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Abstract

We investigate the Ramsey number (S, G) where S,, denotes the star of

order n and G is a connected graph of order six. The values of (S, G)
are determined for any G # K52 with chromatic number x(G) > 3 with

but a few exceptions for some G with x(G) = 3 in case of some small

n. Partial results on r(S,,G) are obtained if x(G) = 2. In any case,
r(Sy, G) is evaluated for n < 5. With our results, r(7,,, G) is completely

known for every tree T, of order n and every connected graph of order

six with x(G) > 4.

1 Introduction

The Ramsey number r(7,,, G), where T,, denotes a tree of order n and G is a graph

of order m, has been intensively studied. Chvéatal [5] proved that

r(Th, Kp)=m—1)(m—1)+1

for any tree T,,. Moreover, the values of (7, G) are almost completely known for

nearly complete graphs G. Chartrand, Gould and Polimeni [4] showed that

r(T,,G)=(n—1)(m—2)+1
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for n > 4 and every graph G of order m > 4 and clique number c/(G) = m — 1.
Gould and Jacobson [12] proved that

r(T,,G)=(n—-1)(m—-3)+1 (3)

for n > 4 and all graphs G of order m > 6 and cl(G) = m — 2, where T,, # S,, in case
of m = 6. Furthermore, (7,,, G) has been studied for special graphs G such as books,
cycles or bipartite graphs. Here we just want to mention some results important in
connection with our paper, a survey can be found in [32]. Rousseau and Sheehan
[34] and Erdés, Faudree, Rousseau and Schelp [8] investigated r(T,,, B,,,) for the book
graph B, = K1 ,, and obtained the following result:

r(T, By) =2n—1 for n > 3m — 3. (4)

Faudree, Schelp and Rousseau [11] considered G = K, — K; and showed that, for
n>2m>2t>landm>2t—[(t—1)/(n—1)|(n—1),

r(Th, Km — K)=(n—1)(m—-t+[(t—-1)/(n—1)])+ 1, (5)

except for (T, K, — K;) = (S4, K¢ — K3). Some effort has been made to evaluate
r(Sn, G) for bipartite graphs G, especially for trees, cycles of even length and com-
plete bipartite graphs. These cases are not completely settled, not even the values
of r(S,, Cy) are entirely known. Parsons [31] proved that

r(Sp, Cy) <n+[vVn—1] forn >3, (6)
and, for any prime power g,
r(Sg241,Ca) = ¢ +qg+1 and r(Sg242,Ca) = @ +q+2. (7)
Moreover, Burr, Erdés, Faudree, Rousseau and Schelp [3] showed that
r(Sp,Ca) >n—1+ |Vn—1-6(n— 1)11/40J (8)

if n is sufficiently large. Recently, some progress in evaluating r(S,,, Cy) has been
made by Wu, Sun, Zhang and Radziszowski [35]. Faudree, Rousseau and Schelp [10]
systematically studied r(7,, G) for all connected graphs G of order at most five. In
particular they proved that, for n > 4 and every connected graph G on five vertices
with chromatic number y(G) = 3,

r(Tn,G) =2n—1+c¢, 9)

with € = 2if (T},, G) = (S, K5—2K5,) where nis even, € = 1if (T,,, G) = (S,,, K5—P)
where n is even or if (7,,, G) = (Sy, K5—K3) and € = 0 otherwise. For non-tree graphs
G with x(G) = 2, r(T,,, G) has not been completely evaluated. The main reason is
the lack of knowledge about r(S,, Cy) and 7(S,, Ka3).

In this paper we will begin to extend the results obtained in [10] to connected
graphs of order six. The list of all 112 such graphs given in Table 1 is taken from
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[15], more detailed information about these graphs can be found in [26]. A formula
to compute (7, G) for n = 3, the first nontrivial case, and every graph G of order
m is given in [6]. Thus, we may always assume that n > 4. Moreover, we will make
use of the well-known lower bound

r(F,G) = (n =1 (x(G) = 1) + 5(G) (10)

for any connected graph F' of order n and any graph G with chromatic surplus
s(G) < n (see [8] or [10]). Only a few values of r(7,,, G) are missing for connected
graphs G of order six with x(G) > 4 because of (1), (2) and (3). We close this
gap and show that r(7),,G) attains the lower bound given in (10) with only one
exception. For x(G) < 3, different methods seem to be required to evaluate r(7,,, G)
depending on whether T}, is or is not a star. Here we focus on T,, = S,,, the case
T, # Sy is treated in [28]. With a few exceptions for small n, the values of (S, G)
are determined for every connected graph G' # K3 15 of order six with x(G) = 3. For
n > 5 the values differ by at most 2 from the lower bound given in (10), whereas it is
shown in [27] that r(S,, K222) can be significantly larger. Partial results on 7(S,, G)
are obtained for the connected graphs G of order six with x(G) = 2. As could be
expected, problems arise in case of non-tree graphs. These graphs contain a cycle
Cy or Cs, and for any G # K4 not containing a cycle Cg we obtain that r(S,, G)
matches 7(S,,, Cy) or (S, Ka3) if n is sufficiently large. A complete evaluation fails
because of the missing values of (S, Cy) and 7(S,, K23).

This paper also makes a contribution to evaluate r(F, G) for small graphs F' and
G. If F and G both have at most five vertices, r(F, G) is almost completely known
(see [6], [7], [17], also cf. [32]). Some effort has been made to determine r(F, G) for
graphs F of order at most five and graphs G of order six (see [1, 9, 13, 18, 20, 21, 22,
23, 25, 26, 29, 33]). The results in this paper together with r(Sy, K222) = 10 (see
[27]), 7(S5, Ka.22) = 11 (see [13] and [27]) and the results on r(F, G) for disconnected
graphs G of order six obtained in [25] yield all values of r(S,,,G) for n <5 and any
graph G of order six.

Some specialized notation will be used. A coloring of a graph always means a
2-coloring of its edges with colors red and green. An (Fi, Fy)-coloring is a coloring
containing neither a red copy of F nor a green copy of F5. We use V' to denote the
vertex set of K, and define d,(v) to be the number of red edges incident to v € V
in a coloring of K,,. Moreover, A, = max,ey d.(v). The set of vertices joined red to
v is denoted by N, (v). Similarly we define d,(v), A, and N,(v). For U C V(K,),
the subgraph induced by U is denoted by [U]. Furthermore, [U], and [U], denote
the red and the green subgraph induced by U. We write G’ C G if G’ is a subgraph
of G, and G' C;,,q G means that G’ is an induced subgraph. For disjoint subsets
Uy, Uy CV(K,), ¢-(Ur,Us) denotes the number of red edges between U; and Us, and
qy(Uy1,Us) is defined similarly. The set of all connected graphs G of order six and
chromatic number x(G) = s is denoted by G;.
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Gg1  Gga Ggz Gsy Gsgs Ggg Gy Gsg

@I RDEED

Ggg Ggo Gog1  Goo Goz Goga Gogs  Gog

WL DO

Gor  Ggg  Ggg Groo Gior Gioz Gioz  Gios
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Gios Gios Gior Gios Gioo Giio Giin Grie

Table 1. The 112 connected graphs of order six.
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2 The Ramsey Number r(7,,G) for G € G, 4 < s <6

Obviously, K¢ = G112 is the only graph in Gg, and G5 consists of the four connected
graphs G of order six with clique number cl(G) = 5, i.e., G5 ={Gos, G106, G109, G111}-
If G € Gy, then either cl(G) = 4 or G is isomorphic to the wheel W5 = Ggy. This

gives

g4 == {G42a G55a G585 G64a G665 G72a G75a GSOa GSla G825 G84a G85a GSG, GSS,
G897 G917 G957 G967 G977 G997 G1017 G1037 G1047 G1057 G1077 GllO}'

From (1), (2) and (3) we already know that r(7},, G) matches the lower bound in
(10) for G € G5 with 5 < s < 6 and, in case of T}, # S, for G € G, \ {W5}. Here we
will show that the lower bound is also attained in the remaining cases with only one
exception.

Theorem 2.1. Let n >4, G € G,, 4 <s<6, and (T,,,G) # (S4, K — K3). Then
r(1,,G)=(n—-1)(s—1)+ 1.
Furthermore, r(Sy, K¢ — K3) = 11.

