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Abstract

In this paper some links between the density of a set of integers and the
density of its sumset, product set and set of subset sums are presented.

1 Introduction and notation

In the field of additive combinatorics a popular topic is to compare the densities of
different sets (of, say, positive integers). The well-known theorem of Kneser gives a
description of the sets A having lower density a such that the density of A + A :=
{a+0b: a,be A} is less than 2« (see for instance [9]). The analogous question with

the product set A% := {ab : a,b € A} is apparently more complicated.
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For any set A C N of natural numbers, we define the lower asymptotic density
dA and the upper asymptotic density dA in the natural way:
ANl —
dA = liminf w, dA = lim sup

n—00 n n—00

AN 1)

If the two values coincide, then we denote by dA the common value and call it the
asymptotic density of A.

Throughout the paper N denotes the set of positive integers and Ny := N U {0}.
We will use the notion A(x) ={n € A:n <z} for AC N and = € R. For functions
frg : N —= R, we write f = O(g) (or f < g), if there exists some ¢ > 0 such that
f(n) < cg(n) for large enough n.

In Section 2 we investigate the connection between the (upper-, lower-, and
asymptotic) density of a set of integers and the density of its sumset. In Section 3
we give a partial answer to a question of Erdds by giving a necessary condition for
the existence of the asymptotic density of the set of subset sums of a given set of
integers. Finally, in Section 4 we consider analogous problems for product sets.

2 Density of sumsets

For subsets A, B of integers the sumset A + B is defined to be the set of all sums
a+bwith a € A, b€ B. For A C Ny the following clearly hold:

dA < dA,
dA <d(A+ A),
dA < d(A+ A).

We shall assume that our sets A are normalized in the sense that A contains 0
and ged(A) = 1.

First observe that there exists a set of integers A not having an asymptotic density
such that its sumset A + A has a density: for instance A = {0} U [J, 522", 22|
has lower density 1/3, upper density 2/3 and its sumset A + A has density 1, since it
contains every nonnegative integer. For this kind of sets A, we denote respectively

QA =!Qay,
dA =: 84,
d(A+ A) =: va,

(OéA, BA) /YA) =: P4,

and we have

ay < By < ya.
The first question arising from this is to decide whether or not for any p = («a, 3, 7)
such that 0 < a < g <~ <1 there exists a set A of integers such that p = p4. This

question has no positive answer in general, though the following weaker statement
holds.
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Proposition 2.1 Let 0 < o < 1. There exists a normalized set A C N such that
dA=a andd(A+ A) = 1.

Proof: Let 0 € B be a thin additive basis (of order 2), that is, a basis containing 0
and satisfying |B(z)| = o(x) as © — 0o. For a = 0 the choice A = B is fine. For
a>0let A= BU{|n/a], n > 1}. Then A is a normalized set satisfying A+ A = Ny
and dA = a.

(Note that B = {0,1,2,...,|1/«a]} is also an appropriate choice for B in the case
a>0.) O

Remark 1 We shall mention that Faisant et al. [1] proved the following related re-
sult: for any 0 < o < 1 and any positive integer k, there exists a sequence A such that
d(jA) = ja/k, 5 =1,...,k, where jA denotes the j-fold sumset A+ A+ ---+ A (j
times). Well before that in [11, Theorem 2] the author established that for any posi-
tive real numbers o, . . ., ag, 0 satisfying Zle a; < B <1 there exist sets Ay,..., A
such that dA; = o; (1 <i<k)and d(A; +---+ Ay) = 0.

After a conjecture stated by Pichorides, the related question about the charac-
terisation of the two-dimensional domains {(dB,dB) : B C A} has been solved (see
[3] and [6]).

Note that if the density v4 exists, then a4, 54 and v4 have to satisfy some strong
conditions. For instance, by Kneser’s theorem, we know that if for some set A we
have v4 < 2ay4, then A + A is, except possibly a finite number of elements, a union
of arithmetic progressions in N with the same difference. This implies that v4 must
be a rational number. From the same theorem of Kneser, we also deduce that if
va < 3aa/2, then A+ A is an arithmetic progression from some point onward. It
means that 4 is a unit fraction, hence A contains any sufficiently large integer, if
we assume that A is normalized.

