ≥5-cycle is on a chord of the cycle—that fit into the theme of [4].) In
Theorem 1, a block of a graph is either an edge that is in no cycle or a maximal 2-
connected subgraph. A paw is the graph formed by a triangle with one pendant edge,
and P4 is the 4-vertex (length-3) path. Note that every complete graph is complete
multipartite, since Kn is the complete n-partite graph (with n singleton partite sets).
Thus, complete bipartite graphs and complete graphs are the two extremes of the
spectrum of connected complete multipartite graphs.

Theorem 1 The following are equivalent :

(1a) Every ≥5-cycle has a double-crossed chord.

(1b) No block contains an induced paw or P4.

(1c) Every block is a complete multipartite graph.

Proof. First, suppose a graph G satisfies condition (1a) and H is a block of G
(toward showing that (1b) holds). The argument is by contradiction, using the two
cases of H containing an induced paw or an induced P4 (the latter with subcases for
the two ways that the four vertices of P4 can occur around a cycle).

Case 1: Suppose H contains an induced paw that consists of the triangle abc
and pendant edge cd. Since H is 2-connected and every two edges of a 2-connected
graph are in a common cycle, ab and cd are in a cycle C such that, without loss of
generality, the vertices of the paw occur in the order a, b, c, d around C. Thus there is
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a ≥5-cycle C ′ that consists of the path a, b, c, d and a chordless a-to-d path π, where
ac is a chord of C ′. All the other possible chords of C ′ have one endpoint in {b, c}
and the other endpoint an internal vertex of π. If C ′ is a 5-cycle with (say) x the
unique internal vertex of π, then the only possible chords that C ′ can have are ac,
bx, and cx; thus C ′ would have no double-crossed chords, contradicting (1a). If C ′

is a ≥6-cycle, then let C ′′ be the ≥5-cycle that consists of the two paths a, c, d and
π. But then all the possible chords of C ′′ have endpoint c; thus C ′′ would have no
double-crossed chords, again contradicting (1a).

Case 2: Suppose H contains an induced P4: a, b, c, d. Since H is 2-connected,
the edges ab and cd are in a common cycle C.

Subcase 2.1: If the vertices of the P4 occur in the order a, b, c, d around C, then
there is a ≥5-cycle C ′ that consists of the path a, b, c, d and a chordless a-to-d path π,
where all the possible chords of C ′ have one endpoint in {b, c} and the other endpoint
an internal vertex of π. By (1a), C ′ has a double-crossed chord that is, without loss
of generality, cx with crossing chords by and bz where the five vertices a, x, y, z, d
come in that order along π. But then there is a ≥5-cycle C ′′ that consists of the path
x, c, d and the x-to-d subpath of π where all the possible chords of C ′′ have endpoint
c; thus C ′′ would have no double-crossed chords, contradicting (1a).

Subcase 2.2: If the vertices of the P4 occur in the order a, b, d, c around C, then
there is a ≥6-cycle C ′ that consists of the edges ab and cd, a chordless a-to-c path
π, and a chordless b-to-d path τ , where bc is a chord of C ′. If C ′ is a 6-cycle with
vertices a, b, y, d, c, x in that order, then the only possible chords that C ′ can have
are bc, ay, bx, cy, dx, and xy; hence the only double-crossed chords that C ′ can have
are ay, dx, and bc (with bc double-crossed only if ay or dx is also a chord). Using
(1a), say ay is a chord of C ′, and let C ′′ be the 5-cycle with vertices a, y, d, c, x in
that order. But the only possible chords that C ′′ can have are cy, dx, and xy; thus
C ′′ would have no double-crossed chords, contradicting (1a). If C ′ is a ≥7-cycle, then
suppose (say) π has length at least three. Let C ′′′ be the ≥5-cycle that consists of
the two paths a, b, c and π. But all the possible chords of C ′′′ have endpoint b; thus
C ′′′ would have no double-crossed chords, again contradicting (1a).

