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Abstract

The Ramsey multiplicity constant of a graph H is the minimum propor-
tion of copies of H in the complete graph which are monochromatic under
an edge-coloring of Kn as n goes to infinity. Graphs for which this min-
imum is asymptotically achieved by taking a random coloring are called
common, and common graphs have been studied extensively, leading to
the Burr-Rosta conjecture and Sidorenko’s conjecture. Erdős and Sós
asked what the maximum number of rainbow triangles is in a 3-coloring
of the edge set of Kn, a rainbow version of the Ramsey multiplicity ques-
tion. A graph H is called r-anti-common if the maximum proportion of
rainbow copies ofH in any r-coloring of E(Kn) is asymptotically achieved
by taking a random coloring. In this paper, we investigate anti-Ramsey
multiplicity for several families of graphs. We determine classes of graphs
which are either anti-common or not. Some of these classes follow the
same behavior as the monochromatic case, but some of them do not.
In particular the rainbow equivalent of Sidorenko’s conjecture, that all
bipartite graphs are anti-common, is false.
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1 Introduction

All graphs that we consider will be finite and simple. If H is a subgraph of G, we
write H ⊆ G and we say G contains a copy of H . An r-edge-coloring of a graph G
is a function with domain E(G) and codomain a set of r colors, {1, . . . , r}. Given
an edge coloring c of G, a subgraph H of G is said to be monochromatic if for every
e, f ∈ E(H) c(e) = c(f). That is, a subgraph is monochromatic if all its edges are
the same color (e.g., Figure 1).

Given a complete graph Kn and a subgraph H of Kn, it is an interesting question
to determine how many monochromatic copies of H are we guaranteed to find in
any r-edge-coloring of Kn. The maximum number we can guarantee is known as
the Ramsey multiplicity. In particular, the Ramsey multiplicity Mr(H ;n) is the
minimum over all r-edge-colorings of Kn of the number of monochromatic copies of
H . We consider the Ramsey multiplicity of a graph H with m vertices relative to
the number of copies of H in Kn via the ratio

Cr(H ;n) =
Mr(H ;n)(
n
m

)
m!

|Aut(H)|
.

Throughout the paper, m and e refers to the order and size of the subgraph, denoted
here with H . n refers to the size of the large complete graph that contains the
subgraph. The denominator is the number of copies of H in Kn where Aut(H)
is the set of automorphisms of H . Intuitively, this ratio can be thought of as the
probability a randomly chosen copy of H in Kn is monochromatic. We can obtain an
immediate bound on Cr(H ;n) by coloring each edge of Kn color i independently with
probability 1

r
. Under this random coloring, any copy of H in Kn is monochromatic

with probability r1−e(H). This gives an upper bound on Cr(H ;n) of r1−e(H). In [12],
Jagger, Šťov́ıček, and Thomason show that Cr(H ;n) is nondecreasing in n and so
since it is also bounded the limit

Cr(H) = lim
n→∞

Cr(H ;n),

exists and is known as the Ramsey multiplicity constant of H [8].

The earliest result in this area was by Goodman in 1959 who proved C2(K3) =
1
4

[9]. In 1962, Erdős conjectured that C2(Kn) = 21−(
n
2) for all cliques [6]. Burr and

a b

c d

1

2

3 1
1

Figure 1: The vertices {a, b, d} form a monochromatic K3 in this 4-edge-coloring of
this graph.
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Rosta later conjectured that for all graphs H , C2(H) = 21−e(H) [4]. We call a graph
common if it satisfies the Burr-Rosta conjecture. Sidorenko disproved the Burr-
Rosta conjecture by showing that a triangle with a pendant edge is not common
[15]. Thomason disproved the initial conjecture of Erdős by showing that for p ≥ 4,
Kp is not common [17]. Sidorenko conjectured instead that all bipartite graphs
are common [14], this conjecture is well-known and is referred to as Sidorenko’s
conjecture. Much work has been done on both the Burr-Rosta conjecture (see, e.g.,
[4, 9, 11, 12, 15, 16]) and on Sidorenko’s conjecture (c.f. [2, 5, 10, 13]). If we instead
consider r > 2, H is called r-common if Cr(H) = r1−e(H). Jagger et al. showed that
if a graph G is not r-common, then it is not (r+1)-common [12]. In 2011, Cummings
and Young proved that no graph containing K3 is 3-common [1]. Cummings et al.
determined M3(K;n) for all n ∈ N and, therefore, C3(K3) [18]. There are many
open questions which remain for r > 2.

