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Abstract

A maximum degree-diameter bounded subgraph problem can be seen as a
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we investigate the MaxDDBS problem when the host graph is a butterfly
network. We give constructive lower bounds for subgraphs of maximum
degree 4, 3 and 2.
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1 Introduction

A maximum degree-diameter bounded subgraph (MaxDDBS) problem is a gener-
alisation of the degree diameter problem (DDP) in which we aim to maximise the
number of vertices in a graph with given degree and diameter. In the DDP we can
add any number of vertices and edges to a graph as long as we satisfy the degree
and diameter constraints. In MaxDDBS our selection of edges is restricted by the
requirement that the resulting graph is a subgraph of some given host architecture.
In this way DDP may be thought of as MaxDDBS with the host architecture being a
complete graph. For more detail information regarding the degree-diameter problem,
see [7].

Let G = (V,E) be a host graph, an undirected graph without loops and multiple
edges. The degree of a vertex v in G is the number of edges incident to v. The
largest degree among all vertices in G is denoted by ∆. The distance between any
two vertices u and v in G is defined to be the length of the shortest path connecting
them. The diameter of G is the largest distance between any two vertices in G.

The maximum degree-diameter bounded subgraph problem is stated as follows:

Given a connected undirected host graph G and positive integers ∆, D, find the largest
connected subgraph S with maximum degree at most ∆ and diameter at most D.

Let NG(∆, D) denote the order of a largest subgraph of G with given maximum
degree ∆ and given diameter D. The aim of this problem is to determine NG(∆, D).

This problem was first introduced by Dekker et al. [1] in 2012. In their paper, they
discuss various practical applications; for example, in order to perform an efficient
computation in parallel and distributed processing, the existence of a sub-network
of bounded degree and diameter within the parallel architecture might optimise the
communication time. They also gave a heuristic approximation algorithm to solve
MaxDDBS since it is computationally hard. In fact, this problem is known to be
NP-hard since it contains other well-known NP-hard problem as subproblems.

In the same paper, Dekker et al. gave bounds for the order of the largest subgraphs
in some host graphs of practical interest, such as the mesh and the hypercube. This
approach to MaxDDBS problem leads to more results considering other host graphs
G. The result in [1] is later improved in [6] and [2]. Besides the mesh, MaxDDBS
has also been studied on honeycomb networks [3] and triangular networks [4].

Another interesting network is the bounded-degree derivative of hypercube net-
works, called a butterfly network. In an interconnection network, modelled as a
graph, vertices represent processing units and edges signify a direct line of commu-
nication between two processors. With the rise of parallel processing, architectures
such as the butterfly network took on importance in terms of communication be-
tween processors and between processors and memory. The butterfly network dis-
plays efficiency with Fast Fourier Transforms (FFT) by employing a “divide and
conquer” approach. This structure is ideal for breaking up discrete Fourier trans-
forms (DFTs) into subtransforms as well as integrating the smaller structures into a
larger DFT. Butterfly networks have been used in parallel computing systems such
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as IBM, SP1/SP2, MIT Transit Project, and NEC Cenju-3 [8].

Formally, a set of vertices V of an r-dimensional butterfly BF (r) [5] corresponds
to a set of pairs 〈w, i〉 where w is an r-bit binary number, written as wr . . . w1, wj ∈
{0, 1}, j = 1, . . . , r and i is the level of a vertex (0 ≤ i ≤ r). Two vertices w =
〈wrwr−1 . . . w1, i〉 and w′ = 〈w′rw′r−1 . . . w′1, i′〉 are connected by an edge if and only if
i′ = i + 1 and one of these two conditions holds:

Type 1. w and w′ are identical; or

Type 2. w and w′ differ at precisely the i′th bit.

Figure 1: Butterfly network of dimension (a) 1; (b) 2; and (c) 3.

Let NBF (r)(∆, D) denote the order of a largest subgraph of BF (r) with given
maximum degree ∆ and given diameter D. Since the maximum degree of a butterfly
network is 4, we can consider subgraphs of maximum degree ∆ = 2, 3, 4. The case
∆ = 1 is trivial, being K2.

In the following section we further consider butterfly subgraphs when the degree
condition is also constrained.

2 Subgraphs of maximum degree ∆ = 4

An r-dimensional butterfly network is a graph with maximum degree 4 (except when
r = 1) on (r + 1) × 2r vertices and diameter 2r. It is not difficult to check that
combining the vertex sets {〈w, i〉|i ∈ [r]} into a single vertex results in a hypercube.

Lemma 2.1. Let BF (r) be an r-dimensional butterfly network; then there exists a
path of length r from any vertex at level 0 to any vertex at level r.

Proof. Take any w = 〈wrwr−1 . . . w1, 0〉 and w′ = 〈w′rw′r−1 . . . w′1, r〉, vertices of levels
0 and r, respectively. Note that wi, w

′
i ∈ {0, 1}, i = 1, . . . , r. To prove the lemma,

we need to find a path of length r between w and w′. From the definition of a
butterfly network, there are two types of edges connecting vertices of level i to level
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i + 1, defined as type 1 and type 2. We construct a path starting from w with the
following pattern, for i = 1, . . . , r:

• if wi = w′i take edge of type 1 ; or

• if wi 6= w′i take the edge of type 2.