Therefore, by cases 1 and 2, condition (1a) implies (1b).

Next, suppose G satisfies condition (1b). Since H contains no induced paw, H
is triangle-free or complete multipartite (this is proved in [5]). If H is triangle-free,
then every chordless cycle of H will have length 4 (since a longer chordless cycle
would contain an induced P4, contradicting (1b)), and so H ∼= K2,n for some n ≥ 2.
Therefore, H is complete multipartite in both of the alternatives from [5], and so
(1c) holds.

Finally, suppose G satisfies condition (1c) and has a ≥5-cycle C in a complete
multipartite block H in which S is a maximum-size partite set. If |S| ≥ 3 with
v1, v2, v3 ∈ S, then there are v′1, v

′
2, v

′
3 �∈ S with v1, v

′
3, v2, v

′
1, v3, v

′
2 appearing in that

order around C, and so chord v1v
′
1 is crossed by chords v2v

′
2 and v3v

′
3 of C. If |S| = 2

with v1, v2 ∈ S, then there are x, y, z �∈ S, not all three in the same partite set,
with v1, x, v2, y, z appearing in that order around C, and so v1y and v2z are crossing
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chords of C with one of them also crossed by a chord xy or xz of C. If |S| = 2,
then there are v, w, x, y, z appearing in that order around C, and so the chord wy
is crossed by the chords vx and xz of C. Thus, every ≥5-cycle C in every complete
multipartite block has a double-crossed chord, and so (1a) holds. �

Condition (1b) characterizes the graphs in which every ≥5-cycle has a double-
crossed chord in terms of forbidden subgraphs. In contrast, condition (2b) of Theo-
rem 2 will characterize this same graph class in terms of required (but not necessarily
induced) subgraphs. Let 〈V (C)〉 denote the subgraph induced by the vertex set of a
cycle C; thus the edge set of 〈V (C)〉 consists of all the edges and all the chords of C.

Theorem 2 The following are equivalent :

(2a) Every ≥5-cycle has a double-crossed chord.

(2b) For every ≥5-cycle C, 〈V (C)〉 contains a K1,2,2 or K3,3.

(2c) For every ≥5-cycle C, 〈V (C)〉 is 3-connected.

Proof. First, suppose a graph G satisfies condition (2a) and C is a ≥5-cycle of
G (toward showing that (2b) and (2c) hold). By Theorem 1, C is contained in a
complete k-partite block H of G for some k ≥ 2. If k = 2, then 〈V (C)〉 ∼= Ka,b

with a, b ≥ 3, and so 〈V (C)〉 contains a (induced) K3,3 subgraph. If k = 3, then
〈V (C)〉 ∼= Ka,b,c with a ≤ b ≤ c and b ≥ 2, and so 〈V (C)〉 contains a (induced) K1,2,2

subgraph. If k = 4, then 〈V (C)〉 ∼= Ka,b,c,d with a ≤ b ≤ c ≤ d and d ≥ 2, and so
〈V (C)〉 contains a (noninduced) K1,2,2 subgraph. If k ≥ 5, then 〈V (C)〉 contains an
induced K5 that in turn contains a (noninduced) K1,2,2 subgraph. Moreover, in each
of these cases 〈V (C)〉 is 3-connected. Therefore, condition (2a) implies both (2b)
and (2c).

Next, suppose G satisfies condition (2b) (toward showing that (2a) holds).

Suppose for the moment that 〈V (C)〉 contains a K1,2,2 subgraph with vertex a
adjacent to each vertex b1, b2, c1, c2 and each bi adjacent to each cj as illustrated in
Figure 2; say vertices a, b1, b2 partition E(C) into subpaths C[a, b1], C[b1, b2], and
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Figure 2: The complete tripartite graphs K1,2,2 and K1,1,2.

