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Abstract

The problem of determining the largest number f(n; κ ≤ �) of edges for
graphs with n vertices and maximal local connectivity at most � was
considered by Bollobás. Li et al. studied the largest number f(n; κ3 ≤ 2)
of edges for graphs with n vertices and at most two internally disjoint
Steiner trees connecting any three vertices. In this paper, we further
study the largest number f(n; κk = 1) of edges for graphs with n vertices
and exactly one Steiner tree connecting any k vertices with k ≥ 3. It
turns out that this is not an easy task to finish, unlike the same problem
for the classical connectivity parameter. We determine the exact values
of f(n; κk = 1) for k = 3, 4, n, and characterize the graphs which attain
each of these values.

1 Introduction

All graphs considered in this paper are simple, finite and undirected. We follow
the terminology and notation of Bondy and Murty [3]. We refer to the number of
vertices in a graph as the order of the graph and the number of its edges as its
size. We use the basic notations e(G), δ(G) and d(v) to denote the size of G, the
minimum degree of G and the degree of a vertex v, respectively. We say that two
paths are internally disjoint if they have no common vertex except the end vertices.
For any two distinct vertices u and v in a graph G, the local connectivity κG(u, v)
is the maximum number of internally disjoint paths connecting u and v. Then the
connectivity of G is defined as κ(G) = min{κG(u, v) : u, v ∈ V (G), u �= v}; whereas
κ(G) = max{κG(u, v) : u, v ∈ V (G), u �= v} is called the maximal local connectivity
of G, introduced by Bollobás.
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Bollobás [1] considered the problem of determining the largest number f(n; κ ≤ �)
of edges for graphs with n vertices and maximal local connectivity at most �. In other
words, f(n; κ ≤ �) = max{e(G) : |V (G)| = n and κ(G) ≤ �}. Determining the exact
value of f(n; κ ≤ �) has got a great attention and many results have been worked
out, see [1–2, 5–7, 15–16, 18].

For a graph G(V,E) and a subset S of V where |S| ≥ 2, an S-Steiner tree or
a Steiner tree connecting S is a subgraph T (V ′, E ′) of G which is a tree such that
S ⊆ V ′. Two S-Steiner trees T1 and T2 are called internally disjoint if E(T1) ∩
E(T2) = ∅ and V (T1) ∩ V (T2) = S. Note that T1 and T2 are vertex-disjoint in
G\S. For S ⊆ V , the generalized local connectivity κ(S) is the maximum number of
internally disjoint trees connecting S in G. The generalized k-connectivity is defined
as κk(G) = min{κ(S) : S ⊆ V (G), |S| = k}. These concepts can be found in [4].
Many results have been worked out on the generalized connectivity; we refer the
reader to [9–12, 14] for details.

In analogue to the classical maximal local connectivity, another parameter κk(G)
= max{κ(S) : S ⊆ V (G), |S| = k}, called the maximal generalized local connectivity
of G, was introduced in [8]. The authors studied the largest number f(n; κ3 ≤ 2)
of edges for graphs with n vertices and at most two internally disjoint Steiner trees
connecting any three vertices. Later, Li and Mao [13] determined the exact value
of f(n; κk ≤ �) for k = n and n − 1, and for a general k they construct a graph to
obtain a sharp lower bound.

In this paper, we will study the problem of determining the largest number
f(n; κk = 1) of edges for graphs with n vertices and maximal generalized local connec-
tivity exactly equal to 1, that is, f(n; κk = 1) = max{e(G) : |V (G)| = n and κk(G) =
1}. It is easy to see that for k = 2, f(n; κ = 1) = n − 1, and if a graph G satisfies
κ(G) = 1, then G must be a tree. It turns out that for k ≥ 3, the problem is not
easy to attack.

This paper is organized as follows. In Section 2, we introduce a graph operation
to describe three graph classes. In Section 3, we first estimate the exact value of
f(n; κ3 = 1), that is, f(n; κ3 = 1) = 4n−3−r

3
for n = 3r + q, 0 ≤ q ≤ 2. Then, in

Section 4, we determine f(n; κ4 = 1) for n = 4r+ q, 0 ≤ q ≤ 3. Finally, in Section 5,
f(n; κn = 1) is determined to be

(
n−1
2

)
+ 1. Furthermore, we characterize extremal

graphs attaining each of these values. For general k, we get the lower bound of
f(n; κk = 1) by constructing extremal graphs for n = r(k − 1) + q, 0 ≤ q ≤ k − 2.

