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Abstract

An edge-coloured path is rainbow if all of its edges have distinct colours.
For a connected graph G, the rainbow connection number rc(G) of G
is the minimum number of colours in an edge-colouring of G such that,
any two vertices are connected by a rainbow path. Similarly, the strong
rainbow connection number src(G) ofG is the minimum number of colours
in an edge-colouring of G such that, any two vertices are connected by
a rainbow geodesic (i.e., a path of shortest length). These two concepts
of connectivity in graphs were introduced by Chartrand et al. in 2008.
Subsequently, vertex-coloured versions of both parameters, rvc(G) and
srvc(G), and a total-coloured version of the rainbow connection number,
trc(G), were introduced. In this paper we introduce the strong total
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rainbow connection number strc(G), which is the version of the strong
rainbow connection number using total-colourings. Among our results,
we will determine the strong total rainbow connection numbers of some
special graphs. We will also compare the six parameters, by considering
how close and how far apart they can be from one another. In particular,
we will characterise all pairs of positive integers a and b such that, there
exists a graph G with trc(G) = a and strc(G) = b, and similarly for the
parameters rvc and srvc.

1 Introduction

In this paper, all graphs under consideration are finite and simple. For notation and
terminology not defined here, we refer to [3].

In 2008, Chartrand et al. [6] introduced the concept of rainbow connection of
graphs. An edge-coloured path is rainbow if all of its edges have distinct colours.
Let G be a non-trivial connected graph. An edge-colouring of G is rainbow connected
if any two vertices of G are connected by a rainbow path. The minimum number
of colours in a rainbow connected edge-colouring of G is the rainbow connection
number of G, denoted by rc(G). The topic of rainbow connection is an active area of
research and numerous relevant papers have been published. In addition, the concept
of strong rainbow connection was introduced by the same authors. For two vertices
u and v of G, a u− v geodesic is a u− v path of length d(u, v), where d(u, v) is the
distance between u and v. An edge-colouring of G is strongly rainbow connected if
for any two vertices u and v of G, there is a rainbow u− v geodesic. The minimum
number of colours in a strongly rainbow connected edge-colouring of G is the strong
rainbow connection number of G, denoted by src(G). The investigation of src(G) is
slightly more challenging than that of rc(G), and fewer results have been obtained
on it. For details, see [6, 9, 17, 24].

As a natural counterpart of rainbow connection, Krivelevich and Yuster [14] pro-
posed the concept of rainbow vertex-connection. A vertex-coloured path is vertex-
rainbow if all of its internal vertices have distinct colours. A vertex-colouring of
G is rainbow vertex-connected if any two vertices of G are connected by a vertex-
rainbow path. The minimum number of colours in a rainbow vertex-connected
vertex-colouring of G is the rainbow vertex-connection number of G, denoted by
rvc(G). Corresponding to the strong rainbow connection, Li et al. [20] introduced
the notion of strong rainbow vertex-connection. A vertex-colouring of G is strongly
rainbow vertex-connected if for any two vertices u and v of G, there is a vertex-
rainbow u − v geodesic. The minimum number of colours in a strongly rainbow
vertex-connected vertex-colouring of G is the strong rainbow vertex-connection num-
ber of G, denoted by srvc(G). For more results on rainbow vertex-connection, we
refer to [21, 25].

It was also shown that computing the rainbow connection number and rainbow
vertex-connection number of an arbitrary graph is NP-hard [4, 5, 7, 8, 12, 18]. For
more results on the rainbow connection subject, we refer to the survey [22] and the
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book [23].
Subsequently, Liu et al. [26] proposed the concept of total rainbow connection.

A total-coloured path is total-rainbow if its edges and internal vertices have distinct
colours. A total-colouring of G is total rainbow connected if any two vertices of G
are connected by a total-rainbow path. The minimum number of colours in a total
rainbow connected total-colouring of G is the total rainbow connection number of
G, denoted by trc(G). For more results on the total rainbow connection number,
see [13, 27, 28, 29]. Inspired by the concept of strong rainbow (vertex-)connection,
a natural idea is to introduce the strong total rainbow connection number. A total-
colouring of G is strongly total rainbow connected if for any two vertices u and v
of G, there is a total-rainbow u − v geodesic. The minimum number of colours in
a strongly total rainbow connected total-colouring of G is the strong total rainbow
connection number of G, denoted by strc(G).

Very recently, Dorbec et al. [10] initiated the study of rainbow connection in
digraphs. Subsequently, versions of the other five parameters for digraphs were
considered. For more details, see [1, 2, 11, 15, 16].

This paper will be organised as follows. In Section 2, we will present results for all
six rainbow connection parameters for general graphs. In Section 3, we will determine
the strong total rainbow connection number of some specific graphs, including cycles,
wheels and complete bipartite and multipartite graphs. Finally in Section 4, we will
compare the six parameters, by considering how close and how far apart they can
be from one another. In particular, we will characterise all pairs of integers a and b
such that, there exists a connected graph G with rvc(G) = a and srvc(G) = b, and
similarly for the parameters trc and strc.

We mention a few more words on terminology and notation. For a graph G, its
vertex and edge sets are denoted by V (G) and E(G), and its diameter is denoted
by diam(G). Let Kn and Cn denote the complete graph and cycle of order n (where
n ≥ 3 for Cn), and Km,n denote the complete bipartite graph with class sizes m and
n. For two graphs G and H , and a vertex u ∈ V (G), we define Gu→H to be the
graph obtained by replacing u with H , and replacing the edges of G at u with all
edges between H and the neighbours of u in G. We say that Gu→H is obtained from
G by expanding u into H . Note that the graph obtained from G by expanding every
vertex of G into H is also known as the lexicographic product G ◦H .

2 Remarks and results for general graphs

In this section, we present some results about the six rainbow connection parameters
rc(G), src(G), rvc(G), srvc(G), trc(G) and strc(G), for general graphs G. Let G
be a non-trivial connected graph with m edges and n vertices, where q vertices are
non-pendent (i.e., with degree at least 2). We have the following inequalities.

diam(G) ≤ rc(G) ≤ src(G) ≤ m, (1)

diam(G)− 1 ≤ rvc(G) ≤ srvc(G) ≤ min(n− 2, q), (2)

2 diam(G)− 1 ≤ trc(G) ≤ strc(G) ≤ srvc(G) +m ≤ min(m+ n− 2, m+ q). (3)
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To see the last inequality of (2), the inequality srvc(G) ≤ n − 2 is a result of Li
et al. [20]. We also have srvc(G) ≤ q, since any vertex-colouring of G where all q
non-pendent vertices are given distinct colours, is strongly rainbow vertex-connected.
To see the third inequality of (3), we may take a strongly rainbow vertex-connected
colouring of G with srvc(G) colours, and then colour the edges withm further distinct
colours. This gives a strongly total rainbow connected colouring of G with srvc(G)+
m colours. The last inequality of (3) then follows from (2). All remaining inequalities
are trivial.