C[b2, a] with the indicated endpoints. If c1, c2 are both in C[a, b1], then the chord ab1
will be double-crossed by chords b2c1 and b2c2. If c1, c2 are both in C[b1, b2], say with
the vertices b1, c1, c2, b2 coming in that order along C[b1, b2], then the chord b1c2 will
be double-crossed by chords ac1 and b2c1. If c1 is in C[a, b1] and c2 is in C[b2, a], then
the chord b2c1 will be double-crossed by chords ab1 and b1c2. If c1 is in C[a, b1] and
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c2 is in C[b1, b2], then the chord b2c1 will be double-crossed by chords ab1 and ac1.
Thus and similarly, C will always have a double-crossed chord.

Now suppose instead that 〈V (C)〉 contains a K3,3 subgraph with each vertex
a1, a2, a3 adjacent to each vertex b1, b2, b3; say vertices a1, b1, b2, b3 partition E(C)
into subpaths C[a1, b1],C[b1, b2],C[b2, b3], and C[b3, a1] with the indicated endpoints.
If a2 is in C[a1, b1], then the chord a1b1 will be double-crossed by chords a2b2 and
a2b3. If a2 and a3 are both in C[b1, b2], then the chord a1b2 will be double-crossed by
chords a2b3 and a3b3. If a2 is in C[b1, b2] and a3 is in C[b2, b3], then the chord a1b2
will be double-crossed by chords a2b3 and a3b1. Thus and similarly, C will always
have a double-crossed chord.

Therefore, condition (2b) implies (2a).

Finally, suppose G does not satisfy condition (2a) (toward showing that (2c)
fails), and so by Theorem 1, some block H of G contains an induced paw or P4.
Let cases 1 and 2 and subcases 2.1 and 2.2 be exactly as in the proof of Theorem 1
(including the cycles C, C ′, C ′′, and C ′′′ used there).

Case 1: If C ′ is a 5-cycle, then {c, x} is a separator of 〈V (C ′)〉 (in other words,
deleting {c, x} from 〈V (C ′)〉 will leave a disconnected graph). If C ′ is a ≥6-cycle and
v is any internal vertex of π, then {c, v} is a separator of 〈V (C ′′)〉.

Subcase 2.1: If v is the internal vertex of π that is as close as possible to a along
π such that bv or cv is a chord of C ′, then {b, v} is a separator of 〈V (C ′)〉.

Subcase 2.2: If C ′ is a 6-cycle, then either ay �∈ E(G) and {b, x} is a separator of
〈V (C ′)〉 or ay ∈ E(G) and {x, y} is a separator of 〈V (C ′′)〉. If C ′ is a ≥7-cycle and
v is any internal vertex of π, then {b, v} is a separator of 〈V (C ′′′)〉.

Therefore, in every case, the vertex set of some ≥5-cycle will induce a graph that
is not 3-connected, so condition (2a) failing would imply (2c) failing, and so condition
(2c) implies (2a). �

Theorem 3 If every ≥5-cycle has a double-crossed chord, then, for every ≥5-cycle
C, at least one chord of every pair of crossing chords of C is double-crossed in C.

Proof. Suppose every ≥5-cycle of a graph G has a double-crossed chord. Argue by
induction on the length of C that, for every ≥5-cycle C of G with crossing chords
x1y1 and x2y2, at least one of x1y1 and x2y2 is double-crossed in C. For the basis
step, if C is a 5-cycle with edges x1z, zx2, x2y1, y1y2, y2x1 and crossing chords x1y1
and x2y2, then the only other possible chords of C are x1x2, y1z, and y2z, and so
since C has a double-crossed chord, at least one of x1y1 and x2y2 is double-crossed.

