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Abstract

We consider permutation classes having two basis elements of size three
and one further basis element. We completely classify the possible enu-
meration sequences of such classes and demonstrate that there are far
fewer of them than might be expected in principle.

1 Introduction

Let S = ∪Sn be the union of the sets of permutations of [n] = {1, 2, . . . , n}. We
represent the elements of S in one-line notation, i.e., we think of each element π ∈ Sn

as a sequence π1π2 · · ·πn. In this representation there is a natural partial order � on
S defined by π � σ if there is a subsequence σi1σi2 · · ·σin of σ having the same size
as π and satisfying σis � σit if and only if πs � πt. In passing we note that the word
“natural” in the preceding sentence is not poorly chosen – this order corresponds to
the substructure relation on finite models of the theory of two linear orders. We refer
to this order as involvement and its complement as avoidance, i.e., if π � τ we say
that π is involved in τ , while if π � τ we say that τ avoids π.

The study of permutation classes can be thought of as the study of the downwards-
closed (or hereditary) subsets of S with respect to the order �. Given such a class C
note that if we take X to be the set of �-minimal permutations in the complement
of C then

C = {π ∈ S : for all χ ∈ X, χ � π}.
We say that the permutations in C avoid the permutations in X and write C =
Av(X). For a more comprehensive introduction to permutation classes we recom-
mend Vatter’s survey [15] and references therein.

Given a permutation class C we are interested in its enumeration sequence, (cn)n≥0

or its generating function C(t) =
∑∞

n=0 cnt
n where cn is equal to the cardinality of
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Sn∩C. Two permutation classes are said to be Wilf-equivalent if they have the same
enumeration sequence (or generating function).

There are a variety of trivial Wilf-equivalences that arise from the automor-
phisms of (S,�). These automorphisms form a dihedral group of order 8 and can be
generated by reversal (of the corresponding words), and inverse. They are most nat-
urally understood geometrically as acting on the set of points (i, πi) within a square
[0, n + 1]× [0, n + 1] under the normal symmetries of the square. The first instance
of a non-trivial Wilf-equivalence is that the pair of classes Av(312) and Av(321) are
both enumerated by the Catalan numbers.

The main question we wish to address is:

Question 1.1 Given a class C = Av(X), for which π and τ in C is it the case that
C ∩Av(π) and C ∩Av(τ) are Wilf-equivalent?

For convenience we introduce the notation AvC(π) for C∩Av(π) and refer to such
classes as principal subclasses of C. We also use ≡WE to denote the equivalence rela-
tion of Wilf-equivalence and, when context is clear we may refer to Wilf-equivalence
of π and τ rather than of the principal subclasses they define.

In [14], one of the seminal papers for the study of permutation patterns, Simion
and Schmidt considered specifically permutation classes of the form Av(X) where
all the permutations in X are of size 3. When X consists of three or more elements,
these sets are quite restricted indeed and not terribly interesting. When X is a
singleton then as noted above the two (up to trivial Wilf-equivalence) types are both
enumerated by the Catalan numbers. Wilf-equivalence between principal subclasses
of Av(231) was considered in [2], where a necessary (and conjecturally sufficient)
condition for Wilf-equivalence was introduced for these classes. The case of Av(321)
is more complex for various reasons, mostly having to do with the complicated nature
of the involvement relation on these permutations. Here we concentrate on Wilf-
equivalences among principal subclasses of Av(X) where X consists of precisely two
permutations of size 3. Subclasses of such classes have already been considered in
some generality in [16] and implicitly elsewhere. There are systematic and automatic
methods to determine their individual enumerations, but no general arguments about
when their enumerations coincide.

