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1 Introduction

Throughout this paper G = (V, E) will be a finite, undirected, simple and connected
graph of order n. The neighborhood of a vertex v € V' is the set N(v) of all vertices
adjacent to v in G. For a set X C V, the open neighborhood, N(X), is defined to be
Uvex N(v) and the closed neighborhood of X is defined as N[X] = N(X) U X. The
degree of a vertex v € V is d(v) = [N(v)|. A vertex v € V is an end vertexif d(v) = 1.
A support vertex, or support, is the neighbor of an end vertex; a strong support vertex
is the neighbor of at least two end vertices. For a set S C V, and v € S, the private
neighborhood pn(v, S) of v € S is defined by pn(v,S) = {u € V: N(u)NS = {v}}.
Each vertex in pn(v, S) is called a private neighbor of v.

A wvertex cover of G is a set X C V such that each edge of G is incident to at
least one vertex of X. A minimum vertex cover is a vertex cover of smallest possible
cardinality. The vertex cover number of G, 7(G), is the cardinality of a minimum
vertex cover of G. A vertex cover of cardinality 7(G) is called a 7(G)-set.

The minimum vertex cover problem arises in various important applications, in-
cluding multiple sequence alignments in computational biochemistry (see for example
[15]). In computational biochemistry there are many situations where conflicts be-
tween sequences in a sample can be resolved by excluding some of the sequences. Of
course, exactly what constitutes a conflict must be precisely defined in the biochem-
ical context. It is possible to define a conflict graph where the vertices represent the
sequences in the sample and there is an edge between two vertices if and only if there
is a conflict between the corresponding sequences. The aim is to remove the fewest
possible sequences that will eliminate all conflicts, which is equivalent to finding a
minimum vertex cover in the conflict graph G. Several approaches, such as the use
of a parameterized algorithm [4] and the use of a simulated annealing algorithm [17],
have been developed to deal with this problem.

A subset D of V' is dominating in G if N[D] = V. The domination number of
G, denoted by (@), is the minimum cardinality among all dominating sets in G. A
dominating set D is a total dominating set of G if the subgraph G[D] induced by D
has no isolates. In [2], Cockayne et al. defined the total domination number v,(G) of
a graph G to be the minimum cardinality among all total dominating sets of G. A
total dominating set of cardinality v.(G) is called a v(G)-set.

A total vertex cover is a set which is both a total dominating set and vertex
cover. In [5], Dutton studies total vertex covers of minimum size. He proved that,
in general, the associated decision problem is N"P-complete, and gives some bounds
of the size of a minimum total vertex cover of a graph G in terms of v,(G) and
7(G); this parameter has received some attention in recent years [6, 13]. In this
work, we explore a particular case of total vertex covers. A (v, — 7)-set of G is a
total vertex cover which is both a 7;(G)-set and a 7(G)-set. While every graph has
a total vertex cover, by considering K, it is trivial to observe that not every graph
has a (y; — 7)-set. So, it is natural to ask for a characterization of graphs having a
(7 — 7)-set.

Clearly, a graph G having a (v — 7)-set also satisfies v(G) = 7(G); a graph
satisfying this equation will be called a (v; — 7)-graph. Again, Kj is an example of
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a graph which is not a (v — 7)-graph, and so, the following question arises: Does
every (v, — 7)-graph contain a (v, — 7)-set? Unfortuately, the answer is no (consider
the path on 8 vertices, Ps). So, another natural problem to consider is to find a
characterization of (y; — 7)-graphs.

Total domination in graphs is well described in [9] and more recently in [11] and
[12]. Among the different variants of domination, total domination is probably the
best known and the most widely studied. Total domination has been successfully
related to many graph theoretic parameters [12]; in particular, an additional moti-
vation for this work is the following observation. It is known that for every graph G,
7(G) < /(G), where o/ (G) is the matching number of G. Nonetheless, neither o/ (G)
nor ,(G) bounds the other one, and it is an interesting problem to find families of
graphs G such that 14(G) < o/(G), [12]. On the other hand, in [7], Hartnell and
Rall characterized all the graphs G such that v(G) = 7(G). Recalling that for every
bipartite graph G we have 7(G) = o/(G), it is natural to consider the problem of
characterizing bipartite graphs G such that v(G) = 7(G).