Also, the following upper bound is obvious.

strc(G) ≤ src(G) + q.

Indeed, a strongly total rainbow connected colouring of G can be obtained from a
strongly rainbow connected colouring with src(G) colours, and then colouring the
non-pendent vertices of G with q further distinct colours. Similarly, for graphs with
diameter 2, we have the following proposition which will be very helpful later.

Proposition 2.1. Let G be a graph with diameter 2. Then strc(G) ≤ src(G) + 1.

Proof. By definition, we may give G a strongly rainbow connected colouring, using
src(G) colours. Since diam(G) = 2, any two non-adjacent vertices x, y ∈ V (G) are
connected by a rainbow x−y geodesic of length 2. Now, colour all vertices of G with
a new colour. Then clearly, the resulting total-colouring uses src(G)+1 colours, and
is a strongly total rainbow connected colouring. Thus, strc(G) ≤ src(G) + 1.

For the parameters rc(G) and trc(G), we have the following upper bounds which
are better than those of (1) and (3).

rc(G) ≤ n− 1, and trc(G) ≤ min(2n− 3, n− 1 + q).

Indeed, we may take a spanning tree T of G, which has n − 1 edges and at most
min(n− 2, q) non-pendent vertices. We can assign distinct colours to all edges of T ,
and to all edges and non-pendent vertices of T , to obtain, respectively, the above
two upper bounds.

As for alternative lower bounds instead of those involving the diameter, we note
that for any total rainbow connected colouring of G, the colours of the bridges
and cut-vertices must be pairwise distinct. Similar observations hold for rainbow
connected and rainbow vertex-connected colourings, where respectively, the colours
of the bridges, and the colours of the cut-vertices, must be pairwise distinct. Hence,
the following result holds.

Proposition 2.2. Let G be a connected graph. Suppose that B is the set of all
bridges, and C is the set of all cut-vertices. Denote b = |B| and c = |C|, respectively.
Then

src(G) ≥ rc(G) ≥ b,

srvc(G) ≥ rvc(G) ≥ c,

strc(G) ≥ trc(G) ≥ b+ c.
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In the next result, we give equivalences and implications when the rainbow con-
nection parameters are small.

Theorem 2.3. Let G be a non-trivial connected graph.

(a) The following are equivalent.

(i) G is a complete graph.

(ii) diam(G) = 1.

(iii) rc(G) = 1.

(iv) src(G) = 1.

(v) rvc(G) = 0.

(vi) srvc(G) = 0.

(vii) trc(G) = 1.

(viii) strc(G) = 1.

(b) strc(G) ≥ trc(G) ≥ 3 if and only if G is not a complete graph.

(c) (i) rc(G) = 2 if and only if src(G) = 2.

(ii) rvc(G) = 1, if and only if srvc(G) = 1, if and only if diam(G) = 2.

(iii) rvc(G) = 2 if and only if srvc(G) = 2.

(iv) trc(G) = 3 if and only if strc(G) = 3.

(v) trc(G) = 4 if and only if strc(G) = 4.

Moreover, any of the conditions in (i) implies any of the conditions in (iv),
and any of the conditions in (i), (iv) and (v) implies any of the conditions in
(ii).

Proof. Although parts of this result can be found in [6, 20], we provide a proof for
the sake of completeness.

(a) Clearly we have (ii) ⇒ (i) ⇒ (iv). Using (1), we can easily obtain (iv) ⇒ (iii)
⇒ (ii). Similarly, using (2) and (3), we have (ii) ⇒ (i) ⇒ (vi) ⇒ (v) ⇒ (ii), and (ii)
⇒ (i) ⇒ (viii) ⇒ (vii) ⇒ (ii).

(b) If G is not a complete graph, then diam(G) ≥ 2, and strc(G) ≥ trc(G) ≥ 3
follows from (3). The converse clearly holds by (a).

(c) We first prove (i). Suppose first that src(G) = 2. Then by (a), we have
diam(G) ≥ 2. By (1), we have 2 ≤ rc(G) ≤ src(G) = 2, and hence rc(G) = 2.
Conversely, suppose that rc(G) = 2. Then (a) and (1) imply that src(G) ≥ 2
and diam(G) = 2. Also, there exists a rainbow connected colouring for G, using
rc(G) = 2 colours. In such an edge-colouring, for any x, y ∈ V (G), either xy ∈ E(G),
or xy �∈ E(G) and there is a rainbow x− y path of length 2, which is also a rainbow
x− y geodesic. Thus src(G) ≤ 2, and src(G) = 2 as required.
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By similar arguments using (a), (2) and (3) we can prove (iv); that the first two
conditions of (ii) are equivalent; and that the first condition of (v) implies the second.

Now we complete the proof of (ii). If rvc(G) = 1, then we can easily use (a) and
(2) to obtain diam(G) = 2. If diam(G) = 2, then (2) gives rvc(G) ≥ 1. Clearly,
the vertex-colouring of G where every vertex is given the same colour is rainbow
vertex-connected, and thus rvc(G) ≤ 1. Therefore (ii) holds.

Next, we prove (iii). Suppose first that srvc(G) = 2. Then rvc(G) ≤ 2 by (2).
Clearly rvc(G) �= 0 by (a), and rvc(G) �= 1 by (c)(ii). Thus rvc(G) = 2. Conversely,
suppose that rvc(G) = 2. Then by (2), we have srvc(G) ≥ 2 and diam(G) ≤ 3.
We may take a rainbow vertex-connected colouring of G, using at most rvc(G) = 2
colours. Let x, y ∈ V (G). If d(x, y) ∈ {1, 2}, then any x − y geodesic is clearly
vertex-rainbow. If d(x, y) = 3, then since any x− y path of length at least 4 cannot
be vertex-rainbow, there must exist a vertex-rainbow x−y path of length 3, which is
also an x−y geodesic. Thus, the colouring is also strongly rainbow vertex-connected.
We have srvc(G) ≤ 2, so that srvc(G) = 2, and (iii) holds.

Next, we complete the proof of (v). Suppose that strc(G) = 4. By (a) and (b),
we have 3 ≤ trc(G) ≤ strc(G) = 4. By (iv), we have trc(G) �= 3, so that trc(G) = 4.
Thus (v) holds.

Finally, we prove the last part of (c). Firstly, suppose that either condition in
(i) holds, so that rc(G) = 2. Then (a) and (b) imply trc(G) ≥ 3. Moreover, there
exists a rainbow connected edge-colouring for G, using rc(G) = 2 colours. Clearly
by colouring all vertices of G with a third colour, we have a total rainbow connected
colouring for G, using 3 colours. Thus, trc(G) ≤ 3. We have trc(G) = 3, and thus
both conditions of (iv) hold. Secondly, suppose that any of the conditions in (i), (iv)
or (v) holds. It is easy to use (a), and (1) or (3), to obtain diam(G) = 2. Thus, the
three conditions of (ii) also hold.