Proof. To settle the remaining cases, i.e., G € G4 where T,, = S,,, and G = W5 where
T, # Sy, we first consider G = Gyo5 = K¢ — K3. By (5), r(S,, K¢ — K3) = 3n — 2
if n > 5. (The exceptional case n = 4 was overlooked in [11].) The coloring of Kjq
with [V], = 2C5 implies that r(Sy, K¢ — K3) > 11. To establish equality, take any
coloring of Ki; where S; ¢ [V], and consider some vertex v € V. Since d,(v) > 8
and 7(Sy, K5 — K3) =8 by (9), K¢ — K3 C [{v} U N,(v)],, and we are done.

Now let G € G4 \ {K¢ — K3}. Obviously, G C G110 = K — 2K3, and this implies
r(Tn, G) < r(T,, K¢ — 2K3). Moreover, r(T,,G) > 3n — 2 by (10). We already know
that r(T,, K¢ — 2K3) = 3n — 2 if T,, # S,. Thus, to complete the proof, it suffices
to establish r(S,, Ks — 2K3) < 3n — 2. Suppose that we have an (S, Kg — 2K5)-
coloring of K3,_s. By (2), r(T,, K5 —e) = 3n—2, and this yields K; —e C [V], since
Sy & [V],. Let U be the vertex set of a green K5 —e and W =V '\ U.

Case 1: [U], = K5. From S,, € [V],, ie. A, < n —2, we obtain ¢, (U, W) <
5(n —2). Moreover, K¢ — 2Ky € [V], implies ¢,(w,U) > 2 for every w € W yielding
¢ (U, W) > 2|W| = 6n — 14. Hence, 6n — 14 < 5n — 10, a contradiction for n > 5.
In case of n = 4 only ¢,.(U,W) = 5n — 10 is left. Consequently, d.(v) = 2 for every
v €V and (W], = K;. This forces [V], to be a bipartite graph and every component
of [V], to be an even cycle. Thus, [V], = Cig or [V], = Cs U Cy. In both cases,
K¢ — 2K, C [V],, a contradiction.

Case 2: [U], = K5 — e and K5 Z [V],. Since S, Z [V];, ¢.(U, W) < 3(n —2) +
2(n — 3) = 5n — 12. Moreover, K¢ — 2K, € [V], and K5 Z [V], imply ¢,(w,U) > 2
for every w € W yielding ¢.(U, W) > 2|W| = 6n — 14. Thus, 6n — 14 < 5n — 12,

contradicting n > 4. [ |
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3 The Ramsey Number r(95,,G) for G € G

Here we consider the graphs G € G3 except for G = Kjy99. The Ramsey number
7(Sn, K222) is separately studied in [27]. If G € G5, then G C Ky14 = Gg, G C
Kis3 = Gioo or G C Ky99 = Gios. We use this property to partition Gs \ {Ks 22}
into the following five subsets Gs;, 1 <1 < 5. Put

Gs1 = {Ge€Gs|GC Ky} ={G5, Gig, Ga2, Gss, Ga1, G},

Gso = {G€G3|GC Kooo, G# Koo, GEZ Kip3,and G € Ky 14}
= {Gs7, Gus, Gus, G52, Ger, Ges, Geg, Gr1, Grr, Gsr, Goo, Goz, Groz},

Gs3 = {GeGs| Ky —2Ky CGC K3} ={Ges, Gra, Gs3, Gos, Groo},
g3,4 = {G397 G407 G497 G567 G577 G627 G657 G73}7

Gs5 = {G€G3|G#Kyspoand GEGs1UGs2UGs3UGs4}
- {G87 G107 G13a G147 G17a G187 G21a sy G28a G307 G335 G347 G35a
G385 G447 G465 G477 G485 G507 G515 G547 GGOa G707 G78a G797 G92}-

The value of r(S,, G) depends on which of the subsets Gs; the graph G belongs
to. By (10), 7(T,,G) > 2n if G € G3q or if G = Kys9, and r(T,,G) > 2n — 1
for the remaining G € Gs. The following results show that r(S,,G) < 2n + 1 for
any G € Gs \ {K322} if n > 5, whereas it is proved in [27] that r(S,, K222) can be
significantly larger.

3.1 Results

By (4), r(T,, K11.4) = 2n—1 for any tree T}, with n > 9. This implies that r(7},, G) =
2n — 1 for n > 9 and every G € G, since 2n — 1 < r(71,,,G) < r(T,, K114). The
following theorem closes the gap for n < 8 in case of T,, = .5,, with two exceptions.
The evaluation of (S5, Gg1) is due to Hua, Hongxue and Xiangyang [13].

Theorem 3.1. Let G € G31 and n > 4. If G # Gg and n > 5 or if G = Gg and
n>9, then r(S,,G) =2n — 1.

Furthermore, T(S4,G19) = 7, T(S4,G) =38 Zf G ¢ {G617 Glg}, T(S4,G61) = 10,
T(S5,G61) = 11, 11 < T(SG,G61> < 13, 13 < T(S7,G61) < 14 and T(SS,G61) = 16.

The following three theorems show that (S, G) can differ from the bound given
in (10) for G € Gs; with 2 < < 4 if special divisibility properties for n are fulfilled.
The values of (S, G) are completely determined for G € G35 and G € Gs4; in case
of G € G5 3 some gaps are left for small n. The computation of (S5, Gigo) is due to
Hua, Hongxue and Xiangyang [13].

Theorem 3.2. Let G € G35 and n > 4.
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If G € {Goo, Gro2 = K¢ — (P4 U K3)}, then

[ 2n+1 forn=0,2,4 or5 (mod 6),
(S, G) = { 2n otherwise.

If G € {Ger, G, Ggr = K — Fs}, then
[ 2n+1 forn=2 (mod 3),
(S, G) = { 2n otherwise.

[f G = G77, then

| 2n+1 forn even,
(S, G) = { 2n otherwise.

If G € {Gs7,Gu3,Gas, G5z, Ges, Geg, Goz = Kg — (C1U Ky)}, then r(S,, G) = 2n.
Theorem 3.3. Let G € G353 and n > 4. If n is even, then r(S,,G) = 2n+ 1.

If n is odd, where n > 13 for G = G, n > 9 for G = Ggg, and n > 5
otherwise, then r(S,,G) = 2n — 1.

Furthermore, r(Ss,Goy) = 10, 13 < r(S7,Gos) < 14, r(S5,G190) = 11, and
2n —1 < r(S,,Gip) <2n+1 forn € {7,9,11}.
Theorem 3.4. Let G € G34 and n > 4. Then

] 2n if n s even,
7(Sh, G) = { 2n — 1 if n is odd.

The next theorem shows that (S, G) attains the lower bound 2n — 1 from (10)
for any G € Gs 5, except for some small n.

Theorem 3.5. Let G € g3,57 S = {G33,G60,G78,G79,G92} Q g3’5 and n Z 4.
If Ge€Gs5\S and n >4 orif for G € S the following conditions for n are fulfilled:

(i) n>5 if G = Gss;
(ii)) n=>5or n>7if G € {Ge,Gro};
(i5i) n="5 or n > 9 if G = Grs; and
(iv) n > 13 if G = Goa; then
r(Sp, G) =2n — 1.

Futhermore, r(S;,G) = 8 if G € S, r(Ss5,Go2) = 11, 11 < r(S,G) < 13 if G €
{GGO,G79,G92}, 271—1 S T(Sn,G78) S 2n Zf 6 S n S 8, 271—1 S ’I“(Sn,ng) S 271"‘1
if 7<n <12

Summarizing the results in the preceding theorems we see that r(S,,G) is de-
termined for all G € G3 \ {Ks22} with but a few exceptions for some G in case of
some small n, namely G = Ggg or G = G7g and n = 6, G = Gg; and 6 < n < 7,
G=Grgand 6 <n<8 G=Gpand 6 <n <12, G =Gy and n =7, G = Gy
and n € {7,9,11}.
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3.2 Some Useful Lemmas

The following lemmas are essential for proving the preceding theorems. The first
lemma considers green subgraphs of order at most five in colorings of K;, 2n — 1 <
t <2n+1, where S, Z [V],, l.e. A, <n—2.

Lemma 3.1. Let n >4, 2n—1 <t <2n+1, and let C' be a coloring of K; with
A, <n-—2.

(i) If t=2n+1 orif nis odd and 2n — 1 <t < 2n, then K5 — 2K, C [V],, i.e.
K5 C V], K5 —e Cina [V]y or K5 —2K5 Cing [V,

gs

(i) If t =2n+1 and K5 —e L [V],, then K4 Z [V],.

(1it) If t =2n, Ks—e < [V],, and K4 C [V], with vertex set U, then d.(u) =n—2
for every u € U and q,(w,U) =2 for every w € V\ U.

