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Abstract

Let G be an edge-colored graph. A tree T in G is a proper tree if no two
adjacent edges of it are assigned the same color. Let k be a fixed integer
with 2 ≤ k ≤ n. For a vertex subset S ⊆ V (G) with |S| ≥ 2, a tree is
called an S-tree if it connects the vertices of S in G. A k-proper coloring
of G is an edge-coloring of G having the property that for every set S of k
vertices of G, there exists a proper S-tree T in G. The minimum number
of colors that are required in a k-proper coloring of G is defined as the
k-proper index of G, denoted by pxk(G). In this paper, we determine the
3-proper index of all complete bipartite and complete multipartite graphs
and partially determine the k-proper index of them for k ≥ 4.

1 Introduction

All graphs considered in this paper are simple, finite, undirected and connected. We
follow the terminology and notation of Bondy and Murty in [2] for those not defined
here. Let G be a graph, we use V (G), E(G), |G|,Δ(G) and δ(G) to denote the vertex
set, edge set, order (number of vertices), maximum degree and minimum degree of
G, respectively. For D ⊆ V (G), let D = V (G)\D, and let G[D] denote the subgraph
of G induced by D.

LetG be a nontrivial connected graph with an edge-coloring c :E(G) → {1, . . . , t},
t ∈ N, where adjacent edges may be colored with the same color. If adjacent edges
of G receive different colors by c, then c is called a proper coloring. The minimum
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number of colors required in a proper coloring of G is referred as the chromatic index
of G and denoted by χ′(G). Meanwhile, a path in G is called a rainbow path if no
two edges of the path are colored with the same color. The graph G is called rainbow
connected if for any two distinct vertices of G, there is a rainbow path connecting
them. For a connected graph G, the rainbow connection number of G, denoted by
rc(G), is defined as the minimum number of colors that are required to make G
rainbow connected. These concepts were first introduced by Chartrand et al. in [6]
and have been well-studied since then. For further details, we refer the reader to a
book [10].

Motivated by rainbow coloring and proper coloring in graphs, Andrews et al. [1]
and, independently, Borozan et al. [3] introduced the concept of proper-path coloring.
Let G be a nontrivial connected graph with an edge-coloring. A path in G is called
a proper path if no two adjacent edges of the path are colored with the same color.
The graph G is called proper connected if for any two distinct vertices of G, there
is a proper path connecting them. The proper connection number of G, denoted
by pc(G), is defined as the minimum number of colors that are required to make G
proper connected. For more details, we refer to a dynamic survey [9].

Chen et al. [7] recently generalized the concept of proper-path to proper tree. A
tree T in an edge-colored graph is a proper tree if no two adjacent edges of it are
assigned the same color. For a vertex subset S ⊆ V (G), a tree is called an S-tree
if it connects S in G. Let G be a connected graph of order n with an edge-coloring
and let k be a fixed integer with 2 ≤ k ≤ n. A k-proper coloring of G is an edge-
coloring of G having the property that for every set S of k vertices of G, there exists
a proper S-tree T in G. The minimum number of colors that are required in a k-
proper coloring of G is the k-proper index of G, denoted by pxk(G). Clearly, px2(G)
is precisely the proper connection number pc(G) of G. For a connected graph G, it
is easy to see that px2(G) ≤ px3(G) ≤ · · · ≤ pxn(G). The following results are not
difficult to obtain.

Proposition 1.1. [7] If G is a nontrivial connected graph of order n ≥ 3, and H is a
connected spanning subgraph of G, then pxk(G) ≤ pxk(H) for any k with 3 ≤ k ≤ n.
In particular, pxk(G) ≤ pxk(T ) for every spanning tree T of G.

Proposition 1.2. [7] For an arbitrary connected graph G with order n ≥ 3, we have
pxk(G) ≥ 2 for any integer k with 3 ≤ k ≤ n.

A Hamiltonian path in a graph G is a path containing every vertex of G and a
graph having a Hamiltonian path is a traceable graph.

Proposition 1.3. [7] If G is a traceable graph with n ≥ 3 vertices, then pxk(G) = 2
for each integer k with 3 ≤ k ≤ n.

Armed with Proposition 1.3, we can easily obtain

pxk(Kn) = pxk(Pn) = pxk(Cn) = pxk(Wn) = pxk(Ks,s) = 2
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for each integer k with 3 ≤ k ≤ n, where Kn, Pn, Cn and Wn are respectively a
complete graph, a path, a cycle and a wheel on n ≥ 3 vertices and Ks,s is a regular
complete bipartite graph with s ≥ 2.