2 Preliminaries

In this section, we first give some definitions frequently used in the sequel, and then
introduce a graph operation to describe three graph classes.

For a graph G, we say a path P = u1u2 . . . uq is an ear of G if V (G) ∩ V (P ) =
{u1, uq}. If u1 �= uq, P is an open ear; otherwise P is a closed ear. By �(P ) we
denote the length of P and Cq a cycle on q vertices.

Let H1 and H2 be two disjoint graphs. The adding operation H1 + H2 of H1
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and H2 is defined from the disjoint union of H1 and H2 by adding exactly one edge
between a vertex of H1 and a vertex of H2, arbitrarily. Since the added edge is
arbitrarily chosen, the adding operation defines a class of graphs rather than a single
graph. Sometimes the adding operation contains exactly one graph, for example,
K2 +K1 = {P3}. In this case, we will use the notation H1 +H2 to mean the graph
in the class H1 +H2 for brevity. As we will see, this does not violate the correctness
of our proofs. Also note that for a graph G ∈ H1 +H2, |V (G)| = |V (H1)|+ |V (H2)|
and e(G) = e(H1) + e(H2) + 1.

{C3}i + {C4}j + {C5}k + {K1}� is a class of connected graphs obtained from i
copies of C3, j copies of C4, k copies of C5 and � copies ofK1 by the adding operations
such that 0 ≤ i ≤ 	n

3

, 0 ≤ j ≤ 2, 0 ≤ k ≤ 1, 0 ≤ � ≤ 2 and 3i + 4j + 5k + � = n.

Note that these operations are taken in an arbitrary order.

Let n = 3r + q, 0 ≤ q ≤ 2. If q = 0, G0
n = {C3}r. If q = 1, G1

n = {C3}r +K1 or
{C3}r−1 + C4. If q = 2, G2

n = {C3}r + {K1}2 or {C3}r−1 + C4 +K1 or {C3}r−1 + C5

or {C3}r−2 + {C4}2.
Let A,B,D1, D2, D3, F1, F2, F3, F4 be the graphs shown in Figure 1.

F1 F2 F3 F4D3

A B D1 D2

Figure 1. The graphs used for the second graph class

{A}i0+{B}i1+{D1}i2+{D2}i3+{D3}i4+{F1}i5+{F2}i6+{F3}i7+{F4}i8+{K1}i9
is composed of another connected graph class by the adding operations such that (1)
0 ≤ i0 ≤ 2, 0 ≤ i1 ≤ 	n

4

, 0 ≤ i2 + i3 + i4 ≤ 2, 0 ≤ i5 + i6 + i7 + i8 ≤ 1, 0 ≤ i9 ≤ 2;

(2) Di and Fj are not simultaneously in a graph belonging to this graph class where
1 ≤ i ≤ 3, 1 ≤ j ≤ 4; (3) 3i0 + 4i1 + 5(i2 + i3 + i4) + 6(i5 + i6 + i7 + i8) + i9 = n.

Let n = 4r + q, 0 ≤ q ≤ 3. If q = 0, H0
n = {B}r. If q = 1, H1

n = {B}r + K1

or {B}r−1 + Di (1 ≤ i ≤ 3). If q = 2, H2
n = {B}r + {K1}2 or {B}r−1 + {A}2 or

{B}r−1 +Di +K1 or {B}r−2 +Di +Dj (1 ≤ i, j ≤ 3) or {B}r−1 + Fi (1 ≤ i ≤ 4). If
q = 3, H3

n = {B}r + A.

Define the third graph class as follows: for n = 5, K5 = {G : |V (G)| = 5, e(G) =
7}; for n ≥ 6, Kn = Kn−1 +K1.

The following observation is obvious.
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Observation 2.1. Let G and G
′
be two connected graphs. If G

′
is a subgraph of G

and κk(G
′
) ≥ 2, then κk(G) ≥ 2.

Next we state a famous theorem which is fundamental for calculating the number
of edge-disjoint spanning trees and getting from it a useful lemma for our following
results.

Theorem 2.2. (Nash-Williams [17], Tutte [19]) A multigraph contains k edge-
disjoint spanning trees if and only if for every partition P of its vertex sets it has at
least k(|P| − 1) cross-edges, whose ends lie in different partition sets.