The existence of those edges is guaranteed by the definition and clearly this path has
length r.

Subgraphs of maximum degree ∆ = 4 for even and odd diameter will be treated
differently. Theorem 2.2 gives the lower bound for the number of vertices in a sub-
graph with maximum degree 4 and even diameter.

Theorem 2.2. Let D = 2t. For any r ≥ t, NBF (r)(4, D) ≥ (t + 1)× 2t.

Proof. BF (r) has diameter 2r, so when r = t then NBF (r)(4, D) = |BF (t)| = (t+1)×
2t. When r > t, clearly BF (t) ⊂ BF (r), so NBF (r)(4, D) ≥ |BF (t)| = (t+1)×2t.

Theorem 2.3 gives the lower bound for the number of vertices in a subgraph with
maximum degree 4 and odd diameter.

Theorem 2.3. Let D = 2t− 1. In an r-dimensional butterfly network,

1. NBF (r)(4, D) ≥ (t + 1)× 2t−1 if r = t;

2. NBF (r)(4, D) ≥ (t + 2)× 2t−1 if r > t.

Proof. We need to construct a subgraph with diameter D = 2t− 1.

Case 1. r = t
Define

V1 = {〈w, 0〉 : w is r − bit binary number starting with 0}
= {〈0wr−1 . . . w1, 0〉 : wj ∈ {0, 1}, j = 1, . . . r − 1};

V2 = {〈w, i〉 : w is r − bit binary number ending with 0, i = 1, . . . , t}
= {〈wr . . . w20, i〉 : wj ∈ {0, 1}, j = 2, . . . r, i = 1, . . . , t}.

By simple counting, we have |V1| = 2t−1 and |V2| = t × 2t−1. Define H to be
a subgraph induced by the vertex set V1 ∪ V2. The subgraph H has |V1| + |V2| =
(t + 1)× 2t−1 vertices.

Claim: Graph H has diameter 2t− 1.

To check the diameter of the graph H, we need to check the pairwise distance
among all vertices. However, this can be simplified into three cases:

• Vertices in V2.
The subgraph induced by V2 is isomorphic to BF (t− 1); thus it has diameter
2t− 2.
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• Vertices in V1 and V2.
Each vertex in V1 has distance 1 to the set V2 (each vertex in V1 is adjacent to
one vertex in V2), so the distances between vertices from V1 to any vertex in
V2 is at most 2t− 1.

• Vertices in V1.
Let V ′2 ⊂ V2 be defined as follows:

V ′2 := {〈w, i〉 : w is an r-bit binary number that starts and ends with 0,

i = 1, . . . , r − 1}
= {〈0wr−1 . . . w20, i〉 : i = 1, . . . , r − 1}.

The subgraph induced by V ′2 is isomorphic to BF (t − 2) and all vertices in
V1 have distance 1 to V ′2 by definition. Take u, v ∈ V1. Vertices u and v have
distance 1 to the set V ′2 . Suppose u is adjacent to x and v is adjacent to y, where
x, y ∈ V ′2 (note that x, y can be the same vertex). The distance d(x, y) ≤ 2(t−2)
since 〈V ′2〉 is isomorphic to BF (t−2). Therefore, d(u, v) ≤ 1+2t−4+1 = 2t−2.

From these three cases, the greatest distance between any two vertices, and hence
the diameter, is 2t− 1.

Case 2. r > t
We will consider the case r = t + 1 and construct a subgraph of diameter 2t − 1 in
BF (t + 1). For r > t + 1, we simply embed this subgraph in BF (r).

Define

V1 = {〈w, 0〉 : w is an r-bit binary number that starts with 00}
= {〈00wr−2 . . . w1, 0〉 : wj ∈ {0, 1}, j = 1, . . . r − 2};

V2 = {〈w, i〉 : w is an r-bit binary number that starts and ends with 0,

i = 1, . . . , t}
= {〈0wr−1 . . . w20, i〉 : wj ∈ {0, 1}, j = 2, . . . r − 1, i = 1, . . . , t};

V3 = {〈w, t + 1〉 : w is a (t + 1)-bit binary number that ends with 00}
= {〈wr . . . w300, t + 1〉 : wj ∈ {0, 1}, j = 3, . . . r}.

Define H ′ to be a subgraph induced by the vertex set V1 ∪ V2 ∪ V3 in BF (t + 1).
Each set has cardinality |V1| = 2t−1, |V2| = t× 2t−1, and |V3| = 2t−1, so the subgraph
H ′ has cardinality |V1|+ |V2|+ |V3| = (t + 2)× 2t−1.

Claim: The graph H ′ has diameter 2t− 1.

To check the diameter, we need to check the pairwise distance among all vertices.
However, the subgraph induced by the set V1 ∪ V2 is isomorphic to the graph con-
structed in Case 1, so the distance among vertices in V1 ∪ V2 is at most 2t− 1. It is
sufficient to check distances in the following three cases:

• Vertices in V1 and V3.
From the definition of the sets, each vertex of V1 has distance 1 to set V2, or
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more precisely, it is adjacent to 〈w, 1〉 ∈ V2 for some w. Similarly, each vertex
of V3 also has distance 1 to set V2, i.e. it is adjacent to 〈w′, t〉 ∈ V2 for some w′.
Since the graph induced by V2 is isomorphic to BF (t− 1), by Lemma 2.1, the
distance between 〈w, 1〉 to 〈w′, t〉 is t− 1. Hence the distance between vertices
in V1 and V3 is t + 1.