Most results concerning non-trivial Wilf-equivalences have been ad hoc and quite
limited, typically dealing with a specific pair of classes, a small finite set of classes,
or very simple infinite families. We are interested in following a more systematic
approach aimed at discovering whole families of Wilf-equivalences. In particular, we
are interested in the phenomenon of Wilf-collapse. We say that a class C exhibits
a Wilf-collapse if the sequence, wn defined as the number of equivalence classes of
≡WE on the permutations in C of size n has the property that wn = o(cn), i.e., there
are far fewer enumeration sequences for principal subclasses of C than there might
be in principle. The aforementioned paper [2] illustrates a Wilf-collapse in Av(231)

demonstrating there that wn = o(2.5n) while c
1/n
n → 4.
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If one of the automorphisms of S takes a set X to a set Y then the two classes
Av(X) and Av(Y ) are isomorphic as partially ordered sets and hence their behaviour
with respect to Wilf-equivalences is the same. Furthermore, the class Av(123, 321)
contains no permutations of size greater than 4 so is not of interest to us in terms
of classifying Wilf-equivalences therein. Thus, in our investigation, we may take one
of the elements of X to be 312. Even then there are still some symmetries available
leaving only four classes that we need to consider:

Av(312, 123), Av(312, 213), Av(312, 231), and Av(312, 321).

In the following sections we consider Wilf-equivalences among principal subclasses
of these classes one by one. The first two are very straightforward and we will
demonstrate a Wilf-collapse directly. In the latter two cases we describe an easily
determined equivalence relation on the class which turns out to be the same as that
of Wilf-equivalence. To that end we introduce the following definition:

Definition 1.2 An equivalence relation ∼ on a class C is sound for Wilf-equivalence
if π ∼ τ implies AvC(π) ≡WE AvC(τ). We say that ∼ is sound and complete for
Wilf-equivalence if it is sound and AvC(π) ≡WE AvC(τ) implies π ∼ τ .

Before studying the classes individually we introduce a little more notation which
we make use of in several cases.

Definition 1.3 Let π ∈ Sn and τ ∈ Sm. The sum, π⊕ τ ∈ Sn+m is the permutation
defined by:

(π ⊕ τ)(k) =

{
π(k) for k � n,
n+ τ(k − n) for k > n.

A permutation is ⊕-indecomposable if it is not the sum of two non-empty permuta-
tions.

In one-line notation, π ⊕ τ is formed by concatenating π and n + τ where by
n + τ we mean the sequence formed by adding n to each element of the sequence
τ . Since the operation ⊕ is easily seen to be associative, any permutation has a
unique representation as a sum of ⊕-indecomposable permutations and so we can
represent permutations in a class as words over the alphabet consisting of the ⊕-
indecomposable permutations of that class (just by suppressing the operation ⊕
itself). From now on we make no distinction between this representation and the
corresponding permutations. Generally we will use upper case Roman letters to
represent words and lower case ones to represent letters.

There is another operation 
 (which we shall use only briefly) where in one-line
notation, π 
 τ is formed by concatenating π + m and τ . The two operations are
illustrated below:
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• •
•
•
•
•

21⊕ 2413 = 214635

• •
•
•
•
•

21
 2413 = 652413

Central to many of the proofs in the following sections that establish sufficient
conditions for Wilf-equivalence is that when working with the plus-indecomposable
words representing permutations, we can recognise involvement greedily. This will
allow us to recognise “common parts” of two potentially Wilf-equivalent permutations
in a uniform manner and then apply symmetry locally to build up the bijections
needed for Wilf-equivalence. The substance of this recognition result is identified in
the following proposition.

Proposition 1.4 Let C be a permutation class and W and V be two words over the
⊕-indecomposable permutations of C. Suppose that W = wW ′ (w a single letter).
Then W � V if and only if the following two conditions are satisfied:

• w is involved in some letter of V , and

• if vi is the first such letter, V R is the suffix of V following (but not including)
vi, A is the longest prefix of W with A � vi, and W = AB; then B � V R.

Proof: If B � V R then it is obvious that AB � V simply by embedding A into vi
and the remainder into V R. The converse is almost as immediate. Let an embedding
of W into V be given. Either it includes w embedding into vi or it occurs entirely
in V R. In the latter case we have an embedding of B into V R. But in the former
case no part of B can embed into vi either by the maximality of A, and so B � V R

regardless. �

Of course this proposition also applies to prefixes of W rather than single letters
(by inductive application) and also suffixes (by arguing from the right rather than
from the left). When the relation � on the ⊕-indecomposable permutations in C is
sufficiently limited it will be a powerful tool in restricting how permutations of C can
be involved in one another.