We will consider a similar parameter to the Ramsey multiplicity constant by
searching for rainbow subgraphs as opposed to monochromatic subgraphs. Given an
edge coloring c of G, a subgraph H of G is said to be rainbow if for every pair of
distinct edges e, f ∈ E(H), c(e) �= c(f). In Figure 1, the edges 13 and 34 form a
rainbow copy of P2. In this setting, a minimization problem is uninteresting since it
is possible to color all edges the same color and hence contain no rainbow copy of
H (assuming e(H) > 1). Instead, we ask what is the maximum number of rainbow
copies of H we can find amongst all edge colorings of Kn. Let rbr(H ;n) be the
maximum over all r-edge-colorings of Kn of the number of rainbow copies of H and
call this the anti-Ramsey multiplicity of H . In this paper, we will build the theory
of the anti-Ramsey multiplicity constant and decide r-anti-commonality of various
classes of graphs.

2 The anti-Ramsey multiplicity constant

Before we define the anti-Ramsey multiplicity constant, we will first prove that given
a graph H , the maximum probability a copy of H is rainbow under a coloring of Kn

is bounded and monotone as a function of n. As in the Ramsey case, we will consider
the anti-Ramsey multiplicity of a graph H with m vertices relative to the number of
copies of H in Kn via the ratio

rbCr(H ;n) =
rbr(H ;n)(
n
m

)
m!

|Aut(H)|
.

For the remainder of this section, fix a graph H = (V,E) with |V | = m and e(H) = e.

Proposition 2.1.

rbCr(H ;n) ≥
(
r
e

)
e!

re
.

Proof. We will color the edges of Kn uniformly and independently at random from
the set {1, . . . , r}. In particular, each edge is colored color i with probability 1

r
for
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i = 1, . . . , r. The number of possible rainbow edge assignments of a graph with
e edges is

(
r
e

)
e! and a given edge assignment occurs with probability

(
1
r

)e
. Thus

the expected probability that a randomly selected copy of H in Kn is rainbow is

given by
(re)e!
re

. Therefore there exists a coloring such that this probability is at least
(re)e!
re

and since rbCr(C;n) is the maximum over all such probabilities, the inequality
follows.

Proposition 2.2. For a fixed H,

rbCr(H ;n)

is monotone nonincreasing in n.

Proof. We will prove that

rbr(H ;n)

rbr(H ;n− 1)
≤ n

n−m

which is equivalent to the proposition. Consider an r-coloring of Kn that has exactly
rb(H ;n) rainbow H . Every subgraph Kn−1 contains at most rbr(H ;n− 1) rainbow
H . On the other hand, every H withm vertices is contained in exactly n−m different
Kn−1. Hence,

(n−m)rbr(H ;n) ≤ nrbr(H ;n− 1)

which proves the desired result.

We are now ready to define the anti-Ramsey multiplicity constant.

Corollary 2.3. The anti-Ramsey multiplicity constant, given by

rbCr(H) = lim
n→∞

rbCr(H ;n),

exists and is finite.

Proof. By Propositions 2.1 and 2.2, the sequence {rbCr(H ;n)}∞n=m is bounded and
monotone. Hence by the Monotone Convergence Theorem, the limit exists and is
finite.

Note that the anti-Ramsey multiplicity constant has the same lower bound as
that of Proposition 2.1, motivating the following definition.

Definition 2.4. For r ≥ m, we say that H is r-anti-common if

rbCr(H) =

(
r
e

)
e!

re
.

If H is r-anti-common for all r ≥ m, H is called anti-common.
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3 Anti-common graphs

In this section we will prove anti-commonality for matchings and disjoint unions of
stars. We will state but not prove the number of automorphisms for each graph in
question and for more details regarding automorphisms of graphs see [3]. Suppose
f(n) and g(n) are two real-valued functions. We say

f(n) = O(g(n))

if and only if there exist positive constants C,N such that |f(n)| ≤ C|g(n)| for all
n > N . We will sometimes abuse notation and use big-O notation in a string of
inequalities. For example f(n) ≤ g(n) + O(n) means there exist C,N such that
f(n) ≤ g(n) + Cn for all n ≥ N .

