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Abstract

A total coloring of a graph is an assignment of colors to all the elements
(vertices and edges) of the graph such that no two adjacent or incident
elements receive the same color. In this paper, we prove the tight bound
of the Behzad and Vizing conjecture on total coloring for the corona
product of two graphs G and H , when H is a cycle, a complete graph or
a bipartite graph.

1 Introduction

All graphs considered here are finite, simple and undirected. Let G = (V (G), E(G))
be a graph with vertex set V (G) and edge set E(G). A total coloring of G is a
mapping f : V (G) ∪ E(G) → C, where C is a set of colors, satisfying the following
three conditions (a)–(c):

(a) f(u) �= f(v) for any two adjacent vertices u, v ∈ V (G);

(b) f(e) �= f(e′) for any two adjacent edges e, e′ ∈ E(G); and

(c) f(v) �= f(e) for any vertex v ∈ V (G) and any edge e ∈ E(G) incident to v.

The total chromatic number of a graph G, denoted by χ′′(G), is the minimum
number of colors that suffice in a total coloring. It is clear that χ′′(G) ≥ Δ(G) + 1,
where Δ(G) is the maximum degree of G. Behzad [1] and Vizing [14] conjectured
(Total Coloring Conjecture (TCC)) that for every graph G, Δ(G) + 1 ≤ χ′′(G) ≤
Δ(G) + 2. If a graph G is total colorable with Δ(G) + 1 colors then the graph is
called type-I, and if it is total colorable with Δ(G)+2 colors, then it is type-II. This
conjecture was verified by Rosenfeld [12] and Vijayaditya [13] for Δ(G) = 3 and by
Kostochka [9, 10, 11] for Δ(G) ≤ 5. For planar graphs, the conjecture was verified by
Borodin [2] for Δ(G) ≥ 9. In 1992, Yap and Chew [15] proved that any graph G has
a total coloring with at most Δ(G) + 2 colors if Δ(G) ≥ |V (G)| − 5. In 1993, Hilton
and Hind [6] proved that any graph G has a total coloring with at most Δ(G) + 2
colors if Δ(G) ≥ 3

4
|V (G)|. Zmazek and Žerovnik [16] proved that if G and H are
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total colorable graphs then their Cartesian product G�H is also total colorable. It
is known that the total coloring problem, which asks to find a total coloring of a
given graph G with the minimum number of colors, is NP-hard [3]. In particular,
McDiarmid and Arroyo [3] proved that the problem of determining the total coloring
of μ-regular bipartite graph is NP-hard, μ ≥ 3.

The corona product of G and H is the graph G ◦ H obtained by taking one
copy of G, called the center graph, |V (G)| copies of H , called the outer graph, and
making the ith vertex of G adjacent to every vertex of the ith copy of H , where
1 ≤ i ≤ |V (G)|. This graph product was introduced by Frucht and Harary [4] in
1970. The following theorems are due to Yap [15].

Theorem 1.1. Let Kn be the complete graph. Then χ′′(Kn) =

{
n, if n is odd

n+ 1, if n is even.

Theorem 1.2. Let Cn be the cycle graph. Then χ′′(Cn) =

{
3, if n ≡ 0 mod 3

4, otherwise.

In this paper, we prove the tight bound for the total coloring of the corona product
of G and H where H is a cycle, a complete graph, or a bipartite graph. Here, we
prove that G◦H is a type-I graph where H is a cycle, a complete graph, or a bipartite
graph, and this is independent of G and H being a type-I or type-II graph.

2 Corona Product

Let G and H be two graphs. The corona product of G and H , denoted by G◦H , was
defined in the previous section. Several authors have developed diverse theoretical
works on the corona product. Equitable colorings of the corona multiproducts of
graphs was found by Furmańczyk [5]. The concept of the corona product has some
applications in chemistry for representing chemical compounds [7]. Other applica-
tions of this concept include navigation of robots in networks [8]; or every time we
have to divide a system with binary conflict relations into equal or almost equal
conflict-free subsystems.