2 Av(312, 123)

Throughout this section C = Av(312, 123). The enumeration sequence of C has
cn =

(
n
2

)
+1 and its permutations are characterised as being formed from up to three

decreasing segments arranged as shown below.
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In other words, every permutation in C is of the form (α⊕β)
γ where α, β, and
γ are decreasing permutations. We can therefore describe the permutations in this
class by triples (a, b, c) of non-negative integers describing the number of elements
belonging to each segment (in left to right order according to the diagram above).
In order to avoid ambiguity in the representation of a decreasing sequence of size c
(which could be written as either (x, 0, y) or (0, x, y) for any x+ y = c) we also insist
that either both or neither of a and b should equal 0. With these conventions, the
order relation in C is a minor modification of the usual order on N3 given by:

(a, b, c) � (a′, b′, c′) if a � a′, b � b′ and c � c′; and
(0, 0, c) � (a′, b′, c′) if c � a′ + c′ or c � b′ + c′.

For this class it turns out that for all n > 1 there are exactly two Wilf-equivalence
classes of permutations of size n.

Theorem 2.1 Let π, τ ∈ C. Then

AvC(π) ≡WE AvC(τ)

if and only if |π| = |τ |, and either both or neither of π and τ is strictly decreasing.

Proof: If both π and τ are decreasing and of the same length then π = τ and
certainly AvC(π) ≡WE AvC(τ). On the other hand if one (say π) is decreasing but
the other is not then, by the Erdős–Szekeres theorem ([4]) AvC(π) is finite, while
AvC(τ) is infinite and so AvC(π) �≡WE AvC(τ).

So suppose that neither π nor τ is decreasing, but they are of the same size. For
σ ∈ C denote by InvC(σ) the set of permutations in C involving σ. Observe that
there is a size-preserving bijection between InvC(π) and InvC(τ) if and only if there
is a size-preserving bijection between AvC(π) and AvC(π). However, if π corresponds
to the triple (p1, p2, p3) (with p1, p2 �= 0 since π is not decreasing) and τ to the
triple (t1, t2, t3) then the elements of InvC(π) (resp. InvC(τ)) correspond to the triples
(p1 + x, p2 + y, p3 + z) (resp. (t1 + x, t2 + y, t3 + z)) for (x, y, z) ∈ N3 and so there is
an obvious size-preserving, and in fact order-preserving bijection between them. �

The proof above illustrates an order-preserving bijection between InvC(π) and
InvC(τ) for non-decreasing π and τ of equal size. In fact, it is not even required that
π and τ have equal size for this bijection to apply. However, there is in general no
order-preserving bijection between AvC(π) and AvC(τ) even when π and τ do have
the same size (a simple counterexample is provided by π = 2143 and τ = 3214).

3 Av(312, 213)

Throughout this section C = Av(312, 213). The permutations in C can be described
by a wedge like structure as shown below.
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That is, any π ∈ C can be partitioned into an increasing sequence followed by a
decreasing sequence. Alternatively, we can say that the least element of C must be
either the first or the last element (note how the conditions of avoiding 312 and 213
imply this – were the least element not in the first or last position then any element
to its left and any element to its right would define one of the two patterns which
are supposed to be avoided), and this condition applies recursively on deletion of the
least element. It is easy to see that the enumeration of C is given by cn = 2n−1 (simply
by noting that, by the reverse of the previous discussion if we build a permutation in
C from greatest element down then we have, after placing the first element, always
two choices for the addition of a new least element).

We can view C as being built recursively from the permutation 1 and closing
under the two operations π �→ 1⊕ π and π �→ π 
 1.

Observation 3.1 The order relation between elements of C is described recursively
by:

1⊕ π � 1⊕ τ ⇐⇒ π � τ,

1⊕ π � τ 
 1 ⇐⇒ 1⊕ π � τ,

π 
 1 � 1⊕ τ ⇐⇒ π 
 1 � τ , and
π 
 1 � τ 
 1 ⇐⇒ π � τ.