A vertex set D ⊆ G is called an s-dominating set of G if every vertex in D is
adjacent to at least s distinct vertices of D. If, in addition, G[D] is connected, then
we call D a connected s-dominating set. Recently, Chang et al. [4] gave an upper
bound for the 3-proper index of graphs with respect to the connected 3-dominating
set.

Theorem 1.1. [4] If D is a connected 3-dominating set of a connected graph G with
minimum degree δ(G) ≥ 3, then px3(G) ≤ px3(G[D]) + 1.

Using this, we can easily obtain the following.

Theorem 1.2. For any complete bipartite graph Ks,t with t ≥ s ≥ 3, we have
2 ≤ px3(Ks,t) ≤ 3.

Proof. Let U and W be the two partite sets of Ks,t, where U = {u1, u2, u3, . . . , us}
and W = {w1, w2, w3, . . . , wt}. Obviously, D = {u1, u2, u3, w1, w2, w3} is a con-
nected 3-dominating set of Ks,t and δ(Ks,t) ≥ 3. It follows from Theorem 1.1 that
px3(Ks,t) ≤ px3(Ks,t[D]) + 1 = 3. By Proposition 1.2, we have px3(Ks,t) ≥ 2.

Naturally, we wonder among these complete bipartite graphs, whose 3-proper
index is 2. Moreover, what are the exact values of px3(Ks,t) with s+ t ≥ 3, t ≥ s ≥ 1
and px3(Kn1,n2,...,nr) with r ≥ 3? Moreover, what happens when k ≥ 4? So our paper
is organised as follows: In Section 2, we concentrate on all complete bipartite graphs
and determine the value of the 3-proper index of each of them. In Section 3, we go
on investigating all complete multipartite graphs and obtain the 3-proper index of
each of them. In the final section, we turn to the case that k ≥ 4, and give a partial
answer. In the sequel, we use c(uw) to denote the color of the edge uw.

2 The 3-proper index of a complete bipartite graph

In this section, we concentrate on all complete bipartite graphs Ks,t with s + t ≥
3, t ≥ s ≥ 1 and obtain a complete answer of the value of px3(Ks,t). From [7], we
know px3(K1,t) = t. Hence, in the following we assume that t ≥ s ≥ 2. Our result
will be divided into three separate theorems depending upon the value of s.

Theorem 2.1. For any integer t ≥ 2, we have

px3(K2,t) =

⎧⎪⎨
⎪⎩

2 if 2 ≤ t ≤ 4;
3 if 5 ≤ t ≤ 18;⌈√

t
2

⌉
if t ≥ 19.
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Proof. Let U,W be the two partite sets of K2,t, where U = {u1, u2} and W = {w1,
w2, . . . , wt}. Suppose that there exists a 3-proper coloring c : E(K2,t) → {1, 2, . . . , k},
k ∈ N. Corresponding to the 3-proper coloring, there is a color code(w) assigned to
every vertex w ∈ W , consisting of an ordered 2-tuple (a1, a2), where ai = c(uiw) ∈
{1, 2, . . . , k} for i = 1, 2. In turn, if we give each vertex of W a code, then we can
induce the corresponding edge-coloring of K2,t.

Claim 1: px3(K2,t) = 2 if 2 ≤ t ≤ 4.

Proof. Give the codes (1, 2), (2, 1), (1, 1), (2, 2) to w1, w2, w3, w4 (if each of these ver-
tices exists). Then it is easy to check that for every 3-subset S of K2,t, the edge-
colored K2,t has a proper path P connecting S.

Claim 2: px3(K2,t) > 2 if t > 4.

Proof. Otherwise, give K2,t a 3-proper coloring with colors 1 and 2. Then for any 3-
subset S of K2,t, any proper tree connecting S must actually be a path. For t > 4,
there are at least two vertices wp, wq in W such that code(wp) = code(wq). We may
assume that code(w1) = code(w2). Then for an arbitrary integer i with 3 ≤ i ≤ t, let
S = {w1, w2, wi}. There must be a proper path of length 4 connecting S. Suppose
that the path is waua′wbub′wc, where {wa, wb, wc} = {w1, w2, wi} and {ua′ , ub′} =
{u1, u2}. By symmetry, we can assume that ua′ = u1, ub′ = u2. Then wb = wi

for otherwise we have c(wau1) = c(u1wb) or c(wbu2) = c(u2wc), a contradiction. By
symmetry, let wa = w1, wc = w2. Thus c(wiu1) �= c(wiu2). Without loss of generality,
we can suppose that c(wiu1) = 1 and c(wiu2) = 2. Hence, code(wi) = (1, 2) for each
integer 3 ≤ i ≤ t. Now let S = {w3, w4, w5}. It is easy to verify that there is no proper
path waua′wbub′wc connecting S, for we always have c(waua′) = c(ua′wb), c(wbub′) =
c(ub′wc).