Lemma 2.3. Let M be a subset of edges of Kn (n ≥ 5) where 0 ≤ |M | ≤ n− 3, and
G be a graph obtained from Kn by deleting M . Then G contains two edge-disjoint
spanning trees.

Proof. Let P be a partition of V (G) into p sets V1, V2, . . . , Vp where 1 ≤ p ≤ n, and let
E represent the cross-edges. Set |Vi| = ni, 1 ≤ i ≤ p. If p = 1 then this case is trivial,
so we suppose next that 2 ≤ p ≤ n. By Theorem 2.2, in order to obtain two edge-

disjoint spanning trees, we only need to prove that the inequality |E| ≥
(
n
2

)
−

p∑
i=1

(
ni

2

)
−

|M | ≥ 2(p−1), that is equivalent to saying that
(
n
2

)
−|M |−2(p−1) ≥

p∑
i=1

(
ni

2

)
, holds.

As |M | ≤ n− 3, and
p∑

i=1

(
ni

2

)
attains the maximum value

(
n−p+1

2

)
by ni = n− (p− 1)

and nj = 1 where j �= i, we only need to prove that
(
n
2

)
− (n−3)−2(p−1) ≥

(
n−p+1

2

)
holds. Let f(n, p) =

(
n
2

)
− (n − 3) − 2(p − 1) −

(
n−p+1

2

)
. Our aim is to prove that

f(n, p) ≥ 0. Now f(n, p) =
(
n−1
2

)
− 2(p− 2)−

(
n−p+1

2

)
= 1

2
(n− 1)(n− 2)− 2(p− 2)−

1
2
[(n−1)−(p−2)](n−p) = 1

2
[(n−1)(p−2)+(p−2)(n−p−4)] = 1

2
(p−2)(2n−p−5).

Since 2 ≤ p ≤ n and n ≥ 5, it follows immediately that f(n, p) ≥ 0.

3 The case k = 3

We consider the case k = 3 in this section. At first, we begin with a necessary and
sufficient condition for κ3(G) = 1.

Proposition 3.1. Let G be a connected graph. Then κ3(G) = 1 if and only if every
cycle in G has no ear.

Proof. To settle the “only if” part, assume, to the contrary, that C is a cycle in G and
P is an ear of C. Set V (C)∩ V (P ) = {u, v} where u and v may be the same vertex.
If �(P ) = 1, then P is an open ear; pick a vertex from uCv and vCu respectively,
say u1 and u2. Then T1 = u2Cu1 and T2 = u1Cu2 ∪ uv are two internally disjoint
trees connecting {u, u1, u2}, a contradiction to κ3(G) = 1. If �(P ) ≥ 2, pick a vertex
in C \ {u, v} and P \ {u, v}, respectively, say u1 and u2. Then there are also two
internally disjoint trees connecting {u, u1, u2}, another contradiction.
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To prove the “if” part, let S be a set of any three vertices. We need to prove
that κ3(S) = 1. Since every cycle in G has no ear, then every maximal bridgeless
subgraph of G is a cycle and each edge incident with it is a cut edge. If two vertices
in S belong to different cycles C1 and C2, then it is immediate to check that only
one tree connects S, since the cut edge in the path from C1 to C2 can be used only
once. If three vertices in S belong to a cycle, then it is immediate to see that only
one tree connects S. Thus κ3(G) = 1.

Lemma 3.2. Let G be a connected graph of order 5 and size at least 6. Then
κ3(G) ≥ 2.

Proof. Let H be a connected spanning subgraph of G and suppose H has size exactly
6. Since the possible connected graphs of order 5 and size 6 are D1, D2, D3 and
B + K1, it is easy to see that each of these graphs has a cycle with an ear. Then
by Proposition 3.1, it follows that κ3(H) ≥ 2. By Observation 2.1, it follows that
κ3(G) ≥ 2.

Theorem 3.3. Let n = 3r + q, where 0 ≤ q ≤ 2, and let G be a connected graph
of order n such that κ3(G) = 1. Then e(G) ≤ 4n−3−q

3
, with equality if and only if

G ∈ Gq
n.

Proof. We apply induction on n. For n = 3, e(G) ≤ 3, and let G = C3 ∈ G0
n. For

n = 4, if G = K4 \ e, then there exists a cycle C3 with an open ear of length 2,
which contradicts to Proposition 3.1. Similarly, G �= K4. So G is obtained from K4

by deleting two edges arbitrarily, that is, G = C3 +K1 or C4, and then G ∈ G1
n. For

n = 5, by Lemma 3.2, e(G) ≤ 5 and if e(G) = 5, then G = C3 + {K1}2 or C4 +K1

or C5, and then G ∈ G2
n. Let n ≥ 6. Assume that the assertion holds for graphs of

order less than n. We will show that the assertion holds for graphs of order n. We
distinguish two cases according to whether or not G has cut edges.