Our goal is to prove that C exhibits the greatest possible Wilf-collapse, to wit:

Theorem 3.2 Let π, τ ∈ C. Then

AvC(π) ≡WE AvC(τ)

if and only if |π| = |τ |.

Proof: We prove this by induction on |π|. Obviously, the result is trivial for |π| = 1.
So suppose that |π| = |τ | = n and that the result holds for permutations of length
less than n. We assume that π = 1⊕π′ for some π′ ∈ C (the case π = π′
1 follows an
exactly parallel argument). Then AvC(π) can be described recursively as a disjoint
union:

AvC(π) = {1} ∪ (1⊕ AvC(π′)) ∪ (AvC(π)
 1) .

Suppose first that τ = 1⊕τ ′, and let f be a size-preserving bijection between AvC(π′)
and AvC(τ ′) which exists by the inductive hypothesis. Using a similar disjoint union
decomposition for AvC(τ) we can define a size-preserving bijection, g, between AvC(π)
and AvC(τ) recursively as follows:

g(1) = 1,

g(1⊕ α) = 1⊕ f(α), and
g(α
 1) = g(α)
 1.
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If, on the other hand, τ = τ ′ 
 1 (and f is still a size-preserving bijection between
AvC(π′) and AvC(τ ′)) then we can define g by:

g(1) = 1,

g(1⊕ α) = f(α)
 1, and
g(α
 1) = 1⊕ g(α).

�

4 Av(312, 231)

Throughout this section C = Av(312, 321). The permutations in C are called layered
permutations because they can be described as a sequence of decreasing layers as
shown below.

That is, C is the closure of the class of all decreasing permutations under ⊕. To
establish this well-known fact, note that the avoidance of 312 means that all the
elements of π less than the leftmost element must occur in decreasing order, and the
avoidance of 231 means that all such elements must occur before any element greater
than the leftmost element of π. Therefore π = δ ⊕ τ for some monotone decreasing
permutation δ, and τ ∈ C and then a recursive analysis gives the result above.

Elements of C of size n are therefore in one to one correspondence with com-
positions of n (the sizes of the layers), from which we obtain cn = 2n−1. For the
remainder of the section we make no distinction between elements of C and composi-
tions of n and will represent both as words on the alphabet N. The order relation on
compositions A = a1a2 . . . , ak and B = b1b2 . . . , bm that corresponds to involvement
in permutations is that A � B if there is some subword bi1bi2 . . . bik of B such that
for 1 � j � k, aj � bij . In other words, some subword of B of the same length
as A dominates A term by term. This is one of several different possible orders on
the set of compositions (it has previously appeared in [12]). A similar order, based
on factors rather than subwords, is considered in [11] and has generated significant
interest for Wilf-equivalence centred around the rearrangement conjecture presented
there. Finally, yet another order is considered in [8] and [13].

We now define the equivalence relation ∼ on C to be the finest equivalence relation
on C which satisfies, for all P,Q ∈ C (possibly empty), and all positive integers a
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and b:

PabQ ∼ PbaQ, and
P11Q ∼ P2Q.

Proposition 4.1 The relation ∼ defined above is sound for Wilf-equivalence on C.

Proof: Since both ∼ and ≡WE are equivalence relations it suffices to prove that the
two defining cases for ∼ are sound for Wilf-equivalence, i.e., that

Av(PabQ) ≡WE Av(PbaQ), and
Av(P11Q) ≡WE Av(P2Q).

For the first part note that Av(ab) ≡WE Av(ba) due to an underlying symmetry
(reversal of the composition, or taking the reverse and complement of the underlying
permutation). Let r denote this symmetry. For a composition S, if PQ � S let
S = PLMQR where PL is the shortest prefix of S with P � PL and QR is the
shortest suffix of S with Q � QR. This decomposition exists by the extended version
of Proposition 1.4 (and its symmetric version on the right). Note also that it is
impossible to have Pa � PL or bQ � QR since a single layer cannot embed two or
more layers. Now we define a size-preserving bijection f : Av(PabQ) → Av(PbaQ)
as follows:

f(S) =

{
S if S ∈ Av(PQ),
PLr(M)QR if PQ � S.