(i) If t = 2n and K5 — 2Ky € [V]y, then n has to be even and Ky C [V],.
Moreover, K5 — P3 Cina [V],.

(v) If t =2n—1 and K5;—2Ky € [V],, then n has to be even and Ks— Py Cina [V],
or K5 — (P3 U K2) gind [V]g

Proof. (i) Using that r(S,, K5 —2K3) = 2n+ 1 if n is even and r(S,, K5 —2K,) =
2n — 1 if n is odd (see (10)), we obtain the desired result.

To prove (zi) and (iii), suppose that ¢ > 2n, K5 —e < [V], and K4 C [V],.
Let U be the vertex set of a Ky C [V], and W = V \ U. Then A, < n — 2 yields
¢ (U W) < 4(n — 2) = 4n — 8. Moreover, ¢,(w,U) > 2 for every w € W since
K5 —e Z [V],. Consequently, ¢.(U, W) > 2|W|=2(t —4). It follows that 2(t —4) <
¢ (U,W) < 4n — 8. Thus, only t = 2n and ¢, (U, W) = 4n — 8 is left. This forces
d,(u) =n —2 for every u € U and ¢,(w,U) = 2 for every w € W.

(1v) Because of (i), n has to be even. By (2), (S, Ky—e) = 2n—1. Thus, a green
H = K, — e must occur since S,, Z [V],. Let U = {uy, us, us, us} be the vertex set of
Hand W = V\U.If [U], = K, we are done. Otherwise we may assume that the edge
uyuyg is red. From A, < n—2 it follows that ¢.(U, W) < 2(n—3)+2(n—2) = 4n—10.
Consequently, |W| = 2n — 4 forces a vertex w € W with ¢.(w,U) < 1. Since
K5 —2K,  [V],, the edges wus and wugz have to be green. Moreover, at least one of
the edges wuy and wuy must be green. This yields a green K. Using (iii) we obtain
Ks — Py Cing [V,

(v) This follows from (¢) and 7(S,, K5 — (P3 U K3)) = 2n — 1 (see (10)). [ |

In the following lemmas we consider colorings of K;, 2n — 1 <t < 2n + 1, where
Sp € V], ie. A, <n—2, and special green subgraphs of order five occur.

Lemma 3.2. Let n >4,2n—1 <t <2n+1, and let C' be a coloring of K; with
A, <n—2and K5 C [V],.
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(1) If t =2n+1, then G C [V], for every G € G5\ {K22.}.

(i) If t =2n and n =4 or n > 6, then G C [V], for every G € G5\ {Ka22}. If
n=>5, then G C [V], for every G € G3\ {K222, Gioo}-

(1ii) If t=2n—1and n=4 or n>9, then G C [V], for every G € G5\ {K222}.
If 5 <n <8, then G C [V], for every G € G3 with G C Gg3, G C Ggg or
G C Gy,.

Proof. Let U be the vertex set of a K5 C [V], and W =V \ U. From A, <n —2
we obtain
¢-(U,W) < 5(n —2) = 5n — 10.

Consider first t =2n —1+a, 0 < a < 2, wheren >4 fora=2,n=4orn > 6
fora=1and n=4orn >9 for a =0. We will prove that ¢,(w,U) < 2 for some
w € W. If n = 4, this follows from W # () and A, < n — 2. Assume now that n > 4
and g, (w,U) > 3 for every w € W. Then ¢.(U, W) > 3|W| = 3(t—5) = 6n+3a —18.
Because of ¢,.(U, W) < 5n — 10 we obtain 6n+ 3a — 18 < 5n — 10. Hence, n < 8 — 3a,
contradicting n > 5 for a = 2, n > 6 for a = 1 and n > 9 for a = 0. Thus,
K¢ — P; C [U U {w}], for some w € W with ¢,(w,U) < 2. Since G C K¢ — P; for
every G € Gs \ {K322}, we are done. The remaining cases are t = 2n with n =5 or
t=2n—1with 5 <n <8.

If t = 2n and n = 5, then |W| = 5. In case of ¢,(w,U) < 2 for some w € W again
we are done. It remains that ¢,(w,U) > 3 for every w € W. Then A, <n—2=3
forces ¢.(w,U) = 3 for every w € W, [W], = K5 and ¢,(u, W) = 3 for every u € U.
Let H be the bipartite graph Kj 5 with vertex classes U and W. The green subgraph
H, of H induced by the vertices of H contains only vertices of degree two, and this
forces every component of H, to be an even cycle. Hence, H, = C,UCs or Hy = Cp.
In both cases, K¢ — K13, K¢ — 2P and G192 = K¢ — (P4 U K3) are contained in [V],.
Consequently, any G € G3 \ {K222, G100} occurs in [V],.

Finally let ¢ = 2n — 1 and 5 < n < 8. Then ¢.(w,U) > 4 for every w € W is
impossible as otherwise ¢,.(U, W) > 4(2n — 6) contradicting ¢,(U, W) < 5n — 10 for
n > 5. Thus, ¢.(w,U) < 3 for some w € W and K¢ — K13 C [V],. Since Ggs, Goo
and Ggy are subgraphs of K¢ — K 3, we are done. [ |

Lemma 3.3. Let n>4,2n— 1<t <2n+1, and let C be a coloring of K, where
A, <n—-2, Ks—eC V], and K5 Z [V],.

(Z) ]f t= 2n—|—1, then Glog = KG—(P4UK2) Q [V]g and G100 = KG—(K3UK2) Q
V-

(it) If t = 2n, then either Gz C [V], or n = 2(mod 3) and [V], = K, 1+ K3,
In any case, Gos = K¢ — (K13 +€)UKy) C [V], Gog = K¢ — (C1UK>) C [V],,
G77 Q [V]g and G68 Q [V]g

(1it) If t = 2n — 1, then Gioo C [V], for n > 13, Gy
n Z 6, Ggg Q [V]g and G7g = K6 — ((K4 — 6) U Kg)

Vg for n =4 and for

C
C [V], for n > 4.
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Proof. Let U = {uy, u2, us, us, us} be the vertex set of a K5 —e C [V], and let
W =V \ U. We may assume that the edge ujus is red. From A, < n — 2 we obtain

(U, W) <2(n—3)+3(n—2) =5n—12.

If g, (w,U) < 1 for some w € W, then [U U {w}], contains every G € G3 \ {K222}
and we are done. It remains that ¢.(w,U) > 2 for every w € W. Let W} = {w €
W g(w,U)=2} and Wo =W\ W, ={we W |q(wU) >3} Then ¢, (U W) >
2|Wy| + 3|Wy| = 3|W| — |W4|. Using ¢, (U, W) < 5n — 12 we obtain

Wi| > 3|W| — 5n + 12,

(1) If t = 2n + 1, then |W| = 2n — 4 and |W;| > 3|W| — 5n + 12 = n. Since
A, < n — 2, there must be a vertex w € W; where ujw is green. Hence, Gips C
[U U {w}],. It remains to prove that Gipo C [V],. If N.(w) N U = {us,us} or
Ny (w) NU C {ug,us,us} for some w € Wy, then Gipo € [U U {w}],. Otherwise,
IN,(w) N {uy,us}| = 1 for every w € Wy, and A, < n — 2 forces |Wy| < 2(n — 3).
Since |Wi| > n, only n > 6 is left. Moreover, |Wi| = 6 in case of n = 6. If n > 7,
then |[Wi| > 7 and we may assume that four vertices of Wj are joined red to u; and
green to us. Among these four vertices there must be two vertices w; and ws with
the same red neighbor in {ug, us, w4}, say us. Thus, Gioo C [{ug, ug, w4, us, wy, wa .
If n = 6, then [W| = 2n — 4 = 8, and |W;| = 6 implies |W5| = 2. Because of
A, <n—2=4,in [IW] every vertex of W is incident to at most two red edges and
every vertex of W to at most one red edge. Thus, every component of [W], has to
be a path or a cycle, where at least one path P, with £ > 2 or at least two paths P;
occur. Hence, the union of all paths in [W], is a subgraph of a P, with ¢ > 2, and
(W], € H where H € {P,UC3UCj3, P,UCq, PyUCs5, PLUCYy, PsUCS, Pg}. In any
case, Gigo C [W],.