A usual approach in the literature for characterizing families of trees with a certain
property is to consider a constructive characterization. First, a family B of trees
having the property P (where it is usually trivial to verify it) is chosen as a (recursive)
base, and then, some operations preserving P are introduced. Finally, it is proved
that the family of trees having the property P are precisely those trees that can be
constructed from a tree in B by recursive applications of the proposed operations.
This approach has been used extensively, to characterize, for example, Roman trees
[10], trees with equal independent domination and restrained domination numbers,
trees with equal independent domination and weak domination numbers [8], trees
with equal independent domination and secure domination numbers [14], trees with
at least k disjoint maximum matchings [16], trees with equal 2-domination and 2-
independence numbers [1], trees with equal domination and independent domination
numbers, trees with equal domination and total domination numbers [3], etc. In [3],
a general framework for studying constructive characterizations of trees having an
equality between two parameters is discussed.

The main goal of this article is to provide a constructive characterization of the
trees having a (7, — 7)-set. For unexplained terms and symbols we refer the reader
to [9]. The rest of the paper is structured as follows. In Section 2 we present some
basic results that will be used in the rest of the paper; it is also proved that the
difference between ;(G) and 7(G) can be arbitrarily large. Section 3 is devoted to
proving our main result; showing that the family of trees 7" having a (y; — 7)-set can
be constructed through four simple operations starting from Pj. In the final section
some related problems are proposed.

2 Basic results relating v;(G) and 7(G)

In Section 3 we will define four operations which will be used to construct all the trees
having a (y; — 7)-set. Such operations will be defined using the following definition.

Definition 2.1. Let G = (V(G),E(G)) and H = (V(H), E(H)) be two disjoint
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graphs, and let u and v be vertices in V(G) and V(H), respectively. The sum of G
with H via the edge uv, G +,, H, is defined as V(G +,, H) = V(G) UV (H) and
E(G+u,w H)=EG)UE(H)U {uv}.

Moreover, if H = K; = {v}, we say that we add v to G supported by w.

Let G and H be two graphs with u € G and v € H. Notice that, regardless of
the choice of u and v, the following inequalities are always satisfied:

maX{%(G)a%(H)} S 'Yt(G +u’u H) S fYt(G) + ’Yt(H>’
max{7(G),7(H)} < 7(G +uw H) <7(G)+7(H) + 1.

It is also worth noticing that, for each of the previous four inequalities, there are
examples where they are strict, and examples where they are equalities; we will
come across them in the following sections.

We will now use the previously defined sum to prove that the difference between
v; and 7 can be arbitrarily large, even for trees.

Proposition 2.1. For any positive integer k there exists a tree T(yy such that T(Ti))—
'Yt(T(k)) = k‘

Proof. Let Pyio = (01,02, ...,V442) be a path. Add 2k + 2 new vertices to Py,
each supported by a different one of the 2k + 2 vertices {vy,vq, vs, Vg, Vg, V10, - - -
U1, Vapt2}- The graph that we obtain is a tree T{y) such that v (Tir)) = 2k + 2,

and 7(T()) = 3k + 2. Thus, we have 7(T(x)) — 7(T(x)) = k. See Figure 1. O
o o o o o o
| l

Figure 1: Example of Ty with k = 2.

Proposition 2.2. For every positive integer k there exists a tree T(’k) such that
%(T(/k)) - T(T(Ik)) = k.

Proof. Let Py._1 = (v1,v9,...,v4_1) be a path. Add 2k new vertices to Py;_1 each
supported by one of the vertices with an odd index. The graph that we obtain is
a‘tree Tiyy such that v (T()) = 3k, 7(I{,)) = 2k. Hence, %(1y,)) — 7(1{,)) = k. See
Figure 2.