For the second part observe that Av(2) consists solely of the compositions all of
whose parts are equal to 1 while Av(11) consists solely of the compositions having
only at most one part. So we can construct a size-preserving bijection g here in
much the same fashion as above. If S avoids PQ define g(S) = S. If S ∈ Av(P2Q)
but PQ � S then S = PL111 · · ·1QR, and we define g(S) = PLnQR where n is the
number of 1s appearing in S between PL and QR. �

From the conditions on ∼ it is clear that each ∼ equivalence class contains a
partition having no parts of size 2 (the first condition allows us to permute parts
arbitrarily, and the second one allows us to replace any 2s by 1s). Since the number of
partitions of n is sub-exponential, while cn = 2n−1, this establishes a Wilf-collapse for
C, as the number of ≡WE equivalence classes is at most the number of ∼ equivalence
classes. In fact we can prove that ∼ is complete as well as sound for Wilf-equivalence.

In order to prove this we will work directly with the generating functions of the
classes concerned. For classes AvC(A) let FA denote the generating function for the
enumeration sequence of AvC(A). Suppose that A = aB. A composition belongs
to AvC(A) if (and only if) it consists of zero or more parts less than a followed by
either:

• nothing , or
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• one part of size a or greater, followed by a composition in AvC(B).

Passing to generating functions and using the basic techniques of symbolic com-
binatorics ([5]) we get:

FaB =
1

1− t− t2 − · · · − ta−1

(
1 +

taFB

1− t

)
(4.1)

Note also that this implies:

taFB =
((
1− t− t2 − · · · − ta−1

)
FA − 1

)
(1− t).

From this it follows immediately that:

Lemma 4.2 In C, aA ≡WE aB if and only if A ≡WE B.

To finish the proof of completeness we need one more observation. For a positive
integer a, let ra denote the least positive solution of:

1− t− t2 − · · · − ta−1 = 0.

Lemma 4.3 Let a > 2 be a positive integer, and let B be a partition whose greatest
part, b, is less than a. Then limt→r−a FB exists and is finite. On the other hand, for
any partition A = aA′, limt→r−a FA = ∞.

Proof: We prove the first part by induction on the greatest part of B and the sum
of B. The base case B = 1 is trivial since F1 = 1. So suppose the result holds for
all partitions having lesser largest part, or the same largest part and lesser sum than
B does. Let B = bC. Then Equation 4.1 (applied to bC), the inductive hypothesis,
and the fact that

1− ra � 1− ra − r2a − · · · − rb−1
a = rba + rb+1

a + · · ·+ ra−1
a > 0

imply that the result holds for B.

For the second part, consider Equation 4.1 applied to aA′. As t → r−A the first factor
tends to ∞ while the second factor is positive and greater than 1. So the product
tends to infinity. �

Now we obtain:

Theorem 4.4 The relation ∼ is sound and complete for Wilf-equivalence in C.

Proof: As soundness has already been established we need prove only completeness.
The partitions having no parts of size 2 form a set of equivalence class representatives
for ∼, so it suffices to prove that if A and B are partitions of the same positive
integer having no parts of size 2, then FA = FB implies A = B. We establish this by
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induction, noting that the case where the greater of the two greatest parts of A and
B is 1 is trivial.

So suppose that A and B are partitions having no parts of size 2, that FA = FB,
that at least one of A and B has a part of size greater than 2, and that the result
holds for all partitions of lesser integers. Without loss of generality suppose that the
greatest part, a, of A is at least as great as that of B. Since FA = FB, by Lemma
4.3, a must also be the greatest part of B. But then by Lemma 4.2 and induction
A = B as required. �

5 Av(312, 321)

Throughout this section C = Av(312, 321). The permutations in C can be described
as sums of individual components of the form ι
 1 with ι an increasing permutation
(possibly empty) as shown below.

Once again there is an obvious correspondence between the elements of C of size
n and compositions of n. However, with respect to avoidance, parts of size 1 behave
very differently from parts of other sizes since a part of size k+1 (i.e. corresponding
to a summand 23 · · · (k + 1)1) can involve up to k successive parts of size 1. So, in
representing the permutations of C we distinguish between these two types of parts.

