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Abstract

A graph of order n ≥ 3 is said to be pancyclic if it contains a cycle of
each length from 3 to n. A chord of a cycle is an edge between two
nonadjacent vertices of the cycle. A chorded cycle is a cycle containing
at least one chord. We define a graph of order n ≥ 4 to be chorded
pancyclic if it contains a chorded cycle of each length from 4 to n. In
this article, we prove the following: If G is a graph of order n ≥ 4 with
degG(x) + degG(y) ≥ n for each pair of nonadjacent vertices x, y in G,
then G is chorded pancyclic, or G = Kn/2,n/2, or G is one particular
small order exception. We also show this result is sharp, both in terms
of the degree sum condition and in terms of the number of chords we can
guarantee exist per cycle. We further extend Bondy’s meta-conjecture
on pancyclic graphs to a meta-conjecture on chorded pancyclic graphs.
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1 Introduction

We consider only simple graphs in this paper. For terms not defined here see [3]. The
problem of determining conditions that imply the existence of a particular structure
within a graph is fundamental in graph theory. One common approach to such
problems is to control the degrees of the vertices of the graph in some way. The
minimum degree sum of all pairs of nonadjacent vertices is denoted by σ2(G) (see
for example [4], [5]). One important early question was to determine if a graph
was Hamiltonian, that is, contained a cycle spanning the vertex set. This question
spurred hundreds of papers, but one of the earliest and most fundamental results
was the following theorem of Ore [6].

Theorem 1. (Ore, [6]) If G is a graph of order n ≥ 3 with σ2(G) ≥ n, then G is
Hamiltonian.

A stronger property is that of being pancyclic, that is, containing cycles of all
lengths from 3 to |V (G)| = n. In 1971, Bondy (see [1], [2]) proposed his now famed
meta-conjecture: “Almost any nontrivial condition on a graph which implies that the
graph is Hamiltonian also implies that the graph is pancyclic.” Bondy further allowed
“There may be a simple family of exceptional graphs”. He provided several results
to support his meta-conjecture including the following extension of Ore’s theorem.
Here the complete bipartite graphs Kn/2,n/2 form the family of exceptions, as they
contain only even length cycles.

Theorem 2. (Bondy, [1]) If G is a graph of order n ≥ 3 with σ2(G) ≥ n, then G is
pancyclic or G = Kn/2,n/2.

In this paper, we wish to extend Bondy’s meta-conjecture. To do so, we need the
following idea. A chord of a cycle is an edge between two nonadjacent vertices of the
cycle. A chorded cycle is a cycle containing at least one chord. We define a graph of
order n ≥ 4 to be chorded pancyclic if it contains a chorded cycle of each length 4
to n. A cycle of length k is called a k-cycle. Note that by default, a chorded 4-cycle
contains a 3-cycle as a subgraph, so the graph is pancyclic. Also note that there are
graphs that are pancyclic that are not chorded pancyclic (see Figure 1). We will also
need the graph G6 of Figure 2 which is not chorded pancyclic.

Figure 1: An infinite class of pancyclic but not chorded pancyclic graphs.



M. CREAM ET AL. /AUSTRALAS. J. COMBIN. 67 (1) (2017), 463–469 465

Figure 2: The graph G6 shown two ways.

Our extension of Bondy’s meta-conjecture is the following: Almost any nontrivial
condition on a graph which implies that the graph is Hamiltonian also implies that
the graph is chorded pancyclic. There may be a simple family of exceptional graphs
as well as a finite number of small order exceptions. As support for our extension,
we prove the following extension of Theorems 1 and 2. Here the complete bipartite
graphs are again a simple family of exceptional graphs and G6 is a small order
exception.

Theorem 3. Let G be a graph of order n ≥ 4. If σ2(G) ≥ n, then G is chorded
pancyclic, or G = Kn/2,n/2, or G = G6.

We note that the graph G = 2K(n−1)/2 + K1 serves as a sharpness example for
the degree condition of Theorems 1, 2, and 3, as G is not Hamiltonian. We also note
that the graph H which can be obtained from Kn/2,n/2 by adding one edge in one of
the partite sets, satisfies the conditions of Theorem 3, and H is chorded pancyclic,
but we cannot ask for more than one chord per cycle, as all of the 4-cycles in H
contain at most one chord.

We denote the set NG(v) = {x ∈ V (G) | vx ∈ E(G)}, called the neighborhood of
the vertex v in a graph G, and degG(v) = |NG(v)|. If H and S are subsets of V (G),
then we denote by NH(S) the set of vertices in H which are adjacent to some vertex
in S. In particular, if S = {v}, then we denote NH(v) = NH({v}). We also use the
common notation that A is the complement of the set A.