Lemma 3.1. H = (V,E) with order m and size e. If

rbr(H ;n) ≤ nm
(
r
e

)
e!

|Aut(H)|re +O(nm−1),

then H is r-anti-common.

Proof. Assume that for n large enough we have rbr(H ;n) ≤ nm(re)e!
|Aut(H)|re + O(nm−1).

Then

lim
n→∞

rbr(H ;n)(
n
m

)
m!

|Aut(H)|
≤ lim

n→∞

nm(re)e!
|Aut(H)|re +O(nm−1)(

n
m

)
m!

|Aut(H)|

=

(
r
e

)
e!

re
lim
n→∞

nm +O(nm−1)(
n
m

)
m!

=

(
r
e

)
e!

re
lim
n→∞

nm +O(nm−1)

n(n− 1) · · · (n−m+ 1)

=

(
r
e

)
e!

re
.

We will also use the following inequality, often referred to as Maclaurin’s inequal-
ity.

Fact 3.2. Given positive integers k ≤ l and positive real numbers x1, . . . , xl,

∑
{i1,i2,...,ik}⊆[l]

xi1xi2 · · ·xik ≤
(
l

k

)(∑n
i=1 xi

l

)k

.

The following lemma will be used in the proof of Theorem 3.4 which generalizes
the result to disjoint unions of stars.
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Lemma 3.3. Stars are anti-common.

Proof. Consider S = K1,m−1 and note that

|Aut(S)| = (m− 1)!.

By Lemma 3.1, It suffices to prove that

rbr(K1,m−1;n) =

(
r

m−1

)
nm

rm−1
+O(nm−1).

Given a vertex v of Kn, let qi be the number of edges of color i incident with v. Then
the number of rainbow copies of S with center v is∑

{i1,i2,··· ,im−1}⊆[r]

qi1qi2 · · · qim−1 .

Vertices of Kn have degree n− 1, so by Fact 3.2 we have

∑
{i1,i2,··· ,im−1}⊆[r]

qi1qi2 · · · qim−1 ≤
(
n− 1

r

)m−1(
r

m− 1

)
.

Stars with centers v and v′ are distinct if v �= v′, therefore the total number of
rainbow copies of S in Kn is at most

n

(
n− 1

r

)m−1(
r

m− 1

)
=

(
r

m−1

)
nm

rm−1
+O(nm−1).

Theorem 3.4. Disjoint unions of stars are anti-common.

Proof. Fix positive integers k ≤ m and let P≥2
k (m) denote the set of integer partitions

of m into k parts with each part having size at least 2. For P = {m1, . . . , mk} ∈
P≥2

k (m), let SP be a disjoint union of k stars with components SP,i = K1,mi−1 for
i = 1, . . . , k. Let mi1 < · · · < mij(P )

be the j(P ) distinct sizes of the stars in SP and

let Ms be the number of stars in SP of size mis . Then defining γ(P ) =
∏j(P )

i=1 Mi!,
we have the number of automorphisms of SP is given by

|Aut(SP )| = γ(P )

k∏
i=1

(mi − 1)!.

Given P ∈ P≥2
k (m), define(

m− k

P − 1

)
=

(
m− k

m1 − 1, . . . , mk − 1

)

then we want to show

rbr(SP ;n) =

(
m− k

P − 1

)( r
m−k

)(
n
m

)
m!

γ(P )rm−k
+O(nm−1).
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Claim 3.5.

∑
P∈Pk(m)

γ(P )rbr(SP ;n) ≤
∑

P∈Pk(m)

(
m− k

P − 1

)(n
m

)
m!
(

r
m−k

)
rm−k

+O(nm−1).

