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Abstract

We propose a new model for random signed graphs, namely the signed
random intersection graphs model. In particular, each vertex of a signed
graph is associated with a (finite) universal set of features. For each fea-
ture, every vertex can have either a positive, a negative or an indifferent
view towards that feature with probability p, q and 1−p− q respectively.
Based on the value of a metric that measures the level of agreement be-
tween a pair of vertices towards the set of predefined features, an edge
may be added between these two vertices which has either a positive
or a negative sign. Under this framework, we initiate the study of ran-
dom signed intersection graphs by providing several preliminary results
concerning the number of conflicting views among all vertices using the
well-known notion of balance in signed graphs.

1 Introduction

In this paper, we consider a network setting where a connection between two members
of the network can be either positive, negative or indifferent. These networks can be
abstracted using signed graphs, in which there is a set of vertices and existing edges
between pairs of vertices are labeled with either a plus (+) or a minus (−) sign.
Since their introduction by Cartway and Harary [4, 5] in mid-fifties, signed graphs
have been extensively studied in the literature (see the annotated bibliography [14]
with regard to signed graphs and allied areas).

In a recent line of research, Maftouhi, Manoussakis and Megalakaki [8] and
Maftouhi, Harutyunyan and Manoussakis [7] extended Cartwright-Harary’s theory
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of balance in deterministic social structures, by introducing random signed graphs
Gn,p,q. In their model, there are n vertices and each edge independently is either
positive with probability p, or negative with probability q, or does not exist with
probability 1 − p − q. Equivalently, a random instance of Gn,p,q is constructed by
taking an Erdős-Rényi random graph Gn,p+q and independently labeling an existing
edge with a + sign with probability p

p+q
and with a − sign with probability q

p+q
.

Inspired by the work of Maftouhi et al. but also from feature-based construction
of edges in random intersection graphs (see [6] and [10] for mathematical and algo-
rithmic aspects, but also the excellent survey [3] where it is also discussed how such
graphs capture many characteristics of social and complex networks), we propose
here a new model for random signed graphs, namely the signed random intersec-
tion graphs model. Note that, in what follows, we denote graph instances by G and
the corresponding probability distributions by G. A formal definition of our model
follows:

Definition 1 (Random Signed Intersection Graphs). Let V = {v1, . . . , vn} be a set
of n vertices and let M = {`1, . . . , `m} be a set of m features. We get a random
instance of the random signed intersection graphs model Gn,m,p,q as follows: To each
vertex v we assign two sets S+

v and S−v by independently choosing for each feature
` to either belong to S+

v with probability p, or to belong to S−v with probability q,
or to belong to none of the two with probability 1 − p − q. For each vertex v, let
xv ∈ {−1, 0,+1}m be the vector given by xv[`] = −1 if ` ∈ S−v , xv[`] = +1 if ` ∈ S+

v ,
and xv[`] = 0 otherwise. Two vertices u, v are connected with a positive edge if and
only if

∑
` xv[`]xu[`] > 0, with a negative edge if

∑
` xv[`]xu[`] < 0 and not connected

if
∑

` xv[`]xu[`] = 0.

In the above model, we denote by E+ (respectively, E−) the set of positive (re-
spectively, negative) edges of Gn,m,p,q. Furthermore, we define the associated signed
bipartite graph Bn,m,p,q as the bipartite graph having vertex set V ∪M and edge set
E+
B ∪ E−B , where E+

B = {(v, `) : ` ∈ S+
v } and E−B = {(v, `) : ` ∈ S−v }. For any v ∈ V ,

we also set E+
B (v) = {` : (v, `) ∈ E+

B} and E−B (v) = {` : (v, `) ∈ E−B}.
The aforementioned framework can model various real-life situations and may be

used to study the dynamics and the behavior of various network-like structures. For
example, the individuals of a population may be viewed to correspond to vertices
and that there is a (finite) universal set of features M corresponding to the set of
ideals, beliefs, preferences etc. that an individual can perceive. For each feature
` ∈M, we assume that every individual (vertex) can have either a positive, negative
or indifferent view/opinion towards `; in a way the set of views towards all the
features ofM can be seen as part of someone’s personality. Relations between pairs
of individuals are formed by taking into account their relative views over all features.
In particular, if (say) an individual “likes” physics while another one does not, then
there is a (small) conflict with respect to physics between them; otherwise there is an
agreement. If agreements outnumber the conflicts, then there is a positive relation
(i.e. positive edge) between those two individuals. Similarly, there is a negative edge
between them if the conflicts outnumber the agreements, and there is no edge if
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conflicts are equal to the agreements.