Claim 3: Let k be a integer where k ≥ 3. Then px3(K2,t) ≤ k for 4 < t ≤ 2k2.

Proof. Set code(w1) = (1, 1), code(w2) = (1, 2), . . . , code(wk) = (1, k);

code(wk+1) = (2, 1), code(wk+2) = (2, 2), . . . , code(w2k) = (2, k);

. . .

code(wk(k−1)+1) = (k, 1), code(wk(k−1)+2) = (k, 2), . . . , code(wk2) = (k, k)
(if each of these vertices exists). And let code(wk2+i) = code(wi) for 1 ≤ i ≤ k2 (if
each of these vertices exists). Now, we prove that this induces a 3-proper coloring of
K2,t. First of all, we notice that each code appears at most twice. Let S be a 3-subset
of K2,t. We consider the following two cases.

Case 1: Let S = {wl, wm, wn}, where 1 ≤ l < m < n ≤ t.

Subcase 1.1: If there is a j ∈ {1, 2} such that the colors of ujwl, ujwm, ujwn are
pairwise distinct, then the tree T = {ujwl, ujwm, ujwn} is a proper S-tree.

Subcase 1.2: If there is no such j, that is, at least two of the edges ujwl, ujwm, ujwn

share the same color for both j = 1 and j = 2.
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i) code(wl), code(wm) and code(wn) are pairwise distinct. Without loss of generality,
we suppose that c(u1wl) = c(u1wm) = a, c(u2wl) = c(u2vn) = b (1 ≤ a, b ≤ k2). Then
c(u1wn) �= c(u1wl), c(u2wl) �= c(u2wm). If a = b, then we have c(u1wn) �= c(wnu2). So
the path P = wlu1wnu2wm is a proper S-tree. Otherwise, the path P = wnu1wlu2wm

is a proper S-tree.

ii) Two of the codes of the vertices in S are the same. Without loss of generality,
we assume that code(wl) = code(wm) = (a, b), code(wn) = (x, y) (1 ≤ a, b, x, y ≤ k2).
Notice that (x, y) �= (a, b), then suppose that x �= a. Since k ≥ 3, there are two
positive integers p, q ≤ k such that p �= a, p �= x and q �= b, q �= p. Pick a vertex wr

whose code is (p, q) (this vertex exists since all of the k2 codes appear at least once).
Then the tree T = {u1wm, u1wn, u1wr, wru2, u2wl} is a proper S-tree.

Case 2: S = {ur, wl, wm}, where 1 ≤ l < m ≤ t. By symmetry, let r = 1.

Suppose that code(wl) = (a, b), code(wm) = (x, y) (1 ≤ a, b, x, y ≤ k2). If a �= x
then the path P = wlu1wm is a proper S-tree. If a = x, then we consider whether
b = y or not. We discuss two subcases.

i) b �= y, then at least one of them is not equal to a, assume that b �= a. So the path
P = u1wlu2wm is a proper S-tree.

ii) b = y, that is code(wl) = code(wm), so all of the k2 codes appear at least at once.
Since k ≥ 3, there are two positive integers p, q ≤ k such that p �= a and q �= b, q �= p.
Pick a vertex wr whose code is (p, q). Then the path P = wlu1wru2wm is a proper
S-tree.

Case 3: S = {u1, u2, wl}, where 1 ≤ l ≤ t.

Suppose that code(wl) = (a, b) (1 ≤ a, b ≤ k2). If a �= b, then the path P = u1wlu2

is a proper S-tree. Otherwise, according to our edge-coloring, there exists a vertex wr

of W with the code (p, q) such that q �= a and p �= q. Then the path P = wlu2wru1

is a proper S-tree.

Claim 4: px3(K2,t) > k for t > 2k2.

Proof. For any edge-coloring ofK2,t with k colors, there must be a code which appears
at least three times. Suppose that w1, w2, w3 are the vertices with the same code and
set S = {w1, w2, w3}. Then for any tree T connecting S, there is a j ∈ {1, 2} such that
{ujwl, ujwm} ⊆ E(T ) for some {l, m} ⊆ {1, 2, 3}, l �= m. But c(ujwl) = c(ujwm), so
T can not be a proper S-tree. Thus px3(K2,t) > k.