[¢] [¢] [e] 0] 0] (|)
r—0—0—O0——0—0—0—O0——0——0———@
U1 U2 U3 Vg Vs Vg v Us Vg V10 V11

Figure 2: Example of T(’ py With k= 3.

The following simple remark will be useful in the proof of our main result.
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Remark 2.3. Let G be a graph with at least three vertices. If G is not a star, then
there exists a minimum total dominating set D C V(G) such that D contains no end
vertez of G.

Proof. Let D be a 7;(G)-set and x belonging to D be an end vertex of G such that
N(z) ={y}. Then (D — {z}) U{z} is a total dominating set of G, where z € N(y)
is not an end vertex of G. O

Our next result will also be very useful in the following section.

Lemma 2.4. If v(G) = 7(G) and D is a (v — 7)-set of G, then D contains no end
verter of G.

Proof. Let D C V(G) be a (v — 7)-set of G. If D contains an end vertex z, then,
since D is a total dominating set, it follows that there exists a vertex y € DN Ng(z).

This implies that D — {x} is a vertex cover of G, a contradiction to the assumption
that 14(G) = 7(G). O

As we mentioned in the introduction, not every tree contains a (v, — 7)-set. The
smallest tree having a (v, —7)-set is Py, which also happens to be the smallest (v, —7)-
tree. But not every (y; — 7)-tree contains a (v — 7)-set. Actually, it is not hard to
find an infinite class of (y; — 7)-trees not having a (v, — 7)-set, the most simple one
is the family of paths Py, for k > 2. Thus, the class of trees having a (y; — 7)-set is
properly contained in the class of (v, — 7)-trees.

Given a class of graphs, it is common in graph theory to aim for a characterization
in terms of a set of forbidden induced subgraphs, because such a characterization
directly implies polynomial time recognition for the class. Unfortunately, neither
(7 — 7)-trees, nor trees having a (y; — 7)-set, admit a characterization of this kind.
To prove this fact, consider the following construction.

Recall that the corona of a graph G is the graph obtained from G by adding a
new vertex v’ to G supported by v, for every vertex v € V(G). If H is the corona
of the graph G, then clearly V(G) is a (v, — 7)-set of H. Hence, any graph G is an
induced subgraph of a (v, — 7)-graph (of a graph having a (v, — 7)-set), and thus,
there exists no forbidden subgraph characterization of (14 — 7)-graphs (of graphs
having a (y; — 7)-set).

In our next section, we will obtain a constructive characterization of trees having
a (v — 7)-set. Towards this end, we finish this section introducing a definition and
proving a simple technical result.

Definition 2.2. Let G be a graph and S a 7:(G)-set. A vertex v is S-quasi-isolated
if there exists u € S such that pn(u,S) = {v}. A vertex v is quasi-isolated if it is
S-quasi-isolated for some 7;(G)-set S.

A vertex v is a 2-support if it is at distance two from an end vertex. The next
proposition shows that if a vertex is a 2-support, then it is not quasi-isolated.

Proposition 2.5. Let G be a graph and v € V' a 2-support. Then the vertex v is
non-quasi-isolated.
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Proof. Let x,y,v € V be an end vertex, a support and a 2-support of G, respectively,
such that y € N(x)NN(v). For every v,(G)-set S,y € S, v € N(y) and = € pn(y, S),
therefore for any u € S, pn(u, S) # {v}. Hence, v is not quasi-isolated. ]

3 Trees having a (v, — 7)-set

We define the family T of trees to consist of all trees T" that can be obtained from
a sequence 11,15, ..., T} of trees such that T; is the path Py, T' = T} and, if k& > 2,
then for 1 < ¢ < k — 1, the tree T; 1 can be obtained from 7T; by one of the following
operations.

e Operation O;: Consider u € V(7T') such that u belongs to some (y; — 7)-set.
Let v be an end vertex of a path P;. Then do the sum of T" with P, via the
edge uv.

e Operation Oy: Let u € V(T') such that u belongs to some (v, — 7)-set. Then
add a new vertex v to T" supported by u.

e Operation Os: Let uw € V(T') such that u belongs to some (y; — 7)-set and
u is not a quasi-isolated vertex. Let P, = (v, w) be a path with two vertices.
Then do the sum of T" with P, via the edge uv.

e Operation Oy4: Let u € V(T') such that u is not a quasi-isolated vertex of 7'
Let v be a support vertex of a path P;. Then do the sum of T" with P, via the
edge uv.