Any permutation in C = Av(312, 321) is the sum of strictly increasing sequences
ai = 12 . . . i (i ≥ 1) and sequences of the form bj = 23 . . . j1 (j ≥ 2). For example, the
permutation π = 213467859 can be represented as 21⊕12⊕2341⊕1 = b2⊕a2⊕b4⊕a1.
So there is a one-to-one correspondence between the permutations in C and words
over the alphabet consisting of symbols ai and bj not containing consecutive a’s. As
in the previous section we henceforth make no distinction between the elements of C
and such words. Further we use upper case letters to refer to such words. A slightly
modified form of Proposition 1.4 applies to C with respect to this representation (we
cannot be sure that a single letter of one word will be involved in a single letter of
another since for instance a3 � b2b3 without being involved in either one – however
it is still the case that in testing for involvement of one word in another we can do
so greedily from left to right or right to left).

We now define the equivalence relation ∼ on C to be the finest equivalence relation
on C which satisfies five rules – four of which can be thought of as local conditions,
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and one as a global one:

bibj ∼ bjbi

aibj ∼ bja
i

aibja
k ∼ akbja

i

b2bk ∼ a1bka
1

A ∼ B ⇒ PAQ ∼ PBQ

assuming in the final case that P and Q are arbitrary words subject only to the
condition that PAQ and PBQ contain no consecutive a’s.

Proposition 5.1 The relation ∼ defined above is sound for Wilf-equivalence on C.

Proof: The first three conditions are sound for Wilf-equivalence because they rep-
resent correspondences introduced by reversing the word representation of a permu-
tation in C. With respect to permutations this corresponds to the automorphism of
S that fixes 231, namely a reflection through a diagonal running from SE to NW. So
the corresponding classes are trivially Wilf-equivalent.

Although it is possible to provide a bijective proof of the soundness of the fourth
condition it seems a little simpler to work directly with generating functions in this
case. For a word X let FX denote the generating function of AvC(X). Then we have:

Fb2bk = 1 + tFb2bk +
t2

1− t
Fbk

⇒ (1− t)Fb2bk = 1 + tFb2bk +
t2

1− t
Fbk

⇒ Fb2bk =
1

1− t
+

t2

(1− t)2
Fbk .

The first equation above arises from recognising that the permutations in Av(b2bk)
consist of: the empty permutation, any permutation whose first summand is 1 and the
remainder of which avoids b2bk, and any permutation whose first summand contains a
decrease (there is a unique such summand, bj , for every j ≥ 2) and whose remaining
summands avoid bk. The following two lines are simple algebraic rearrangements.

On the other hand permutations in Av(a1bka
1) are either empty, consist of a single

summand, or consist of two or more summands in which case the summands except
for the first and last must avoid bk. Collecting the first two possibilities into one and
noting there is a unique possible summand of every size greater than or equal to 1
we get:

Fa1bka1 =
1

1− t
+

t2

(1− t)2
Fbk .

Hence, Fb2bk = Fa1bka1 as claimed.
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The final condition is sound due to being able to recognise involvement greedily.
Namely, to construct a size-preserving bijection g : AvC(PAQ) → AvC(PBQ) given
such a bijection f : AvC(A) → AvC(B) we simply fix all permutation in AvC(PQ),
while writing words W involving PQ in the form W = PLXQR where PL is the
shortest prefix of W involving P and QR the shortest suffix of W involving Q and then
setting g(W ) = PLf(X)QR. The condition that neither PAQ nor PBQ contains
consecutive as implies that no letters can share an involvement of parts of P and A,
nor of parts of A and Q (and likewise with B) and so for PLXQR to avoid PAQ it
is both necessary and sufficient that X avoid A. �

The upshot of all these rules is that any two words P and Q whose underlying
multisets of letters are the same are definitely ∼ equivalent, and we may also “trade”
occurrences of b2 for a pair of a1s or vice versa provided that we do not introduce
consecutive as. We could nominate as the representative of a ∼ equivalence class a
pair of partitions, the first representing the indices held on the bs, and the second the
one held on the as subject to the condition that the length of the second partition is
not more than one greater than the length of the first (so that the as can be inserted
without creating consecutive as) and the second partition contains at most one 1.
This makes it clear that C again exhibits a Wilf-collapse as the generating function
for pairs of partitions dominates that for the representatives described above and
still exhibits sub-exponential growth.