By Claims 2–4, we have the following result: if 5 ≤ t ≤ 8, px3(K2,t) = 3; if t > 8,

let k =
⌈√

t
2

⌉
, then 3 ≤

√
t
2
≤ k <

√
t
2
+1, i.e., 2(k−1)2+1 ≤ t ≤ 2k2, so we have

px3(K2,t) = k =
⌈√

t
2

⌉
. Notice that px3(K2,t) = 3 for 5 ≤ t ≤ 18. �

Theorem 2.2. For any integer t ≥ 3, we have

px3(K3,t) =

{
2 if 3 ≤ t ≤ 12;
3 otherwise.
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Proof. Let U,W be the two partite sets of K3,t, where U = {u1, u2, u3} and
W = {w1, w2, . . . , wt}. Suppose that there exists a 3-proper coloring c : E(K3,t) →
{0, 1, 2, . . . , k − 1}, k ∈ N. Analogously to Theorem 2.1, corresponding to the 3-
proper coloring, there is a color code(w) assigned to every vertex w ∈ W , consisting of
an ordered 3-tuple (a1, a2, a3), where ai = c(uiw) ∈ {0, 1, 2, . . . , k− 1} for i = 1, 2, 3.
In turn, if we give each vertex of W a code, then we can induce the corresponding
edge-coloring of K3,t.

Case 1: 3 ≤ t ≤ 8.

In this part, we give the vertices of W the codes which induce a 3-proper coloring
of K3,t with colors 0 and 1. And by application of binary system, we can introduce
the assignment of the codes in a clear way. Recall the Abelian group Z2. We build a
bijection f : {w1, w2, . . . , w8} → Z2 × Z2 × Z2, where f(w4a1+2a2+a3+1) = (a1, a2, a3).
For instance, f(w3) = (0, 1, 0). Under this condition, we use its restriction fW on W .
Now, we prove that f induces a 3-proper coloring of K3,t. Let S be an arbitrary 3-
subset.

Subcase 1.1: S = {wl, wm, wn} for some l, m, n.

Because there is no copy of any code, we can find a vertex in U , say u1, such that
u1wl, u1wm, u1wn are not all with the same color. We may assume that c(u1wl) =
c(u1wm) = 0 and c(u1wn) = 1.

i) code(wl) = (0, 0, 0). Then there is a ‘1’ in the code of wm. By symmetry,
assume that c(u2wm) = 1. Then there is a proper path P = wlu2wmu1wn connecting
S.

ii) code(wl) = (0, 0, 1). If code(wm) = (0, 0, 0), then we return to i). Otherwise,
the code of wm is neither (0, 0, 0) nor (0, 0, 1). So c(u2wm) = 1. Then the proper
S-tree is the same as that in i).

iii) code(wl) = (0, 1, 0). It is similar to ii).

iv) code(wl) = (0, 1, 1). Then either c(u2wm) = 0 or c(u3wm) = 0. By symmetry,
we suppose that c(u2wm) = 0. Then the path P = wmu2wlu1wn is a proper S-tree.

Subcase 1.2: S = {uj, wl, wm} for some j, l,m.

If c(ujwl) �= c(ujwm), then the path P = wlujwm is a proper S-tree. Otherwise,
by symmetry, we assume that c(ujwl) = c(ujwm) = 0, then there is a j′ �= j such that
c(uj′wl) �= c(uj′wm) (otherwise wl, wm will have the same code). So one of c(uj′wl)
and c(uj′wm) equals 1, say c(u′

jwl) = 1. Then the path P = ujwluj′wm is a proper
S-tree.

Subcase 1.3: S = {uj1, uj2, wl} for some j1, j2, l.

If c(uj1wl) �= c(uj2wl), then the path P = uj1wlui2 is a proper S-tree. Otherwise,
by symmetry, we assume that c(uj1wl) = c(uj2wl) = 0. By the sequence of the codes
according to f and t ≥ 3, we know that for any two vertices ua′ , ub′ of U , there exists
a vertex w ∈ W such that c(ua′w) �= c(ub′w). Similar to Subcase 1.2, we can obtain
a proper S-tree.

Subcase 1.4: S = {u1, u2, u3}.
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P = u1w3u2w2u3 is a proper path connecting S.

Case 2: 9 ≤ t ≤ 12.

Set code(w1) = (0, 0, 1), code(w2) = (0, 1, 0), code(w3) = (0, 1, 1),

code(w4) = (1, 0, 0), code(w5) = (1, 0, 1), code(w6) = (1, 1, 0).