For the inductive step, suppose C is a ≥6-cycle and E(C) is partitioned into four
subpaths C[x1, x2], C[x2, y1], C[y1, y2], and C[y2, x1] with the indicated endpoints.
Suppose further that neither x1y1 nor x2y2 is double-crossed in C (arguing by contra-
diction). Thus the ≥6-cycle C has a double-crossed chord (say) x3y3, where both x3

and y3 must be in the same partitioning subpath, say in C[x2, y1] with the vertices
x2, x3, y3, y1 coming in that order along C[x2, y1]. (It is possible that x3 = x2 or
y3 = y1, but not both since x3y3 has a crossing chord that crosses neither x1y1 nor
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x2y2.) Let C ′ be the ≥5-cycle formed from C by replacing the x3-to-y3 subpath of
C[x2, y1] with the edge x3y3. By the inductive hypothesis, at least one of the crossing
chords x1y1 and x2y2 of C

′ would be double-crossed in C ′ (contradicting that neither
x1y1 nor x2y2 is double-crossed in C). �

The converse to Theorem 3 will hold for distance-hereditary graphs, since being
distance-hereditary is equivalent to every ≥5-cycle having crossing chords [3]. There-
fore, in a distance-hereditary graph, every ≥5-cycle will have a double-crossed chord
if and only if, for every ≥5-cycle C, at least one chord of every pair of crossing chords
of C is double-crossed in C.

3 When all chords of ≥5-cycles are double-crossed

Theorem 3 motivates strengthening the condition studied in section 2 to require
now that every chord of every ≥5-cycle is double-crossed. Theorems 4 and 5 will
characterize this stronger condition with intriguing parallels to Theorems 1 and 2.
Theorems 4 and 5 are restricted to hole-free graphs [2], meaning graphs in which every
≥5-cycle has a chord. This prevents conditions (4a) and (5a) from being vacuously
true; note that conditions (4b), (4c), (5b), and (5c) are false in the non-hole-free
cycles Cn for n ≥ 5. Every distance-hereditary graph is, of course, hole-free.

In Theorem 4, requiring every block that is not an edge to contain a ≥5-cycle
avoids the (hole-free) complete tripartite graphs K1,1,c with c ≥ 2, for which (4a)
would hold vacuously while (4b) and (4c) would be false. In the proof, let v ∼ w
and v �∼ w denote, respectively, that vertices v and w are or are not adjacent.

Theorem 4 The following are equivalent for all hole-free graphs in which every block
that is not an edge contains a ≥5-cycle:

(4a) Every chord of every ≥5-cycle is double-crossed.

(4b) No block contains an induced paw, P4, or K1,1,2 subgraph.

(4c) Every block is either complete or complete bipartite.

Proof. Suppose G is a hole-free graph in which in which every block that is not an
edge contains a ≥5-cycle.

First, suppose condition (4a) holds and H is a block (toward showing that (4c)
holds). Thus every ≥5-cycle has a double-crossed chord, and so H is complete mul-
tipartite by Theorem 1. If H ∼= K2, then H would be complete (and also complete
bipartite); hence, assume H �∼= K2, and so H contains a ≥5-cycle. If H is complete
k-partite with 2 < k < n, then H �∼= K1,1,n−2 (since H contains a ≥5-cycle), and so
H contains an induced K1,2,2 or K1,1,1,2, and so would contain a 5-cycle with a chord
that is not double-crossed, contradicting (4a). Therefore, k = 2 or k = n, so the
complete multipartite graph H is complete bipartite or complete, and so (4c) holds.

Next, condition (4c) implies (4b) since complete graphs and complete bipartite
blocks contain no induced paw, P4, or K1,1,2.
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Finally, suppose condition (4b) holds and xy is a chord of a ≥5-cycle C (toward
showing that (4b) holds). Suppose x1, x, x2 and y2, y, y1 are subpaths of C where
x1, x, x2, y2, y, y1 come in that order around C (possibly with x1 = y1 or x2 = y2, but
not both). Let H ′ be the subgraph of G induced by {x, x1, y, y2}.