If G has no cut edge, then G is bridgeless, and combining with Proposition 3.1,
G is a cycle. Then e(G) = n < 4n−5

3
, since n ≥ 6.

Suppose that there exists at least one cut edge in G. Pick one, say e. Let G1

and G2 be two connected components of G \ e. Set V (G1) = n1, V (G2) = n2 where
n1 + n2 = n. Clearly, e(G) = e(G1) + e(G2) + 1. Furthermore, set n1 ≡ q1 (mod 3),
n2 ≡ q2 (mod 3) where q1, q2 ∈ {0, 1, 2}.

If q1 = 0 or q2 = 0, without loss of generality, say q1 = 0. By the induction
hypothesis, e(G1) ≤ 4n1−3

3
, e(G2) ≤ 4n2−3−q2

3
. If e(G1) <

4n1−3
3

or e(G2) <
4n2−3−q2

3
,

then e(G) < 4n−3−q2
3

. If e(G1) =
4n1−3

3
and e(G2) =

4n2−3−q2
3

, then by the induction
hypothesis, G1 ∈ G0

n1
, G2 ∈ Gq2

n2
. It follows that G = G1 + G2 ∈ Gq2

n and e(G) =
4n−3−q2

3
.

If q1 = 1 and q2 = 1, by the hypothesis induction, e(G1) ≤ 4n1−4
3

, e(G2) ≤ 4n2−4
3

.
If e(G1) <

4n1−4
3

or e(G2) <
4n2−4

3
, then e(G) < 4n−5

3
. If e(G1) =

4n1−4
3

and e(G2) =
4n2−4

3
, then by the induction hypothesis, G1 ∈ G1

n1
, G2 ∈ G1

n2
. It follows that G ∈ G2

n

and e(G) = 4n−5
3

.
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If q1 ∈ {1, 2} and q2 = 2, then e(G1) ≤ 4n1−3−q1
3

and e(G2) ≤ 4n2−5
3

. Thus

e(G) ≤ 4n−5−q1
3

< 4n−2−q1
3

.

So we get the following result for k = 3.

Theorem 3.4. f(n; κ3 = 1) = 4n−3−q
3

, where n = 3r + q and 0 ≤ q ≤ 2.

4 The case k = 4

In this section, we turn our consideration to the case k = 4. Similarly, we will give a
necessary and sufficient condition for κ4(G) = 1. First of all, we begin with a claim
useful for simplifying our argument. Let P1 = u1w1w2 . . . wkv1 be an ear of a cycle
C. Set H = C ∪ P1 and add another ear P2 = u2w

′
1w

′
2 . . . w

′
lv2 to H . We claim

that there is always a cycle C
′
in H ∪ P2 which has two ears in the following cases:

if u2, v2 ∈ V (C), then C
′
= C∗

1 ; if u2, v2 ∈ V (P1), then C
′
= C∗

2 ; if u2 ∈ v1Cu1,
v2 ∈ V (P1) and P1 is an open ear, then C

′
= C∗

3 ; if u2 ∈ v1Cu1, v2 ∈ V (P1) and P1

is a closed ear, then C
′
= C∗

4 . See Figure 2 for an illustration.

P1

C

P2

C∗
1

C C C

P1

P1
P1P2

P2
P2

C∗
2 C∗

3 C∗
4

Figure 2. C∗
i (1 ≤ i ≤ 4)

Proposition 4.1. Let G be a connected graph. Then κ4(G) = 1 if and only if every
cycle in G has at most one ear.

Proof. To settle the “only if” part, let C be a cycle in G. Assume, to the contrary,
that C has two ears P1 and P2. In Figure 3, we list all cases that C has two ears.
The marked dots are the chosen four vertices, and different trees are marked with
different lines. Note that an ear P of the cycle C divides this cycle into two segments,
say C1 and C2. If an ear P of C has length 1, then both C1 and C2 have length at
least 2. In this case, we replace P with C1 such that P ∪ C2 forms a new cycle and
C1 is an ear of this cycle, which has length at least 2. From Figure 3, we can find
two internally disjoint trees connecting four vertices in G, a contradiction.