2 Proof of Theorem 3

In this section, let G, n, and G6 be as described in Theorem 3. Note that by Ore’s
theorem, G must be Hamiltonian. If n = 4, then either G = K2,2 or it is a 4-cycle
with chords and is then chorded pancyclic. If n = 5, then the degree sum condition
forces at least two independent chords into the Hamiltonian cycle and it is easy to
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see the graph must be chorded pancyclic. Thus, we now assume n ≥ 6. By Bondy’s
theorem, G is either pancyclic or Kn/2,n/2. Suppose G 6= Kn/2,n/2 and G 6= G6. Let x
and y be a pair of nonadjacent vertices in V (G) with the smallest number of common
neighbors. Partition V (G)− {x, y} as follows:

M = NG(x) ∩NG(y),

X = NG(x) ∩NG(y),

Y = NG(y) ∩NG(x),

D = NG(x) ∩NG(y).

Note that the degree sum condition implies |M | ≥ 2. Let |M | = 2 + r, r ≥ 0.

Claim 1. |D| ≤ r.

Proof. Suppose not, say |D| = r + t for some t > 0. Considering the degree sum of
the nonadjacent pair of vertices x and y, we have

n ≤ σ2(G) ≤ degG(x) + degG(y) ≤ (n− 2)− (r + t) + (2 + r) = n− t,

a contradiction.

Claim 2. There exists a chorded n-cycle in G.

Proof. We may assume that n ≥ 6 by the above observations. Since G contains a
Hamiltonian cycle, say C, it is easy to see that C is a chorded n-cycle by the degree
sum condition.

Claim 3. There exists a chorded 4-cycle in G.

Proof. Suppose the claim fails to hold. Since |M | ≥ 2, consider a, b ∈ M . If ab ∈
E(G), then a, y, b, x, a is a 4-cycle with chord ab, a contradiction. Thus, ab 6∈ E(G).
This implies M is an independent set. By the choice of x and y, |NG(a) ∩NG(b)| ≥
2 + r. Let w ∈ NG(a) ∩ NG(b). If w ∈ M , then a, w, b, x, a is a 4-cycle with chord
xw, a contradiction. Hence, w 6∈ M . If w ∈ X, then a, w, b, x, a is a 4-cycle with
chord xw, a contradiction. Hence, w 6∈ X and by symmetry, w 6∈ Y . Therefore,
w ∈ {x, y} ∪ D and all common neighbors of a and b must be in {x, y} ∪ D. By
Claim 1, we obtain |D| = r. Then note that ND(M) = D, and if D 6= ∅, then D is
an independent set, otherwise, when |D| ≥ 2, there exists a chorded 4-cycle in the
subgraph induced by M ∪D.

If X = ∅ = Y , then G = K2+r,2+r = Kn/2,n/2, a contradiction. Thus, we may
assume X∪Y 6= ∅ and without loss of generality, that |X| ≥ |Y |. For the nonadjacent
pair a and b and their possible adjacencies to {x, y}, X, Y and D, we have

|M |+ |{x, y}|+ |X|+ |Y |+ |D| = n ≤ σ2(G) ≤ degG(a) + degG(b)

≤ 2(|{x, y}|+ |D|) + |NX∪Y (a)|+ |NX∪Y (b)|.
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Since |M | = 2 + r and |D| = r,

(2 + r) + 2 + |X|+ |Y |+ r ≤ 2(2 + r) + |NX∪Y (a)|+ |NX∪Y (b)|,

and therefore,

|X|+ |Y | ≤ |NX∪Y (a)|+ |NX∪Y (b)|. (1)

Since common neighbors of a and b are not contained in X ∪ Y , it follows from
(1) that X ∪ Y is dominated by a and b.

Let w1 ∈ X and without loss of generality, assume aw1 ∈ E(G). Note that w1

cannot be adjacent to any other vertex in X, otherwise, say w1v ∈ E(G) for any
v ∈ X − {w1}, then w1, v, x, a, w1 is a 4-cycle with chord xw1, a contradiction. Also
note that by the definition of X, w1y /∈ E(G). Also, for any t ∈M−{a}, w1t /∈ E(G)
or again a chorded 4-cycle would exist. Thus, NG(w1) ⊆ {a, x} ∪ Y ∪D.

If Y = ∅, then for the nonadjacent pair w1 and y,

|M |+ |{x, y}|+ |X|+ |D| = n ≤ σ2(G) ≤ degG(w1) + degG(y) ≤ |{a, x}|+ |D|+ |M |

and hence, |X| ≤ 0, a contradiction. Therefore, Y 6= ∅. If NY (w1) = ∅, then
similarly, |X| ≤ 0, again a contradiction. Therefore, NY (w1) 6= ∅. Let z1 ∈ Y
and let w1z1 ∈ E(G). Since X ∪ Y is dominated by a and b, we have that bz1 ∈
E(G), as otherwise, if az1 ∈ E(G), then a, y, z1, w1, a is a 4-cycle with chord az1, a
contradiction.

We now claim that |M | = 2. Suppose this is not the case and let v ∈M −{a, b}.
Since M is independent, av /∈ E(G). By the same argument as before, X ∪ Y
is dominated by a and v. Now as az1 is not an edge, then vz1 ∈ E(G). Then
v, y, b, z1, v is a 4-cycle with chord yz1, a contradiction. Hence, |M | = 2. Now by
Claim 1, D = ∅.