(17) If t = 2n, then |W| = 2n —5 and |W;| > 3|W|—5n+ 12 = n — 3. Obviously,
Gio2 C [U U {w}], if No(w) N {ug,us,us} # 0 for some w € Wi. It remains that
N, (w)NU = {uy,us} for every w € Wi, and then A, <n — 2 implies |W;| <n — 3.
Consequently, |W;| =n — 3 and |W5| = n — 2. Moreover, n > 5 because of Wy # (),
d,(w) > 3 for every w € Wy and A, < n—2. Since |W;| =n— —3 > 2and K; Z [V,
all edges in [Wl] have to be red. Let V[/Z Wy U{ug, u5} and Wg WoU{ug, uz, uy}.
Clearly, [Wl] is a red K,_1, and all edges between W1 and WQ have to be green
because of A, < n — 2. Consider now [Wg] Since |W2| =n+1and A, <n-—2,
every vertex is incident to at least two green edges. If a green P, with vertex set W’
occurs, then Gipe C [W' U {uq,us}],. It remains that every component of [Wz]g is a
K3. This is only possible if H/I//\Q\ =n+ 1= 0(mod 3), i.e. n = 2(mod 3), and leads
to the desired coloring. Obviously, this coloring contains green subgraphs Kz — K3,
K6 - (Kl’g U Kg) and Ggg. Since G77, G94 Q KG - Kg, G68 Q KG - (Kl’g U Kg), and
since Ggyg, Gz, G77 and Ggg are also subgraphs of Gygo, the additional statement is
proved.

(13i) If t = 2n — 1, then |W| = 2n — 6 and |Wy| > 3|W| —5n+ 12 = n — 6.
Hence, |W;| > 7 for n > 13, and we can prove that Gig0 C [V], as in (7) in case of
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|Wy| > 7. If [W;] > 1, then Gg4, Ggs and Grg occur in [U U {w}], for any w € Wj.
It remains Wy = (), i.e. W = Wy. This forces n < 6 since |Wy| > n — 6. Moreover,
n > 5 because of Wy # 0, d,.(w) > 3 for every w € Wy and A, < n — 2. To settle
the cases n =5 and n = 6 we use U’ = {ug, uz, uq}.

If n = 5 we obtain |W| = 4. Moreover, ¢,(w,U) = 3 for every w € W and
(W], = K, are forced by A, < n —2 = 3. Let W = {wy,ws, w3, ws}. To prove
that Gg3 C [V],, note that ¢, (U, W) < 3|U’| = 9. Thus, a vertex w € W exists
where ¢,(w,U’) < 2, and this yields Gg3 C [U U {w}],. It remains to find a green
Grs. If ¢ (w,U") = 3 or ¢.(w,U’) = 1 for some w € W, then Gzs C [U U {w}|,.
Otherwise, ¢.(w,U’) = 2 and ¢, (w, {u1,us}) = 1 for every w € W. Since ¢,(u, W) <
A, < 3 for every u € U’, this guarantees a vertex u € U’, say u = us, such that
gr-(u, W) = 2. We may assume that us is joined green to w; and wy and red to ws
and w,. Moreover, we may assume that the edges wsu; and wsus are green. This
yields Grg C [{uq, ug, us, wy, wo, ws}l,.

If n = 6 then we obtain |W| = 6. Again, ¢,(w,U) = 3 for every w € W, as
otherwise ¢.(U, W) > 3|W| = 18 contradicting ¢,.(U, W) < 5n — 12. Moreover,
A, < n —2 =4 implies that all red edges in [IV] have to be independent, and we
find G7s and Gy, in [W],. Since ¢, (U, W) < 4|U'| = 12, a vertex w € W exists such
that ¢,(w,U’") < 2. This yields Gss C [U U {w}],. |

Lemma 3.4. Let n >4, 2n— 1<t <2n+1, and let C be a coloring of K; where
A, <n—-2, K;—2K, C[V], and K5 —e Z [V],.

(i) If t > 2n, then Gios = K¢ — (P4 U K3) C [V],.
(ii) If t =2n+1, then Gy = Ks — (K3 U Ky) C [V,

(1it) If t =2n—1, then Gioo C [V, for n > 13 and Goy = K¢ — ((K13+€)UK3) C
Vg for n>9.

(w) If t =2n —1, then Gs3 C [V], for n > 5.

Proof. Let U = {uy,us,us, us,us} be the vertex set of a K5 — 2K, C [V], and
let W =V \ U. We may assume that the edges ujus and usuy are red. Let U’ =
{u1, ug, ug, us}. From A, < n — 2 we obtain

¢ (U,W)<4(n—3)4+ (n—2)=5n—14 and ¢, (U, W) <4(n —3) = 4n — 12.

Let Wi = Ny(uz) "W and Wy = W\ Wy = N,(u3) N W. If ¢,(w,U) < 1 for some
w € Wy, then [U U {w}], contains every G € G3 \ {K222, K114} and we are done. It
remains ¢, (w, U) > 2 for every w € Wj.

() It suffices to consider ¢ = 2n. If ¢.(w,U’) < 1 for some w € Wy, then Gipy C
[U U {w}],. Otherwise, ¢.(U', W) > 2|Wy| + 2|Ws| = 2|W| =2(2n —5) = 4n — 10
contradicting ¢.(U", W) < 4n — 12.

To prove (4i) and (4i¢) we look at Wy and W in more detail. Let W ; = {w € W, |
¢ (w,U) = j}. Using ¢, (w,U) > 2 for every w € Wy, we obtain ¢,(U, W) > |Wa,| +
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2(| W]+ [Wap|) +3(|W | — [Wio| — [Wo 1| = [Wasl)) = 3|W | — |Wya| =2|Wo 1| — |Wasl.
From ¢.(U, W) < 5n — 14 it follows that

[Wia| + 2|Way| + [Wag| > 3|W| — 5n + 14.

(i1) If t = 2n + 1, then |W| = 2n — 4 and |Wi 5| + 2|Ws,| + [Was| > n+ 2. Since
[Waal + [Wap| < [Wo| < A, < n—2, we obtain |[Wys| + |[Ws,| > 4. First consider
the case |Wis| > 1. Let w € Wia. If {uj,us} € N.(w) or {ug,us} C N,.(w),
then Gigo C [U U {w}],. Otherwise w is joined green to vertices u and u' where
u € {uy,us} and v’ € {uy, us}. But then [{w,us, u,u'}], = Ky contradicting Lemma
3.1(i7). It remains |Ws ;| > 4, and we obtain Gioo C [{w1, we, ug, ug, w4, us}], for any
w1, We € Wg,l.

(¢93) If t = 2n — 1, then |W| = 2n — 6 and |[Wio| + 2|Wa | + [Was| > n — 4.
Note that Gos C Ghoo. First consider the case |Wis| > 5. If {uj,us} € N, (w)
or {us,us} C N,(w) for some w € Wy, then Gipo C [U U {w}],. Otherwise, every
w € W1 2 has one green neighbor in {uy, us} and one in {ug, us}. Thus, for |W;| > 5
there are vertices wq, ws € Wy with the same green neighbors v € {uy,us} and
v € {ug,us}. But then K5 —e C [{wy, wo, us, u,u'}],, a contradiction. It remains
|[W1s] < 4. Consequently, 2|Wa | + [Was| > n—8. If n > 9, then Wy UWss # 0
and Goy C [U U{w}], for any w € Wy, UWss. If n > 13, then 2|Ws | + [Wa2| > 5.
In case of [Ws3| > 5 there must be two vertices wy, ws € Way with the same red
neighbor u € U’, say uy, and Gioo C [{wy, wa, ug, us, ug, us}],. It remains [Wa | > 1
where Wao # 0 if [Wa1| = 1. Let wy € Wa; and wy € Way U Wa s where wy # ws.
We may assume that ug, ug, us € Ny(ws). Then Giog C [{w1, w2, ug, us, us, us},.

(iv) Since |Wy| < A, < n—2 we obtain |W;| = [W|—|Ws| > 2n—6—(n—2) = n—4.
Thus, [W;i| > 1 for n > 5. If ¢,.(w,U’) < 3 for some w € Wy, then Gs3 C [U U {w}],.
Otherwise, all edges between W and U’ are red, forcing n > 6, as d,.(w) > 4 for
every w € Wi and A, < n—2. Moreover, d,.(u) > |W;|+1 for every u € U’ yielding
[Wi| < n—3. Thus, only n —4 < |W;| < n — 3 is possible. First we consider
|[Wi| = n — 3. It implies |Ws| = n —3 > 3 and ¢,(w,U’) = 0 for every w € Ws.
Hence, Gg3 C [{wy, w2, u, ug, us, us}], for any wy, wy € Wh. The remaining case is
[Wi| =n—4and [Wy| =n—2>4. Due to A, <n—2every u € U’ has at most one
red neighbor in Wy, and we obtain ¢,.(U’, W) < 4. If ¢,(w, U’) = 0 for some w € W,
then ¢.(U',W3) < 4 guarantees a vertex w' # w in Wy with ¢,.(w’,U") < 1. We
may assume that {uy, us, us} C Ny(w') and obtain Gg3 C [{w, w’, uy, ug, us, ust]y. It
remains ¢.(w,U’) > 1 for every w € Wy. Because of ¢.(U',W,) < 4 only |[W5| =4
and ¢,(w,U’) = 1 for every w € Wy is left. Moreover, ¢,(u, W5) = 1 for every
u € U'. Hence, Ggg C [{w,w, uy, ug, us, us }t]y for w,w’ € Wy where w € N, (u2) and
w' € N,(us). [

Lemma 3.5. Let n > 4 be even, 2n — 1 < t < 2n, and let C' be a coloring of K,
where A, <n —2, K5 — P; C [V], and K5 — 2K, Z [V],.