Before embarking on the proof of completeness for ∼ a little more preparatory
work is required. For n ≥ 0 define the polynomial pn(t) to be the generating function
for the permutations in C having a longest increasing subsequence of length exactly
n. These generating functions are polynomials because every permutation in C avoids
321 and hence, if it is of length greater than 2n contains an increasing subsequence
of length at least n+ 1.

Proposition 5.2 The polynomials pn(t) satisfy:

p0(t) = 1

p1(t) = t+ t2

pn(t) = (2t+ t2)pn−1(t)− t2pn−2(t) , for n ≥ 2.

Proof: The first two equalities are immediate. For the third note that a permuta-
tion in C whose longest increasing subsequence has length n can be obtained from
one whose longest increasing subsequence has length n − 1 by: adding a final sum-
mand equal to 1, lengthening a final summand (other than 1) by 1, or adding a
final summand equal to 21. The number of permutations that can be lengthened
in the second case is pn−1(t)− tpn−2(t) since they correspond to those permutations
enumerated by pn(t) whose final summand is not 1 (enumerated by tpn−1(t)). Thus:

pn(t) = tpn−1(t) + t(pn−1(t)− tpn−2(t)) + t2pn−1(t) = (2t+ t2)pn−1(t)− t2pn−2(t)

as claimed. �
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Noting that the minimum length of a permutation enumerated by pn(t) is equal
to n we define the polynomials qn(t) such that pn(t) = tnqn(t). Then the recurrence
for these polynomials is:

qn(t) = (2 + t)qn−1(t)− qn−2(t).

It is easy to verify that the qn are directly related to the Chebyshev polynomials
U2n according to the formula:

qn(t) = U2n((−t)1/2/2).

However, to make use of them in the completeness proof we need only one basic fact
concerning the behaviour of their roots.

Proposition 5.3 For n ≥ 1 let rn denote the greatest real root of qn(t). Then the
sequence rn is strictly increasing, bounded above by 0, and for all n ≥ 2, rn > −1/2.

Proof: As qn(t) has non-negative coefficients and constant term 1, all real roots
must be negative. Furthermore −1 = r1 < r2 =

√
5 − 2, so r2 > −1/2. Now

supposing that the result holds inductively for all k < n note that

qn(rn−1) = (2 + rn−1)qn−1(rn−1)− qn−2(rn−1) < 0

since qn−1(rn−1) = 0 and qn−2(rn−1) > 0 as rn−1 > rn−2. Therefore qn(t) has a root
strictly between rn−1 and 0 and hence rn > rn−1. �

We will also need a cancellation lemma. For convenience in the remainder of this
section define IA(t) to be the generating function for permutations in C that involve
(rather than avoid) A.

Lemma 5.4 In C, aiA ≡WE aiB if and only if A ≡WE B (assuming neither A nor
B begins with a) and bjA ≡WE bjB if and only if A ≡WE B.

Proof: Consider the general structure of a permutation in C that involves aiA. Its
shortest prefix that involves ai can be obtained from a permutation enumerated by
pi(t) by replacing the final summand by any summand of equal or greater length.
Such prefixes are enumerated by pi(t)/(1− t). So the generating function for permu-
tations involving aiA is equal to pi(t)IA(t)/(1− t). But, the same argument applies
to aiB. So we see IaiA(t) = IaiB(t) if and only if IA(t) = IB(t) which is equivalent to
the first half of the stated result. The same style of argument applies for the other
half as well, specifically:

IbjA(t) =
1

1− t− t2 − · · · − tj−1
·
(

tj

1− t

)
· IA(t). (5.1)

Since we can compute IbjA(t) just from IA(t) and j (and vice versa) the second half
of the result follows. �
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Lemma 5.5 If B ∈ C contains no letter an for any n ≥ 2, then, for all n ≥ 2, IB(t)
converges at rn and is non-zero there. Suppose that A ∈ C and that an occurs as a
letter in A for some n ≥ 2, but am does not for any m > n. Then IA(t) converges at
rn, IA(rn) = 0 and IA(rm) �= 0 for any m > n.