• Vertices in V2 and V3.
Each vertex in V3 has distance 1 to the set V2 (each vertex in V3 is adjacent to
one vertex in V2), so the distances between vertices from V3 to any vertex in
V2 is at most 2t− 1.

• Vertices in V3.
Define V ′2 ⊂ V2 as follows:

V ′2 := {〈w, i〉 : w is r−bit binary number starts with 0 and ends with 00}
= {〈0wr−1 . . . w300, i〉 : wj ∈ {0, 1}, j = 3, . . . , r − 1, i = 2, . . . , t}.

The subgraph induced by V ′2 has (t − 2) × 2t−2 vertices and is isomorphic to
BF (t − 2) and all vertices in V1 have distance 1 to V ′2 by definition. Take
u, v ∈ V3. Now u and v have distance 1 to the set V ′2 . Suppose u is adjacent
to x and v is adjacent to y, where x, y ∈ V ′2 (note that x, y can be the same
vertex). The distance d(x, y) ≤ 2(t− 2) since 〈V ′2〉 is isomorphic to BF (t− 2).
Therefore, d(u, v) ≤ 1 + 2t− 4 + 1 = 2t− 2.

From all cases, the greatest distance between any two vertices, and hence the diam-
eter, is 2t− 1.

Figure 2 shows an example of a subgraph of maximum degree 4 and diameter 3
in BF (2) and BF (3).

Figure 2: (a)NBF (2)(4, 3) ≥ 6 and (b) NBF (3)(4, 3) ≥ 8

Corollary 2.4 gives the relation between the lower bound obtained in Theorem 2.2
and Theorem 2.3.
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Corollary 2.4. Let t be a positive integer and let LB of NBF (r)(∆, D) denote the
lower bound of NBF (r) obtained from Theorems 2.2 and 2.3 when the maximum degree
is ∆ and diameter is D. Then the following relations hold:

LB of NBF (r)(4, 2t− 1) =

{
1
2
× LB of NBF (r)(4, 2t) if r = t;

1
2
× LB of NBF (r)(4, 2t) + 2t−1 if r > t.

3 Subgraph of maximum degree ∆ = 3

While the maximum degree of butterfly networks is 4, trivalent networks are of
interest and sometimes desired by network administrators. In this section, we focus
on subgraphs of butterfly networks with maximum degree 3.

Figure 3 shows subgraphs of degree 3 with diameter 2t in BF (t) for t = 2, 3,
and 4.

Figure 3: (a)NBF (2)(3, 4) ≥ 10; (b) NBF (3)(3, 6) ≥ 24; and (c)NBF (4)(3, 8) ≥ 52

Keeping the same diameter, the subgraphs shown in Figure 3 cannot be improved
in higher dimension since all the vertices of degree 2 have eccentricity equal to the
diameter.

Theorem 3.1. Let D = 2t. For any r ≥ t, t > 1, NBF (r)(3, 2t) ≥ 7 × 2t−1 − 4 and
when t = 1, NBF (r)(3, 2) = 4.

Proof. When t = 1, subgraph of BF (r) that has maximum degree 3 and diameter 2
is either C4 or K1,3. When t > 1, we consider two cases:
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Case 1. r = t.
The construction of a subgraph with diameter D = 2t will be done inductively. Let
Gt be a subgraph of diameter 2t contained in BF (t). For t = 2, the subgraph G2 is
shown in Figure 3(a). This graph has maximum degree 3, 10 vertices with diameter
4. Note that 10 = 7× 22−1 − 4.

To construct G3 (t = 3), place 2 copies of G2 in BF (3), one starting at 〈000, 1〉
and another starting at 〈001, 1〉. Moreover, add vertices at level 0, 〈w, 0〉 where
w ∈ {000, 011, 100, 111}. These vertices link the two copies of G2. Subgraph G3

contains 2 × 10 + 4 = 24 = 7 × 23−1 − 4 vertices. From Figure 3(b), we can check
that the diameter of G3 is 6.

In general, assume we have constructed Gt, a subgraph of BF (t) with diameter
2t on 7× 2t−1 − 4 vertices. To construct Gt+1, we proceed as follows:

Let w = 〈wtwt−1 . . . w1, i〉 ∈ Gt. Define:
V1 = {〈w′′t+1w

′′
t . . . w

′′
1 , 0〉 : w′′t+1 = 0 or 1, w′′t = . . . = w′′1 = 0 or 1}.

V2 = {〈wtwt−1 . . . w10, i + 1〉 : 〈wtwt−1 . . . w1, i〉 ∈ Gt}.
V3 = {〈wtwt−1 . . . w11, i + 1〉 : 〈wtwt−1 . . . w1, i〉 ∈ Gt}.
Note that |V1| = 4 and |V2| = |V3| = |Gt|.

Now V (Gt+1) = V1 ∪ V2 ∪ V3. The subgraph induced by V (Gt+1), Gt+1, has
cardinality 2×|Gt|+ 4 = 2× (7× 2t−1− 4) + 4 = 7× 2t− 4. The maximum degree is
3 because Gt has maximum degree 3 and the vertices in V1 are adjacent to vertices
of degree 2 in Gt.