(Z) ]f t = 27’L, then G62 Q [V]g, G65 Q [V]g and G87 = KG - P6 Q [V]g fOT n Z 4.
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(1) If t =2n—1, then Gro C [V],, Grs C [V],, and Gz C [V, for n > 4.

(1it) If t = 2n — 1, then Grs = K¢ — (K4 —e) U Ky) C [V], for n > 8 and
Ggg = K6 — (Kg UPg) - [V]g fO?“ n > 10.

Proof. Let U = {uy, us, ug, us, us} be the vertex set of a K5 — Py C [V],. We may
assume that the edges usuz and uguy are red. Let W =V \ U, U' = {uy, us, uy, us}
and U"” = {us, ug,us}. Note that [U'] is a green K. From A, < n — 2 we obtain

(U W) < 2(n—2)4+2(n—3)+n—4=bon—14,
(U W) < 2(n—3)4+n—4=3n-10.

(¢) Consider Wy = Ny(up) "W and Wy = N,y (us) NW. Note that |[W| = 2n—5. From
A, <n—2it follows that |Wi| > |W|—(n—2) =n—3 and |Wy| > |[W|—-(n—4) =
n—1 > 3. Since ¢,.(U",W) < 3n—10 and |W;| > n—3, there is a vertex w € W; with
¢ (w,U") < 2, yielding Gg2 and Ggs in [UU{w}],. To prove that Gs; C [V], consider
vertices wy,wy € Wa. Note that K5 —e € [V],. Hence, ¢, ({wy, w2}, {u1,us}) > 1,
and we may assume that wyu; is red. Moreover, g,.(w1,U’) = 2 by Lemma 3.1(zii).
ThUS, G87 Q [U U {wl}]g.

(i7) Now let Wi = Ny(ug) "W and Wy = W\ W; = N, (u3) NW. From A, <n—2
we obtain |Wy| < n —4. If ¢.(w,U”) < 1 for some w € Wi, then Gry, Gr3 and
Grg occur in [U U {w}],. Otherwise, ¢.(U", W) > 2|W;| + |Ws| = 2|W| — |Wy| >
2IW| = (n—4)=2(2n—6) — (n — 4) = 3n — 8, contradicting ¢,.(U", W) < 3n — 10.

(i17) Note that K5 —e € [V], forces ¢,(w,U’) > 2 for every w € W. Now let
Wy ={weW|q(wU) =2} and Wy =W \ W;. Clearly, every w € W; has to be
joined green to ugz. Put Wy, = {w € W | wuy and wus are red}, Wi o = {w € Wy |
wug and wuy are red} and Wys = Wy \ (Wi U Wis). From ¢, (U, W) < 5n — 14,
q- (U, W) > 2|Wq| + 3|Ws| = 3|W| — |W1| and |W]| = 2n — 6 it follows that

|W1| - |W1,1| + |W1,2| + |W173| Z n — 4.

First we will prove that Gzs C [V], for n > 8. Note that |W;| > n—4 > 4 in case of
n > 8. If W] > 2 and wy, wy € Wy, then Grg C [U'U{wy, wa}],. If [Wis] > 1 and
w € W9, then Grs C [UU{w}],. Otherwise, |IW; 3] > 3. Then us or uy4, say ug, must
have two red neighbors wy, wy € Wi 3, and we obtain Grs C [{wy, wa, uy, us, us, us},-

It remains to prove that Ggy C [V], for n > 10. Note that |W;| >n—4>6in
case of n > 10. If |Wi | > 2 and wy, we € Wi o, then K5 — e C [{wy, wo, u, us, uslgy,
a contradiction. If [W; 3| > 5, then there are two vertices wy, wy € W1 3 joined red to
the same vertices in U’, say to u; and us. But then K5 —2K5 C [{wy, we, us, us, us}lg,
a contradiction. The case |W; | > 1 remains, yielding Ggo C [U U {w}], for any
w e Wl,l- |

Lemma 3.6. Let n > 4 be even and let C' be a coloring of Ko, 1 where A, <n—2,
K5 — (Pg U Kg) Q [V]g, K5 — P3 Z [V]g and K5 — 2K2 g [V]g

(1) If n >4, then Gy C [V],, Gsa C [V], and Gro C [V],.
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(ZZ) ]f n Z 8, then G78 = K6—((K4—6) UKQ) Q [V]g and G92 = K6—(K3UP3) Q
V-

Proof. Let U = {uy,us, us, us, us} be the vertex set of a K5 — (P3 U Ky) C [V],
and W =V \ U. We may assume that the edges ujus, ugus and usuy are red. From
A, <n — 2 we obtain

¢ (U W) <4(n—3)+n—4=>5n—16.

Note that Ky — Py € [V], and K5 — 2Ky, € [V], force ¢,(w,U) > 2 for every
we W. Let Wy = {w e W | ¢(w,U) =2} and Wy = W\ Wy. Every w €
Wi has to be joined green to ug as otherwise K5 — 2K, C [{w,uy, ug, ug, us}], or
K; — Py C [{w,uy,u2, ug,ust]y. Put Wiy = {w € Wy | wuy and wus are red},
Wio = {w € Wy | wuy and wuy are red}, and Wy 3 = Wy \ (Wi U Wis). From
¢-(U, W) < 5n—16 and ¢, (U, W) > 2|Wy| + 3|Ws| = 3|W| —[W1| = 3(2n —6) — [W)]|
we derive

\Wh| = |Wia| + |Wig| + |[Wis| >n—2.

Note that |Wi 1| < n — 3 because of A, < n — 2. Hence |W;| > n — 2 implies
|Wia|4+|Wi3| > 1. Moreover, |W; 5| < 1, as otherwise any two vertices wy, wy € Wi o
together with wuy, uz and us yield a green K5 — 2K,. If [W; 3| > 5, then two vertices
wy, we € Wi 3 have to be joined red to the same vertices in {uy, ug, u4, us}, say to u;
and uy. But then Ky — 2K, C [{wy, we, us, w4, us}]y, a contradiction. Consequently,

‘W173| S 4 and ‘WLQ‘ + ‘WLg‘ S 5.

(¢) If [Wy 3] > 1, then any w € W, 3 and the vertices in U induce a green K¢ — F.
Thus, Gue, Gs4 and Gy occur in [V],. It remains that |W; 3| = 0. Then |Wio| +
[Wi3] > 1 and |[W;s] < 1 force |Wis| = 1. Consequently, |Wy;| > n—3>1
because of |W;| > n — 2. Consider now vertices wy; € Wy and wy € Wio. Then
Gro C [U U{w}]y, whereas Gy and Gy occur in [U U {ws}],.

(1) If n > 8, then |Wi| > n —2 > 6. Note that 1 < |Wis| + |Wi 3] < 5. Hence,
[Wia] > 1. Let wy € Wiy and wy € Wio U Wis. Then Ggo C [U U {wq}], and
Grs C [UU{wq}], if wy € Wi, If we € Wi 3 we may assume that the edges wouy
and wqus are red. This yields Grs C [{wy, wa, uy, us, ug, us}l,. [ |

3.3 Proofs of the Theorems

Proof of Theorem 3.1. First we establish suitable lower bounds for r(S,,G). In
any case, 7(S,,G) > 2n — 1 by (10). The coloring of Ko with [V], = 3Kj3 shows
that (S, Gg1) > 10. The coloring of K; with [V], = C3 U Cy implies (S, G) > 8
for G & {Ge1,G19}. From [13] we use that r(S5, Ge1) > 11, and 7(Ss, Gg1) > 16 was
shown in [8]. To prove equality, i.e., to establish suitable upper bounds for r(S,, G),
we refine the method used in [34].