In this paper, we initiate the study of random signed intersection graphs by
providing several preliminary results concerning the number of conflicts among all
vertices. As our main contribution, we study balance in Gn,m,p,q in the limiting
case n→∞. In particular, in Theorem 4.3 we prove that, when p = q = Θ(1), and
m ≥ 3, Gn,m,p,q is with high probability not balanced, since it contains Ω(n3) negative
3-cycles (which is the maximum possible up to constant factors). Furthermore, we
prove in Theorem 4.4 that Theorem 4.3 is tight in the following sense: if m = ω(log n)
and |p−q| is bounded below by an arbitrarily small constant, Gn,m,p,q is balanced with
high probability. We also note that, if m ≤ 2, Gn,m,p,q is balanced with probability
1 (see a short explanation of this fact in the beginning of Section 4.1). On the
other hand, if m is any constant larger than 2, and p, q are positive constants, the
probability that Gn,m,p,q has a negative cycle (and thus it is not balanced) is bounded
by a constant. We finally note that, the difficulty in analyzing our model lies in
the fact that edges are not independent (which is also the case in unsigned random
intersection graphs). For our proofs, we exploit the special structure of the associated
signed bipartite graph and we use coupling arguments and stochastic domination, as
well as concentration bounds and several properties of the binomial distribution.

2 Useful Facts

In this section we mention some results that we use throughout the paper.

Theorem 2.1 (Multiplicative Chernoff Bound [12]). Let X1, X2, · · · , Xn be indepen-
dent Bernoulli random variables taking values in {0, 1}. Let X =

∑n
i=1Xi and let

µ = E[X]. Then the following hold for any 0 < δ < 1:

(a) Lower tail Chernoff bound

Pr(X ≤ (1− δ)µ) ≤ e−
δ2µ

2 .

(b) Upper tail Chernoff bound

Pr(X ≥ (1 + δ)µ) ≤ e−
δ2µ

3 .

We denote by B(n, p) the binomial distribution with parameters n, p. In par-

ticular, the above implies that Pr(|X − np| ≤ δnp) ≥ 1 − 2e−
δ2np

3 , 0 < δ < 1, for
X ∼ B(n, p).

The following lemma will be used for the proof of Lemma 2.2 below. Its obvious
proof is omitted and the reader is referred to introductory books on probability (see
e.g. [12]) and the exercises therein.

Lemma 2.1. Let X ∼ B
(
n, 1

2

)
and Y ∼ B

(
n′, 1

2

)
be binomial random variables with

n ≥ n′. Then, for any 0 ≤ i′ ≤ i ≤ n′

2
,

Pr(X=dn2 +ie)
Pr(Y=bn′2 +i′c) =

Pr(X=dn2−ie)
Pr(Y=bn′2 −i′c) ≤ 1.
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We could not find Lemma 2.2 in any textbook, and so we give the proof here.

Lemma 2.2. Let X ∼ B
(
n, 1

2

)
and Y ∼ B

(
n′, 1

2

)
be stochastically independent

binomial random variables with n ≥ n′. Then Pr
(∣∣X − n

2

∣∣ ≥ ∣∣Y − n′

2

∣∣) > 1
2
.

Proof: Notice that

Pr

(∣∣∣X − n

2

∣∣∣ ≥ ∣∣∣∣Y − n′

2

∣∣∣∣) =
∑

−n
2
≤a≤n

2

Pr

(
|a| ≥

∣∣∣∣Y − n′

2

∣∣∣∣)Pr
(
X =

n

2
+ a
)

and also that Pr
(
|a| ≥

∣∣Y − n′

2

∣∣) is increasing with |a|. Let Y ′ ∼ B
(
n′, 1

2

)
be stochas-

tically independent of Y . Suppose that in the above sum we replace Pr
(
X = n

2
+ a
)

with Pr
(
Y ′ =

⌊
n′

2
+ a
⌋)

if a ≥ 0 and with Pr
(
Y ′ =

⌈
n′

2
+ a
⌉)

if a < 0. Then by
Lemma 2.1, we eliminate (i.e. set equal to 0) the multiplicative factors of probabili-
ties Pr

(
|a| ≥

∣∣Y − n′

2

∣∣) with either a < −n′

2
or a > n′

2
(which equal to 1), while in-

creasing the multiplicative factors of (smaller) probabilities Pr
(
|a| ≥

∣∣Y − n′

2

∣∣) with

−n′

2
≤ a ≤ n′

2
. Therefore,

∑
−n

2
≤a≤n

2

Pr

(
|a| ≥

∣∣∣∣Y − n′

2

∣∣∣∣)Pr
(
X =

n

2
+ a
)