Another strong connection between a4 and v4 can be deduced from Freiman’s
theorem on the addition of sets (cf. [2]). Namely, every normalized set A satisfies

-5 o)
— 4+ min (aa, = ).
VA Z 5 A5

A related but more surprising statement is the following:

Proposition 2.2 There is a set of positive integers for which d(A) does exist and
d(A + A) does not ezist.

Proof: Let us take U = {0,2,3} and V = {0, 1,2}, then observe that
U+(UUV)={0,1,2,3,4,56} V+UUV)=1{0,1,2,34,5}.

Let (Ng)r>0 be a sufficiently quickly increasing sequence of integers with Ny = 0,
N; =1, and define A by

A=wuviulJ ((U 4 7Z) (1 [TNag, TNajop1] U (V + 7Z) 01 [T Nagy 1, 7N2k+2]>.

k>1
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Then A has density 3/7. Moreover, for any k£ > 0
[TNak, TNopy1] C A+ A,

thus d(A + A) = 1, if we assume limy_, o, Ngi1/Np = 00.

We also have
(A + A) ﬂ [14N2k717 7N2k] == ({O, 1, 2, 3, 4, 5} —|— 7N) ﬂ [14N2k717 7N2k]7

hence d(A 4+ A) = 6/7 using again the assumption that limy_,o Nyy1/Np =00, O

For any set A having a density, let

dA = ap,
d(A+A4) =7,
a(A + A) = 7A7

(A, s V) =2 qa;
then we have
a4 <79, <Y
A question similar to the one asked for p4 can be stated as follows: given ¢ = (a,7,7)
such that 0 < a <4 <% < 1, does there exist a set A such that ¢ = ga?

We further mention an interesting question of Ruzsa: does there exist 0 < v < 1
and a constant ¢ = ¢(v) > 0 such that for any set A having a density,

d(A+ A) > c- (d(A+ A)7(dA)?

Ruzsa proved (unpublished) that in case of an affirmative answer, we necessarily
have v > 1/2.

3 Density of subset sums

Let A = {a; < as < ---} be a sequence of positive integers. Denote the set of all
subset sums of A by

k
P(A) = {Zsiai k>0, & € {0,1} (1 §i§k¢)}.

i=1
Zannier conjectured and Ruzsa proved that the condition a, < 2a,_; implies that

the density d(P(A)) exists (see [8]). Ruzsa also asked the following questions:

i) Is it true that for every pair of real numbers_ 0 < a < B <1, there exists a
sequence of integers for which d(P(A)) = a; d(P(A)) = 57 This question was
answered positively in [5].
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ii) Is it true that the condition a, < a; + as + --- + a,_1 + ¢ also implies that
d(P(A)) exists?

We shall prove the following statement.

Proposition 3.1 Let (a,)32, be a sequence of positive integers. Assume that for
some function 0 satisfying 0(k) < m we have

[ = $n-1] = O(sn1) for every n,

where $,_1 ;= a1 +as + -+ ap_1.

Then d(P(A)) exists.
Proof: We first prove that there exists a real number § such that
|P(A)(sn)| = (0 +0(1))s, asn— oo,
Let n > 2 be large enough. Then
P(A)N[1,5.] = (P(A) N, sn_1]> U <P(A) A (Sn_1, Sn — e(sn_l))).
Since a, > $y—1 — 0(s,—1), we have P(A) N (Sp—1, Sn] 2 an + P(A) N (0(sp-1), Sn—-1,

and thus
PA)NL, 5]

> Q‘P(A) N[, sn_l]‘ — 20(sp1) — 1. (1)
On the other hand,
P(A) N1, 5,] € (P(A) N1, 80-1]) U (an + P(A) N1, $p_1]) U [5 — 0(n); $nl,

since a,41 > S, — 0(sy,). Therefore,

P(A) N1, s,]

< Q)P(A) AL, 5n1]

+6(s,) + 1. (2)
Observe that s, = a, + Sp—1 < 28,1 + 0(s,_1); hence letting

’P(A) AL, 5]
Op = )