Remark. We remark that in Theorem 2.3(c), no other implication exists between
the conditions of (i) to (v). Obviously, no implication exists between the conditions
of (ii) and those of (iii). Thus by the last part of (c), no implication exists between
the conditions of (iii) and those of (i), (iv) and (v). Similarly, no implication exists
between the conditions of (iv) and those of (v), and thus no implication exists between
the conditions of (i) and those of (v), since the conditions of (i) imply those of (iv).
Clearly, the example of the stars K1,n shows that there are infinitely many graphs
where the conditions of (ii) hold, but those of (i), (iv) and (v) do not hold. Indeed,
for n ≥ 2, we have rvc(K1,n) = 1, while rc(K1,n) = n and trc(K1,n) = n + 1. Now,
there are infinitely many graphs G such that the conditions of (iv) hold, but those of
(i) do not hold. For example, let u be a vertex of the cycle C5, and let G be a graph
obtained by expanding u into a clique K. That is, G = (C5)u→K . It was remarked in
[26] (and also easy to show) that for any such graph G, we have trc(G) = rc(G) = 3.

Now, it is easy to see that if H is a spanning connected subgraph of a connected
graph G, then we have

rc(G) ≤ rc(H), rvc(G) ≤ rvc(H), and trc(G) ≤ trc(H).
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However, the following lemma shows that the same inequalities do not hold for the
strong rainbow connection parameters.

Lemma 2.4. There exist connected graphs G and H such that H is a spanning sub-
graph of G, and src(G) > src(H). Similar statements hold for the parameters srvc
and strc.

Proof. We construct graphs Gi andHi, for i = 1, 2, 3, as follows. LetH1 (respectively
H2, H3) be the graph as shown in Figure 1(a) (respectively (b), (c)) consisting of the
solid edges, and G1 (respectively G2, G3) be the graph obtained by adding the dotted
edge.
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Figure 1. The graphs in Lemma 2.4

We will prove that

src(G1) > src(H1), srvc(G2) > srvc(H2), and strc(G3) > strc(H3). (4)

Firstly, it is easy to see that the edge-colouring of H1 as shown is strongly
rainbow connected, and thus src(H1) ≤ 4. In fact, we have src(H1) = 4, since
src(H1) ≥ diam(H1) = 4. Now, suppose that there exists a strongly rainbow con-
nected colouring of G1, using at most four colours. Note that the four pendent
edges of G1 must receive distinct colours, say colours 1, 2, 3, 4. The dotted edge
has colour 1, 2, 3 or 4, and in each case, we can easily find two vertices that are
not connected by a rainbow geodesic in G1. We have a contradiction, and thus
src(G1) ≥ 5 > 4 = src(H1).

We can similarly prove the remaining two inequalities of (4). We have a strongly
rainbow vertex-connected colouring of H2 as shown, and since diam(H2) = 7, we
have srvc(H2) = 6. Suppose that there exists a strongly rainbow vertex-connected
colouring of G2, using at most six colours. Then, the six cut-vertices of G2 must
receive distinct colours, say colours 1, 2, 3, 4, 5, 6. The vertex x has colour 1, 2, 3, 4, 5
or 6, and in each case, we can find two vertices that are not connected by a vertex-
rainbow geodesic in G2. We have a contradiction, and thus srvc(G2) ≥ 7 > 6 =
srvc(H2). Likewise, we have a strongly total rainbow connected colouring of H3 as
shown, and thus strc(H3) ≤ 14. Suppose that there exists a strongly total rainbow
connected colouring of G3, using at most 14 colours. Then, the eight bridges and six
cut-vertices of G3 must receive distinct colours, say colours 1, 2, . . . , 14. The dotted
edge has colour 1, 2, . . . , 13 or 14, and in each case, we can find two vertices that are
not connected by a total-rainbow geodesic in G3. Again we have a contradiction,
and thus strc(G3) ≥ 15 > 14 ≥ strc(H3).
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Li et al. [20] provided a similar example of graphs G and H which gave srvc(G) =
9 > 8 = srvc(H). However in their example, H was not a spanning subgraph of
G, although this could be easily corrected. Chartrand et al. [6] had conjectured
that src(G) ≤ src(H) whenever G and H are connected graphs, with H a spanning
subgraph of G. They observed that if this conjecture was true, then we have src(G) ≤
n − 1 if G is a connected graph of order n. However, Lemma 2.4 shows that the
conjecture is false. The latter claim may still be true, and we propose this as an
open problem, as well as the total-coloured analogue.

Problem 2.5. Let G be a connected graph of order n with q non-pendent vertices.
Then, are the following inequalities true?

src(G) ≤ n− 1, and strc(G) ≤ min(2n− 3, n− 1 + q).

3 Strong total rainbow connection numbers of some graphs

In this section, we consider the strong total rainbow connection numbers of some
specific graphs, namely, trees, cycles, wheels, and complete bipartite and multipartite
graphs. The remaining five rainbow connection parameters for these graphs have
previously been considered by various authors, and we shall recall these previous
results along the way.

First, let T be a tree of order n, with q non-pendent vertices. Note that, since
any two vertices of T are connected by a unique path, we have rc(T ) = src(T ),
rvc(T ) = srvc(T ), and trc(T ) = strc(T ). From Chartrand et al. [6], and Liu et
al. [25, 26], we have rc(T ) = src(T ) = n − 1, rvc(T ) = q, and trc(T ) = n − 1 + q.
Moreover, it is well known that if n ≥ 3, then 1 ≤ q ≤ n − 2; and that q = 1 if
and only if T is a star, and q = n− 2 if and only if T is a path. Thus, we have the
following result.

Proposition 3.1. Let T be a tree with order n, and q non-pendent vertices.

(a) rvc(T ) = srvc(T ) = q. In particular, for n ≥ 2, rvc(T ) = srvc(T ) = n − 2 if
and only if T is a path; and for n ≥ 3, rvc(T ) = srvc(T ) = 1 if and only if T
is a star.

(b) trc(T ) = strc(T ) = n−1+q. In particular, for n ≥ 2, trc(T ) = strc(T ) = 2n−3
if and only if T is a path; and for n ≥ 3, trc(T ) = strc(T ) = n if and only if
T is a star.

Our next task is to consider cycles. Recall that Cn denotes the cycle of order
n ≥ 3. The values of rc(Cn) and src(Cn) were determined by Chartrand et al. [6],
while the values of rvc(Cn), srvc(Cn) and trc(Cn) were determined by Li and Liu
[19], Lei et al. [15], and Liu et al. [26], respectively. We may summerise these results
as follows.

Theorem 3.2. [6, 15, 19, 26]

(a) rc(C3) = src(C3) = 1, and rc(Cn) = src(Cn) = 	n
2

 for n ≥ 4.
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(b) For 3 ≤ n ≤ 15, the values of rvc(Cn) and srvc(Cn) are given in the following
table.

n 3 4 5 6 7 8 9 10 11 12 13 14 15
rvc(Cn) 0 1 1 2 3 3 3 4 5 5 6 7 7
srvc(Cn) 0 1 1 2 3 3 3 4 6 5 7 7 8

For n ≥ 16, we have rvc(Cn) = srvc(Cn) = 	n
2

.