We claim that the diameter of Gt+1 is 2(t + 1). To check the diameter, it is
sufficient to check the following distances:

1. Between V1 and V2 (similarly between V1 and V3).
Each vertex in V1 is adjacent to a vertex in V2 (similarly to V3). So, their
distance is at most 1 + 2t.

2. Among vertices in V1.
Each vertex in V1 is adjacent to a vertex in V2. Take u, v ∈ V1 and x, y ∈ V2,
where u, v are adjacent to x, y, respectively. The distance d(u, v) = d(u, x) +
d(x, y) + d(y, v) is at most 1 + 2t + 1 = 2t + 2 = 2(t + 1) since the distance
between any two vertices in V2 is at most 2t.

3. Between V2 and V3.
Take any w′ = 〈wt+1wt . . . w20, i〉 ∈ V2 and w′′ = 〈w′t+1w

′
t . . . w

′
21, j〉 ∈ V3. We

need to show the existence of a path of length at most 2t + 2 joining them.

(a) i ≤ j
Consider the following vertices

i. v = 〈wt+1wt . . . wt, 0〉 ∈ V1;

ii. v′ = 〈wt+1wt . . . wt0, 1〉 ∈ V2;

iii. v′′ = 〈wt+1wt . . . wt1, 1〉 ∈ V3;

iv. u′′ = 〈w′t+1w
′
t . . . w

′
21, t + 1〉 ∈ V3.
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The path connecting vertices w′ and w′′ is

w′ − v′ − v − v′′ − u′′ − w′′.

The length of each segment of the path:

i. d(w′, v′) = (i− 1);

ii. d(v′, v) = 1 (adjacent);

iii. d(v, v′′) = 1 (adjacent);

iv. d(v′′, u′′) = t (by Lemma 2.1);

v. d(u′′, w′′) = (t + 1)− j.

The total distance between w′ − w′′ is

d(w′, w′′) = (i− 1) + 1 + 1 + t + (t + 1)− j ≤ i + 2t + 2− i = 2t + 2.

(b) i > j
Consider the following vertices

i. v′ = 〈(1− wt)wtwt−1 . . . w20, t + 1〉 ∈ V2;

ii. u′ = 〈w′t+1w
′
t . . . w

′
t0, 1〉 ∈ V2;

iii. v = 〈w′t+1w
′
t . . . w

′
t, 0〉 ∈ V1;

iv. v′′ = 〈w′t+1w
′
t . . . w

′
t1, 1〉 ∈ V3.

The path connecting vertices w and w′ is

w′ − v′ − u′ − v − v′′ − w′′.

The length of each segment of the path:

i. d(w′, v′) = (t + 1)− i;

ii. d(v′, u′) = t (by Lemma 2.1);

iii. d(u′, v) = 1 (adjacent);

iv. d(v, v′′) = 1 (adjacent);

v. d(v′′, w′′) = j − 1.

The total distance between w′ − w′′ is

d(w′, w′′) = (t + 1)− i + t + 1 + 1 + (j − 1) ≤ 2t + 2− j + j = 2t + 2.

Case 2. r > t
This subgraph is the subgraph constructed in Case 1. This subgraph cannot be
improved since all the vertices with degree 2 have eccentricity equal to the diameter.
In other words, adding any vertex adjacent to a vertex of degree 2 will increase the
diameter.

Theorem 3.2. Let D = 2t − 1. In the r-dimensional butterfly network, r ≥ t, we
have
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Figure 4: (a)NBF (2)(3, 3) ≥ 5; (b) NBF (3)(3, 5) ≥ 12; and (c)NBF (4)(3, 7) ≥ 26

(i) NBF (r)(3, D) ≥ 7× 2t−2 − 2 if r = t;

(ii) NBF (r)(3, D) ≥ 7× 2t−2 − 1 if t + 1 ≤ r ≤ 2t− 2;

(iii) NBF (r)(3, D) ≥ 2t+1 − 2 if r ≥ 2t− 1.

Proof. Let BF (r) be the r-dimensional butterfly network.

Case 1. r = t
Let Gt be a subgraph of diameter 2t contained in BF (t). For t = 2, a subgraph
of BF (t) that has degree 3 and diameter 3 is given in Figure 4(a). It contains 5 =
7× 22−2 − 2 vertices. More explicitly, G2 = {〈00, 0〉, 〈00, 1〉, 〈00, 2〉, 〈01, 0〉, 〈01, 1〉}.

Similar to the proof of Theorem 3.1, we will construct the subgraph inductively.

To construct G3 (t = 3), define:

V1 = {〈0w′′t . . . w′′1 , 0〉 : w′′t = . . . = w′′1 = 0 or 1} = {〈000, 0〉, 〈011, 0〉}.
V2 = {〈w2w10, i + 1〉 : 〈w2w1, i〉 ∈ G2}

= {〈000, 1〉, 〈000, 2〉, 〈000, 3〉, 〈010, 1〉, 〈010, 2〉}.
V3 = {〈w2w11, i + 1〉 : 〈w2w1, i〉 ∈ G2, i = 0, 1}

= {〈001, 1〉, 〈001, 2〉, 〈011, 1〉, 〈011, 2〉}.
U = {〈010, 3〉}.