Our next lemma is valid for any tree, not necessarily a tree in 7.

Lemma 3.1. Let T be a tree. If T; is a tree obtained from T by an operation O;,
1< <4, then:

1. %(Th) = 7(T) + 2 and 7(Th) = 7(T) + 2;
2. w(Iz) = w(T) and 7(13) = 7(T);

3. W(Ts) = 3(T) + 1 and 7(Ty) = 7(T) + 1;
4o w(Ty) = %(T) +2 and 7(Ty) = 7(T) +2;

and hence, v(T) — 7(T) = w(T;) — 7(T), for 1 <i < 4. In particular v(T) = 7(T)
if and only if (T)) = 1(Ty), for 1 <i < 4.

Proof. Observe that for 1 < ¢ < 4, 3(T;) > w(T) and 7(T;) > 7(T"). We consider
four cases.

e Suppose i = 1, Py = (v,x,y,2) and Ty = T +,, Py. Let S be a 3(T)-set (a
7(T')-set, respectively). Then, S = SU{z,y} (S" = SU{v,y}, resp.), is a
total dominating set (vertex cover, resp.) of T7. Thus, v(71) < %(T) + 2 and
m(Th) < 7(T) + 2.
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For purposes of contradiction, let D be a 7;(17)-set such that |D| < v(T") + 1.
Define S = DNV (P;), then 2 < |S| < 3. Suppose |S| = 2, thenv ¢ D and D—S5
is a total dominating set of T with cardinality less than or equal to +,(T") — 1.
If |S] = 3, then (D — S)U{w} for w € Np(u) is a total dominating set of T
with cardinality less than or equal to ~(7") — 1. Therefore, v.(71) = 7(T') + 2.

For purposes of contradiction, let D be a 7(7})-set such that |D| < 7(T') + 1.
Define S = D NV(P,), then |S| = 2. Suppose S = {z,y}, or S = {z, 2} or
S = {v,y}, then D — S is a vertex cover of T with cardinality less than or
equal to 7(T') — 1. Hence, 7(T}) = 7(T) + 2.

e For ¢ = 2 the proof is straightforward.

e Suppose i =3, P, = (v,w) and T3 = T +,, P». Let S be a 74(T)-set such that
u € S, then 8" = SU{v} is a total dominating set of T5. Similarly, if S is a
7(T')-set then S’ = S U {v} is a vertex cover of T5. Thus, v(T3) < %(T) + 1
and 7(7T3) < 7(T) + 1.

We will show that v,(T3) = v(T")+1, so, for purposes of contradiction, let D be
a ¢ (T3)-set such that |D| < v(T) + 1. It suffices to assume that |D| = (T,
and there is no end vertex in D (such a set exists by Remark 2.3). Then
DNV (P) ={v} and u € D. Since |D —{v}| < v(T), the set D —{v} is not a
total dominating set of T'. But, for all z € Np(u), the set D' = (D —{v})U{z}

is a v(T')-set such that u is D’-quasi-isolated, a contradiction. So, v,(T3) =

By definition of vertex cover, it is not possible that 7(73) = 7(T), so 7(T3) =
7(T) + 1.

e Suppose i = 4, Py = (x,v,y,z) and Ty = T +,, Py. Let S be a v(T)-set (a
7(T)-set, respectively). Then, S" = SU{v,y} is a total dominating set (vertex
cover, resp.) of Ty. Thus, v(Ty) < %(T) + 2 and 7(Ty) < 7(T) + 2.