(c) For 3 ≤ n ≤ 12, the values of trc(Cn) are given in the following table.

n 3 4 5 6 7 8 9 10 11 12
trc(Cn) 1 3 3 5 6 7 8 9 11 11

For n ≥ 13, we have trc(Cn) = n.

Note that we have the slightly surprising facts that rc(Cn) = src(Cn), but rvc(Cn)
= srvc(Cn) except for n = 11, 13, 15; and that srvc(C11) > srvc(C12). By taking
advantage of the fact that strc(Cn) ≥ trc(Cn) and the proof of part (c) in [26], we
have the following result for strc(Cn).

Theorem 3.3. For n ≥ 3, we have strc(Cn) = trc(Cn). That is, for 3 ≤ n ≤ 12,
the values of strc(Cn) are given in the table in Theorem 3.2(c). For n ≥ 13, we have
strc(Cn) = n.

Proof. One can easily check that strc(C3) = 1, strc(C4) = 3, and strc(C5) = 3. Now,
let n ≥ 6. We need to prove that strc(Cn) ≤ trc(Cn). Thus by Theorem 3.2(c), we
need to prove that strc(Cn) ≤ n−1 for 6 ≤ n ≤ 10 and n = 12, and strc(Cn) ≤ n for
n = 11 and n ≥ 13. The following facts were shown in the proof of Theorem 3.2(c)
in [26].

• For 6 ≤ n ≤ 10 and n = 12, there is a total-colouring of Cn, using n−1 colours,
such that every path of length 	n

2

 − 1 is total-rainbow, and when n is even,

any two opposite vertices of Cn are connected by a total-rainbow path.

• For n = 11 and n ≥ 13, there is a total-colouring of Cn, using n colours, such
that every path of length 	n

2

 is total-rainbow.

With these total-colourings, it is easy to see that any two vertices x and y of Cn are
connected by a total-rainbow x−y path of length at most �n

2
�, which must also be a

total-rainbow x−y geodesic. Thus the total-colourings are also strong total rainbow
connected colourings, and the upper bound strc(Cn) ≤ trc(Cn) follows.

Next, we consider wheel graphs. The wheel Wn of order n + 1 ≥ 4 is the graph
obtained from the cycle Cn by joining a new vertex v to every vertex of Cn. The vertex
v is the centre of Wn. Trivially, we have rvc(W3) = srvc(W3) = 0, and rvc(Wn) =
srvc(Wn) = 1 for n ≥ 4. The values of rc(Wn) and src(Wn) were determined by
Chartrand et al. [6], while the values of trc(Wn) were determined by Liu et al. [26].
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Theorem 3.4. [6, 26]

(a) rc(W3) = 1, rc(Wn) = 2 for 4 ≤ n ≤ 6, and rc(Wn) = 3 for n ≥ 7.

(b) src(Wn) = 	n
3

 for n ≥ 3.

(c) trc(W3) = 1, trc(Wn) = 3 for 4 ≤ n ≤ 6, trc(Wn) = 4 for 7 ≤ n ≤ 9, and
trc(Wn) = 5 for n ≥ 10.

In the next result, we determine the values of strc(Wn). The proof is partially
based on the fact that strc(Wn) ≥ trc(Wn).

Theorem 3.5. strc(W3) = 1, and strc(Wn) = 	n
3

 + 1 for n ≥ 4.

Proof. Let v be the centre of Wn, and v0, v1, . . . , vn−1 be the vertices of Wn in the
cycle Cn. Since W3 is precisely the complete graph K4, we have strc(W3) = 1.

Now, let n ≥ 4. Since diam(Wn) = 2, by Proposition 2.1 and Theorem 3.4(b),
we have strc(Wn) ≤ src(Wn) + 1 = 	n

3

 + 1. Also, by Theorem 3.4(c), we have

strc(Wn) ≥ trc(Wn) = 3 = 	n
3

 + 1 for 4 ≤ n ≤ 6. It remains to show that

strc(Wn) ≥ 	n
3

 + 1 for n ≥ 7. Assume the contrary, and suppose that there is a

strongly total rainbow connected colouring c of Wn, using at most 	n
3

 colours. Since

n ≥ 7, for each vertex vi, there exists at least one vertex vj with j �= i such that the
unique vi − vj geodesic of length 2 passes through the centre v. Thus, c(v) �= c(vvi)
for 0 ≤ i ≤ n − 1. Therefore, the n edges vvi use at most 	n

3

 − 1 < n

3
different

colours. One can deduce that there exist at least four different edges, say vvi, vvj,
vvk, vv�, such that c(vvi) = c(vvj) = c(vvk) = c(vv�). Again, since n ≥ 7, we may
assume that the unique vi − vj geodesic is precisely the path vivvj . So, there is no
total-rainbow vi − vj geodesic, a contradiction. Consequently, strc(Wn) ≥ 	n

3

 + 1

for n ≥ 7.

Our next aim is to consider complete bipartite graphs Km,n. Clearly we have
rc(K1,n) = src(K1,n) = n; rvc(K1,1) = srvc(K1,1) = 0 and rvc(Km,n) = srvc(Km,n) =
1 for (m,n) �= (1, 1); and trc(K1,1) = strc(K1,1) = 1 and trc(K1,n) = strc(K1,n) =
n + 1 for n ≥ 2. For 2 ≤ m ≤ n, the values of rc(Km,n) and src(Km,n) were
determined by Chartrand et al. [6], and the values of trc(Km,n) were determined by
Liu et al. [26].

Theorem 3.6. [6, 26] Let 2 ≤ m ≤ n. We have the following.

(a) rc(Km,n) = min(	m
√
n 
, 4).

(b) src(Km,n) = 	m
√
n 
.

(c) trc(Km,n) = min(	m
√
n 
 + 1, 7).

In the next result, we will determine strc(Km,n) for 2 ≤ m ≤ n.

Theorem 3.7. For 2 ≤ m ≤ n, we have strc(Km,n) = 	m
√
n 
+ 1.
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Proof. Since diam(Km,n) = 2, we have strc(Km,n) ≤ src(Km,n) + 1 = 	m
√
n 
 + 1 by

Proposition 2.1 and Theorem 3.6(b).
Now we prove the lower bound strc(Km,n) ≥ 	m

√
n 
 + 1. This proof will be a

slight modification of the proof of the lower bound of Theorem 3.6(c) in [26], but we
provide it for the sake of clarity. Let the classes of Km,n be U = {u1, . . . , um} and
V , where |V | = n. Let b = 	m

√
n 
 ≥ 2. If m ≤ n ≤ 2m, then strc(Km,n) ≥ 3 = b+ 1.