To prove the “if” part, since every maximal bridgeless subgraph of G is a cycle C
or C ∪ P , where P is an ear of C, then every edge incident to a maximal bridgeless
subgraph of G is a cut edge of G. Similar to Proposition 3.1, it is easy to check that
only one tree connects every four vertices in G, and so κ4(G) = 1.

Lemma 4.2. Let G be a connected graph of order 5 and size 6. Then G ∈ {B +
K1, D1, D2, D3} and κ4(G) = 1.
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P2P1

C C

P1

P2 P2

C

P1

P2

C P1

P2P1

C

P2

C

P1

P2P1

C

(a) (b)(b) (c) (d)

(e) (f) (g) (h)

C

P1

P2

Figure 3. Graphs for Proposition 4.1

Proof. We can easily obtain δ(G) ≤ 2; otherwise e(G) ≥ 3n
2

= 15
2
. If δ(G) = 1, by

deleting a vertex of degree 1, say v, we obtain a graph G∗ = K4 \ e. Observe that
G∗ +K1 has no cycle with two ears. Thus by Proposition 4.1, κ4(G) = 1.

Suppose that δ(G) = 2, without loss of generality, let d(v) = 2. Then G \ v is C4

or C3 + K1. Adding v back, there are four graphs D1, D2, D3 or B + K1, and for
each of the graphs, κ4(G) = 1.

Lemma 4.3. Let G be a connected graph of order 5 and size at least 7. Then
κ4(G) ≥ 2.

Proof. By Observation 2.1, we need to check the case that G has order 5 and size
exactly 7. First, similar to Lemma 4.2, δ(G) ≤ 2. Suppose that δ(G) = 1, without
loss of generality, let d(v) = 1. Then |V (G \ v)| = 4 and e(G \ v) = 6, which implies
that G \ v is K4. Then there are two internally disjoint trees connecting the four
vertices of the clique K4. It follows that κ4(G \ v) ≥ 2, and hence κ4(G) ≥ 2.

If δ(G) = 2, suppose that v has degree 2, then |V (G \ v)| = 4 and e(G \ v) = 5,
giving that G \ v is K4 \ e. Adding v again, the graph G has a cycle with two ears,
and by Proposition 4.1, κ4(G) ≥ 2.

Lemma 4.4. Let G be a connected graph of order 6 and size 7. Then G ∈ {B +
{K1}2, {C3}2, D1 +K1, D2 +K1, D3 +K1, F1, F2, F3, F4} and κ4(G) = 1.

Proof. Obviously, δ(G) ≤ 2. If δ(G) = 1, by deleting a vertex of degree 1 we get the
graphs in Lemma 4.2. Adding v again, it is easy to check that κ4(G) = 1.

If δ(G) = 2, without loss of generality, let d(v) = 2, then |V (G \ v)| = 5 and
e(G \ v) = 5. Then G \ v is C5 or C4 + K1 or K3 + {K1}2. Adding v again, the
graph G belongs to {B+ {K1}2, F1, F2, F3, F4}, and for each of the graphs, it is easy
to check that κ4(G) = 1.

Lemma 4.5. Let G be a connected graph of order 6 and size at least 8. Then
κ4(G) ≥ 2.
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Proof. By Observation 2.1, we need to check the case that G has order 6 and size
exactly 8. We can easily obtain δ(G) ≤ 2; otherwise e(G) ≥ 3n

2
= 9. If δ(G) = 1, we

delete a vertex of degree one to get a graph of order 5 and size 7. Then by Lemma
4.3, it follows that κ4(G) ≥ 2.

If δ(G) = 2, without loss of generality, let d(v) = 2, then |V (G \ v)| = 5 and
e(G \ v) = 6. It follows that G \ v is one of the graphs in Lemma 4.2. Adding v
again, there is a cycle with two ears, and by Proposition 4.1, κ4(G) ≥ 2.

Theorem 4.6. Let n = 4r + q, where 0 ≤ q ≤ 3, and let G be a connected graph of
order n such that κ4(G) = 1. Then

e(G) ≤

⎧⎪⎪⎨
⎪⎪⎩

3n−2
2

if q = 0,
3n−3

2
if q = 1,

3n−4
2

if q = 2,
3n−3

2
if q = 3.

with equality if and only if G ∈ Hq
n.