Sn

we obtain from (1) and (2) that

8y —Op1 =0 (9(3”)) . (3)

Sn

Now, we show that s,, > 2". Since

0(sn—
Sp = Sp—1+ Qyp = 28,1 — e(snfl) = Sn—1 (2 - M) ) (4)

Sn—1
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the condition 0(k) < m implies that from (4) we obtain that s, > 1.5". There-
fore, in fact, for large enough n we have s, > s, 1 (2 — %) with some ¢ > 0. Now,

let 10c < K be a fixed integer. For K < n we have

sz s [] (2 - Z%) > i [2” —gnk Y 252 > o

i=K+1 i=K+1

n

since ) 5 < 1/10. Hence, s, > 2" indeed holds.
i=K+1

Therefore, using the assumption on § we obtain that 2% « 2. So (3) yields that

571 - 571—1 = O(TL_Q).

Therefore, the sequence 6, has a limit which we denote by ¢. Furthermore, observe
that
dp =0+ 0(1/n). (5)

The next step is to consider an arbitrary sufficiently large positive integer = and
decompose it as
T = Qny+1 + Apyy1 + 00 + Qpj4+1 + 2,

where ny > ng > -+ > n; > k and 0 < z are defined in the following way. (Here
k is a fixed, sufficiently large positive integer.) The index n; is chosen in such a
way that a,,+1 < 2 < ap,42. If © —ap, 41 > ay,,, then ny = ny — 1, otherwise ny

is the largest index for which x — a,,11 > a,,+1. The indices n3, ng4,... are defined
similarly. We stop at the point when the next index would be at most k and set
2= T = Gyl — Onggl =+ — pyy1. As 2 < 0(5,,41) + Sk, we have

z = o(x). (6)
Furthermore, let

bl-:an1+1+an2+1+~~+ani+1, ’LIO,L,]

(The empty sum is by := 0, as usual.)

Let Xy := (0,5, —0(sy,)) and for 1 <@ < j—1let X; := (b + 0(sn,), bi + 5,y —
(5n,,,)) and consider

X I:X()UXlU"‘UXj,l:
(07 Sn1_9(8n1>>u(bl+9(sn1)a b1+5n2_9(5n2>>u' ’ .U(bjfl_'_e(snj—l)’ bj,1—|—8nj—(9(8nj)).

Note that in this union each element appears at most once, since according to the
definition of 6 the sets Xy, X1, ..., X, 1 are pairwise disjoint as

bi + Snip1 — Q(Sni-H) < bi+1 = bl + Anipq+1
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holds for every 0 <1 < j — 2.

The set of those elements of [1, z] that are not covered by X is:

[171'] \X = [Sm - ‘9(8”1) b + H(Snl)] U [bl + Sny — 0(5712)7 by + 0(5712)] U
U [b]'*Z + Snj_y (Sn 1) -1+ e(snjfl)] U [bjfl + Sn; — H(Sng‘)v x]

Therefore,

[[L, 2]\ X §3Z9(8m)+2

Using Zﬁ(snz) < Z 23 < % and (6), we obtain that |[1,2]\ X| < (e, + o(1)),
where ek — 0 (as K —> oo) (Note that e, < 1/k?.)

That is, the set X covers [1, z] with the exception of a “small” portion of size O(z/k?).
Therefore, by letting k — oo the density of the uncovered part tends to 0.

Let us consider P(A) N X;. If a sum is contained in P(A) N X;, then the sum of the
elements with indices larger than n;,; is b;. Otherwise, the sum is either at most
bi + 0(sy,,) or at least b; + sp,,, — 0(5p,,,).

Therefore P(A) N X; = (b; + P({a1, a, ..., an,,, })) N X;.