And let code(w6+i) = code(wi) for 1 ≤ i ≤ 6 (if each of these vertices exist).
For convenience, we denote w6+i = w′

i. Now, we claim that this induces a 3-proper
coloring of K3,t. Let S be an arbitrary 3-subset of K3,t. Based on Case 1, we only
consider about the case that {wi, w

′
i} ⊆ S for some 1 ≤ i ≤ 6. By symmetry,

we suppose that i = 1. First of all, we list three proper paths containing w1, w
′
1:

P1 = w1u3w2u2w
′
1, P2 = w1u2w3u1w4u3w

′
1 and P3 = w1u1w5u2w6u3w

′
1, in which wj

can be replaced by w′
j for 2 ≤ j ≤ 6. Then, we can always find a proper path from

{P1, P2, P3} connecting S whichever the third vertex of S is.

Case 3: t ≥ 13.

We claim that px3(K3,t) = 3. We prove it by contradiction. If there is a 3-proper
coloring ofK3,t with two colors 0 and 1, then any proper tree for an arbitrary 3-subset
S is in fact a path. Consider the set S ⊆ W . As the graph is bipartite and we just
care about the shortest proper path connecting S, there are only two possible types
of such a path:

I: waua′wbub′wc

II: waua′wbub′w
′uc′wc

where {ua′ , ub′, uc′} = U and {wa, wb, wc} = S, w′ ∈ W \ S.
Firstly, as t ≥ 13, we know that some code appears more than once. But it

can not appear more than twice. Otherwise, assume that wi, w
′
i, w

′′
i are the three

vertices with the same code, and let S = {wi, w
′
i, w

′′
i }. Whether the proper path

connecting S is type I or type II, it should be c(waua′) �= c(wbua′), contradicting
with the assumption that code(wi) = code(w′

i) = code(w′′
i ).

Secondly, we prove the following several claims by contradiction.

Claim 1: The repetitive code can not be (0, 0, 0) or (1, 1, 1).

Proof. Suppose that code(w1) = code(w2) = (0, 0, 0). Let S = {w1, w2, w3} where
w3 ∈ W\{w1, w2}, and let P be a proper path connecting S. Then w1, w2 are the
two end vertices of P , and so the two end edges of it are assigned the same color.
However, since the length of P is even, the colors of the end edges can not be
the same, a contradiction. Analogously, the code (1, 1, 1) cannot appear more than
once.

Claim 2: If the code (0, 0, 1) is repeated, then there is no vertex in W with
(0, 0, 0) as its code.

Proof. Suppose that code(w1) = code(w2) = (0, 0, 1), code(w3) = (0, 0, 0). Let S =
{w1, w2, w3}, and let P be a proper path connecting S. Then w3 is one of the
end vertices of P . Moreover, the path P must be type II, for in type I, we need
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c(waua′) �= c(wbua′) and c(wbub′) �= c(wcub′), which is impossible for S. We can also
deduce that ua′ = u3 because c(waua′) �= c(wbua′). And {w1, w2} �= {wa, wb} since
they are with the same code. So we have wa = w3. Thus, {wb, wc} = {w1, w2} and
{ub′, uc′} = {u1, u2}, contradicting with the fact that c(wbub′) �= c(wcuc′).

Analogously, we have that the repetitive code (0, 1, 0) or (1, 0, 0) can not ex-
ist along with the code (0, 0, 0), respectively. Symmetrically, the repetitive code
(0, 1, 1), (1, 0, 1) or (1, 1, 0) can not exist along with the code (1, 1, 1), respectively.

Finally, as t ≥ 13 and no code could appear more than twice, there are at least 7
different codes in W and at least 5 codes repeated. But considering Claim 2 and its
analogous results, it is a contradiction. So px3(K3,t) = 3 when t ≥ 13. �

Theorem 2.3. For a complete bipartite graph Ks,t with t ≥ s ≥ 4, we have
px3(Ks,t) = 2.

Proof. Let U,W be the two partite sets of Ks,t, where U = {u1, u2, . . . , us} and
W = {w1, w2, . . . , wt}. And denote a cycle Cs = u1w1u2w2 . . . uswsu1. Moreover,
if u, v ∈ V (Cs), then we use uCsv to denote the segment of Cs from u to v in
the clockwise direction, and we denote the opposite direction by uC ′

sv. Then we
demonstrate a 3-proper coloring of Ks,t with two colors 0 and 1. Let c(uiwi) = 0
(1 ≤ i ≤ s) and c(uiwj) = 1 (1 ≤ i �= j ≤ s). And assign c(wrui) = i (mod 2)
(1 ≤ i ≤ s, s < r ≤ t). Now we prove that this coloring is a 3-proper coloring of Ks,t.
Consider a 3-subset S.