Proof: For the first part of the lemma note that the generating function IB(t)
is dominated termwise by the generating function of C which is 1 + t/(1 − 2t) and
therefore the radius of convergence of IB(t) is at least 1/2. Since −1/2 < rn < 0 for
all n ≥ 2, IB(t) converges at rn. Moreover, considering equation 5.1 and applying
induction it follows that IB(rn) �= 0.

Likewise the radius of convergence of IA(t) is at least 1/2 so IA converges at rn.
Moreover, using ∼ we may assume that A = anB. Then:

IA(rn) = pn(rn)IB(rn)/(1− rn) = 0.

Suppose that there were some A as indicated and some m > n with IA(rm) = 0. We
may choose such an example with the minimum possible value of n and of minimum
size for that value. Again, using ∼, we may assume this counterexample has the
form A = anB. But then

IA(rm) = pn(rm)IB(rm)/(1− rm) �= 0

(since pn(rm) �= 0 by Proposition 5.3, and IB(rm) �= 0 by either the first half of the
lemma or the assumption that we have taken a minimal counterexample). Thus we
have a contradiction. �

Now we are finally in a position to prove the completeness of ∼.

Theorem 5.6 The equivalence relation ∼ is sound and complete for Wilf-equivalence
in C.

Proof: Soundness has already been demonstrated so it remains only to prove com-
pleteness. To that end suppose that A ≡WE B. Suppose that A contains some letter
ai for some i ≥ 2, and let n be the greatest integer such that an occurs in A. Without
loss of generality (else just interchange A and B) we may assume that no letter am

for m > n occurs in B. But if an did not occur in B then by the previous lemma
IA(rn) = 0 �= IB(rn) which would be a contradiction. So, after rearrangement using
∼ if need be we can assume that A = anA′ and B = anB′. Then by Lemma 5.4,
A′ ≡WE B′. Thus, if a counterexample to the theorem exists, then there must be A
and B containing no an for any n ≥ 2 with A ≡WE B and A �∼ B. However, for such
A and B the proof of Theorem 4.4 can be transcribed essentially verbatim as, for
words using only the letters a1 and bj for j ≥ 2, any involvement must be witnessed
letter for letter as it is in the layered case. �
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6 Comments and acknowledgements

The class C = Av(312, 123) considered in Section 2 is a class of polynomial growth.
The general structure of such classes is relatively well understood (see for instance
[1, 6, 7, 10]) and it seems likely that a complete analysis of Wilf-equivalences and
Wilf-collapses in polynomial classes is possible. This is the subject of ongoing work
of the second author as part of his PhD.

The soundness results of Sections 3 and 4 appear in a different form in a paper
of Jelínek, Mansour and Shattuck ([9]) but we have included them here both for
completeness and because the style of proof is very much different. As far as we
are aware the completeness result for the second of these cases is new as are all the
results of Section 5.

It seems notable that in Sections 4 and 5 relatively simple combinatorial argu-
ments establish the soundness of an equivalence relation ∼ which is sufficient to
demonstrate Wilf-collapse. The first author, Vít Jelínek and Michal Opler have ob-
served further instances of this phenomenon in more general ⊕-closed classes which
are also the subject of ongoing investigations. However, to obtain the completeness
result relies on appealing to analytic techniques which appears to be difficult to gen-
eralise. A similar situation arose in a slightly different context in [3]. Furthermore,
for the principal sublcasses of Av(231) considered in [2] the completeness result is
absent (though conjectured on the basis of fairly strong experimental evidence) pre-
cisely because we could not find a way to carry out those analytic techniques in that
context.

Though there is no remaining trace of it in the exposition, the results of this
paper were first suggested experimentally by extensive machine computation.
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