Now let n > 2m, so that b ≥ 3. We have (b − 1)m < n ≤ bm. Let c be a total-
colouring of Km,n, using colours from {1, . . . , b}. For v ∈ V , assign v with the vector
�v of length m, where �vi = c(uiv) for 1 ≤ i ≤ m. For two partitions P and P ′ of V ,
we say that P refines P ′, written P ′ ≺ P, if for all A ∈ P, we have A ⊆ B for some
B ∈ P ′. In other words, P can be obtained from P ′ by partitioning some of the sets
of P ′. We define a sequence of refining partitions P0 ≺ P1 ≺ · · · ≺ Pm of V , with
|Pi| ≤ (b−1)i for 0 ≤ i ≤ m, as follows. Initially, set P0 = {V }. Now, for 1 ≤ i ≤ m,
suppose that we have defined Pi−1 with |Pi−1| ≤ (b−1)i−1. Let Pi−1 = {A1, . . . , A�},
where � ≤ (b− 1)i−1. Define Pi as follows. For 1 ≤ q ≤ � and Aq ∈ Pi−1, let

Bq
1 = {v ∈ Aq : �vi = c(ui) or c(ui) + 1 (mod b)},

Bq
r = {v ∈ Aq : �vi = c(ui) + r (mod b)}, for 2 ≤ r ≤ b− 1.

Let Pi = {Bq
r : 1 ≤ q ≤ �, 1 ≤ r ≤ b − 1 and Bq

r �= ∅}, so that Pi is a partition
of V with |Pi| ≤ (b − 1)i and Pi−1 ≺ Pi. Proceeding inductively, we obtain the
partitions P0 ≺ P1 ≺ · · · ≺ Pm of V , with |Pi| ≤ (b − 1)i for 0 ≤ i ≤ m. Now,
observe that for every 1 ≤ i ≤ m, and any two vertices y and z in the same set in
Pi, the path yuiz is not total-rainbow, since c(uiy) = �yi and c(uiz) = �zi are either in
{c(ui), c(ui)+ 1} (mod b), or they are both c(ui)+ r (mod b) for some 2 ≤ r ≤ b− 1.
Since n > (b− 1)m ≥ |Pm|, there exists a set in Pm with at least two vertices w and
x, and since P1 ≺ · · · ≺ Pm, this means that w and x are in the same set in Pi for
every 1 ≤ i ≤ m. Therefore, wuix is not a total-rainbow path for every 1 ≤ i ≤ m.
Since the paths wuix are all the possible w− x geodesics (with length 2) in Km,n, it
follows that there does not exist a total-rainbow w − x geodesic. Hence, c is not a
strongly total rainbow connected colouring of Km,n, and strc(Km,n) ≥ b+ 1.

To conclude this section, we consider complete multipartite graphs. Let Kn1,...,nt

denote the complete multipartite graph with t ≥ 3 classes, where 1 ≤ n1 ≤ · · · ≤ nt

are the class sizes. Clearly, we have rvc(Kn1,...,nt) = srvc(Kn1,...,nt) = 0 (respectively
1) if nt = 1 (respectively nt ≥ 2). The values of rc(Kn1,...,nt) and src(Kn1,...,nt) were
determined by Chartrand et al. [6], and the values of trc(Kn1,...,nt) were determined
by Liu et al. [26], as follows.

Theorem 3.8. [6, 26] Let G = Kn1,...,nt, where t ≥ 3, 1 ≤ n1 ≤ · · · ≤ nt, m =∑t−1
i=1 ni and nt = n. Then, the values of rc(G), src(G) and trc(G) are given in the

following table.

n = 1 n ≥ 2 and m > n m ≤ n
rc(G) 1 2 min(	m

√
n 
, 3)

src(G) 1 2 	m
√
n 


trc(G) 1 3 min(	m
√
n 
+ 1, 5)
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Here, we determine the values of strc(Kn1,...,nt) for t ≥ 3.

Theorem 3.9. Let t ≥ 3, 1 ≤ n1 ≤ · · · ≤ nt, m =
∑t−1

i=1 ni and nt = n. Then,

strc(Kn1,...,nt) =

⎧⎨
⎩

1 if n = 1,
3 if n ≥ 2 and m > n,
	m
√
n 
+ 1 if m ≤ n.

Proof. Write G forKn1,...,nt , and let Vi be the ith class (with ni vertices) for 1 ≤ i ≤ t.
If n = 1, then G = Kt and strc(G) = 1. Now for n ≥ 2, we have strc(G) ≥ 3. For
the case n ≥ 2 and m > n, we have src(G) = 2 by Theorem 3.8. Since diam(G) = 2,
by Proposition 2.1, we have strc(G) ≤ src(G) + 1 = 3. Thus, strc(G) = 3.

Now, let m ≤ n. For this case, we have src(G) = 	m
√
n 
 by Theorem 3.8. Again

by Proposition 2.1, we have the upper bound strc(G) ≤ src(G) + 1 = 	m
√
n 
 + 1.

It remains to prove the lower bound strc(G) ≥ 	m
√
n 
 + 1. Let b = 	m

√
n 
 ≥ 2. If

m ≤ n ≤ 2m, then strc(G) ≥ 3 = b + 1. Now let n > 2m, so that b ≥ 3. We have
(b − 1)m < n ≤ bm. Suppose that we have a total-colouring c of G, using at most b
colours. Note that Km,n is a spanning subgraph of G with classes U = V1∪· · ·∪Vt−1

and Vt. We can restrict the total-colouring c to Km,n and apply the same argument
involving the refining partitions as in Theorem 3.7. We have vertices w, x ∈ Vt such
that all of the paths wux, for u ∈ U , are not total-rainbow. Since these paths are all
the possible w − x geodesics in G (of length 2), it follows that there does not exist
a total-rainbow w − x geodesic in G. Therefore, c is not a strongly total rainbow
connected colouring of G, and strc(G) ≥ b+ 1.

4 Comparing the rainbow connection numbers

Our aim in this section is to compare the various rainbow connection parameters. In
[14], Krivelevich and Yuster observed that for rc(G) and rvc(G), we cannot generally
find an upper bound for one of the parameters in terms of the other. Indeed, let
s ≥ 2. By taking G = K1,s, we have rc(G) = s and rvc(G) = 1. On the other hand,
let the graph Gs be constructed as follows. Take s vertex-disjoint triangles and, by
designating a vertex from each triangle, add a complete graph Ks on the designated
vertices. Then rc(Gs) ≤ 4 and rvc(Gs) = s.

We may consider the analogous situation for the parameters src(G) and srvc(G).
Again by taking G = K1,s, we see that src(G) = s and srvc(G) = 1, so that src(G)
can be arbitrarily larger than srvc(G). Rather surprisingly, unlike the situation for
the values of rvc(G) and rc(G), we are uncertain if srvc(G) can also be arbitrarily
larger than src(G). We propose the following problem.

Problem 4.1. Does there exist an infinite family of connected graphs F such that,
src(G) is bounded on F , while srvc(G) is unbounded?