For purposes of contradiction, let D be a ~,(T})-set such that |D| < v(T) + 1.
Then DNV(P,) = {v,y}. Since |D —{v,y}| < %(T) — 1, the set D — {v,y}
is not a total dominating set of 7. But, for all w € Nr(u), the set D' =

(D—{v,y})U{w} is a v(T)-set such that u is D'-quasi-isolated, a contradiction.
So, w(Ty) = w(T) + 2.

By definition of vertex cover, it is not possible that 7(7) < 7(T) 4+ 1, so
7(Ty) =7(T) + 2.

]

Corollary 3.2. Suppose T is a tree with D a (v, —7 )-set of T. If T} is a tree obtained
from T by an operation O;, 1 <i < 4, then T; has a (v — 7)-set D;.

Proof. Let D be a (v, —7)-set of T. With the notation of the above lemma, we have:

e If i =1 then D, = DU {z,y}.
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e If i =2 then Dy = D.
e If i =3 then D3 =D U{v}.

e If i =4 then D, = DU {v,y}.

Theorem 3.3. If T € T, then T is a (v — T )-tree.

Proof. Let T = Py; then v4(T) = 7(T) = 2. By Lemma 3.1 and Corollary 3.2, the
proof is straightforward. O

As mentioned at the end of Section 2, there exist (y; — 7)-trees that are not in
family 7T .

Lemma 3.4. Let T be a tree and v a vertex in T.

1. Let Py = (v,w) be a path of order two. Suppose that u belongs to some v;(T)-
set D of T and define T" to be the sum of T with Py via the edge uv. If u is
D-quasi-isolated, then v(T) = v(T").

2. Let v and w be the support vertices of a path Py. Define T' to be the sum of T
with Py via the edge uv. If u is a quasi-isolated vertex, then v(T) = ~(T")+ 1.

Proof. Let D be a v,(T)-set such that u is D-quasi-isolated. There exists z € D such
that pn(z, D) = {u}. It is easy to verify that D' = (D — {z}) U {v}, is a v(T")-set,
in the first case, and D" = (D — {z}) U {v,w} is a 14(T")-set for the second case. [

Our main result is the following.
Theorem 3.5. Let T be a tree. If T has a (v, — 7)-set, then T € T .

Proof. By induction on n = |V(7T')|. Since 1(T") = 7(T), we have n > 4. The only
tree T with four vertices and equality v,(7") = 7(T) is P, and P, € T.

Let T be a tree with n > 4 and let D be a (y; — 7)-set of T. If T" has a strong
support vertex v with an end vertex u, then D is a (y — 7)-set of 7" = T — {u}.
By the induction hypothesis 7" € T and, using operation O, we have that T' € T.
Therefore we can assume that there are no strong support vertices in 7.

Let P = (vo,...,v) be a longest path in 7. Then dr(v;) = 2 and by Lemma 2.4
the vertices vy, vy € D. The proof of the theorem follows from the next two claims.

Claim 1. If there exists a vertex © € Nr(vg) N D such that x # vy then T € T.

Proof of Claim 1. Observe that dr(ve) > 2. Otherwise, dr(v2) = 2 and hence
x = vy and D — {v.} is a vertex cover of T, contradicting (T") = 7(7'). Notice
that = is not an end vertex of T', otherwise D — {z} would be a vertex cover of T', a
contradiction, thus, x is a support vertex of T'. Let T" be the tree 7" = T — {vg, v }.
Since vy € D, the set D — {v1} is a vertex cover of 7", and D — {v,} is a total
dominating set of T7”. This implies that 7(T") < 7(T) — 1 and that ~,(T") < v(T) —1.
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Let D’ be a v4(T")-set. Since z is a support vertex in 77, x € D’ and we may thus
assume that vy € D’. It now follows that D" U {v;} is a total dominating set of T
Thus

(@) < D U{u}] = () +1 < ((T) = 1) + 1 = %(T),

which implies that v(7") = v (7) — 1. On the other hand, if A is a 7(7")-set, then
AU {v;} is a vertex cover of T'. This implies that

7(T) < |[AU{v} =7(T)+1 < (7(T) - 1) +1=7(T).