i) S ⊆ V (Cs). The proper path is a segment of Cs.

ii) S = {wl, wm, wn} where l, m, n > s.Then the path P = wlu1w1u2wmu3w3u4wn

is a proper S-tree.

iii) S = {wl, wm, wn} where l ≤ s,m, n > s. If c(wmul) = 1, then the path
P = wmulwlCsu2wn is a proper S-tree. If c(wmul) = 0, then the proper S-tree is the
path P = wmulwl−1ul−1wnul−2C

′
swl, where u0 = us, u−1 = us−1 if i1 = 2.

iv) S = {uj, wl, wm} where l, m > s. The way to find a proper S-tree is similar
to that in iii).

v) S = {uj, wl, wm} where l ≤ s,m > s. If c(wmuj) = 1, then the proper S-tree
is the path P = wmujwjCswl. If c(wmuj) = 0, then the path P = wmujC

′
swl is a

proper S-tree.

vi) S = {uj1, uj2, wi} where i > s. The way to find a proper S-tree is similar to
that in v). �

Remarks. Here, we introduce a generalization of k-proper index which was recently
proposed by Chang et al. in [5]. Let G be a nontrivial κ-connected graph of order n,
and let k and � be two integers with 2 ≤ k ≤ n and 1 ≤ � ≤ κ. For S ⊆ V (G), let
{T1, T2, . . . , T�} be a set of S-trees. They are internally disjoint if E(Ti)∩E(Tj) = ∅
and V (Ti) ∩ V (Tj) = S for every pair of distinct integers i, j with 1 ≤ i, j ≤ �.
The (k, �)-proper index of G, denoted by pxk,�(G), is the minimum number of colors
that are required in an edge-coloring of G such that for every k-subset S of V (G),
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there exist � internally disjoint proper S-trees connecting them. In their paper, they
investigated the complete bipartite graphs and obtained the following.

Theorem 2.4. [5] Let s and t be two positive integers with t = O(sr), r ∈ R and
r ≥ 1. For every pair of integers k, � with k ≥ 3, there exists a positive integer
N3 = N3(k, �) such that pxk,�(Ks,t) = 2 for every integer s ≥ N3.

Obviously, they did not give the exact value of pxk,�(Ks,t), even for k = 3 and
� = 1. Our Theorem 2.3 completely determines the value of pxk,�(Ks,t) for k = 3 and
� = 1, without using the condition that t = O(sr), r ∈ R and r ≥ 1.

3 The 3-proper index of a complete multipartite graph

With the aids of Theorems 2.1, 2.2 and 2.3, we are now able to determine the 3-proper
index of all complete multipartite graphs. First of all, we give a useful theorem.

Theorem 3.1. [8] Let G be a graph with n vertices. If δ(G) ≥ n−1
2
, then G has a

Hamiltonian path (i.e. G is traceable).

Theorem 3.2. Let G = Kn1,n2,...,nr be a complete multipartite graph, where r ≥ 3
and n1 ≤ n2 ≤ · · · ≤ nr. Set s =

∑r−1
i=1 ni and t = nr. Then we have

px3(G) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3 if G = K1,1,t, 5 ≤ t ≤ 18
or G = K1,2,t, t ≥ 13
or G = K1,1,1,t, t ≥ 15;⌈√

t
2

⌉
if G = K1,1,t, t ≥ 19;

2 otherwise.

Proof. The graph G has a Ks,t as its spanning subgraph, so it follows from Propo-
sitions 1.1 and 1.2 that 2 ≤ px3(G) ≤ px3(Ks,t). In the following, we discuss two
cases according to the relationship between s and t.

Case 1: s ≤ t. Let U1, U2, . . . , Ur denote the different r-partite sets of G, where
|Ui| = ni for each integer 1 ≤ i ≤ r.

When s ≥ 4, then by Theorem 2.3, we have px3(G) = px3(Ks,t) = 2. When
s ≤ 3, there are only three possible values of (n1, n2, . . . , nr−1).

Subcase 1: (n1, n2, . . . , nr−1) = (1, 1). Set U1 = {u1}, U2 = {u2}. Under this
condition, giving the edge u1u2 an arbitrary color, the proof is exactly the same as
that of Theorem 2.1. So it holds that px3(G) = px3(K2,t).