Proof. Let Ck(n) denote the collection of sets of k vertices in Kn. Given C ∈ Ck(n),
we will count the number of rainbow disjoint unions of k stars with exactly m vertices
and with C as the centers of the stars. Let qi(C) denote the number of edges of color
i incident to any vertex in C, except those edges between two vertices in C. Then
the number of rainbow disjoint unions of k stars with m vertices and C as the centers
is at most ∑

{i1,...,im−k}⊆[r]

qi1(C) · · · qim−k
(C). (1)

Note that
∑r

i=1 qi(C) = k(n− 1)− (k
2

)
and so by Fact 3.2,

∑
{i1,...,im−k}⊆[r]

qi1(C) · · · qim−k
(C) ≤

(
r

m− k

)(
k(n− 1)− (k

2

)
r

)m−k

.

Consider the sum ∑
C∈Ck(n)

∑
{i1,...,im−k}⊆[r]

qi1(C) · · · qim−k
(C).

Let SP be defined as above, i.e. a disjoint union of k stars with components K1,mi−1,
where P = {m1, . . . , mk} ∈ P≥2

k (m). In the sum above, SP will be counted γ(P )
times. Therefore,∑

C∈Ck(n)

∑
{i1,...,im−k}⊆[r]

qi1(C) · · · qim−k
(C) =

∑
P∈Pk(m)

γ(P )rbr(SP ;n).

Since |Ck(n)| =
(
n
k

)
k!, we have

∑
P∈Pk(m)

γ(P )rbr(SP ;n) ≤
(
n

k

)
k!

(
r

m− k

)(
k(n− 1)− (k

2

)
r

)m−k

=

(
r

m−k

)
nm

rm−k
km−k +O(nm−1).

It remains to show that(
r

m−k

)
nm

rm−k
km−k +O(nm−1) ≤

∑
P∈Pk(m)

(
m− k

P − 1

)(n
m

)
m!
(

r
m−k

)
rm−k

+O(nm−1)

which holds with equality because km−k =
∑

P∈Pk(m)

(
m−k
P−1

)
by the multinomial the-

orem.
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By Proposition 2.1, we have for all P = {m1, . . . , mk} ∈ P≥2
k (m),

γ(P )rbr(SP ;n) ≥
(m− k)!

(
r

m−k

)(
n
m

)
m!∏k

i=1(mi − 1)!rm−k
+O(nm−1) (2)

=

(
m− k

P − 1

)( r
m−k

)(
n
m

)
m!

rm−k
+O(nm−1). (3)

Therefore, Claim 3.5 and the inequality (3) above implies for each P ∈ P≥2
k (m),

rbr(SP ;n) =

(
m− k

P − 1

)( r
m−k

)(
n
m

)
m!

γ(P )rm−k
+O(nm−1).

4 Graphs which are not anti-common

Not all graphs are r-anti-common for all r, and here we will prove in particular
that complete graphs and K4 without an edge are not anti-common. We will also
give sufficient conditions, based on the number of edges, for a graph to not be anti-
common.

4.1 Specific graphs which are not anti-common

In order to show that a graph is not anti-common for some r, we will construct a
coloring with more rainbow subgraphs than that guaranteed in Proposition 2.1. Our
arguments will start with a fixed coloring of some Km for m small and we will use
an iterated blow-up argument to construct a coloring of a larger Kn.

Definition 4.1. An iterated blow-up is an inductive coloring of Kn, where the edges
are colored as follows. Pick m ≤ n and fix a coloring of Km with labeled vertices
v1, . . . , vm. Divide the vertices of Kn into m disjoint sets of size � n

m
� and 	 n

m

, namely

V1, . . . , Vm. For ui ∈ Vi and uj ∈ Vj, color the edge uiuj the same color as the edge
vivj in the coloring ofKm. Repeat this process with each Vi until there are no vertices
left to be split into m disjoint sets. We call this an iterated blow-up of the initial
coloring of Km with n vertices.

Proposition 4.2. The graph with 4 vertices and 5 edges, namely K−
4 , is not 5-anti-

common.

Proof. Note that the 5-edge-coloring of K5 in Figure 2 contains 10 rainbow copies of
K−

4 . Given n = 5k for k a positive integer, let F (n) be the number of rainbow copies
of K−

4 contained in an iterated blow-up of the coloring in Figure 2 on n vertices.
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Figure 2: A 5-edge-coloring of K5 with 10 rainbow copies of K−
4 .