When considering the total rainbow connection number in addition, we have the
following trivial inequalities.

trc(G) ≥ max(rc(G), rvc(G)), (5)

strc(G) ≥ max(src(G), srvc(G)). (6)
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In [26], Liu et al. considered how close and how far apart the terms in the in-
equality (5) can be. They observed that by considering Krivelevich and Yuster’s
construction as described above, we have trc(Gs) = rvc(Gs) = s for s ≥ 13. Also,
as mentioned in the remark after the proof of Theorem 2.3, if G = (C5)u→K is a
graph obtained by expanding a vertex u of the cycle C5 into a clique K, then we
have trc(G) = rc(G) = 3. Thus, trc(G) can be equal to each of rvc(G) and rc(G) for
infinitely many graphs G. On the other hand, Liu et al. also remarked that, given
1 ≤ t < s, there exists a graph G such that trc(G) ≥ s and rvc(G) = t. Indeed, we
can let G = Bs,t be the graph obtained by taking the starK1,s and identifying the cen-
tre with one end-vertex of the path of length t (this graph Bs,t is a broom). Also, for
s ≥ 13, we can again consider the graphs Gs and obtain trc(Gs) = s and rc(Gs) ≤ 4.
Thus, trc(G) can also be arbitrarily larger than each of rvc(G) and rc(G). For the
difference between the terms trc(G) and max(rc(G), rvc(G)), one can consider G to
be the path of length s, and obtain trc(G) = 2s− 1 and max(rc(G), rvc(G)) = s, so
that trc(G)−max(rc(G), rvc(G)) = s− 1 can be arbitrarily large. However, for this
simple example, the term max(rc(G), rvc(G)) is unbounded in s. In the final prob-
lem in [26], Liu et al. asked the question of whether there exists an infinite family of
connected graphs F such that, max(rc(G), rvc(G)) is bounded on F , while trc(G) is
unbounded. This open problem appears to be much more challenging.

Here, we consider the analogous situations for the terms in the inequality (6).
From the previous remarks and results, we can easily obtain the following.

Theorem 4.2.
(a) There exist infinitely many graphs G with strc(G) = src(G) = 3.

(b) Given s ≥ 13, there exists a graph G with strc(G) = srvc(G) = s.

(c) Given 1 ≤ t < s, there exists a graph G such that strc(G) ≥ s and srvc(G) = t.

Proof. (a) Let G = (C5)u→K as described earlier. We have trc(G) = rc(G) = 3.
By Theorem 2.3(c), we have strc(G) = 3. Therefore by (1) and (6), we have 3 =
strc(G) ≥ src(G) ≥ rc(G) = 3, so that strc(G) = src(G) = 3.

(b) We use the following construction which was given by Lei et al. [16]. For
s ≥ 13, let Hs be the graph as follows. First, we take the graph Gs from before,
where u0, . . . , us−1 are the vertices of the Ks, and the remaining vertices are vi, wi,
where uiviwi is a triangle, for 0 ≤ i ≤ s− 1. We then add new vertices z0, . . . , zs−1,
and connect the edges uizi, ui+1zi, vizi, wizi+4, for 0 ≤ i ≤ s−1, where all indices are
taken modulo s. In [16], Lei et al. proved that strc(Hs) = srvc(Hs) = s.

(c) Since the broomG = Bs,t as described earlier is a tree, it is clear that strc(G) =
trc(G) ≥ s and srvc(G) = rvc(G) = t.

As before, if G is the path of length s, then we have strc(G)− src(G) = strc(G)−
max(src(G), srvc(G)) = s − 1, so that the two differences can both be arbitrarily
large. But the terms src(G) and max(src(G), srvc(G)) are unbounded in s. Similar
to the question of Liu et al. in [26] and Problem 4.1, we may ask the following
question.
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Problem 4.3. Does there exist an infinite family of connected graphs F such that,
src(G) is bounded on F , while strc(G) is unbounded? Similarly, does there exist an
infinite family of connected graphs F such that, max(src(G), srvc(G)) is bounded on
F , while strc(G) is unbounded?

Now, we proceed to the final part of this section. Recall that the following
inequalities hold for a connected graph G.

rc(G) ≤ src(G), rvc(G) ≤ srvc(G), and trc(G) ≤ strc(G).

Chartrand et al. [6] considered the following question: Given positive integers a ≤ b,
does there exist a graph G such that rc(G) = a and src(G) = b? They gave positive
answers for a = b, and 3 ≤ a < b with b ≥ 5a−6

3
. Chern and Li [9] then improved

this result as follows.

Theorem 4.4. [9] Let a and b be positive integers. Then there exists a connected
graph G such that rc(G) = a and src(G) = b if and only if a = b ∈ {1, 2} or
3 ≤ a ≤ b.

Theorem 4.4 was an open problem of Chartrand et al., and it completely charac-
terises all possible pairs a and b for the above question. Subsequently, Li et al. [20]
studied the rainbow vertex-connection analogue, and they proved the following re-
sult.

Theorem 4.5. [20] Let a and b be integers with a ≥ 5 and b ≥ 7a−8
5

. Then there
exists a connected graph G such that rvc(G) = a and srvc(G) = b.

Here, we will improve Theorem 4.5, and also study the total rainbow connection
version of the problem. We will prove Theorems 4.6 and 4.7 below, where we will
completely characterise all pairs of positive integers a and b such that, there exists a
graph G with rvc(G) = a and srvc(G) = b (respectively trc(G) = a and strc(G) = b).

Theorem 4.6. Let a and b be positive integers. Then there exists a connected graph
G such that rvc(G) = a and srvc(G) = b if and only if a = b ∈ {1, 2} or 3 ≤ a ≤ b.

Theorem 4.7. Let a and b be positive integers. Then there exists a connected graph
G such that trc(G) = a and strc(G) = b if and only if a = b ∈ {1, 3, 4} or 5 ≤ a ≤ b.

To prove Theorems 4.6 and 4.7, we first prove three auxiliary lemmas.

Lemma 4.8. For every b ≥ 3, there exists a graph G such that rvc(G) = 3 and
srvc(G) = b.

Proof. We construct a graph Fb as follows. We take a complete graph K2b, say with
vertices u0, . . . , u2b−1, and further vertices v0, . . . , v2b−1, w0, . . . , w2b−1. For 0 ≤ i ≤
2b−1, we add the edges uivi, uivi−1, uiwi, wivi, wivi−1. Throughout, the indices of the
vertices ui, vi, wi are taken modulo 2b. We show that rvc(Fb) = 3 and srvc(Fb) = b.

Suppose firstly that we have a vertex-colouring of Fb, using at most two colours.
Since 2b ≥ 6, we may assume that u0 and u� have the same colour, for some 2 ≤
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� ≤ 2b− 2. Then note that w0u0u�w� is the unique w0 − w� geodesic, with length 3.
Thus, there does not exist a vertex-rainbow w0 −w� path, and we have rvc(Fb) ≥ 3.
Now, we define a vertex-colouring f of Fb as follows. Let f(ui) = 1 if i is odd, and
f(ui) = 2 if i is even. Let f(z) = 3 for all other vertices z. It is easy to check that
f is a rainbow vertex-connected colouring for Fb. For example, to connect w0 to wi

with a vertex-rainbow path, where 2 ≤ i ≤ 2b− 2, we may take w0u0uiwi if i is odd,
and w0u0ui−1vi−1wi if i is even. Thus rvc(Fb) ≤ 3, and we have rvc(Fb) = 3.