Hence
6ni+18ni+l - 20(57’%+1) -1 S |P(A) N XZ| S 6ni+1sni+1'
Therefore
j—1
|P(A> A [x” > Z (5m+15m+1 - 29(8ni+1) - 1)

I
=)
—

J— J—

1
>dr—0dz+9 (Sni+1 - a’ni+1+1) + (6ni+1 - 5)Sni+l —2 (Q(Sni+l) + 1) (7)

<.
|

=0 =0 =0
and
j-1
PN < D dnsSnans
= j-1 j-1
< dr—dz+ (SZ(SM+1 — Oy 41) + Z i1 — 0)Snyys-
=0 =0

Now, observe that

o |z[ = o(z) by (6),
J ) j—1
b Z |Sni+1 _ani+1+1| = 0(1’), usig |Sni+1_a’ni+1+1| = Q(Sni+1) and Z Aniyi+1 <z,

1=0
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® > (Oniy — 0)8n,, < x/k by using (5). Letting k — oo this term is also of size

Hence we obtain from (7) and (8) that |P(A) N [z]| = 0z + o(x).

4 Density of product sets
For any subsets A, B C Ny, we denote by A - B the product set
AB=A-B={ab: a€ Abe B}.

For brevity, for A = B we also write A- A = A2,

In this section we focus on the case G = (N, -), the semigroup (for multiplication)
of all positive integers. The restricted case G = N\ {1} is even more interesting,
since 1 € A implies A C A2

The sets of integers satisfying the small doubling hypothesis d(A + A) = dA are
well described through Kneser’s theorem. The similar question for the product set
does not plainly lead to a strong description. We can restrict our attention to sets
A such that ged(A) = 1, since by setting B := gcﬁA we have dA = mdB and

2 _ 1 2
dA” = G d(BY)-

Examples 1 i) Let A, be the set of all non-squarefree integers. Letting A = {1} U
A,s we have A2 = A and
dA=1-¢(2)"

ii) However, while ged(Apnss) = 1, we have
dAZ, <dAu =1-¢(2)7"
iii) Furthermore, the set Ay of all squarefree integers satisfies
dAs = ¢(2)7" and dA% = ¢(3) 7,
since A% consists of all cubefree integers.

iv) Given a positive integer k, the set Ay = {n € N : ged(n, k) = 1} satisfies

k
Ai = Ak and dAk = %,
where ¢ is Euler’s totient function.

We have the following result:

Proposition 4.1 For any positive a < 1 there exists a set A C N such that dA > «
and dA? < a.
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Proof: Assume first that o < 1/2.

For k > 1 let Ay = kN = {kn, n > 1}, then A? = k*N. Therefore, dA; = 1/k and

d(A42) = 1/k* It 1/(k+1) < a < 1/k, then Ay satisfies the requested condition.

Since | [k:+1’ ) = (0,1/2), an appropriate k can be chosen for every o € (0,1/2).
k>2

Assume now that 1 > o > 1/2.

Let p1 < py < --- be the increasing sequence of prime numbers and
i=1

The complement of the set B, contains exactly those positive integers that are not
divisible by any of pi,ps, ..., p,, thus we have

d(B,) :1-2(1-%) S~

Similarly, the complement of the set B? contains exactly those positive integers that
are not divisible by any of py, ..., p, or can be obtained by multiplying such a number
by one of pi,...,p.. Hence, we obtain that

Note that

r+1 1 r 1 3 9 r 1
ﬁ(z)( SO <3 ()
(8)

As (B1,71) = (1/4,1/2), moreover (5,)72, and (7,)52, are 1ncreasmg sequences sat-
isfying (8) and lim~, = 1, we obtain that [1/2,1) is covered by U (Bry7r). That

is, for every o € [1/2,1) we have o € (B,,7,) for some r, and then A = B, is an
appropriate choice.

O
We pose two questions about the densities of A and A2.

Question 1 If1 € A and dA = 1, then d(A?) = 1, too. Given two integers k,(, the
set
{neN : ged(n, k) =1} U k(N

is multiplicatively stable. What are the sets A of positive integers such that A2 = A
or less restrictively

le Aand1>dA?=dA >07
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Question 2 [t is clear that dA > 0 implies dA* > 0, since A*> D (min A)A.
For any a € (0,1) we denote

f(a):= inf dA%

ACN; dA=«a
Is it true that f(a) =0 for any a or at least for o < g ?