G3 contains 12 = 7 × 23−2 − 2 vertices. From Figure 4(b), we can check that the
diameter of G3 is 5.
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In general, assume we have constructed Gt, a subgraph of BF (t) with diameter
2t− 1 on 7× 2t−2 − 2 vertices. To construct Gt+1, we proceed as follows:
Let w = 〈wtwt−1 . . . w1w0, i〉 ∈ Gt. Define:
V1 = {〈0w′′t . . . w′′1 , 0〉 : w′′t = . . . = w′′1 = 0 or 1} = {〈00 . . . 0, 0〉, 〈01 . . . 1, 0〉}.
V2 = {〈wtwt−1 . . . w10, i + 1〉 : 〈wtwt−1 . . . w1, i〉 ∈ Gt}.
V3 = {〈wtwt−1 . . . w11, i + 1〉 : 〈wtwt−1 . . . w1, i〉 ∈ Gt, i = 0, . . . , t− 1}.
U = {〈0utut−1 . . . u310, t + 1〉}.

The cardinalities of those sets are
|V1| = 2;
|V2| = |V (Gt)| = 7× 2t−2 − 2;
|V3| = |V (Gt)| − 2t−2 = 7× 2t−2 − 2− 2t−2 = 6× 2t−2 − 2;
|U | = 2t−2.
V (Gt+1) = V1 ∪ V2 ∪ V3 ∪ U , with cardinality

|V (Gt+1)| = 2 + 7× 2t−2 − 2 + 6× 2t−2 − 2 + 2t−2 = 7× 2(t+1)−2 − 2.

The maximum degree is 3 because Gt has maximum degree 3 and vertices in V1 are
adjacent to vertices of degree 2 in Gt.

We claim that the diameter of Gt+1 is 2(t + 1)− 1. To check the diameter, it is
sufficient to check the following distances:

1. Between V1 and V2 (similarly between V1 and V3).
Each vertex in V1 is adjacent to a vertex in V2 (similarly to V3). So, their
distance is at most 1 + 2t− 1 = 2t.

2. Between vertices in V1.
V1 = {u = 〈00 . . . 0, 0〉, v = 〈01 . . . 1, 0〉}. Let u′ = 〈01 . . . 1, t〉. There is a path
connecting u and v through u′. By Lemma 2.1, d(u, u′) = t and d(u′, v) = t,
thus, d(u, v) = 2t.

3. Between V1 and U .
By Lemma 2.1, the distance between a vertex in V1 and a vertex in U is t + 1.

4. Between V2 and U .
Each vertex in U is adjacent to a vertex in V2, so their distance is at most
1 + 2t− 1 = 2t.

5. Between V2 and V3.
Take any w′ = 〈wt+1wt . . . w20, i〉 ∈ V2, 1 ≤ i ≤ t+1 and w′′=〈w′t+1w

′
t . . . w

′
21, j〉

∈ V3, 1 ≤ j ≤ t. We need to show the existence of a path of length at most
2t + 1 joining them.

(a) i ≤ j
Consider the following vertices

i. v = 〈wt+1wt . . . wt, 0〉 ∈ V1;

ii. v′ = 〈wt+1wt . . . wt0, 1〉 ∈ V2;
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iii. v′′ = 〈wt+1wt . . . wt1, 1〉 ∈ V3;

iv. u′′ = 〈w′t+1w
′
t . . . w

′
21, t〉 ∈ V3

The path connecting vertices w′ and w′′ is

w′ − v′ − v − v′′ − u′′ − w′′.

The length of each segment of the path:

i. d(w′, v′) = i− 1;

ii. d(v′, v) = 1 (adjacent);

iii. d(v, v′′) = 1 (adjacent);

iv. d(v′′, u′′) = t− 1 (by Lemma 2.1);

v. d(u′′, w′′) = t− j.

The total length of the path is

d(w′, w′′) = (i− 1) + 1 + 1 + (t− 1) + t− j ≤ i + 2t− i = 2t.

(b) i > j
Consider the following vertices

i. v′ = 〈wt+1wtwt−1 . . . w20, t〉 ∈ V2;

ii. u′ = 〈w′t+1w
′
t . . . w

′
t0, 1〉 ∈ V2;

iii. v = 〈w′t+1w
′
t . . . w

′
t, 0〉 ∈ V1;

iv. v′′ = 〈w′t+1w
′
t . . . w

′
t1, 1〉 ∈ V3

The path connecting vertices w and w′ is

w′ − v′ − u′ − v − v′′ − w′′.

The length of each segment of the path:

i. d(w′, v′) =

{
t− i if i ≤ t

1 if i = t + 1

ii. d(v′, u′) = t− 1 (by Lemma 2.1);

iii. d(u′, v) = 1 (adjacent);

iv. d(v, v′′) = 1(adjacent);

v. d(v′′, w′′) = j − 1.