Consider any coloring of K; where n >4, t =2n—14a,a >0 and S,  [V],,
ie. A, <n—2. Hence, dy(v) > n+a for every v € V. Let uy € V with d,(uq) = A,
and us € Ny(up). Since |Ny(up)| > n and A, < n —2, a vertex us € Ny(uy) exists
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such that usug is green. Let U = {uy, ug, u3} and W =V \ U. Put W; = Ny(u;) N W.
We obtain

3
W=D (Wil = > WinWj| = A, =2+42n+a—-2)— > [WinWj.

i=1 1<i<j<3 1<i<j<3

Consequently, since |W|=2n -4+ a and A, > n+a,

W.NWi|>A,+a—2>n+2a—2.
j g

1<i<j<3

First let n +2a > 9. This gives > ;s |Wi N W;| > 7 implying [W; 0 W[ > 3
for some 7,7 where 1 < i < j < 3. Thus, G C [U U (W; N W;)],, and we obtain
r(Sn,Ge1) < 2n—1ifn > 9, 7(S,,Ge1) <2nif 7<n <8 r(S,,Ge) < 2n+ 1 if
5<n <6 and r(Sy,Ge ) < 10.

Now let n = 4,a =1 orn > 5, a = 0. Note that in case of n = 5, a = 0,
ie. K; = Ko, we have A, > 6, as otherwise A, < n —2 = 3 would force a 5-
regular green subgraph of order 9 which is impossible. From >, ;5 [W; N W;| >
Ag+a—22>n+2a—2weobtain >, ;5 [W; N W;| > 4. Hence, [W; N W;| > 2
for some 4,5 with 1 < i < j < 3. Consequently, G4; C [U U {w;, w2, ws}|, where
wy,wy € W; NW; and wy € W; \ {wy,ws}. Note that G C Gy for every G # Gg;.
Thus, for G # Ggy, 7(S,,G) < 2n—1if n > 5 and r(S4, G) < 8. It remains to prove
that (S, G19) < 7. If a coloring of K7 does not contain a red Sy, then [V], C H
where H € {C7, K1 UCs, K1 UC3UCs, Ko UCs, C3UC,}. In any case, Gig C [V],
and we are done. [

Proof of Theorem 3.2. As already mentioned, r(S,,G) > 2n for every G €
Gs2. To prove that r(S,,G) > 2n + 1 for n even and G € {Gio2, Goo, Gr7},
consider the coloring of Ky, where [V], = SK, + §K,. For n = 2(mod 3) and
G € {Gio, Goo, Gsr, Gr1, Ggr} the coloring of Koy, with [V], = K, 1 + "THKg im-
plies r(S,,G) > 2n + 1.

Next we will show that (S5, G) < 2n + 1 for all G € G35. Note that G C Gype
if G € G35. Consider any coloring of K,y where S,, Z [V],, i.e. A, <n —2. By
Lemma 3.1(¢), K5 — 2K, C [V],. Using Lemmas 3.2(), 3.3(¢), and 3.4(7) we obtain
that Gip2 C [V],, and we are done. It remains to establish r(S,,G) < 2n in the
following special cases.

Case 1: G € {G77, Goo, G2}, n odd, and, additionally, n # 2(mod 3) if G €
{G102, Goo}. Consider any coloring of Ks, where S, € [V].. By Lemma 3.1(4),
K;—2K, C [V],. Hence, Lemmas 3.2(77), 3.3(i7), and 3.4(¢) guarantee that G C [V],.

Case 2: G € {Ggr, Gr1, Ggr} and n £ 2(mod 3). Note that G7; and Ggr are
subgraphs of Gg;. Consider any coloring of Ky, where S, Z [V],. If K5 — 2K, C
[V]g, then again Lemmas 3.2(i7), 3.3(¢7), and 3.4(i) guarantee that G C [V],. If

K5 — 2K, Z [V],, then K5 — P; C [V], by Lemma 3.1(4v), and Lemma 3.5(¢) yields
G <[Vl
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G € {Gs7, Gy3, Gu5, G52, Geo}. Consider any coloring of Ky, where S,, € [V].. If
K5 — 2K, C [V],, then Lemmas 3.2(47), 3.3(z), and 3.4(i) imply Gg3 C [V], and
Ges C [V]g. Thus, by Lemma 3.1(¢) and (¢v), only the case n even and K4 C [V], is
left. Let U be the vertex set of a green Ky and W = V' \ U. From Lemma 3.1(7i7) we
obtain d,(u) =n — 2 for every u € U and ¢,(w,U) = ¢.(w,U) = 2 for every w € W.
Now we use induction on n. If n = 4, then it follows from A, < n — 2 = 2 that
(W], = K4 and d,(v) = 2 for every vertex v € V. Hence, [V], is bipartite and every
component of [V], is an even cycle. This implies [V], = C,UCy or [V], = Cs. In both
cases, Gog C [V], and Ggs C [V],. Now let n > 6. As induction hypothesis we use
that any coloring of Kj(,_2) without a red subgraph S,,_, contains green subgraphs
Gos and Ggs. Note that |[W| = 2(n — 2). A red S, in [W] is impossible since
otherwise ¢,.(w,U) = 2 for every w € W would force S,, C [V],. Thus, Gogg C [W],
and Ggs C [W],, and we are done. |

Case 3: G € {G37, G43, G45, G52, G68, G69, Ggg}. Note that G C Ggsz for
g

Proof of Theorem 3.3. Note that K5 — 2Ky C G C Gy for every G € Gss.
Consider any coloring of K; where 2n —1 <t <2n+1,n >4 and S, Z [V],, i.e.
A, <n—2. Ift=2n+1, then K5 — 2K, C [V], by Lemma 3.1(7). Hence, Lemmas
3.2(i), 3.3(7) and 3.4(77) yield G1g0 C [V],. Consequently, r(S,, G) < 2n+1 for every
G € Gs3. If n is even, then equality holds since (S, G) > r(S,, K5 —2K5) = 2n+1
(see (10)).

Now let n be odd. Again, K5 — 2K, C [V], by Lemma 3.1(3). If t = 2n — 1,
then we obtain Gyoo C [V], for n > 13, Ggs C [V], for n > 9 and Gs3 C [V], for
n > 5 using Lemmas 3.2(i4), 3.3(iii), 3.4(i7i) and (iv). Note that Ggz C Gs3 and
G4 € Gg3. Thus, r(S,, Gioo) < 2n — 1 for n > 13, r(S,, Gos) < 2n — 1 for n > 9
and 7(S,,G) < 2n — 1 for G € {Gg3, Grs, Gs3} if n > 5. Equality holds since
r(Sp, G) > 2n — 1 for every G € G3. For t = 2n, n € {5,7}, we obtain Gg4 C [V],
using Lemmas 3.2(i7), 3.3(¢¢) and 3.4(¢). This implies r(S,,, Gos) < 2n if n € {5, 7}.
Moreover, the (S5, Gos)-coloring of Ky in Figure 1 proves that equality holds if n = 5.
To complete the proof we have to consider G = G199 where n € {5,7,9,11}. The
computation of r(Ss, G1g9) can be found in [13], and the bounds for r(S,,G) if
n € {7,9,11} are obvious. |

Figure 1: The red subgraph of a (S5, Gg4)-coloring of K.

Proof of Theorem 3.4. Note that G C Ggo, G C Gg; or G C Gz for every
G € Gz 4. Moreover, G C Ggs for every G € Gz 4 and Gz C Ggr. First let n be odd.
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Since r(S,, G) > 2n—1 for any G € G5 we only have to prove that r(S,,G) < 2n—1.
Consider any coloring of Ky, _; where S, Z [V],, i.e. A, <n —2. By Lemma 3.1(7),
K5 —2K, C [V],. Using Lemmas 3.2(z44), 3.3(i27) and 3.4(iv) we obtain G C [V], for
any G € Gz 4. Now let n be even. The coloring of K5,y where [V], = 2K, + K,
does not contain a red S,,. Moreover, every green subgraph of order six is contained
in Kg — Ky, K¢ — (K3UP;), K¢ — (Cy UKy) or Kg — (K5 — 2K3). This implies
G ¢ [V], for every G € Gs4. Thus, r(S,,G) > 2n. To prove that r(S,,G) < 2n
consider any coloring of Ky, where S, € [V],. If K5 — 2K, C [V],, then we take
a suitable subgraph of order 2n — 1 and are done as in the case n odd. Otherwise,
Lemma 3.1(4v) forces that K5 — P3 C [V],. Now Lemma 3.5(7) yields subgraphs Gggo,
G5 and Gr3 in [V], and the proof is complete. [ |

Proof of Theorem 3.5. First we will prove that 7(S,,G) =2n—1 for G € G35\ S
if n > 4 and for G € § under the conditions given in the theorem. Since r(S,,G) >
2n — 1 by (10) it remains to establish r(S,, G) < 2n — 1. Consider any coloring of
Ky,—1 where S,, € [V],, i.e. A, <n —2. We distinguish four cases depending on G
and n.