Subcase 2: (n1, n2, . . . , nr−1) = (1, 2). Set U1 = {u1}, U2 = {u2, u3} and W = Ur.
By Theorem 2.2, we have px3(G) = px3(K3,t) = 2 if t ≤ 12; px3(G) ≤ px3(K3,t) = 3
if t > 12. We claim that px3(G) = 3 if t > 12. Assume, to the contrary, that
G has a 3-proper coloring with two colors 0 and 1. By symmetry, we assume that
c(u1u2) = 0. With the similar reason in Case 3 of the proof of Theorem 2.2, no code
can appear more than twice. And recall the bijection f defined in that proof. To
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label the vertices in W , we use its inverse f−1 : (a1, a2, a3) �→ w4a1+2a2+a3+1, and
denote by w′

i the copy of the vertex wi with 1 ≤ i ≤ 8. Then we prove the following
results by contradiction.

Claim 1: {w1, w
′
1, w2} � W and {w2, w

′
2, w1} � W .

Proof. Set S = {w1, w
′
1, w2}. We know from the proof of Theorem 2.2 that there is

no proper path of type I or II. So the proper path P connecting S is type III, defined
as waua′wbub′uc′wc. Then w1, w

′
1 must be the end vertices of P , and so wb = w2 and

ua′ = u3. Since c(waua′) = 0, c(ub′uc′) = 1, contradicting with c(u1u2) = 0. Hence,
we obtain {w1, w

′
1, w2} � W . Similarly, we have {w2, w

′
2, w1} � W .

Claim 2: {w4, w
′
4, w8} � W and {w8, w

′
8, w4} � W .

Proof. Set S = {w4, w
′
4, w8}. Similar to Claim 1, any proper path P connecting S

should be type III: waua′wbub′uc′wc. Then w8 must be an end vertex of P , and so both
of the end edges of P are colored with 1. Thus ua′ = u1. Then {ub′, uc′} = {u2, u3}
and c(u2u3)=0, contradicting with the fact that u2u3 /∈ E(G). Similarly, we have
{w8, w

′
8, w4} � W .

So there are four cases that some vertices can not exist in W at the same time,
and each code appears at most twice. However, there are more than 12 vertices in
W , a contradiction. So px3(G) = px3(K3,t) = 3 when t > 12.

Subcase 3: (n1, n2, . . . , nr−1) = (1, 1, 1). Set U = ∪r−1
j=1Uj = {u1, u2, u3} and

W = Ur.

Claim 3: px3(G) = 2 if t ≤ 14.

Proof. By Theorem 2.2, we have px3(G) = px3(K3,t) = 2 if t ≤ 12; px3(G) ≤
px3(K3,t) = 3 if t > 12. When t = 13 or 14, we recall code(w) defined in Case 2 of
Theorem 2.2. Set

code(w1) = (0, 0, 1), code(w2) = (0, 1, 0), code(w3) = (0, 1, 1), code(w4) = (1, 0, 0),

code(w5) = (1, 0, 1), code(w6) = (1, 1, 0), code(w7) = (1, 1, 1).

And let code(w7+i) = code(wi) for 1 ≤ i ≤ 7 (if each of these vertices exists) and
c(uiuj) = 0 for 1 ≤ i �= j ≤ 3. For convenience, we denote w7+i = w′

i. Now, we
claim that this induces a 3-proper coloring of G. Let S be an arbitrary 3-subset of
G. Based on Theorem 2.2, we only consider about the case that w7(w

′
7) ∈ S. When

S = {w1, w7, w
′
7}, then the path P = w7u1w1u3u2w

′
7 is a proper path connecting S.

Similarly, we can find a proper path in type III connecting S whichever the two other
vertices of S are.

Claim 4: px3(G) = 3 if t > 14.

Proof. Assume, to the contrary, that G has a 3-proper coloring with two colors 0
and 1. If the edges of G[U ] are colored with two different colors, then we set u2
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the common vertex of two edges with two different colors. Moreover, without loss of
generality, we suppose that c(u1u2) = 0. Similar to Subcase 2, we have px3(G) = 3
if t > 12. If all the edges of G[U ] are colored with one color, say 0. Repeat the
discussion in Subcase 2, then we know Claim 1 is also true under this condition. As
t ≥ 15 and no code could appear more than twice, there are at least 8 different codes
in W and at least 7 codes repeated. But from Claim 1, we know {w1, w

′
1, w2} � W

and {w2, w
′
2, w1} � W . So px3(G) = 3 when t ≥ 15.

Case 2: s ≥ t. Under this condition, we have δ(G) ≥ n−1
2
. By Theorem 3.1, we

know G is traceable. Thus, it follows from Proposition 1.3 that px3(G) = 2. �

4 The k-proper index

Now, we turn to the k-proper index of a complete bipartite graph and a complete
multipartite graph for general k. Throughout this section, let k be a fixed integer
with k ≥ 3. Firstly, we generalize Theorem 1.1 to the k-proper index.