The total length of the path is

d(w′, w′′) =

{
(t− i) + (t− 1) + 1 + 1 + (j − 1) ≤ 2t if i ≤ t
1 + (t− 1) + 1 + 1 + (j − 1) ≤ 2t + 1 if i = t + 1

6. Between V3 and U .
Let u = 〈0utut−1 . . . u310, t + 1〉 ∈ U . From the definition of the butterfly
network, u is adjacent to vertex v′ = 〈0utut−1 . . . u310, t〉 ∈ V2 by an edge of
Type 1 (see Section 1). Hence, we can treat u similarly to vertex v′ ∈ V2 when
i = t+ 1. Using the same path constructed in Point 5b for i = t+ 1, we obtain
d(u, v′′) ≤ 2t + 1, u ∈ U, v′′ ∈ V3
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7. Among vertices in U .
Each vertex in U is adjacent to a vertex in V2. Take u, v ∈ U and x, y ∈ V2,
where u, v are adjacent to x, y, respectively. The distance d(u, v) = d(u, x) +
d(x, y) + d(y, v) is at most 1 + 2t − 1 + 1 = 2t + 1 = 2(t + 1) − 1 since the
distance among vertices in V2 is at most 2t− 1.

Case 2. t + 1 ≤ r ≤ 2t− 2
Let Gt be a subgraph of diameter 2t − 1 contained in BF (t), constructed in (i);
we need to construct G′t, a subgraph of diameter 2t − 1 contained in BF (r), where
r > t. Define V ′ = {〈0 . . . 0wtwt−1 . . . w10, i + 1〉 : 〈wtwt−1 . . . w1, i〉 ∈ Gt}. Clearly
|V ′| = |Gt| = 7×2t−2−2. Since the maximum degree is 3, we can only attach vertices
to the vertices with degree 2 and eccentricity less than 2t− 1, which are vertices in
V ′1 = {u = 〈0 . . . 0, 0〉, v = 〈0 . . . 0 1 . . . 1︸ ︷︷ ︸

t−1

0, 0〉} ⊂ V ′. From the proof of the previous

case, we know that vertices in V ′1 have eccentricity 2t − 2, so we can attach to any
of them a vertex without affecting the diameter. However, since d(u, v) = 2t− 2, we
can only add a vertex to exactly one of them; without loss of generality join vertex
u to 〈0 . . . 0, 0〉. The graph G′t is the graph induced by V (G′t) = V ′ ∪ {〈0 . . . 0, 0〉},
with cardinality 7× 2t−2 − 1.

Case 3. r ≥ 2t− 1
The graph is a ternary tree of depth t− 1 rooted at 〈0 . . . 0, t〉, adding 1 depth extra
from the first child of the root (2t−1 leaves).

Figure 5: (a)NBF (3)(3, 3) ≥ 6 and (b) NBF (4)(3, 5) ≥ 13

By observation, we obtain the next corollary.
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Corollary 3.3. Let t be a positive integer. Let LB of NBF (r)(∆, D) denote the lower
bound of NBF (r) obtained from Theorem 3.1 and Theorem 3.2 with maximum degree
∆ and diameter D. Then the following relations hold.

1. Lower bound of NBF (t)(3, 2t− 3) = 1
2
× lower bound of NBF (t)(3, 2t− 1);

2. Lower bound of NBF (t)(3, 2t− 3) = 1
4
× lower bound of NBF (t)(3, 2t).

Corollary 3.4 shows the relation between the lower bound of the largest subgraphs
of given diameter D with maximum degrees 4 and 3.

Corollary 3.4. Let t be a positive integer. Let LB of NBF (r)(∆, D) denote the lower
bound of the number of vertices in an r-dimensional butterfly network with maximum
degree ∆ and diameter D obtained in Theorems 2.2, 2.3, 3.1 and 3.2. Then the
following relations hold:

1. LB of NBF (r)(3, 2t) = 1
2
× LB of NBF (r)(4, 2t) + (6− t)2t−1 − 4;

2. LB of NBF (r)(3, 2t− 1) = 1
2
× LB of NBF (r)(4, 2t− 1) + (6− t)2t−2− 2 if r = t;

3. LB of NBF (r)(3, 2t− 1) = 1
2
× LB of NBF (r)(4, 2t− 1) + (5− t)2t−2− 1 if r > t.

4 Subgraph of maximum degree ∆ = 2

Since the butterfly network is a bipartite graph, the subgraph with maximum degree
2 of diameter D is a cycle C2D (if it exists).

Figure 6 gives all possible cycle lengths that are contained in BF (2) and BF (3).
As we see, the largest cycles in BF (2) and BF (3) are of sizes 8 and 24, respectively.
In general, we prove in Theorem 4.1 that the largest cycle contained in BF (r) is of
size r2r. Other observations are that there are no cycles C6 and C10 in BF (2) and
BF (3). Indeed, Theorem 4.2 shows that BF (r) contains no cycle of size 6 and 10,
for any r.

Theorem 4.1. Let BF (r) be a butterfly network of dimension r. The largest cycle
contained in BF (r) is of size r2r.

Proof. First, we prove that the size of cycles in BF (r) is at most r2r and second, we
give the explicit construction of a cycle achieving that size.

Consider vertices of degree 2 in BF (r).