Therefore, 7(T") = 7(T') — 1. Combining all this and using the fact that v(T") = 7(T')
we get that 7(T") = 1(T"). Since D — {v;} is a vertex cover of T" (of cardinality
7(T")), which is also a total dominating set of 7" (of cardinality 14(7")), it now follows
that 7" has a (y; — 7)-set. Now, it follows from the induction hypothesis that 7" € T.
We have already noticed that vy is a 2-support of 77, so it follows from Lemma 2.5
that vy is not quasi-isolated in 7", and using operation Oz, we have that T' € T.

Claim 2. If NT(U2> NnD= {Ul}, then T € T

Proof of Claim 2. If Ny(ve)ND = {v;}, then vs is a support vertex or dr(vq) = 2.

Observe that if dy(vs3) = 1, since T' does not have strong support vertices, then
T = P,. Therefore, dr(vs) > 2. Since D is a vertex cover of T" and vy ¢ D,
|NT(’U3) N Dl Z 2.

Suppose v is a support vertex with end vertex neighbor z, and let 7" be the tree
T" =T —{vg,v1,va,x}. Since vg ¢ D, every edge incident to vs in 7" must be covered
by some of its neighbors. Thus, the set D — {vy, v} is a vertex cover of T". Also,
since | Nr(vs) N D| > 2, vertex vs is dominated by some vertex in D — {vy, va}; clearly
vertices (other than v3) in V(7”) are not dominated in 7" by v; or v,, so they must
be dominated by some vertex in D — {vy,v9}, and therefore D — {vy,v9} is a total
dominating set of 7". Hence, 1(T") < %(T) — 2 and 7(T") < 7(T") — 2. Now, let D’
be a v, (T")-set. Since {vy,v9} is a total dominating set of T'[{vg, v1, ve, x}], it is clear
that D’ U {vy, v} is a total dominating set of T". Hence,

w(T) < [D"U{vr, v} = %(T") +2 < (u(T) — 2) + 2 = w(T),

which implies 7:(7") = v(T') — 2. On the other hand, let A be a 7(7")-set, hence,
since {vy,v9} covers all the edges in the graph T'[{vg, vy, ve,vs, x}], it is clear that
AUA{v, vy} is a vertex cover of T, and thus,

7(T) < |[AU{v, v} =7(T")+2 < (7(T) —2) + 2 =7(T).

Hence 7(1") = 7(T") — 2, and thus, following a reasoning analogous to that of the
previous claim, we obtain that D — {vy, v} is a (7 — 7)-set of T7". Now, we can
apply the induction hypothesis to obtain 77 € T. Notice that vz is not a quasi-
isolated vertex of 7", otherwise Lemma 3.4 would imply v(7T) = %(7") + 1, but
Y(T") = %(T) — 2. Hence, we can obtain 7" from 7" using operation Oy, therefore
TeT.

Now we may assume that dp(vy) = 2. For purposes of contradiction, suppose
that dr(vs) > 2. Hence, there is a path P; = (a, b, ¢) which is attached to vs by the
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edge cvs. Since D is a v(T)-set, we have b,c¢ € D. But then (D U {v3}) — {vg, ¢} is
a vertex cover of T, a contradiction. Thus dr(vs) = 2.

Since D is a vertex cover of T and vz ¢ D, we have vy € D. If dr(vy) = 1,
then T" = Ps, and D is not a ~(7T)-set. If dp(vy) = 2, then v5 € D, in this case
(D — {vg,v4}) U{vs} is a vertex cover of T, a contradiction. Hence, dr(vy) > 2.

