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Abstract

Block graphs are a generalization of trees that arise in areas such as
metric graph theory, molecular graphs, and phylogenetics. Given a finite
connected simple graph G = (V,E) with vertex set V and edge set E ⊆(
V
2

)
, we will show that the (necessarily unique) smallest block graph with

vertex set V whose edge set contains E is uniquely determined by the
V -indexed family PG =

(
πv)v∈V of the partitions πv of the set V into the

set of connected components of the graph (V, {e ∈ E : v /∈ e}). Moreover,
we show that an arbitrary V -indexed family P = (pv)v∈V of partitions
pv of the set V is of the form P = PG for some connected simple graph
G = (V,E) with vertex set V as above if and only if, for any two distinct
elements u, v ∈ V , the union of the set in pv that contains u and the set
in pu that contains v coincides with the set V , and {v} ∈ pv holds for all
v ∈ V . As well as being of inherent interest to the theory of block graphs,
these facts are also useful in the analysis of compatible decompositions
of finite metric spaces.

1 Introduction

A block graph is a graph in which every maximal 2-connected subgraph or block is a
clique [1, 8]. Block graphs are a natural generalization of trees, and they arise in areas
such as metric graph theory [1], molecular graphs [2] and phylogenetics [7]. They
have been characterized in various ways, for example, as certain intersection graphs
[8], in terms of distance conditions [2, 9] and also by forbidden graph configurations
[1]. Here we shall present an alternative approach to describing the set of block
graphs.

More specifically, given a finite set V we call any partition of V a V -partition,
and we define a V -indexed family of V -partitions PV = (pv)v∈V to be a compatible
family of V -partitions if, for any two distinct elements u, v ∈ V , the union of the
set in pv that contains u and the set in pu that contains v coincides with the set
V , and {v} ∈ pv holds for all v ∈ V . In addition, we let P(V ) denote the set of
all compatible families of V -partitions. Note that compatibility of partitions is a
concept that naturally arises when analyzing phylogenetic trees (cf. e.g. [10]). In
particular, if a V -indexed family of V -partitions is compatible, then every pair of
partitions in this family is strongly compatible in the sense defined in [7].

In this note, we consider connected simple graphs G = (V,E) with vertex set V
and edge set E ⊆ (

V
2

)
. For any vertex v ∈ V of such a graph, let πv denote the

family of connected components of the graph (V, {e ∈ E : v /∈ e}). We show that the
map that takes the graph G to the V -indexed family PG :=

(
πv

)
v∈V of partitions

of the set V induces a bijection from the set of connected block graphs with vertex
set V onto the set P(V ). We prove this in Theorem 1 below. Defining two graphs
G1 and G2 with vertex set V to be block-equivalent if the “smallest” block graphs
that contain G1 and G2 coincide, this bijection implies in particular the following
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observation: The set of block-equivalence classes of connected simple graphs G with
vertex set V is in bijective correspondence with the set P(V ).

As well as contributing to the tasks of phylogenetic combinatorics outlined in [5],
this result is part of a broader investigation into so-called compatible decompositions
and block realizations of finite metric spaces [3, 4] which was first mentioned in [6,
Section 4]. In particular, it is key to proving that there is a unique “finest” compatible
decomposition of any finite metric space (cf. [3, p.1619] for a more precise statement
of this result).

The rest of this note is organized as follows. After presenting some preliminaries
in the next section and establishing three supporting lemmas in Section 3, we prove
our main result in Section 4.

2 Preliminaries

From now on, we will consider connected simple graphs G with a fixed finite vertex
set V . Following [4], we will use the following notations and definitions.

Given any set Y , we denote
– by Y − y the complement Y − {y} of a one-element subset {y} of Y ,
– and by p[y], for any Y -partition p and any element y ∈ Y , that subset Z ∈ p of
Y which contains y.

Further, given a simple graph G with vertex set V and edge set E ⊆ (
V
2

)
, we denote

– by π0(G) the V -partition formed by the connected components of G,
– by G[v] := π0(G)[v], for any vertex v ∈ V of G, the connected component of G
containing v,
– by G(v) the largest subgraph of G with vertex set V for which v is an isolated
vertex, that is, the graph with vertex set V and edge set {e ∈ E : v /∈ e},
– by [G] the smallest block graph with vertex set V that contains G as a subgraph,
i.e., the graph (V, [E]) with vertex set V whose edge set [E] is the union of E and all
2-subsets {u, v} of V that are contained in a circuit of G (i.e., a connected subgraph
of G all of whose vertices have degree 2) (see e.g. [8]), or, equivalently, the graph
whose edge set [E] consists of all 2-subsets {u, v} of V for which there is no vertex
w ∈ V − {u, v} with G(w)[u] �= G(w)[v] (see e.g. [11, Theorem 4.2.3]),
– and by PG the V -indexed family

PG :=
(
π0(G

(v))
)
v∈V

of partitions of V .