• i = 0
Take two vertices w = 〈wr . . . w20, 0〉 and w′ = 〈wr . . . w21, 0〉. Both w and
w′ have degree 2. Consider v, v′ vertices of level 1 in BF (r) where v =
〈wr . . . w20, 1〉 and v′ = 〈wr . . . w21, 1〉. Vertex w is adjacent to v by an edge of
type 1 and to v′ by an edge of type 2. Vertex w′ is adjacent to v by edge of
type 2 and to v′ by edge of type 1. If w is a vertex in a cycle, so are vertices
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Figure 6: All cycle lengths in BF (2) and BF (3)

v and v′. If w′ is contained in the same cycle, then the cycle is of length 4.
Therefore, a cycle of size greater than 4 contains at most one of w,w′. From
the 2r vertices of level 0, at most 1

2
× 2r = 2r−1 vertices can be contained in

the same cycle.

• i = r
By a similar argument we have that, of the 2r vertices in level r, just 2r−1 can
be in the same cycle.

From the two cases above, at most 2r−1 vertices at level 0 and 2r−1 vertices at level
r can be included in the same cycle. The cardinality of BF (r) is (r + 1)2r, and thus
the size of a largest cycle is at most (r + 1)2r − 2r−1 − 2r−1 = r2r.

We now prove, by construction, the existence of a cycle of length r2r in BF (r).
In this construction, we are excluding vertices of degree 2 which have the form
〈wr . . . w21, 0〉 and 〈1wr−1 . . . w1, r〉. We start from the vertex 〈0 . . . 0︸ ︷︷ ︸

r

, 0〉.

The following algorithm gives a cycle construction.

1. 〈0wr−1 . . . w20, j〉 → 〈0wr−1 . . . w20, j + 1〉, j = 0, . . . , r − 1
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2. 〈0wr−1 . . . w20, r〉 → 〈1wr−1 . . . w20, r − 1〉

3. 〈1wr−1 . . . w20, j〉 → 〈1wr−1 . . . w20, j − 1〉, j = 1, . . . , r − 1

4. 〈1wr−1 . . . w20, 0〉 → 〈1wr−1 . . . w21, 1〉

5. 〈1wr−1 . . . w21, j〉 → 〈1wr−1 . . . w21, j + 1〉, j = 1, . . . , r − 2

6. 〈1wr−1 . . . w21, r − 1〉 → 〈0wr−1 . . . w21, r〉

7. 〈0wr−1 . . . wj+20 1 . . . 1︸ ︷︷ ︸
j

, k〉 → 〈0wr−1 . . . wj+20 1 . . . 1︸ ︷︷ ︸
j

, k − 1〉, j + 2 ≤ k ≤ r, j ≤

r − 2

8. 〈0wr−1 . . . wj+20 1 . . . 1︸ ︷︷ ︸
j

, j + 1〉 → 〈0wr−1 . . . wj+2 1 . . . 1︸ ︷︷ ︸
j+1

, j〉, j ≤ r − 2

9. 〈0wr−1 . . . wj+1 1 . . . 1︸ ︷︷ ︸
j

, j〉 → 〈0wr−1 . . . wj+10 1 . . . 1︸ ︷︷ ︸
j−1

, j − 1〉, 1 ≤ j ≤ r − 1

10. 〈0 . . . 0 1 . . . 1︸ ︷︷ ︸
r−1

, r〉 → 〈0 . . . 0 1 . . . 1︸ ︷︷ ︸
r−1

, r − 1〉

Theorem 4.2. For any r, BF (r) does not contain cycles C6 and C10.

Proof. First we will prove that C6 does not exist in BF (r) and, using a similar
argument, we show that C10 does not exist.

i. BF (r) does not contain cycle C6.
In BF (r), adjacent vertices have consecutive level, i.e. if u and v are adjacent
and u lies in level i, then v lies either in level i− 1 or i+ 1. Therefore, to check
the existence of C6 in BF (r), we just need to check its existence in BF (3),
since if C6 exists in BF (r > 3), it should also exist in a subgraph of BF (r > 3)
isomorphic to BF (3).

For every cycle in BF (3), due to the structure of a butterfly network, we can
always find an isomorphic copy of the cycle that contains the vertex 〈0 . . . 0︸ ︷︷ ︸

r

, 0〉,

which therefore contains vertices 〈0 . . . 0︸ ︷︷ ︸
r

, 1〉 and 〈0 . . . 0︸ ︷︷ ︸
r−1

1, 1〉. Without loss of

generality, to prove the non-existence of C6 in BF (r), we just need to show
that there do not exist two paths of length 2, one beginning from 〈0 . . . 0︸ ︷︷ ︸

r

, 1〉

and the other from 〈0 . . . 0︸ ︷︷ ︸
r−1

1, 1〉, that end at the same vertex distinct from the

starting vertices.
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If we label the vertices as v1 = 〈0 . . . 0︸ ︷︷ ︸
r

, 0〉, v2 = 〈0 . . . 0︸ ︷︷ ︸
r−1

1, 0〉, . . ., v8 = 〈1 . . . 1︸ ︷︷ ︸
r

, 0〉,

v9 = 〈0 . . . 0︸ ︷︷ ︸
r

, 1〉, v10 = 〈0 . . . 0︸ ︷︷ ︸
r−1

1, 1〉, . . ., v16 = 〈1 . . . 1︸ ︷︷ ︸
r

, 1〉, . . ., v25 = 〈0 . . . 0︸ ︷︷ ︸
r

, 3〉,

. . ., v32 = 〈1 . . . 1︸ ︷︷ ︸
r

, 3〉, then the adjacency matrix M of BF (3) can be written as

a block matrix, as follows

M =
[
mij

]
=


0 A 0 0
A 0 B 0
0 B 0 C
0 0 C 0


where each block (0, A,B,C) is of size 8× 8, and

A =



1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1


, B =



1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1


,

and

C =



1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1


.