Define 7" as T" = T — {wvo, v1, v2, v3}, we will show that the set D' = D — {vy, v}
is a (9 — 7)-set of 7" containing v,. Notice first that v; dominates exactly vy and
ve in T, and vy dominates exactly v; and v3 in T. Hence, no vertex in V(7") is
dominated in T" by v; or v, and hence every vertex of T” is dominated in 7" by some
vertex in D —{vy,va}. Thus, D—{vy, v} is a total dominating set of 77, and we have
Y(T") < y(T) — 2. If D' is a v (T")-set, and using the fact that T'[{vg, vy, va, v3}] is
isomorphic to Py, then it is easy to conclude that D" U {v;, ve} is a total dominating
set of D. Therefore

w(T) < [D"U{or, v} = (1) +2 < ((T) = 2) +2 = (T),

which implies that v4(T) = v(T") — 2. Also, since v; and v, do not cover any edges
in 7", it is clear that in 7', all the edges of 7" are covered by D — {vy,ve}. Thus,
D —{v1,v3} is a vertex cover of T”, so we have 7(7") < 7(T') — 2. Let A be a vertex
cover of T, if vy € A, then AU {vy, v} is a vertex cover of T. Therefore

7(T) < |AU{v, v} =7(T")+2 < (7(T) —2) +2 =7(T)

which implies that 7(7") = 7(T") + 2. If vy ¢ A for every 7(7")-set, then, since we
have already noticed that D — {vy,v9} is a vertex cover of 7", it must be the case
that 7(7") < 7(T) — 3. But then, AU {vy,v3} would be a 7(T)-set with 7(7") — 1
vertices, a contradiction. Thus, there is at least one 7(T")-set containing vy, and, as
mentioned above, 7(T) = 7(T") + 2. Therefore, D — {vy,v5} is a (y, — 7)-set of T”,
and the induction hypothesis impiles 77 € 7. Finally, we can obtain T" from 7" using
operation O;.

O

Therefore, we have proved the following theorem.

Theorem 3.6. It T is a tree, then T € T if and only if T has a (v — 7)-set.

4 Further work and open problems

Once we have characterized the trees having a (v; — 7)-set, the following natural step
is to consider the following problem.

Problem 4.1. Find a characterization for the (v, — T )-trees.

If we let 77 be the family of all (y; — 7)-trees, it is clear that the family 7, of all
trees having a (v, — 7)-set, is contained in 7’. We have already observed in Section
2, that this containment is proper. Moreover, we can slightly modify the operations
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01,0, and O3 to preserve the equality v, = 7, but not necessarily preserving the
existence of a (y; — 7)-set, thus obtaining a larger infinite family of trees, say S, such
that 7 C S C T'. The modified operations for a tree 7" are the following (notice the
relaxation of the choice of u, cf. Section 2).

e Operation O}: Let u be a vertex in 7', and let v be an end vertex of a path
P;. Then do the sum of T" with P, via the edge uwv.

e Operation O): Let u € V(T) such that u belongs to some 7;(T")-set and also
belongs to some 7(7T')-set. Then add a new vertex v to T' supported by .

e Operation O}: Let u € V(T') such that u belongs to some 7 (T)-set and u
it is not a quasi-isolated vertex. Let P, = (v,w) be a path with two vertices.
Then do the sum of T" with P, via the edge uv.

Notice that the family of paths of length 4k, £ > 2, mentioned in Section 2 as
an example of an infinite family of (7, — 7)-graphs not having a (y; — 7)-set, can be
obtained from Py by recursively applying operation O}; this shows that the inclusion
T C T is proper. Similarly, examples can be found of a tree 7" obtained from a tree
T by applying operation O;, i € {2,3}, such that T has a (y; — 7)-set, but 7" does
not.

From the computational point of view, for any tree T', both 7(T") and 7(T") can be
determined in polynomial time. Hence, the problem of determining if v(7T") = 7(T),
for a tree T, is polynomial time solvable. For the case of trees having a (v — 7)-
set, Theorem 3.6 does not trivially imply a polynomial algorithm to determine the
existence of a (7 — 7)-set in a tree, so the following problem seems to be interesting.

Problem 4.2. Find the complexity of determining the existence of a (v, — 7)-set in
a tree.

Of course, it is also interesting to ask both problems for general graphs.
Problem 4.3. For a given graph G:

e Find the complezity of determining whether v(G) = 7(G).

o Find the complexity of determining the existence of a (v — 7)-set in G.

Our intuition says that the existence of a (7 — 7)-set is so restrictive in the
structure of GG that the second problem might be solvable in polynomial time.
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