We note that |NX(u)| ≤ 1 and |NY (u)| ≤ 1 for any u ∈ {a, b}, otherwise, there
would exist a chorded 4-cycle, a contradiction. If |X| ≥ 3, then since X ∪ Y is
dominated by a and b, one of a and b would have at least two adjacencies in X, a
contradiction. Hence, |X| ≤ 2 and similarly, |Y | ≤ 2.

If |X ∪ Y | = 2, then G = G6, (see Figure 2) a contradiction. Thus, suppose
that |X ∪ Y | ≥ 3. Then, by |X| ≥ |Y | which is our previous assumption, |X| = 2.
Let w2 ∈ X − {w1}. Then note bw2 ∈ E(G) since aw2 6∈ E(G). Suppose |Y | = 1.
Now n = 7. Consider the nonadjacent pair y and w1. By the degree sum condition,
degG(y) + degG(w1) ≥ n = 7. On the other hand, since degG(y) = 3 and degG(w1) =
3, we have degG(y) + degG(w1) = 6, a contradiction. Thus, |Y | = 2. Now, n = 8.
Let z2 ∈ Y − {z1}. Then az2 ∈ E(G) since bz2 6∈ E(G). If w1z2 ∈ E(G), then
a, z2, w1, x, a is a 4-cycle with chord aw1, a contradiction. Hence, w1z2 /∈ E(G). By
the degree sum condition, degG(y) + degG(w1) ≥ n = 8. On the other hand, since
degG(y) = 4 and degG(w1) = 3, we have degG(y) + degG(w1) = 7, a contradiction.
This completes the proof of Claim 3.

Claim 4. If G contains a chorded 4-cycle, then there exists a chorded 5-cycle in G.
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Proof. Suppose C = v1, v2, v3, v4, v1 is a 4-cycle in G with chord v2v4. Since n ≥ 6 and
G is connected by σ2(G) ≥ n, there is some x ∈ V (G)− V (C) such that xv ∈ E(G)
for some v ∈ V (C). We will consider two cases based on the adjacency of x.

Case I: Suppose xv1 ∈ E(G) (or by symmetry, xv3 ∈ E(G)). If x is adjacent to
any other vertex in C, then there exists a chorded 5-cycle. Thus, x is not adjacent
to any other vertex in C. Since x and v2 are nonadjacent, they must share at least
two common neighbors, and the common neighbors except v1 must be off of C. Let
y ∈ V (G) − V (C) − {x} be such a common neighbor. Then v1, x, y, v2, v4, v1 is a
5-cycle with chord v1v2.

Case II: Suppose xv2 ∈ E(G) (or by symmetry, xv4 ∈ E(G)). If x is adjacent to v1
or v3, then there exists a chorded 5-cycle. Thus, xv1 6∈ E(G) and xv3 6∈ E(G). Since
x and v1 are nonadjacent, they must share at least two common neighbors, and let y
be such a common neighbor except v2. If y ∈ V (G)−V (C)−{x}, then there exists a
chorded 5-cycle. This implies y = v4 and then xv4 ∈ E(G). If v1v3 ∈ E(G), then we
easily find a chorded 5-cycle, so we may assume v1v3 6∈ E(G). Based on the degree
sum condition, there exists some y ∈ V (G) − V (C) − {x} such that yv ∈ E(G) for
some v ∈ {v1, v3}. Without loss of generality, suppose yv1 ∈ E(G). Then we are in
a case analogous to Case I, and we have completed the proof of Claim 4.

If n = 6, G 6= K3,3 and G 6= G6, then G is chorded pancyclic by Claims 2, 3, and
4. Thus, we may assume n ≥ 7.

Claim 5. The graph G contains a chorded k-cycle for all 6 ≤ k ≤ n− 1.

Proof. Recall that since G 6= Kn/2,n/2, G is pancyclic. Let 6 ≤ k ≤ n−1 and consider
a chordless k-cycle C = v1, v2, . . . , vk, v1 in G. Since C is chordless, v1 and v3 are
nonadjacent and therefore, they must have a common neighbor in V (G)−V (C), say
x. Similarly, v2 and v6 are nonadjacent and they must have a common neighbor in
V (G)−V (C), say y. If k = n−1, then since x = y, v1, x, v3, v4, . . . , vk, v1 is a k-cycle
with chord xv6. Suppose 6 ≤ k ≤ n−2. If x = y, then there exists a chorded k-cycle
as above. If x 6= y, then v1, x, v3, v2, y, v6, . . . , vk, v1 is a k-cycle with chord v1v2.

Claims 2, 3, 4 and 5 imply that G is chorded pancyclic. This completes the proof
of Theorem 3.

3 Conclusion

We end by making a specific conjecture concerning chorded pancyclic graphs.

Conjecture 1. Let G be a Hamiltonian graph of order n ≥ 4. If |E(G)| ≥ n2/4,
then G is chorded pancyclic, or G = Kn/2,n/2, or G = G6.

If true, this would extend another result of Bondy’s [1].
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