Proof. We apply induction on n. For n = 4, it is easy to see that e(G) ≤ 5 and if
e(G) = 5, and then G = B ∈ H0

n. For n = 5, if G is a connected graph of order 5
and size at least 7, then κ4(G) ≥ 2 by Lemma 4.3. In other cases, either e(G) ≤ 5
or G ∈ H1

n by Lemma 4.2. For n = 6, if G is a connected graph of order 6 and size
at least 8, then κ4(G) ≥ 2 by Lemma 4.5. In other cases, either e(G) ≤ 6 or G ∈ H2

n

by Lemma 4.4. Let n ≥ 7, and suppose that the assertion holds for graphs of order
less than n. We show that the assertion holds for graphs of order n. We consider
two cases according to whether or not G has cut edges.

If G has no cut edge, then G is bridgeless, and combining with Proposition 4.1,
G is a cycle or a cycle with an ear. If G is a cycle, then e(G) = n < 3n−4

2
, since

n ≥ 7. If G is a cycle with an ear, then e(G) = n+ 1 < 3n−4
2

, since n ≥ 7.

Suppose that G has cut edges. Without loss of generality, let e be a cut edge. Let
G1 andG2 be two connected components of G\e. Set V (G1) = n1, V (G2) = n2 where
n1 + n2 = n. Clearly, e(G) = e(G1) + e(G2) + 1. Furthermore, set n1 ≡ q1 (mod 4),
n2 ≡ q2 (mod 4) where q1, q2 ∈ {0, 1, 2, 3}.

If q1 = 0, q2 ∈ {0, 1, 2} or q1 = 1, q2 = 1, by the induction hypothesis,
e(G1) ≤ 3n1−2−q1

2
, e(G2) ≤ 3n2−2−q2

2
. If e(G1) < 3n1−2−q1

2
or e(G2) < 3n2−2−q2

2
,

then e(G) < 3n−2−q1−q2
2

. If e(G1) =
3n1−2−q1

2
and e(G2) =

3n2−2−q2
2

, then by the in-
duction hypothesis, G1 ∈ Hq1

n1
, G2 ∈ Hq2

n2
, and it follows that G = G1 +G2 ∈ Hq1+q2

n

and e(G) = 3n−2−q1−q2
2

.

If q1 = 0, q2 = 3, by the induction hypothesis, e(G1) ≤ 3n1−2
2

, e(G2) ≤ 3n2−3
2

. If
e(G1) <

3n1−2
2

or e(G2) <
3n2−3

2
, then e(G) < 3n−3

2
. If e(G1) =

3n1−2
2

and e(G2) =
3n2−3

2
, then by the induction hypothesis, G1 ∈ H0

n1
, G2 ∈ H3

n2
, and it follows that

G = G1 +G2 ∈ H3
n and e(G) = 3n−3

2
.

If q1 = 1, q2 = 2, then e(G1) ≤ 3n1−3
2

and e(G2) ≤ 3n2−4
2

, and thus e(G) ≤ 3n−5
2

<
3n−3

2
.
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If q1 = 1, q2 = 3, then e(G1) ≤ 3n1−3
2

, e(G2) ≤ 3n2−3
2

, and so e(G) ≤ 3n−4
2

< 3n−2
2

.

If q1 = 2, q2 = 2, then e(G1) ≤ 3n1−4
2

, e(G2) ≤ 3n2−4
2

, and it follows that
e(G) ≤ 3n−6

2
< 3n−3

2
.

If q1 = 2, q2 = 3, then e(G1) ≤ 3n1−4
2

, e(G2) ≤ 3n2−3
2

, and so e(G) ≤ 3n−5
2

< 3n−3
2

.

If q1 = 3, q2 = 3, by the induction hypothesis, e(G1) ≤ 3n1−3
2

, e(G2) ≤ 3n2−3
2

. If
e(G1) <

3n1−3
2

or e(G2) <
3n2−3

2
, then e(G) < 3n−4

2
. If e(G1) =

3n1−3
2

and e(G2) =
3n2−3

2
, then by the induction hypothesis, G1 ∈ H3

n1
, G2 ∈ H3

n2
, and it follows that

G = G1 +G2 ∈ H2
n and e(G) = 3n−4

2
.

So we get the following result for k = 4.

Theorem 4.7.

f(n; κ4 = 1) =

⎧⎪⎪⎨
⎪⎪⎩

3n−2
2

if q = 0,
3n−3

2
if q = 1,

3n−4
2

if q = 2,
3n−3

2
if q = 3,

where n = 4r + q and 0 ≤ q ≤ 3.