Suppose for the moment that x1 = y1 (and so x2 �= y2). Thus either x ∼ y2
or x1 ∼ y2 (to avoid H ′ being a paw), so both x ∼ y2 and x1 ∼ y2 (to avoid
H ′ ∼= K1,1,2), and so xy is crossed by the chord x1y2. Using the subgraph of G
induced by {x, x1, x2, y} similarly shows that xy is crossed by the chord y1x2, which
makes xy double-crossed.

Now suppose (instead) that x1 �= y1 and (similarly) x2 �= y2. If x1 �∼ y2, then
either x1 ∼ y or x ∼ y2 (to avoid H ′ ∼= P4), so both x1 ∼ y and x ∼ y2 (to avoid
H ′ being a paw), and so H ′ ∼= K1,1,2, contradicting (4b). Thus x1 ∼ y2. Similarly,
x2 ∼ y1, which makes xy double-crossed.

Therefore, (4b) implies (4a). �

Theorem 5 The following are equivalent for all hole-free graphs:

(5a) Every chord of every ≥5-cycle is double-crossed.

(5b) For every ≥5-cycle C, 〈V (C)〉 contains a K5 or K3,3 subgraph.

(5c) For every ≥5-cycle C, 〈V (C)〉 is nonplanar.

Proof. Suppose G is a hole-free graph.

First, suppose condition (5a) holds, and so every ≥5-cycle has a double-crossed
chord. Thus, for every ≥5-cycle C, Theorem 2 ensures that 〈V (C)〉 contains a (not
necessarily induced) K1,2,2 or K3,3 subgraph H . In the case of H being a K1,2,2

subgraph, (5a) forces 〈V (H)〉 ∼= K5 and so 〈V (C)〉 contains a K5 subgraph. Thus,
in every case, 〈V (C)〉 contains a K5 or K3,3 subgraph and so (5b) holds.

Next, suppose condition (5b) holds. Thus every ≥5-cycle has a double-crossed
chord, and so, for every ≥5-cycle C, 〈V (C)〉 is complete k-partite for some 2 ≤ k ≤
|V (C)| by Theorem 1. If some ≥5-cycle C has 2 < k < |V (C)|, then 〈V (C)〉 contains
an induced K1,2,2 or K1,1,1,2, and so 〈V (C)〉 would contain a 5-cycle C ′ such that
〈V (C ′)〉 contains neither a K5 nor a K3,3 subgraph, contradicting (5b). Therefore,
for every ≥5-cycle C, either k = 2 and 〈V (C)〉 is complete bipartite or k = |V (C)|
and 〈V (C)〉 is complete, so every chord of C is double-crossed, and so (5a) holds.

Therefore, conditions (5a) and (5b) are equivalent.

Note that condition (5b) implies (5c), since K5 and K3,3 are nonplanar.

Finally, suppose condition (5c) holds (toward showing that (5b) holds). There-
fore, for every ≥5-cycle C, 〈V (C)〉 contains a subdivision HC of aK5 orK3,3 subgraph
by Kuratowski’s Theorem. Argue by induction on the length of C that, for every
≥5-cycle C, 〈V (C)〉 contains a K5 or K3,3 subgraph that is not subdivided. If C is a
5-cycle, then HC = 〈V (C)〉 ∼= K5. If C is a 6-cycle, then either HC = 〈V (C)〉 ∼= K3,3

or C contains vertices a1, a2, a3, a4, a5 that induce a K5 and a sixth vertex b that has
(say) neighbors a1 and a2 along C, in which case {a1, a2, a3, a4, b} induces a 5-cycle
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C ′ with 〈V (C ′)〉 ∼= K5 by (5c). Finally, if C is a ≥7-cycle, then C has a chord xy
that combines with a x-to-y subpath of C to form a ≥5-cycle C ′ such that, by the
induction hypothesis, 〈V (C ′)〉 (and so also 〈V (C)〉) contains a K5 or K3,3 subgraph.
Thus, (5b) holds. �
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