The corona product is not commutative. For example, K3 ◦ P2 �
 P2 ◦ K3 since
the number of vertices differs. Also the corona product is not associative. Figure 1
shows a total coloring of K4 ◦P3. It is easy to prove that χ′′(G ◦H) ≤ Δ(G ◦H) + 2
for all G and H for the corona product. We are interested in proving the tight bound
of the Behzad–Vizing conjecture for the corona product of certain classes of graphs.

Theorem 2.1. For any total colorable graph G and a cycle Cn, n ≥ 3,

χ′′(G ◦ Cn) = Δ(G ◦ Cn) + 1.

Proof. Let G be a total colorable graph with m vertices and let Cn be a cycle with
n vertices. The maximum degree of G ◦Cn is Δ(G) + n. We give a total coloring of
G ◦ Cn by distinguishing two cases.
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Fig. 1: Total coloring of K4 ◦ P3.

Let C = {1, 2, 3, . . . ,Δ(G) + 1,Δ(G) + 2, . . . ,Δ(G) + n+ 1} be a set of colors
with Δ(G) + n+ 1 colors.

Case (i): G is Type-I.

Color all the elements of G using first Δ(G)+ 1 colors. Assign Δ(G)+ 2,Δ(G)+
3, . . . ,Δ(G) + n + 1 colors to the edges between the vertices of Cn and a vertex of
G. Take three different colors c1, c2, c3 from the total coloring of G, with c1 being
a vertex color in G. Now assign a coloring to the vertices and edges of Cn with
c2, c3,Δ(G) + 2 cyclically starting from the vertex v0. For the nth vertex of Cn,
assign the color Δ(G) + 3, and assign the color c1 to the edge between first and nth

vertex in Cn.

Case (ii): G is Type-II.

Color all the elements of G using first Δ(G)+2 colors. Since the maximum degree
of G is Δ(G), at each vertex in G there will be at least one missing color. Let c1
be one of the missing colors at a vertex. Now assign c1,Δ(G) + 3, . . . ,Δ(G) + n+ 1
colors to the edges between the vertices of Cn and a vertex of G. Take three different
colors c1, c2, c3 from G, with c2 being a vertex color in G. Now assign a coloring to
the elements of Cn with i c1, c3,Δ(G) cyclically starting from the vertex v0. For the
nth vertex, assign Δ(G) + 4, and use the color c2 between the first and nth vertices
of Cn.

Therefore, χ′′(G ◦ Cn) = Δ(G ◦ Cn) + 1.

Theorem 2.2. For any total colorable graph G and any complete graph Kn,

χ′′(G ◦Kn) = Δ(G ◦Kn) + 1.

Proof. Let G be a total colorable graph with m vertices and let Kn be a complete
graph with n vertices. The maximum degree of G ◦Kn is Δ(G) + n. We give a total
coloring of G ◦Kn by taking a total coloring of G in to two cases.

Let C = {1, 2, 3, . . . ,Δ(G) + 1,Δ(G) + 2, . . . ,Δ(G) + n + 1} be a set of colors,
with Δ(G) + n+ 1 colors.

Case (i): G is Type-I.
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Sub-case (i): n is odd.

Color all the elements of G using first Δ(G) + 1 colors. Let us consider the
remaining n colors Δ(G) + 2,Δ(G) + 3, . . . ,Δ(G) + n + 1. From the assignment of
colors of the elements of G, choose two colors c1 and c2. We need exactly n colors to
color Kn. Consider the set of colors

C1 = {c1, c2, c3 = Δ(G) + 2, c4 = Δ(G) + 3, . . . , cn+2 = Δ(G) + n + 1} .

Now we take these n+ 2 colors to give colors to the elements of Kn in the following
way.