In the remainder of this section we establish some basic properties of compatible
families of V -partitions that will be used later. To state these properties, we will say
that an element w ∈ V separates two elements u, v ∈ V (relative to P) or, for short,
that “u|w|v” holds if w �= u, v and pw[u] �= pw[v] (and, therefore, also u �= v).

Lemma 1 Let P = (pv)v∈V ∈ P(V ). Then, for any three distinct elements u, v, w ∈
V , the following nine assertions all are equivalent:
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(i) u|w|v,
(ii) pw[u] � pv[w], (vi) pw[v] � pu[w],
(iii) pw[u] � pv[u], (vii) pw[v] � pu[v],
(iv) pw[u] ⊆ pv[u], (vii) pw[v] ⊆ pu[v],
(v) v /∈ pw[u], (ix) u /∈ pw[v],

and they all imply that also

(x) w ∈ pv[u] ∩ pu[v],
(xi) pv[w] = pv[u], (xii) pu[w] = pu[v]

must hold.

Proof: It is clear that, in view of V = pw[v] ∪ pv[w] and w �∈ pw[u], we have

pw[u] �= pw[v] ⇒ pw[u] ∩ pw[v] = ∅ ⇒ pw[u] ⊆ V −(pw[v] ∪ {w})
⇒ pw[u] � pv[w] ⇒ pw[u] ⊆ pv[w] ⇒ v /∈ pw[u] ⇒ pw[u] �= pw[v].

So, all these assertions must be equivalent to each other, and they imply also that
u ∈ pw[u] ⊆ pv[w] and, hence, pv[w] = pv[u] and, therefore, also w ∈ pv[w] = pv[u]
must hold. In other words, the implications listed above yield that

(i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v) =⇒ (xi) =⇒ w ∈ pv[u]

holds. And, switching u and v, we also get

(i) ⇐⇒ (vi) ⇐⇒ (vii) ⇐⇒ (viii) ⇐⇒ (ix) =⇒ (xii) =⇒ w ∈ pu[v]

and, therefore, also “(i) ⇒ (x)”, as claimed.

Note that the last three assertions (x) – (xii) in Lemma 1 are not equivalent to
the former nine assertions (i) – (ix). To see this, consider, for example, the following
compatible family P = (pv)v∈V of V -partitions for the 4-element set V = {u, v, w, z}:

pu = {{u}, {v, w, z}}, pw = {{w}, {u, v, z}},
pv = {{v}, {u, w, z}}, pz = {{u}, {v}, {w}, {z}}.

3 Some useful lemmas

To describe the correspondence between compatible families of V -partitions and
connected block graphs with vertex set V , we associate to each family P = (pv)v∈V
in P(V ), the graph BP := (V,EP) with vertex set V and edge set

EP :=
{{u, v} ∈

(
V

2

)
: ∀w∈V−{u,v}pw[u] = pw[v]

}
.

In this section, we present three supporting lemmas that establish some properties of
the graph BP that will be used to prove our main result (Theorem 1 below), starting
with a lemma concerning the existence of certain triangles in BP.
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Lemma 2 Let P = (pv)v∈V ∈ P(V ). Then, for any three distinct elements u, v, w ∈
V with {u, w}, {w, v} ∈ EP, we have {u, v} ∈ EP if and only if pw[u] = pw[v] holds.

Proof: Indeed, {u, w}, {w, v} ∈ EP implies that pw′[u] = pw′[w] = pw′[v] holds for
all w′ ∈ V − {u, v, w} and that, therefore, {u, v} ∈ EP or, equivalently,

“∀w′∈V−{u,v}pw′[u] = pw′[v]′′

holds if and only if we have pw′[u] = pw′[v] also for the only element w′ ∈ V −{u, v}
not in V − {u, v, w}, i.e., for w′ := w.

The next lemma characterizes those 2-subsets {u, v} ⊆ V that are contained
in EP.

Lemma 3 Let P = (pv)v∈V ∈ P(V ). Then, for two distinct elements u, v ∈ V , we
have {u, v} ∈ EP if and only if pv[u] is a minimal set in the collection

Ppu[v]∩pv[u][u] :=
{
pw[u] : w ∈ (pu[v] ∩ pv[u]) ∪ {v}}

of subsets of V or, equivalently, in the collection

Ppu[v][u] := {pw[u] : w ∈ pu[v]}

or, still equivalently, in

P[u] := {pw[u] : w ∈ V − u}.