The next result shows that the product set of a set having density 1 and satisfying
a technical condition must also have density 1.

Proposition 4.2 Let A, with 1 ¢ A, be a set of positive integers with asymptotic
density dA = 1. Furthermore, assume that A contains an infinite subset of mutually
coprime integers a; < as < --- such that

1
E — = 0.
- a;
i>1

Then the product set A* also has density d(A?) = 1.

Proof: Let € > 0 be arbitrary and choose a large enough £ such that

k

1
E — > —loge. 9
ai oee (9)

i=1

Let = be a large integer. For any i = 1,. .., k, the set A%(z) contains all the products
a;a with a < z/a;. We shall use a sieve argument. Let A’ be a finite subset of A and
X =[1,z] NN for some x > max(A"). For any a € A’ let

Xa:{ngx:a)(norgg_ifl}.

Observe that
X\ X, = (aA)(x).

Then
(A" A)(z) = | (X\ Xa).

ac A’

By the inclusion-exclusion principle we obtain

|A|
(A @) =D Y [N x|,
=1 @g‘fj’ beB
whence "
N X =D Y [N x| (10)
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where the empty intersection (7, (X \ X3) denotes the full set X.

For any finite set of integers B we denote by lem(B) the least common multiple of
the elements of B. Now, we consider

ﬂ(X\Xb): {ngx : lem(B) | n and % €A (VbGB)}.
beB
By the assumption dA = 1 we immediately get

M (X\ X)) | = ——(1+0(1)).
lem(B)

beB

Plugging this into (10):

|A’

\
. 1
AT S D S
’ ﬂ (=1) Z lem(B) +olz)
acA'(z k=0 BCA/
|Bl=j
Since the elements of A’ = {ay, as, ..., ax} are mutually coprime,
- 1 u 1
A Az)] = S =TI (1--)
v -] Y Y o) = [T (1= ) o)
7=0 1<ai1<---<ai].§k J i=1

(Note that for j = 0 the empty product is defined to be 1, as usual.) Since 1 —u <
exp(—u) we get

x—|A - Az)] < xexp( Z

=1

) r) < ex+ o(x)

8=

by our assumption (9). Thus finally
|A%(z)| > |A- A(2)| > 2(1 — € — o(1)).
This ends the proof. 0

Remark 2 Specially, the preceding result applies when A contains a sequence of
prime numbers py < ps < --- such that 2121 1/p; = oo. For this it is enough to
assume that

oo i
lim inf Lost

> 0.

However, we do not know how to avoid the assumption on the mutually coprime
integers having infinite reciprocal sum. We thus pose the following question:

Question 3 Is it true that dA =1 implies d(A%) =17
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An example for a set A such that d(A) =0 and d(4?%) = 1.

According to the fact that the multiplicative properties of the elements play an
important role, one can build a set whose elements are characterized by their number
of prime factors. Let

A={neN: Qn)<0.75loglogn + 1},

where Q(n) denotes the number of prime factors (with multiplicity) of n. An appro-
priate generalisation of the Hardy-Ramanujan theorem (cf. [4] and [10]) shows that
the normal order of Q(n) is loglogn and the Erdds-Kac theorem asserts that

Q(n) — loglogn 1 /B 2
d{neN:ac< <Bp=— 2dt,
{n “ log log n p Vor Ja ‘

which implies dA = 0. Now we prove that dA? = 1. The principal feature in
the definition of A is that A% must contain almost all integers n such that w(n) <
1.2loglogn.

For n € N let

P, (n) := max {p . p is a prime divisor of n}
Let us consider first the density of the integers n such that
Py (n) > nexp(—(logn)*?). (11)

Let x be a large number and write

{n<e: i) < mexp(—(1ogm)*") }|

— Hn <x:P.(n)< :pexp(—(logx)4/5)}) + o(x).

By a theorem of Hildebrand (cf. [7]) on the estimation of W(x,z), the number of
z-friable integers up to x, we conclude that the above cardinality is « + o(z). Hence,
we may avoid the integers n satisfying (11). By the same estimation we may also
avoid those integers n for which Py (n) < exp((logn)*/®).