Information regarding paths of length 2 is contained in the square of the adja-
cency matrix, M2:

M2 =
[
m′ij
]

=


A2 0 AB 0
0 A2 + B2 0 BC

AB 0 B2 + C2 0
0 BC 0 C2

 ,
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A2 + B2 =



4 2 2 0 0 0 0 0
2 4 0 2 0 0 0 0
2 0 4 2 0 0 0 0
0 2 2 4 0 0 0 0
0 0 0 0 4 2 2 0
0 0 0 0 2 4 0 2
0 0 0 0 2 0 4 2
0 0 0 0 0 2 2 4


, BC =



1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1


.

We need to find two paths of length 2, beginning at v9 and v10 respectively,
that end at the same vertex distinct from v9 and v10. Therefore, we focus on
the entries m′9k and m′10k, where k 6= 9, 10 in the matrix M2. For each k, either
m′9k or m′10k is 0 indicating that these paths do not exist. We conclude that C6

does not exist.

ii. BF (r) does not contain cycle C10.
Similar to the proof of Theorem 4.2(i), without loss of generality, to prove the
non-existence of C10 in BF (r), we just need to show that there are no two
paths of length 4, beginning from 〈0 . . . 0︸ ︷︷ ︸

r

, 1〉 and 〈0 . . . 0︸ ︷︷ ︸
r−1

1, 1〉 respectively, that

end at the same vertex distinct from the starting vertices.

If we label the vertices as v1 = 〈0 . . . 0︸ ︷︷ ︸
r

, 0〉,v2 = 〈0 . . . 0︸ ︷︷ ︸
r−1

1, 0〉, . . ., v32 = 〈1 . . . 1︸ ︷︷ ︸
r

, 0〉,

v33 = 〈0 . . . 0︸ ︷︷ ︸
r

, 1〉, v34 = 〈0 . . . 0︸ ︷︷ ︸
r−1

1, 1〉, . . ., v64 = 〈1 . . . 1︸ ︷︷ ︸
r

, 1〉, . . ., v161 = 〈0 . . . 0︸ ︷︷ ︸
r

, 5〉,

. . ., v192 = 〈1 . . . 1︸ ︷︷ ︸
r

, 5〉, then the adjacency matrix of BF (5) can be written as

follows:

M =


0 A1 0 0 0 0
A1 0 B1 0 0 0
0 B1 0 C1 0 0
0 0 C1 0 D1 0
0 0 0 D1 0 E1

0 0 0 0 E1 0


where each block (0, A1, B1, C1, D1, E1) is of size 32× 32, and A1 (respectively
B1, C1) are themselves diagonal block matrices, where the block matrices in
the main diagonal are all A (respectively B,C), defined in Part (i). Matrices
D1 and E1 are defined as block matrices in terms of I8, the identity matrix of
size 8× 8, as follows:

D1 =


I8 I8 0 0
I8 I8 0 0
0 0 I8 I8
0 0 I8 I8

 , E1 =


I8 0 I8 0
0 I8 0 I8
I8 0 I8 0
0 I8 0 I8

 .
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To gain information regarding paths of length 4, we observe the 4th power of
the adjacency matrix M , i.e. M4 = [m′′ij]. Since we are observing the paths
starting from vertices v33 and v34, we only need the entries m′′33k and m′′34k,
k = 1, . . . , 192. The second row of the block matrix M4 is[

0 (A2
1 + B2

1)2 + (B1C1)
2 0 B1C1(A

2
1 + B2

1 + C2
1 + D2

1) 0 B1C1D1E1

]
Since the paths cannot end at v33, v34, we focus on the entries m′′33k and m′′34k,
where k 6= 33, 34 in the matrix M4. The path might exist when m′′33k or m′′34k
are both non-zero. From the matrix, this happens when k = 35, 36, 97, . . . , 104.
However, for these values of k, the pair of paths are not independent, i.e. they
share some edges, so they cannot form a cycle. We conclude that C10 does not
exist. �

The last observation regarding the cycles is that there is no C6 in BF (2) and no
C22 in BF (3). There is also no cycle C62 in BF (4).

Conjecture 1. There is no cycle of size r2r − 2 in BF (r) for any value of r.

Conjecture 1 is a long standing problem for which here we are not able to provide
a solution. However, if the conjecture is true then NBF (r)(2, r2(r−1) − 1) = r2r − 4,
otherwise NBF (r)(2, r2(r−1) − 1) = r2r − 2.

5 Conclusion and Open Problems

In this paper, we have given the lower bounds for the NBF (r)(∆, D) for ∆ = 2, 3, 4 and
the bounds are sharp. However, we have not proved the exact value of NBF (r)(∆, D).
In the case ∆ = 2, we conjecture the non-existence of cycles of length r2r − 2 in
BF (r). This is very interesting since a larger cycle (cycle of length r2r) does exist
in BF (r).

In all real world architectures, optimisation of subnetworks subject to constraints
on vertex degree and diameter plays an important role in network analysis. It would
be valuable to calculate MaxDDBS for other real world architectures.
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