Proof: First note that

{u, v} �∈ EP ⇐⇒ ∃w∈V−{u,v} pw[u] �= pw[v] (by definition)

⇐⇒ ∃w∈pv [u]∩pu[v] pw[u] � pv[u] (by Lemma 1)

⇐⇒ pv[u] �∈ min
(
Ppu[v]∩pv[u][u]

)

holds for any two distinct elements u, v ∈ V and we clearly have

pv[u] �∈ min
(
Ppu[v]∩pv[u][u]

)
=⇒ pv[u] �∈ min

(
Ppu[v][u]

)
=⇒ pv[u] �∈ min

(
P[u]

)
.

Hence, it remains to establish the following implication:

pv[u] �∈ min
(
P[u]

)
=⇒ pv[u] �∈ min

(
Ppu[v]∩pv[u][u]

)

To this end, note that w ∈ V −u and pw[u] � pv[u] implies w �= u, v as well as u|w|v
and, therefore, also w ∈ pu[v] ∩ pv[u] in view of Lemma 1. Thus, we must have

pv[u] �∈ min
(
Ppu[v]∩pv[u][u]

) ⇐⇒ pv[u] �∈ min
(
Ppu[v][u]

)
,
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as claimed. So,

{u, v} ∈ EP ⇐⇒ pv[u] ∈ min
(
Ppu[v]∩pu[v][u]

)
⇐⇒ pv[u] ∈ min

(
Ppu[v][u]

)
⇐⇒ pv[u] ∈ min

(
P[u]

)

must hold, as claimed.

The final supporting lemma is concerned with the existence of certain paths in
the graph BP.

Lemma 4 Let P = (pv)v∈V ∈ P(V ). Then, for any two distinct elements u, v ∈ V ,
and any sequence p := (u0 := u, u1, . . . , un := v) of elements of V such that

pu1 [u] � pu2 [u] � · · · � pun[u] = pv[u]

is a maximal chain of subsets of pv[u] in

P⊆pv[u][u] := {pw[u] : w ∈ V − u,pw[u] ⊆ pv[u]}

ending with pv[u] = pun[u], the sequence p forms a path from u to v in the graph BP =
(V,EP), i.e., the 2-subsets {u0, u1}, {u1, u2}, . . . , {un−1, un} of V are all contained in
EP. Moreover, we have ui|uj|uk for all i, j, k ∈ {0, 1, . . . , n} with i < j < k and,
therefore, also u1, . . . , un−1 ∈ pu[v] ∩ pv[u]. In particular, we must have u|uj|v for
all j ∈ {1, . . . , n− 1} and puj

[u] = puj
[ui] and pui

[v] = pui
[uj] for all i, j = 1, . . . , n

with i < j.

Proof: Our assumption that puj
[u] � puk

[u] holds for all j, k ∈ {1, 2, . . . , n} with
j < k implies, in view of Lemma 1, that also u|uj|uk and, therefore, also puk

[uj] =
puk

[u] must hold for all j, k = 1, 2, . . . , n with j < k. In consequence, we must also
have puj

[ui] = puj
[u] � puk

[u] = puk
[ui] and, therefore (again by Lemma 1), also

ui|uj|uk as well as puk
[ui] = puk

[uj] for all i, j, k ∈ {0, 1, . . . , n} with i < j < k.
In particular, we must have u|uj|v for all j ∈ {1, . . . , n − 1} and, hence (again by
Lemma 1), u1, . . . , un−1 ∈ pu[v] ∩ pv[u] and puj

[u] = puj
[ui] and pui

[v] = pui
[uj] for

all i, j = 1, . . . , n with i < j, as claimed.

Next, to establish that {u0, u1}, {u1, u2}, . . . , {un−1, un} ∈ EP holds, note first
that pu1 [u] is, by assumption, a minimal set in the set system P⊆pv[u][u]. We claim
that this implies that pu1 [u] is also a minimal set in P[u]. To see this, note that w ∈
V − u and pw[u] ⊆ pu1 [u] implies pw[u] ⊆ pv[u] or, equivalently, pw[u] ∈ P⊆pv[u][u]
and therefore, in view of the minimality of pu1 [u] in P⊆pv[u][u], also pw[u] = pu1 [u],
as claimed. So, by Lemma 3, {u0, u1} ∈ EP must hold.