Theorem 4.1. If D is a connected k-dominating set of a connected graph G with
minimum degree δ(G) ≥ k, then pxk(G) ≤ pxk(G[D]) + 1.

Proof. Since D is a connected k-dominating set, every vertex v in D has at least k
neighbors in D. Let x = pxk(G[D]). We first color the edges in G[D] with x different
colors from {2, 3, . . . , x+1} such that for every k vertices in D, there exists a proper
tree in G[D] connecting them. Then we color the remaining edges with color 1.

Next, we will show that this coloring makes G k-proper connected. Let S =
{v1, v2, . . . , vk} be any set of k vertices in G. Without loss of generality, we as-
sume that {v1, . . . , vp} ⊆ D and {vp+1, . . . , vk} ⊆ D for some p (0 ≤ p ≤ k).
For each vi ∈ D (p + 1 ≤ i ≤ k), let ui be the neighbour of vi in D such
that {up+1, . . . , uk} is a (k − p)-set. It is possible since D is a k-dominating set.
Then the edges {up+1vp+1, . . . , ukvk} together with the proper tree connecting the
vertices {v1, . . . , vp, up+1, . . . , uk} in G[D] induces a proper S-tree. Thus, we have
pxk(G) ≤ pxk(G[D]) + 1.

Based on this theorem, we can give a lower bound and a upper bound on the
k-proper index of a complete bipartite graph, whose proof is similar to Theorem 1.2.

Theorem 4.2. For a complete bipartite graph Ks,t with t ≥ s ≥ k, we have 2 ≤
pxk(Ks,t) ≤ 3.

Let G be a complete bipartite graph. Using the techniques in Theorem 2.3, we
can obtain the sufficient condition such that pxk(G) = 2.

Theorem 4.3. For a complete bipartite graph Ks,t with t ≥ s ≥ 2(k − 1), we have
pxk(Ks,t) = 2.
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Proof. We demonstrate a k-proper coloring of Ks,t with two colors 0 and 1, the
same as Theorem 2.3. For completeness, we restate the coloring. Let U,W be
the two partite sets of Ks,t, where U = {u1, u2, . . . , us} and W = {w1, w2, . . . , wt},
t ≥ s ≥ 2(k − 1). Denote a cycle Cs = u1w1u2w2 . . . uswsu1. Let c(uiwi) = 0
(1 ≤ i ≤ s) and c(uiwj) = 1 (1 ≤ i �= j ≤ s). And assign c(wrui) = i (mod 2)
(1 ≤ i ≤ s, s < r ≤ t). Now, we show that for any k-subset S ⊆ V (Ks,t), there
is a proper path PS connecting all the vertices in S. Set W1 = {w1, w2, . . . , ws}
and W2 = {ws+1, . . . , wt} (if t > s). Then S can be divided into three parts, i.e.,
S = S1∪S2∪S3, where S1 = S∩W1, S2 = S∩W2 and S3 = S∩U . Suppose |S1| = p,
|S2| = q, then p + q ≤ k. If q = 0, the path P = u1w1u2w2 . . . usws is a proper path
connecting S. If q ≥ 1, set S2 = {wα1,wα2 , . . . , wαq}, where s < α1, α2, . . . , αq ≤ t.
Let P = wαqu1w1u2w2 . . . usws. Then consider the vertex set W ′

S = {w2i : w2i ∈
W1 \ S1}. We have |W ′

S| ≥ s/2 − p ≥ k − p − 1 ≥ q − 1. So set |W ′
S| = � and

W ′
S = {wβ1, wβ2, . . . , wβq−1, . . . , wβ�

}, where 2 ≤ β1, β2, . . . , β� ≤ s are even. Then
we construct a path PS by replacing the subpath uβj

wβj
uβj+1 of P with uβj

wαj
uβj+1

(and usws with uswαj
if βj = s) for 1 ≤ j ≤ q−1. Hence, the new path PS is a proper

path contains all the vertices of U so that PS connects S3. By the replacement we
know that PS also connects S1 as well as S2. Thus we complete the proof.

With the aid of Theorems 4.3 and 3.1, we can easily obtain the following, the
proof of which is similar to that of Theorem 3.2.

Theorem 4.4. Let G = Kn1,n2,...,nr be a complete multipartite graph, where r ≥ 3
and n1 ≤ n2 ≤ · · · ≤ nr. Set s =

∑r−1
i=1 ni and t = nr. If t ≥ s ≥ 2(k − 1) or t ≤ s,

then we have pxk(G) = 2.
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