Case 1: G € Gsgs\Sandn >5o0r G € S\ {Gs3} where n = 50rn > 7
if G € {Ge0,Gro}, n > 9if G = Grg and n > 13 if G = Ggy. First let K5 —
2K, C [V],. Note that G C Ggg for every G € G55 \ {Grs, Goo}, Grs € Goa
and Gga C Gioo. Consequently, the desired result follows from Lemmas 3.2(iii),
3.3(i17), 3.4(izi) and 3.4(iw). Now let K5 — 2Ky ¢ [V],. By Lemma 3.1(v), n
has to be even and K5 — Py Cig [V], or K5 — (P3 U K3) Cing [V]g. Note that
G C Gy for every G € G35\ (S U {Gas, G35, Gss, Gus, Gsa}) and G C Gyg for
every G € {Gas, G35, Gss, Gug, Gs4}. Moreover, Gz, Gz C Gug, Gos C G54 and
Geo C Grg C Ggo. Hence, the desired result follows from Lemmas 3.5(ii), 3.5(iii)
and 3.6.

Case 2: G = G33, n > 5. If dy(v) > n+ 1 for some v € V, then A, < n — 2
guarantees two independent green edges in [N, (v)]. Hence, Gs3 C [N,(v) U {v}],.
It remains dy(v) = n and d,(v) = n — 2 for any v € V. Assume that Gs3 € [V],.
Then any two green edges in [N,(v)] have to be adjacent, and A, < n — 2 forces
[Ny(v)]y = Kin1 and [Ny(v)], = K,—1 U K;. Let U be the vertex set of the red
K,—1 C[Ny(v)] and W = V\U. All edges between U and W have to be green because
of A, < n —2. But then d,(v) = n for every v € V guarantees two independent

green edges in [W] c.ontradicting Gs3 Z [V],.

Case 3: G = Gz, n =5. Then A, < n — 2= 3. Since [V], cannot be 3-regular,
there is a vertex v € V' with d,(v) > 6. Moreover, a vertex w € V exists such that
|Ny(v) N Ny(w)| > 4. Let U = {uy, ug, ug,us} C Ny(v) N Ny(w). If [U] contains a
green edge, then Gi7s C [U U {v,w}],. Otherwise, [U], = Ky, and A, < 3 forces only
green edges between U and W = V' \ U. Furthermore, [W] must contain a green edge
wiwsy. Consequently, a green Grg occurs in the subgraph induced by u;, ug, wy, wo
and two other vertices ws, wy € W.

Case 4: G € G35\S, n = 4. Then G C Gry, G C G54 or G C Gy. From
A, <n—2 =2 we obtain that [V], C H where H € {K; U K3U K3, K; UCg, Ky U
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Cs, K3UCy, C7}. In any case, Gro, G54 and Gye are subgraphs of [V], and we are
done.

Now let us prove the additional results given in the theorem. We first consider
r(Sy, G) for G € S. The coloring of K7 where [V], = C7 establishes r(S,, G) > 8.
For any coloring of Ky with S, Z [V], we obtain that [V], C H with H € {K; U
K;UCy, KjUCr;, KoUK3U K3, KoUCg, K3UCs, CyUC,, Cg}. In any case we
find green subgraphs Ggo, G7g and Gz3. Since Ggg, G79 C Ggo we are done. To prove
(S5, Gg2) = 11 we use that K33 C Ggy C Ghoo. It is known that (S5, K33) = 11
(see [24]) and, by Theorem 3.3, r(S5, G1g9) = 11. This implies the desired result. To
complete the proof note that G C Gg for every G € G35 and Grg C Ggs. Thus,
r(Sn, G) < 2n+1 for every G € Gs 5 by Theorem 3.3 and r(S,,, G7s) < 2n by Theorem
3.2. Since r(S,,G) > 2n — 1 for any G € G3, we are done. |

4 The Ramsey Number r(5,,G) for G € G,

The set G, consists of all graphs from Table 1 which have not yet been considered,
i.e. all connected spanning subgraphs of K5 = Gg, K24 = G553 or K33 = Grg. This
gives

g2 - {Gla GQ, G3a G4a G5a GG, G7a GQ, Glla G127 GlGa GZO, G297 G31a G53a G597 G76}'
In the following theorem (.S, G) is evaluated for all G € G, and 4 < n < 5.

Theorem 4.1.

( 6 ZfG S {Gla G47 GS) G77 G97 Gll})
T(SllaG) = 7 ZfG S {G27 G37 G127 G167 G207 G297 G317 G59}7
( 8 if G € {Gs, Gs3, G}

(7 if Ge{Gy, Gy, Gs, Gy, G5, Gy, G12},
8 if G € {Gr, Gi1, Gis, G},

9 if G € {Gg, Gag, Gs1, Gs3, Gso},

1 if G = G

T’(S5, G) ==

Proof. We first determine r(Sy, G). Let G € {G1, G4, G5, G7, Go, G11}. Clearly,
r(Sy, G) > 6. To establish equality, consider any coloring of K4 where Sy € [V],.
Consequently, [V], € H with H € {Cq, Cs U Ky, Cy U Ky, 2K3}. In any case,
G Q [V]g Now let G S {GQ, G3, Glg, G16, GQ(), Ggg, G31, G59}. Since G Q Gm,
r(Sy, G) < 7 follows from Theorem 3.5. To prove that r(Ss,G) > 7 we use three
different colorings of Kg. If [V], = 2Kj3, then we obtain an (Sy, G)-coloring for G €
{Gs, G3, G1a, Gig, G31}, [V], = C4 U K; yields an (Sy, Gy)-coloring, and [V], = Cg
gives an (Sy, G)-coloring for G € {Gag, G59}. Finally let G € {Gg, Gs3, Grg}. The
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coloring of K; where [V], = C7 proves r(Sy, G) > 8. Because Gg C Gg2, Gs53 C Go3
and Gz C Ggg, we obtain (54, G) < 8 using Theorems 3.4, 3.2 and 3.5.

Consider now (S5, G). First let G € {G1, G, G3, G4, G5, Gg, G12}. The coloring
of K¢ where [V], = K33 implies r(S5,G) > 7. Since G1, G4 C Gy and Gy, G5 C G2
it remains to prove that r(Ss, G) < 7 for G € {G5, Gy, G12}. Consider any coloring of
K7 with S5 € [V],, i.e. d,(v) < 3 for every v € V. As r(S5,Cy) = 7 (see [7]), a green
Cy must occur. Let U = {uq, ug, ug,us} be the vertex set of a green Cy where the
edges uqug, usus, uguy and ujuy are green. Moreover, let W = {wy, wy, w3} = V \ U.
Because of S5 Z [V],, ¢4(w,U) > 1 for every w € W, and g4(w, U) = 1 implies only
green edges incident to w in [W]. Consider first that two edges in [W], say wjwy and
wyws, are red. Then Sy Z [V], implies g,(wy,U) > 3 and ¢,(w;, U) > 2 for i = 2 and
t = 3. We may assume that the edges from w; to u;, uy and uz are green. Because
one of the edges from wy to uy, uy and usz has to be green, G5, G2 C [V],. Obviously,
Gy C [V], if wows is green. If wows is red, then g,(wo, U) > 3, and this also yields
Gy C [V],. The remaining case is that two edges in [W], say wjws and wyws, are
green. Since g, (w1, U) > 1, G5,Gg C [V],, and it remains to prove that Gio C [V],.
Clearly, G2 C [V], if g,(u, W) > 2 for some u € U. Otherwise, ¢,(U, W) < 4, and
this yields g,(w;,U) = g4(w;,U) = 1 for two vertices w;, w; € W. Thus, also wyws
has to be green. Furthermore we may assume that the edges wyuy, wous and wsug
are green. Then d,(uy) < 3 forces one of the edges from uy to {ug, wy, ws, w3} to be
green and again we obtain G2 C [V],.