Piĺsniak and Woźniak [10] introduced a proper total colorings distinguishing ad-
jacent vertices by sums. Here, it is easy to see that these n+2 colors are equidistant
on a circle of Kn. Let v1, v2, . . . , vn be the vertices of Kn; we denote by c(vi) the
color of the vertex vi, and we denote by c(vivj) the color of the edge vivj . In the
first step, we color all edges incident with v1 such that the color of c(v1vi) = ci, for
i = 2, 3, . . . , n and the vertex v1, c(v1) = c1. Next we consider the vertex v2: one edge
is already colored with c2, so we put c(v2) = c3 and c(v2vi) = ci+1, for i = 3, 4, . . . n.
In general, c(vj) = cj , and c(vjvi) = c(j+i−1) mod (n+2), for i = j + 1, . . . n. This gives
a proper total coloring of Kn using n + 2 colors. Now at each vertex in Kn we have
exactly two missing colors. From these missing colors we give distinct colors to the
edges between a vertex in G and Kn. If the color c1 or c2 is a vertex color in G then
we make a shift with i → (i+ 1) mod (n + 2) in colors to color Kn.

Sub-case (ii): n is even.

Color all the elements of G using first Δ(G) + 1 colors from the color class. Let
us consider the remaining n colors Δ(G) + 2,Δ(G) + 3, . . . ,Δ(G) + n+ 1. From the
assignment of colors of the elements of G, choose one color c1. We need exactly n+1
colors to color Kn. Consider the set of colors

C2 = {c1, c2 = Δ(G) + 2, c3 = Δ(G) + 3, . . . , cn+1 = Δ(G) + n+ 1} ;

n+1 colors are equidistant on a circle of Kn. Now we take these n+1 colors to give
colors to the elements of Kn, in the following way:

Let v1, v2, . . . , vn be the vertices of Kn; we denote by c(vi) the color of the vertex
vi and by c(vivj) the color of the edge vivj. In the first step, we color all edges incident
with v1 so that the color c(v1vi) = ci, for i = 2, 3, . . . , n, and a vertex v1 with color
c1. Next we consider v2: one edge is already colored with c2, so we put c(v2) = c3 and
c(v2vi) = ci+1, for i = 3, 4, . . . n. In general, c(vj) = cj , and c(vjvi) = cj+i+1 mod (n+1),
for i = j + 1, . . . n. This gives a total coloring of Kn using n+1 colors. Now at each
vertex in Kn we have exactly one missing color. Using the missing color, we give the
colors to the edges between the vertices of G and Kn. If the color c1 is on a vertex,
then we make a shift with i → (i+ 1) mod (n + 1) in colors to color Kn.

Case (ii): G is Type-II.

Sub-case (i): n is odd.
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Color all the elements of G using first Δ(G) + 2 colors. Let us consider the
remaining n−1 colors Δ(G)+3,Δ(G)+4, . . . ,Δ(G)+n+1. Choose three different
colors c1, c2, c3 from the total coloring of G. We need exactly n colors to color Kn.
We color the elements of Kn using the set of colors

C3 = {c1, c2, c3, c4 = Δ(G) + 3, . . . , cn+2 = Δ(G) + n + 1} .

Now, we color the elements of Kn and edges between a vertex and Kn as given in
sub-case(i) of case (i).

Sub-case (ii): n is even.

Color all the elements of G using first Δ(G) + 2 colors. Consider the colors
Δ(G) + 3,Δ(G) + 4, . . . ,Δ(G) + n + 1. Choose two colors c1 and c2 from the total
coloring of G. We need n + 1 colors to color Kn. We color the elements of Kn

using the color class C4 = {c1, c2, c3 = Δ(G) + 3, . . . , cn+1Δ(G) + n + 1}. We give
the color assignment of elements of Kn and color assignment of edges between Kn

and a vertex as given in sub-case (ii) of case (i).

Therefore χ′′(G ◦Kn) = Δ(G ◦Kn) + 1.