Let n be an integer such that Q2(n) < 1.2loglogn and

exp((logn)*’®) < Pi(n) < nexp(—(logn)"?).

Our goal is to find a decomposition n = nyny with Q(n;) < 0.75loglogn;+1,i = 1, 2.
Let
n=pps2.. -pt—1P+(n)>
where t = Q(n). We also assume that p; < p, <--- <p 1 < P.(n). Let m = P+”(n).
Then

exp((logn)*/%) < m < nexp(—(logn)*?).
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Let
ny =pipz. .. pu—1Py(n) and ny = py ... pi1,
where v = | (¢ — 1)/2]. Then ny > y/m, which yields
loglogns > loglogm — log2 > 0.8loglogn — log 2.
On the other hand,

t 31og 2
Qna) =t —u < 5 +1<06loglogn + 1 <0.75loglog ny + Zg .

Now n; > Py (n) > exp((logn)*?), hence
loglogn,; > 0.8loglogn

and 1
Qny) < 5 < 0.6loglogn < 0.75loglogn;.

Therefore, the following statement is obtained:
Proposition 4.3 The set
A={neN: Qn)<0.75loglogn +1}
has density 0 and its product set A% has density 1.
By a different approach we may extend the above result as follows.

Theorem 4.4 For every a and § with 0 < o < § < 1, there exists a set ACN
such that dA =0, d(A-A) =a and d(A- A) = 3.

Proof: We start with defining a set ) such that d(Q) = 0 and d(Q - Q) = 5. Let us

choose a subset Py of the primes such that [] (1 —1/p) = . Such a subset can be
pEPRy
chosen, since > 1/p = co. Now, let py denote the k-th prime and let

P ={p; :iis odd} \ P,
Py ={p; :iis even}\ F.
Furthermore, let
Q1 = {n : all prime divisors of n belong to P;}

and
Q> = {n : all prime divisors of n belong to P,}.

Let Q = Q1 U Q5. Clearly, @ - @ = Q)1 - Q2 contains exactly those numbers that do
not have any prime factor in Py, so d(Q - Q) = . For i € {1,2} and = € R the
probability that an integer does not have any prime factor being less than x from P,
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s 1 0-yp<i I (-yp<beni- S 20=0(7s)
p<z,peP; Bp<$7p6PiUPO ? J: pi<z, b Pvloge
j=i (mod 2)

Therefore, d(Q1) = d(Q2) = 0, and consequently d(Q)) = 0 also holds. If a = £,

then A = (@ satisfies the conditions. From now on let us assume that o < 5.

Our aim is to define a subset A C @ in such a way that d(A-A) = a and d(A-A) = 3.
As A C Q we will have d(A) =0 and d(A- A) < 3. The set A is defined recursively.
We will define an increasing sequence of integers (n;)32, and sets A; (j € N) satisfying
the following conditions (and further conditions to be specified later):

(i) Aj € Aj,
(i) AN [1, 5] = A0 [Lny],
(iii) A;N[n; +1,00] =QN[n; +1,00].
That is, A; is obtained from A;_; by dropping out some elements of A;_; in the

range [n;_1 + 1,n;]. Finally, we set A = () A;.

j=1
Let n; = 1 and A; = ). We define the sets A; in such a way that the following
condition holds for every j with some ng depending only on @):

(%) |(A4; - A;)(n)| > an for every n > ny.

Since d(Q - Q) = [ > «, a threshold ng can be chosen in such a way that (x) holds
for A; = @ with this choice of ny. Now, assume that n; and A; are already defined
for some j. We continue in the following way depending on the parity of j:

Case I: j is odd.
Let n; < s be the smallest integer such that
(A5 \ [ + Ls]) - (A \ [y + 1, s])(n)] < an

for some n > ng. We claim that such an s exists, indeed it is at most [n?/a]+1
For s’ = |nj/a] 4+ 1 we have

(A \ [y + 1L, 8T) - (45 \ [ny + 1, s(s)] < nj < as”
Hence, s is well-defined (and s < s’). Let n;4; := s —1 and A]+ = A;\ [n
1,5 — 1]. (Specially, it can happen that n;.; =n; and A;;; = A;.) Note that
Ay satisfies (k).