Now let G € {G7, Gi1, Gis, Gao}. The coloring of K7 where [V], consists of
two green copies of Ky with exactly one common vertex implies (S5, G) > 8. Since
Gr,G11 € Gy it remains to establish r(S5, G) < 8 for G € {G14, Goo}. Consider any
coloring of Ky where S5 Z [V],. To prove that G156 C [V], we use r(S5,Gi2) = 7.
Consequently, Gi13 C [V],. Let U = {uy,ug,...,us} be the vertex set of a green
GG12 where the edges from u; to us, usz, ug, us and the edges ugus, ugus are green.
Since S5 Z [V],, one of the edges from ug to {us, us} U (V' \ U) has to be green and
this yields Gi6 € [V],. To prove that Gy C [V], we use r(Cy, Gog) = 7 (see [20]).
Suppose that G € [V],. Then a red Cy must occur. Let U be the vertex set of a
red Cy and W =V \U. As S5 Z [V],, q,(u, W) > 3 for every u € U. Hence we find
three vertices in U and three vertices in W yielding a green Ggy = K33 — 2Ky, a
contradiction.

Consider now G € {Gg, Gag, G31, Gs3, Gs9}. The coloring of Kg where [V], = 2K,
shows that (S5, Gg) > 9. For G # G we obtain r(S5,G) > 9 from Ky3 C G and
(S5, Ka3) = 9 (see [17]). To prove r(S5,G) < 9, note that Gg, Gag, Gs9 C Gsg and
Gs1,Gs3 € Grg. Thus, the desired result follows from (S5, G7s) = (S5, Gss) = 9,
proved in Theorem 3.5 and Theorem 3.3. For the remaining case G = Gz = K33
the value of r(S5, G) has been determined in [24]. |

For the six trees G € G, the values of r(S,, G) are almost completely known
from general results obtained for (S, T,,). Harary [16] proved that

7(Sp, Sm) =n+m—3+¢ (11)
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where € = 1 if n or m is even and € = 0 otherwise. Burr [2] obtained the following
result:

r(Sp, Tm)=n+m—2 ifnym>3andn—2=0 (mod m—1). (12)
Guo and Volkmann [14] showed that
r(Sp, Tm) <n+m—3 ifmn>3n—-2#0 (mod m—1) and T,, # S, (13)

and that equality holds if n = m > 4 or if in case of n > m one of the following
conditions is fulfilled: n —2 =k(m —1)+ 1 withk € Norn—2=Fk(m—1)+r
with k e N2 <r <m-—-2and A(T,,) =m—2or k+r+2—m > 0. Parsons
[30] determined r(S,, P,,) for the path P,, on m vertices by explicit formulas and a
recurrence, in particular he obtained the following result:

7(Smtks Pm) =2m — 11 <k < (m+4)/3. (14)

Here we will determine the missing values of 7(S,,G) for the trees G € G, and
summarize the results in the following theorem.

Theorem 4.2. Let n >6 and G € {Gl, GQ, Gg, G4, G5, G6} Then

n+4 if G=Gg orifn=2 (mod5) and G # G,
T(Sn,G): n -+ 2 anzg andGE{Gl, G4, G5},

n+ 3 otherwise.

Proof. The case G = Gg = S; is settled by (11), and for G # G, n = 2 (mod 5) we
are done by (12). Using (13) where equality holds, we obtain r(S,,G) for G = G3,
and for G € {Gy, Go, G4, G5} only n = 9 is left. From (14) we derive (Sy, G1) = 11.
By (13), 7(S9,G2) < 12, and the coloring of Kj; where [V], = K5 U K33 yields
equality. It remains to prove r(Sy, G) = 11 for G € {G4, G5}. The coloring of K
with [V], = 2K3 U K, implies r(Sy,G) > 11. To establish equality, consider any
coloring of Ky; where Sy € [V],. Since 7(Sy, G1) = 11, a green P must occur. Let
U = {uy,us, ..., ug} be the vertex set of a green Ps where the edges u;u; 1 are green
for i = 1,...,5. Moreover, let W = V \ U. If one of the edges from uy to uy, us
or ug is green, then Gy C [V],. Otherwise, Sg Z [V], implies that usw is green for
some w € W. Similarly, at least one edge from w to (W \ {w}) U {us, uy, us, ug}
has to be green, and again we find a green G4. It remains to prove that G5 C [V],.
A vertex v € V(Ky;) with d.(v) # 7 must exist. Consequently, Sg Z [V], forces
d.(v) < 6, e dy(v) > 4. Let U = {uy,ug,u3,us} C Ny(v), U = U U {v}, and
W =V\U = {wy,...,ws}. Suppose G5 Z [V],. From r(S4,G5) = 6 we obtain
Sy C [W],. We may assume that the edges from w; to wsy, w3 and wy are red. Because
of Sg Z [V, qo(wr,U") > 1. If qy(wy,U) > 1, say wyuy is green, then Sy Z [V,
forces qg(ur, (W \{w:}) U (U \ {u1})) > 1. This gives G5 C [V],, a contradiction. It
remains that wyv is green and all edges from w; to U are red. But then Sy Z [V],
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forces only green edges from w; to ws and wg. Again G5 C [V],, and we are done.
|

Next we consider the six non-tree graphs G € G, where G # Ky 4 and Cs € G.
Since 04 Q G, T(Sn,G) 2 T(Sn,04) for G € {Gg, Glla Glg, G16}, and K273 Q G
implies 7(Sy, G) > (S, Ka3) for G € {Ga9, G31}. We will show that in both cases
equality holds if n is sufficiently large. The following lemma is essential for proving
this result.

Lemma 4.1. ]f T(Sn,C4) Z 7’L+4 and G € {Gg, GH, Glg, Glﬁ}, then T(SR,G) =
r(Sn, Ca). If 7(Sn, Ka3) >n+4 and G € {Gay, G31}, then r(S,,G) = r(S,, Ka3).

Proof. It suffices to establish the missing upper bounds for 7(.S,,G). Assume first
that r(S,,Cy) > n + 4 and consider any coloring of K; where t = r(S,,Cy) and
Sn € [V]r. Then Cy C [V], and dy(v) > 5 for every v € V. Let U be the vertex set
of a green Cy. Since |Ny(u) \ U| > 2 for any u € U, G; C [V], for i € {11,12,16}.
To find a green Gy, take a vertex v € N,(u) \ U for some u € U. As |N,(v) \ U| > 1,
the desired result follows. Assume now that 7(S,, K23) > n + 4 and consider any
coloring of K; where t = r(S,, Ky3) and S,, Z [V],. Then Ky3 C [V], and d4(v) > 5
for every v € V. Let U be the vertex set of a green Ky 3. Because |Ny(u)\ U| > 1 for
every u € U, Gog C [V], and G3; C [V],, and we are done. |

By (8) and r(S,, Cy) < 7(Sy, K2 3), the conditions on r(S,, Cy) and (S, K3 3) in
Lemma 4.1 are satisfied if n is sufficiently large, and we obtain the following result.

Theorem 4.3. If n is sufficiently large, then r(S,, G) = r(S,, Cy) for G € {Gg, G11,
Glg, G16} and T(Sn, G) = ’I"(Sn, K273) fOT' G € {Ggg, Ggl}.

It remains an open problem to determine the exact values of r(S,,G) if G €
{Gg, Gll,Glg, G16, Ggg, Ggl} and all n Z 6. For G S {Gg, Glla Glg, G16} it
follows from Lemma 4.1, (6), (7) and (8), that the exact value of (S, G) is known
for infinitely many n and

n—1+|vVn—1-6(n— 1)11/40J <r(Sy,G) <n+ [Vn—1]

for n sufficiently large. In [3] it is shown that r(S,, K2 3) < n+24/n for all sufficiently
large n. Consequently, for G € {Ga9, G31} and n sufficiently large,

n—1+|vn—1-6(n—1"*] <r(S,,G) <n+2yn.

The remaining non-tree graphs in Gy are G53 = Ky 4 and the four subgraphs of
K3 3 containing a subgraph isomophic to Cg, namely G7 = Cg, Gog = K33 — 2K,
Gs9 = K3 3— Ky and Grg = K33. The values of (.5, Cg) for 6 < n < 12 can be found
in [36]: 7(S,,Cs) =n+4if6 <n <T7or10 <n <12and r(S,,Cs) =n+3if8 <n <
9. Moreover, (S, K24) = 11, 7(Sg, K33) = 12 and r(S7, Ko 4) = 7(57, K33) = 13
(see [24]). From [3] we know that, for n sufficiently large, 7(S,, K24) < n + 3+y/n
and (S, G) < n+3n?3 for all G € {Gy, Gy, Gs9, Gy}, but it remains an unsolved
problem to determine further exact values.
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