Within each of the 5 parts, there are 5F
(
n
5

)
rainbow copies of K−

4 and there are

10
(
n
5

)4
with one vertex in each part. Therefore

F (n) ≥ 5F
(n
5

)
+ 10

(n
5

)4
and solving this recurrence gives

F (n) ≥ n4

62
+O(n3).

There are 4 automorphisms of K−
4 , hence

rbr(K
−
4 ;n) ≥

n4

62
+O(n3)

>
6n4

625
+O(n3)

=

(
n
4

)
4!
(
5
5

)
5!

4 · 55 +O(n3).

In [7], it was shown that K3 is not 3-anti-common. We will now prove for a ≥ 4,
Ka is not

(
a
2

)
-anti-common.

Theorem 4.3. The complete graph Ka is not
(
a
2

)
-anti-common for a ≥ 4.

Proof. Consider a rainbow Ka, i.e. let c be an
(
a
2

)
-edge-coloring of Ka such that each

edge has a different color. Given n = ak for k a positive integer, let F (n) denote
the number of rainbow copies of Ka contained in an iterated blow-up of the coloring
c on n vertices. There are aF

(
n
a

)
rainbow copies of Ka within each of the a parts,

and there are
(
n
a

)a
rainbow copies of Ka with exactly one vertex from each part.

Therefore
F (n) ≥ aF

(n
a

)
+
(n
a

)a
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and solving this recurrence gives

F (n) ≥ na

aa − a
+O(na−1).

Therefore, since the number of automorphisms of Ka is a!, in order to show

na

aa − a
+O(na−1) >

(
n
a

)(
a
2

)
!(

a
2

)(a2)
we will prove

a!

aa − a
>

(
a
2

)
!(

a
2

)(a2) . (4)

We will use the following bound on the factorial function

(
a

2

)
! ≤ e

(
a

2

)((a
2

)
e

)(a2)

where e is the base of the natural logarithm. From this we have(
a
2

)
!(

a
2

)(a2) ≤
(
a
2

)
e(

a
2)−1

and also using the inequality from (4), a!
aa−a

≥ 1
ea−1 and therefore it suffices to show(

a
2

)
e(

a
2)−1

<
1

ea−1
.

One can check that this inequality holds for a ≥ 4 which concludes the proof.

4.2 Sufficient conditions for not anti-commonality

In what follows log represents the natural logarithm. We will also be using both
sides of Stirling’s approximation given below.

Theorem 4.4 (Stirling’s Approximation).

√
2πn

(n
e

)n
≤ n! ≤

√
2πn

(n
e

)n
e

1
12n .

Theorem 4.5. Suppose H is a graph with m vertices and e edges and let c be a
constant such that 2πm(1− c) > 1 and

c+ (1− c) log(1− c) ≥ 2

m− 1
+

1(
m

2

)2

12

.

If e ≥ c

(
m

2

)
, then H is not

(
m

2

)
-anti-common.
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Proof. Let H be a graph which satisfies the hypothesis above and consider a rainbow
coloring of H . An iterated blow-up of this coloring with n vertices, similarly to the
proof of Theorem 4.3, yields that the number of rainbow copies of H in Kn is at least

nmm!

mm
+O(nm−1).

From the relations between c and m we have

c

(
m

2

)
− 1(

m

2

)
12

+ (1− c)

(
m

2

)
log(1− c)−m ≥ 0

and

exp

(
c

(
m

2

)
− 1(

m
2

)
12

−m

)
(1− c)(

m
2 )(1−c) ≥ 1.

Then since 2πm(1− c) > 1 we have

√
2πm(1− c) exp

(
c

(
m

2

)
− 1(

m
2

)
12

−m

)
(1− c)(

m
2 )(1−c) > 1

which is equivalent to

√
2πm

em
>

exp

(
1

(m2 )12

)
√
1− c exp

(
c
(
m
2

))
(1− c)(

m
2 )(1−c)

=

exp

(
1

(m2 )12

)((
m
2

)
e−1
)(m2 )

(
m
2

)c(m2 ) ((m
2

)
(1− c)e−1

)(m2 )(1−c) √
1− c

≥
(
m
2

)
!(

m
2

)c(m2 ) ((m
2

)− c
(
m
2

))
!
√
1− c

=

( (m
2

)
c
(
m
2

))(c(m
2

))
!