Next, suppose that we have a vertex-colouring of Fb, using fewer than b colours.
Then, three of the vertices ui have the same colour, so we may assume that u0 and
u� have the same colour, for some 2 ≤ � ≤ 2b− 2. Note that w0u0u�w� is the unique
w0−w� geodesic (with length 3). Thus, there does not exist a vertex-rainbow w0−w�

geodesic, and we have srvc(Fb) ≥ b. Now, we define a vertex-colouring g of Fb as
follows. Let g(ui) = 	 i+1

2

 for 0 ≤ i ≤ 2b − 1, and g(z) = 1 for all other vertices z.

We show that g is a strongly rainbow vertex-connected colouring for Fb. It is easy
to see that each vertex ui is at distance at most 2 from every other vertex. Also, any
two vertices of {v0, . . . , v2b−1, w0, . . . , w2b−1} are either at distance at most 2 apart, or
they are at distance 3 apart, and there is a vertex-rainbow geodesic connecting them.
Indeed, if d(vi, vj) = 3, then we can take the vi − vj geodesic viuiujvj. Similarly, if
d(vi, wj) = 3, then we take viuiujwj or viui+1ujwj. If d(wi, wj) = 3, then we take
wiuiujwj. Thus srvc(Fb) ≤ b, and we have srvc(Fb) = b.

Lemma 4.9. For every a and b, 4 ≤ a ≤ b, there exists a connected graph G such
that rvc(G) = a and srvc(G) = b.

Proof. We construct a graph Fa,b as follows. Let n = 2(b − 1)(b − a + 2) ≥ 12.
We take a set of vertices V = {v1, . . . , vn}, and another vertex u and a path
u0 · · ·ua−3. We add the paths uwivi and ua−3xivi for 1 ≤ i ≤ n, and then the
edges v�v�+1, w�w�+1, x�x�+1 for 1 ≤ � < n with � odd. Let U = {u0, . . . , ua−3},
W = {w1, . . . , wn} and X = {x1, . . . , xn}. Note that we have perfect matchings
within the sets V,W and X. We show that rvc(Fa,b) = a and srvc(Fa,b) = b.

Clearly we have rvc(Fa,b) ≥ diam(Fa,b)−1 = a. Now, we define a vertex-colouring
c of Fa,b as follows. Let c(uj) = j for 1 ≤ j ≤ a − 3. For 1 ≤ i ≤ n, let c(wi+1) =
c(xi) = a− 2 if i is odd, and c(wi−1) = c(xi) = a− 1 if i is even. Let c(z) = a for all
other vertices z. It is easy to check that c is a rainbow vertex-connected colouring
for Fa,b. For example, for i �= 2, to connect v1 to vi with a vertex-rainbow path, we
may take v1x1ua−3xivi if i is even, and v1x1ua−3xi+1vi+1vi if i is odd, since a ≥ 4.
Thus rvc(Fa,b) ≤ a, and we have rvc(Fa,b) = a.

Next, suppose that there exists a strongly rainbow vertex-connected colouring f
of Fa,b, using at most b−1 colours, say colours 1, 2, . . . , b−1. Then note that for every
1 ≤ i ≤ n, the unique u0−vi geodesic is u0u1 · · ·ua−3xivi. Thus we may assume that
f(uj) = j for 1 ≤ j ≤ a− 3, so that f(xi) ∈ {a− 2, a− 1, . . . , b− 1} for 1 ≤ i ≤ n.
Also, we have f(wi), f(u) ∈ {1, . . . , b− 1} for 1 ≤ i ≤ n. For a− 2 ≤ p ≤ b− 1 and
1 ≤ q ≤ b− 2, we define the set Ap,q ⊂ V where

Ap,1 = {vi ∈ V : f(xi) = p and f(wi) = f(u) or f(u) + 1 (mod b− 1)},
Ap,q = {vi ∈ V : f(xi) = p and f(wi) = f(u) + q (mod b− 1)}, for q ≥ 2.
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Note that V =
⋃

p,q{Ap,q : Ap,q �= ∅} is a partition of V with at most (b−2)(b−a+2)
parts. Since n = 2(b − 1)(b − a + 2), there exists a set Ar,s with at least three
vertices. Thus, we may assume that v1, v� ∈ Ar,s with � �= 2. Observe that the
path v1x1ua−3x�v� is not vertex-rainbow, since f(x1) = f(x�) = r. Also, the path
v1w1uw�v� is not vertex-rainbow, since f(w1) and f(w�) are either in {f(u), f(u)+1}
(mod b − 1), or they are both f(u) + s (mod b − 1). Since these two paths are the
only v1− v� geodesics (with length 4), we have a contradiction. Thus, srvc(Fa,b) ≥ b.

Finally, we define a vertex-colouring g of Fa,b, using colours 1, 2, . . . , b, as follows.
Let g(uj) = j for 1 ≤ j ≤ a − 3, and g(u) = g(u0) = g(vi) = b for 1 ≤ i ≤ n. Now,
note that there are (b−1)(b−a+2) pairs {v�, v�+1} with � odd, and also (b−1)(b−a+2)
distinct vectors of length 2, whose first coordinate is in {a−2, . . . , b−1} and second
coordinate is in {1, . . . , b − 1}. Thus we may assign these distinct vectors to all
vertices of V such that, both vertices of a pair {v�, v�+1} with � odd receive the
same vector (so that every vector appears exactly twice). If v� and v�+1 have been
assigned the vector �v, then we set g(x�) = g(x�+1) = �v1 ∈ {a − 2, . . . , b − 1}, and
g(w�) = g(w�+1) = �v2 ∈ {1, . . . , b− 1}. We show that g is a strongly rainbow vertex-
connected colouring for Fa,b. We must show that for every x, y ∈ V (Fa,b), there is a
vertex-rainbow x− y geodesic.

• If x ∈ U and y �= u, then it is easy to find a vertex-rainbow x − y geodesic.
For example, if x = uj and y = wi, then we take uj · · ·ua−3xiviwi. If x = uj

and y = u, then we take uj · · ·ua−3x�v�w�u, where v� is assigned the vector
(a − 2, b − 1). Similarly, it is easy to deal with the case when x = u and
y ∈ V ∪W ∪X.