Theorem 2.3. For any total colorable graph G and a complete bipartite graph Km,n,

χ′′(G ◦Km,n) = Δ(G ◦Km,n) + 1.

Proof. Let G be a total colorable graph with p vertices and let Km,n be a complete
bipartite graph with bipartition X = {u1, u2, . . . , um} and Y = {v1, v2, . . . , vn}. The
maximum degree of G◦Km,n is Δ(G)+(m+n). We give a total coloring of G◦Km,n

by taking a total coloring of G in two cases.

Let C = {1, 2, 3, . . . ,Δ(G) + 1,Δ(G) + 2, . . . ,Δ(G) +m+ n+ 1} be a set of col-
ors with Δ(G) +m+ n+ 1 colors.

Case (i): G is Type-I.

Color all the elements of G with 1, 2, 3, . . . ,Δ(G)+1 colors. Choose three different
colors c1, c2, c3, from the total coloring of G.

Let

C1 = {c1, c2, c3, c4 = Δ(G) + 2, c5 = Δ(G) + 3, . . . , cm+n+3 = Δ(G) +m+ n + 1} .

We consider a permutation π(i) = (ci, ci+1, . . . , ci+n−1) on the colors from C1. Now
we color the edges of Km,n which are incident with the vertex ui with colors in π(i).
It is easy to observe that the colors assigned to the edges incident with vertices in X
are distinct. Finally, there are four colors from the color set C which are not assigned
to any of the edges of Km,n. From these four colors, assign two colors to vertices in
X and Y . Now in each vertex in Km,n there will be m+ 2 and n + 2 (including the
remaining two colors) missing colors at each of the vertices of X and Y respectively.
Using these missing colors, we color the edges between a vertex in G and Km,n.
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Case (ii): G is Type-II.

Color all the elements of G with 1, 2, 3, . . . ,Δ(G) + 1 colors. We choose three
different colors c1, c2, c3, from the total coloring of G.

Let

C1 = {c1, c2, c3, c4 = Δ(G) + 3, c5 = Δ(G) + 4 . . . , cm+n+2 = Δ(G) + (m+ n+ 1)} .

We consider a permutation π(i) = (ci, ci+1, . . . , ci+n−1) on the colors from C1. Now
we color the edges of Km,n which are incident with the vertex ui with colors in π(i).
It is easy to observe that the edges incident with vertices in X are distinct. Finally,
there are three colors from the color set C which are not assigned to any of the
edges of Km,n. From these three colors, assign two colors to vertices in X and Y .
Now in each vertex in Km,n there will be m+ 2 and n + 2 missing colors (including
the remaining two colors) in X and Y respectively. There are m+ n edges incident
between a vertex in G and the vertices in Km,n. In the above process, we give only
m+n−1 distinct colors to the edges incident between a vertex in G and the vertices
in Km,n. For one edge we give the color, which is a missing color either from the
vertex of G or vertex of Km,n.

Therefore, χ′′(G ◦Km,n) = Δ(G ◦Km,n) + 1.

Figure 2 shows a total coloring of K3 ◦K2,3.
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Fig. 2: Total coloring of K3 ◦K2,3.
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Corollary 2.1. For any total colorable graph G and any bipartite graph H,

χ′′(G ◦H) = Δ(G ◦H) + 1.

Proof. Let X = {u1, u2, . . . , um} and Y = {v1, v2, . . . , vn} be the two partition sets
of the vertices of H . Consider the graph G ◦ Km,n, G ◦ Km,n = Δ(G) ◦ H . By
Theorem 2.3, we can color the elements of G◦Km,n. Now delete the edges from Km,n

in G ◦Km,n, such that we get G ◦H .

Therefore χ′′(G ◦H) = Δ(G ◦H) + 1.

Corollary 2.2. For any total colorable graph G and a path Pn,

χ′′(G ◦ Pn) = Δ(G ◦ Pn) + 1.
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