Similarly, our choice of the elements u0, u1, . . . , un implies also that

(1) pui
[u] ∈ min{pw[u] : w ∈ V − u and pui−1

[u] � pw[u] ⊆ pv[u]}
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must hold for all i = 2, 3, . . . , n. Therefore, recalling that we have already established
that pui

[u] = pui
[ui−1], we claim that

(2) pui
[u] = pui

[ui−1] ∈ min
(
Ppui [ui−1]∩pui−1 [ui][ui−1]

)
.

To see this, assume for a contradiction that there is some w ∈ pui
[ui−1]∩pui−1

[ui] with
pw[ui−1] � pui

[u] = pui
[ui−1]. This would imply ui /∈ pw[ui−1] and w /∈ pui−1

[u] (in
view of w ∈ pui−1

[ui] = pui−1
[v] �= pui−1

[u]) and, therefore (by Lemma 1), ui−1|w|ui

as well as u|ui−1|w which (using again Lemma 1) would imply

pui−1
[u] � pw[u] = pw[ui−1] � pui

[u] ⊆ pv[u]

in contradiction to (1). So, (2) or, equivalently (again by Lemma 3), {ui−1, ui} ∈ EP

must hold also for all i ∈ {2, . . . , n}.

4 Statement and proof of main result

We now state and prove our main result:

Theorem 1 Associating to each connected simple graph G = (V,E) with vertex set
V the V -indexed family PG induces a one-to-one map from the set B(V ) of connected
block graphs with vertex set V (or, equivalently, from the set of block-equivalence
classes of connected simple graphs G with that vertex set) onto the set P(V ). The
inverse of this map is given by associating, to each family P = (pv)v∈V ∈ P(V ), the

graph BP. In particular, for any family P = (pv)v∈V ∈ P(V ), we have π0(B
(v)
P ) = pv

for every element v ∈ V .

Proof: It is easy to see that, given any connected simple graph G = (V,E) with
vertex set V , the V -indexed family PG =

(
π0(G

(v))
)
v∈V is a compatible family of

V -partitions: Indeed, we have obviously π0(G
(v))[v] = {v} for every v ∈ V , and we

have π0(G
(v))[u] ∪ π0(G

(u))[v] = V for any two distinct elements v, u in V as, given
any vertex w ∈ V , there must exist a path p = (u0 := u, u1, . . . , uk := w) connecting
u and w in G implying that w ∈ π0(G

(v))[u] holds in case v /∈ {u1, u2 . . . , uk} and
w ∈ π0(G

(u))[v] in case v ∈ {u1, u2, . . . , uk}.
We also have [E] = EPG

for every connected graph G = (V,E) as, by definition
of [E], a 2-subset {u, v} ⊆ V is an edge in [E] if and only if G(w)[u] = G(w)[v] holds
for all w ∈ V −{u, v}. This shows that the map from B(V ) into the set P(V ) given
by associating to each connected simple graph G = (V,E) with vertex set V the
V -indexed family PG is a well-defined injective map, and that BPG

= (V,EPG
) =

(V, [E]) = [G] holds for every connected graph G = (V,E).

To establish the theorem, it therefore remains to show that, conversely, PBP
= P

holds for every compatible family P of V -partitions. So, assume that P is a fixed
compatible family P = (pv)v∈V of V -partitions. It suffices to show that pv[u] =
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B
(v)
P [u] holds for any two distinct elements u, v ∈ V . Clearly, we have {u, v} ∈ EP

for two distinct elements u, v ∈ V if and only if there is no w ∈ V − {u, v} that

separates u and v. Thus, we must have B
(v)
P [u] ⊆ pv[u] for any two distinct elements

u, v ∈ V since, otherwise, there would exist u′, u′′ ∈ B
(v)
P [u] with {u′, u′′} ∈ EP, but

pv[u
′] �= pv[u

′′], in contradiction to the definition of EP.

Now, to finish the proof, it remains to show that we have pv[u] ⊆ B
(v)
P [u] for

any two distinct elements u, v ∈ V . To this end, consider any element u′ ∈ pv[u],
u′ �= u. Lemma 4 implies that there exist two paths p := (u0 := u, u1, . . . , un := v)
and p′ := (u′

0 := u′, u′
1, . . . , u

′
n′ := v) connecting u and u′ with v in BP. Moreover,

Lemma 2 implies that also either un−1 = u′
n′−1 or {un−1, u

′
n′−1} ∈ EP holds. As a

consequence, there exists also a path in B
(v)
P from u to u′ and, therefore, u′ ∈ B

(v)
P [u],

as required.

To conclude the paper, we note that it could be interesting to try and find a
concise characterization of those ternary relations “..|..|..”⊆ V 3 that correspond to
compatible families of V -partitions and, hence, to block graphs with vertex set V .
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