• Now we consider the case x, y ∈ V ∪W ∪X . Firstly, the cases x, y ∈ W and
x, y ∈ X are clear, since d(x, y) ≤ 2. Next, suppose that x ∈ V , say x = v1.
Then the case y ∈ {w1, x1, v2, w2, x2} is clear, since we have d(x, y) ≤ 2. If
y = w� (respectively x�) for some � �= 2, then we take v1w1uw� (respectively
v1x1ua−3x�). If y = v� for some � �= 2, then x and y are assigned different
vectors, say �x �= �y. If �x1 �= �y1, then we take v1x1ua−3x�v�, and if �x2 �= �y2, then
we take v1w1uw�v�. Finally, it remains to consider the case x ∈ W and y ∈ X.
We may assume that x = w1 and y = x� for some 1 ≤ � ≤ n. We take w1v1x1

if � = 1; w1v1x1x2 if � = 2; and w1v1x1ua−3x� if � ≥ 3.

We always have a vertex-rainbow x− y geodesic, so that g is a strongly rainbow
vertex-connected colouring. Therefore srvc(Fa,b) ≤ b, and we have srvc(Fa,b) = b.

Lemma 4.10. For every a and b, 5 ≤ a < b, there exists a connected graph G such
that trc(G) = a and strc(G) = b.

Proof. We consider the complete multipartite graph K1,...,1,n, where there are m ≥ 2
singleton classes, say {u1}, . . . , {um}. Let U = {u1, . . . , um}, and V be the class with
n vertices. Given 5 ≤ a < b, let Ga,b,m be the graph constructed as follows. We take
K1,...,1,n, and set n = (b − 2)m + 1. We then add a − 1 ≥ 4 pendent edges at u1,
say W = {w1, . . . , wa−1} is the set of pendent vertices. We claim that for sufficiently
large m, we have trc(Ga,b,m) = a and strc(Ga,b,m) = b.
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Since the bridges of Ga,b,m are the a− 1 pendent edges, and the only cut-vertex
is u1, clearly we have trc(Ga,b,m) ≥ a by Proposition 2.2. Now we define a total-
colouring f of Ga,b,m as follows. Let f(u1w�) = � for 1 ≤ � ≤ a − 1. For every
v ∈ V , let f(u1v) = 1, and f(uiv) = 2 for all 2 ≤ i ≤ m. Let f(uiuj) = 4 for all
1 ≤ i < j ≤ m. Let f(u1) = a, and f(z) = 3 for all z ∈ V (Ga,b,m) \ {u1}. We claim
that f is a total rainbow connected colouring for Ga,b,m. We need to show that for
every x, y ∈ V (Ga,b,m), there is a total-rainbow x − y path. Since u1 is connected
to all other vertices, it suffices to consider x, y ∈ V (Ga,b,m) \ {u1}. If x, y �∈ W and
x, y are not adjacent, then x, y ∈ V , in which case we take the path xu1u2y. Now
suppose x ∈ W . Then we can take the path xu1y, unless if x = w1 and y ∈ V ,
in which case we take xu1u2y; or x = w4 and y ∈ U \ {u1}, in which case we take
xu1vy for some v ∈ V . Thus f is a total rainbow connected colouring for Ga,b,m, and
trc(Ga,b,m) ≤ a. We have trc(Ga,b,m) = a.

Now, suppose that we have a total-colouring of Ga,b,m, using fewer than b colours.
Note that 	m

√
n 
 + 1 = b, so that by Theorem 3.9, for the copy of K1,...,1,n, we have

strc(K1,...,1,n) = b. It follows that when restricted to the K1,...,1,n, there are two
vertices w, x that are not connected by a total-rainbow w − x geodesic. This means
that we have w, x ∈ V , and the paths xuw, for u ∈ U , are all not total-rainbow.
Since these paths are also all the possible w − x geodesics in Ga,b,m, we do not have
a total-rainbow w − x geodesic in Ga,b,m. Thus strc(Ga,b,m) ≥ b.

It remains to prove that strc(Ga,b,m) ≤ b. Let m be sufficiently large so that

(b − 1)m−1 > (b − 2)m. This inequality holds if m > log(b−1)
log(b−1)−log(b−2)

. Thus, we have

(b − 1)m−1 ≥ n. We define a total-colouring g of Ga,b,m as follows. Let g(u1w�) = �
for 1 ≤ � ≤ a − 1. Let g(u1) = a, and g(u1v) = g(uiuj) = g(z) = b for all
v ∈ V , 1 ≤ i < j ≤ m, and z ∈ V (Ga,b,m) \ {u1}. Now since (b − 1)m−1 ≥ n,
we may assign distinct vectors of length m − 1 to the vertices of V , with entries
from {1, 2, . . . , b − 1}. Suppose that v ∈ V has been assigned the vector �v. We let
g(ui+1v) = �vi for 1 ≤ i ≤ m − 1 and v ∈ V . We claim that g is a strongly total
rainbow connected colouring for Ga,b,m. Similar to before, it suffices to show that for
all x, y ∈ V (Ga,b,m) \ {u1}, there is a total-rainbow x − y geodesic. If x, y �∈ W and
x, y are not adjacent, then x, y ∈ V . We have �xi �= �yi for some 1 ≤ i ≤ m−1, so that
we can take the geodesic xui+1y. If x ∈ W , then we can take the geodesic xu1y. Thus
g is a strongly total rainbow connected colouring for Ga,b,m, and strc(Ga,b,m) ≤ b.
We have strc(Ga,b,m) = b.

We can now prove Theorems 4.6 and 4.7.

Proof of Theorem 4.6. Suppose that there exists a connected graph G such that
rvc(G) = a and srvc(G) = b. Then obviously we have a ≤ b. If a = 1 (respectively
a = 2), then Theorem 2.3(c)(ii) (respectively (c)(iii)) gives b = 1 (respectively b = 2).
Therefore, we have either a = b ∈ {1, 2}, or 3 ≤ a ≤ b.

Conversely, given a, b such that either a = b ∈ {1, 2} or 3 ≤ a ≤ b, we show
that there exists a connected graph G with rvc(G) = a and srvc(G) = b. Obviously
if a = b ≥ 1, then rvc(G) = srvc(G) = a if G is the path of length a + 1. The
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remaining cases satisfy 3 ≤ a ≤ b, and these are covered by Lemmas 4.8 and 4.9.
Thus Theorem 4.6 follows.

Proof of Theorem 4.7. Suppose that there exists a connected graph G such that
trc(G) = a and strc(G) = b. Then obviously we have a ≤ b. If a = 1 (respectively a =
3, a = 4), then Theorem 2.3(a) (respectively (c)(iv), (c)(v)) gives b = 1 (respectively
b = 3, b = 4). Theorem 2.3(a) and (b) also imply that a, b �= 2. Therefore, we have
either a = b ∈ {1, 3, 4}, or 5 ≤ a ≤ b.

Conversely, given a, b such that either a = b ∈ {1, 3, 4} or 5 ≤ a ≤ b, we show
that there is a connected graph G with trc(G) = a and strc(G) = b. Obviously, if
a = b = 1, then trc(G) = strc(G) = 1 if G is any non-trivial complete graph, and
if a = b ≥ 3, then trc(G) = strc(G) = a if G is the star of order a. The remaining
cases satisfy 5 ≤ a < b, and these are covered by Lemma 4.10. Thus Theorem 4.7
follows.
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