5 The case k = n

Let us turn now to the case k = n. Let n ≥ 5, since k = 3 and k = 4 have been
considered before. Observe that in this case the edge disjoint trees are the same as
the internally disjoint trees.

Theorem 5.1. Let G be a connected graph of order n such that κn(G) = 1 where
n ≥ 5. Then e(G) ≤

(
n−1
2

)
+ 1, with equality if and only if G ∈ Kn.

Proof. Let G = K5 \ M , where M is a subset of the edges of K5. On one hand,
to make κ5(G) = 1, M should contain at least 3 edges by Lemma 2.3, and then
e(G) ≤ 7. On the other hand, to form two edge-disjoint spanning trees, G should
contain at least 8 edges, since each tree consists of at least 4 edges. Thus, G must
have order 5 and size 7, meaning that it belongs to K5. It suffices to verify the case
n ≥ 6. By Lemma 2.3 again, to make κn(G) = 1, e(G) ≤

(
n
2

)
− (n− 2) =

(
n−1
2

)
+ 1.

Now we show that Kn is equal to Kn−1 +K1. Suppose H is a graph with order
n, size

(
n−1
2

)
+ 1 and κn(H) = 1 but different from Kn−1 +K1.

We claim that 2 ≤ δ(H) ≤ n−3. Otherwise, if δ(H) = 1, then H = Kn−1+K1. If

δ(H) ≥ n−2, then e(H) =
Σv∈V (H)d(v)

2
≥ (n−2)n

2
, H is obtained from Kn by deleting at

most n
2
edges. Since n ≥ 6, then n

2
≤ n− 3. By Lemma 2.3, H has two edge-disjoint

spanning trees, a contradiction.

Let v be a vertex of H with degree equal to δ(H), and let H∗ = H \ v. Since
there are n− 1− d(v) vertices not adjacent to v in H and H is obtained from Kn by
deleting n− 2 edges, H∗ is obtained from Kn−1 by deleting n− 2− (n− 1− d(v)) =
d(v) − 1 ≤ (n − 1) − 3 edges. By Lemma 2.3, H∗ has two edge-disjoint spanning
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trees T ∗
1 and T ∗

2 . By adding an edge incident with v to T ∗
1 and T ∗

2 respectively, we
will obtain two edge-disjoint spanning trees of H , a contradiction. Thus Kn is equal
to Kn−1 +K1.

So we get the following result for k = n.

Theorem 5.2. f(n; κn = 1) =
(
n−1
2

)
+ 1 where n ≥ 5.

Remark: Let G be a connected graph. For k = 3 and k = 4, we get necessary
and sufficient conditions for κk(G) = 1 by means of the number of ears of cycles.
Naturally, one might think that this method can always be applied for k = 5, i.e.,
every cycle in G has at most two ears, but unfortunately we found a counterexample:
Let G be a graph which contains a cycle with three independent closed ears. Set
C = u1u2u3, P1 = u1v1w1u1, P2 = u2v2w2u2, and P3 = u3v3w3u3. Then, κ5(G) = 1.
In fact, let S be the set of chosen five vertices. Obviously, for each i, if vi and wi are
in S, then κ5(S) = 1. So only one vertex in Pi \ ui can be chosen. Suppose that v1,
v2, v3 have been chosen. By symmetry, u1, u2 are chosen. It is easy to check that
there is only one tree connecting {u1, u2, v1, v2, v3}. The remaining case is that all
u1, u2 and u3 are chosen. Then, no matter which are the other two vertices, only
one tree can be found.

For general k with 5 ≤ k ≤ n − 1, we can only get the following lower bound of
f(n; κk = 1). The exact value is not easy to obtain.

Theorem 5.3.

f(n; κk = 1) ≥
{

r
(
k−1
2

)
+ r − 1, if q = 0;

r
(
k−1
2

)
+
(
q
2

)
+ r, if 1 ≤ q ≤ k − 2.

for n = r(k − 1) + q, 0 ≤ q ≤ k − 2.

Proof. If q = 0, let G = {Kk−1}r, then e(G) = r
(
k−1
2

)
+ r − 1. If 1 ≤ q ≤ k − 2, let

G = {Kk−1}r + Kq, and then e(G) = r
(
k−1
2

)
+

(
q
2

)
+ r. In every case, it is easy to

verify that κk(G) = 1.
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