(
m
2

)c(m2 )

≥

((m
2

)
e

)
e!(

m
2

)e .

Using Stirling’s approximation, we have

√
2πm

em
<

√
2πm

em
≤ m!

mm
.
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and therefore

nmm!

mm
+O(nm−1) >

nm

((m
2

)
e

)
e!(

m
2

)e +O(nm−1).

Corollary 4.6. Let H be a graph on m vertices and e edges such that

e > m
√
m− 1.

Then for m ≥ 6, H is not
(
m
2

)
-anti-common.

Proof. Let H be a graph that satisfies the hypothesis and set c = 2√
m−1

. Since

2πm(1− c) > 1 for m ≥ 6, we can apply Proposition 4.5 and thus it suffices to show

c + (1− c) log(1− c) ≥ 2

m− 1
+

1(
m
2

)2
12

.

For m ≥ 6 we also have |c| < 1, so we can expand the log function as follows

c+ (1− c) log(1− c) = c+ (1− c)

(
−c− c2

2
− c3

3
− · · ·

)

=

∞∑
i=2

1

i(i− 1)
ci

=
2

m− 1
+

4

3(m− 1)3/2
+

∞∑
i=4

1

i(i− 1)

(
2√

m− 1

)i

>
2

m− 1
+

1(
m
2

)2
12

.

Corollary 4.6 shows that for n large enough, any bipartite graph of positive den-
sity is not anticommon. In particular, a random bipartite graph will satisfy the
hypotheses of Corollary 4.6 with probability tending to 1, giving the following corol-
lary which is in sharp contrast to Sidorenko’s conjecture.

Corollary 4.7. Almost all bipartite graphs are not anti-common.

If Sidorenko’s conjecture is true, this is very different behavior from the monochro-
matic situation.
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5 Future directions

As in the Ramsey case, we wish to establish an implication between a graph being
r-anti-common and (r+1)-anti-common. Through our investigation of this problem,
we have shown the following.

Proposition 5.1. Let H be a graph with e edges, then

rbr+1(H ;n) ≥ rbr(H ;n) ≥
(
(r + e)(r + 1− e)

r(r + 1)

)
rbr+1(H ;n).

Proof. Since the set of (r+1)-edge-colorings contains the set of r-edge-colorings, the
left inequality follows immediately. Now consider an (r+1)−edge-coloring ofKn such
that the number of rainbow copies of H is exactly rbr+1(H ;n). Randomly choose a
color from [r+1] and call it r′. For all edges colored r′, recolor them randomly from
the set of colors [r+1]\{r′}. In the initial coloring, the expected number of rainbow
copies of H with one edge colored r′ is

rb(G, n, r + 1)e

r + 1
.

With probability r−e+1
r

, each of these rainbow subgraphs will remain rainbow in the
new coloring. Therefore the expected number of rainbow copies of H in the new
coloring is (

rbr+1(H ;n)− rbr+1(H ;n)e

r + 1

)
+

rbr+1(H ;n)e(r − e+ 1)

r(r + 1)

=

(
(r + e)(r + 1− e)

r(r + 1)

)
rbr+1(H ;n).

This implies that there exists such a coloring of Kn with r colors and hence(
(r + e)(r + 1− e)

r(r + 1)

)
rbr+1(H ;n) ≤ rbr(H ;n).

This inequality leads us to believe that the implication below is in fact true.

Conjecture 5.2. If H is not r-anti-common, then H is not (r + 1)-anti-common.

There are also many other classes of graphs whose anti-commonality have yet to
be studied. Preliminary results on cycles lead us to believe that for k ≥ 3, cycles of
length k are not k-anti-common. One can show using the iterated blow-up method
in Section 4 that C4 is not 4-anti-common and that C5 is not 5-anti-common. It is
also conjectured that P4 is 3-anti common—flag algebra computations (on 5 vertex
flags) give an upper bound of approximately 0.22222241, nearly matching the lower
bound of 2/9.
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