Case II: j is even.

Now, let n; < s be the smallest index for which |(A4; - A;)(s)| > (8 — 1/j)s.
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We have d(Q - @)) = 8 and A; is obtained from () by deleting finitely many
elements of it: A; = @\ R, where R C [n;]. As d(Q) = 0, we have that

(@-Q\(Q\R) - (Q\R)(m)| <RI’ + ) |Qn/r)] = o(n),

reR

therefore, d(A4; - A;) = 8. So for some n > n; we have that (4, - 4;)(n) >
(B8 —1/j)n, that is, s is well-defined. Let n;.; := s and A;4; = A;. Clearly,
A4 satisfies ().

This way an increasing sequence (n;)22, and sets A;(j € N) are defined; these satisfy

conditions (i)-(iii). Finally, let us set A:= [ A;. Note that A(n;) = A;(n;).
j=1

We have already seen that A C @ implies that d(A) = 0 and d(A4 - A) < 5. At first
we show that d(A - A) > «. Let n > ng be arbitrary. If j is large enough, then
n; >mn. As A; satisfies () and (A- A)(n) = (4; - A;)(n) we obtain that

(A~ A) ()| = (4 - A7)(n)] > an.

This holds for every n > ng, therefore, d(A - A) > a.

As a next step, we show that d(A-A) = . Let j be odd. According to the definition
of njy1 and A, there exists some n > ng such that

(A5 \ {2 +13) - (A3 \{nja + 1)) ()] < an.

For brevity, let s :=n;1 +1. As A C A; we get that [(A\ {s}) - (A\ {s})(n)| < an.
Also,

(A= )N (AN {sh) - (AN {sH ()] < T+ [A(n/s)] < 1+[Q(n/s)],

since A C Q. Thus [(A-A)(n)| <an+1+|Q(n/s)| < n(a+1/n+1/s). Clearly
s =n;+1 +1<n, and as j — oo we have n;;; — oo, therefore d(A- A) = a.

Finally, we prove that d(A-A) = 3. Let j be even. According to the definition of A;,,
and n;y 1, we have [(Aj1 - Ajpa)(n541)] > (8 — 1/4)nj41. However, (A - A)(nj4) =
(Ajs1 - Aj11)(njq1), therefore d(A- A) > lim(5 — 1/7) = B, and thus d(A - A) = 5,

as was claimed.

0

References

[1] A. Faisant, G. Grekos, R. K. Pandey and S. T. Somu, Additive Complements for
a given Asymptotic Density, arXiv: 1809.07584.

2] G.A. Freiman, Foundations of a structural theory of set addition (translated
from the Russian), Translations of Mathematical Monographs, Vol.37, Amer.
Math. Soc., Providence, R.I., 1973.



N. HEGYVARI ET AL./AUSTRALAS. J. COMBIN. 74 (1) (2019), 1-16 16
[3] G. Grekos and D. Volkmann, On densities and gaps, J. Number Theory 26
(1987), 129-148.

[4] G.H. Hardy and S. Ramanujan, The normal number of prime factors of a num-
ber, Quart. J. Math. 48 (1917), 76-92.

[5] N. Hegyvari, Note on a problem of Ruzsa, Acta Arith. 69 (1995), 113-119.

[6] F.Hennecart, On the regularity of density sets, Tatra Mt. Math. Publ. 31 (2005),
113-121.

[7] A. Hildebrand, On the number of positive integers < x and free of prime factors
>y, J. Number Theory 22 (1986), 265-290.

[8] I.Z. Ruzsa, The density of the set of sums, Acta Arith. 58 (1991), 169-172.

9] H. Halberstam and K.F. Roth, Sequences, Second Ed., Springer-Verlag, New
York-Berlin, 1983, xviii+292 pp.

[10] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cam-
bridge Univ. Press, 1995.

[11] B. Volkmann, On uniform distribution and the density of sum sets, Proc. Amer.
Math. Soc. 8 (1957), 130-136.

(Received 23 July 2017; revised 10 Dec 2018)