≥
∑

−n
2
≤a<0

Pr

(
|a| ≥

∣∣∣∣Y − n′

2

∣∣∣∣)Pr

(
Y ′ =

⌈
n′

2
+ a

⌉)

+
∑

0≤a≤n
2

Pr

(
|a| ≥

∣∣∣∣Y − n′

2

∣∣∣∣)Pr

(
Y ′ =

⌊
n′

2
+ a

⌋)

=
n′∑
y′=0

Pr

(∣∣∣∣y′ − n′

2

∣∣∣∣ ≥ ∣∣∣∣Y − n′

2

∣∣∣∣)Pr(Y ′ = y)

= Pr

(∣∣∣∣Y ′ − n′

2

∣∣∣∣ ≥ ∣∣∣∣Y − n′

2

∣∣∣∣) . (1)

By symmetry, the above probability is at least 1
2

+ Pr(Y=Y ′)
2

, completing the proof.

We claim that a more general version of the lemma is true, where B
(
n, 1

2

)
and

B
(
n′, 1

2

)
are replaced with B(n, p) and B(n′, p) respectively (notice that the proba-

bility of success is the same for both binomial distributions). However, this version
of the lemma suffices for our purposes in this paper.

3 Preliminary results

The following result states that, by definition, the distribution Gn,m,p,q is symmetric
with respect to p and q. In particular:
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Lemma 3.1. For any positive p, q, with p + q ≤ 1, the distributions of Gn,m,p,q and
Gn,m,q,p are identical.

Proof: We couple the two models in such a way that whenever there is a positive
(respectively, negative) feature choice in Gn,m,p,q, there is a negative (respectively,
positive) feature choice in Gn,m,q,q. Then, by definition, the graph instance Gn,m,p,q

is identical to Gn,m,q,p and have the same probability.

The above result will be useful in subsection 3.1 when proving various domination
results for the case q = 1− p. In particular, because of Lemma 3.1, we only need to
consider values for p that are upper bounded by 1

2
.

3.1 Negativity

We define the negativity of an edge (u, v) as the inner product Nuv
def
=
∑

` xv[`]xu[`].
Similarly, we define the negativity of Gn,m,p,q as follows:

NG
def
=
∑
u6=v

Nuv. (2)

We prove an intuitive stochastic domination1 result relating p and NG (Corollary
3.1). Loosely speaking, the closer p is to 1/2, the smaller NG will be (statistically
speaking). For the proof, we need the following definition, which is a generalization
of the random signed intersection graphs model. In particular, we define the model
Gn,m,P,Q as follows: Let V ,M be the sets of vertices and features respectively. Let
also P (respectively, Q) be a n×m matrix, where Pv,` ∈ [0, 1] (respectively, Qv,` ∈
[0, 1−Pv,`]) is the probability that xv[`] = +1 (respectively, xv[`] = −1). As usual,
two vertices u, v of a random instance of Gn,m,P,Q are connected with a positive edge
if and only if

∑
` xv[`]xu[`] > 0, with a negative edge if

∑
` xv[`]xu[`] < 0 and not

connected if
∑

` xv[`]xu[`] = 0.

We first prove the following result on the negativity of a random instance
Gn,m,P,1n×m−P, where 1n×m denotes the all-ones n×m matrix:

Lemma 3.2. Let 0 < p < p′ ≤ 1
2

and let P be such that Pv,` ∈ {p, p′} (i.e. takes
only two possible values). Let also P′ be equal to P, except for one pair of indices
(v0, `0) ∈ V × M, where Pv0,`0 = p and P′v0,`0

= p′. If G ∼ Gn,m,P,1n×m−P and
G′ ∼ Gn,m,P′,1n×m−P′, then NG stochastically dominates NG′, i.e. NG ≥st NG′.

Proof: By definition, we have that

1For two random variables X,Y taking values in the same set A ⊆ R, we say that X stochasti-
cally dominates Y and we write X ≥st Y if and only if Pr(X ≥ k) ≥ Pr(Y ≥ k), for any k ∈ A.
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NG =
∑
u6=v

∑
`

xv[`]xu[`] =
∑
(v,`)

xv[`]
∑
u6=v

xu[`]

= xv0 [`0]
∑
u6=v0

xu[`] +
∑

(v,`)6=(v0,`0)

xv[`]
∑
u6=v

xu[`]. (3)

Therefore, by coupling Gn,m,P,1n×m−P and Gn,m,P′,1n×m−P′ , we only need to prove that

X
def
= xv0 [`0]

∑
u6=v0

xu[`] stochastically dominates X ′
def
= x′v0

[`0]
∑

u6=v0
xu[`], where

Pr(xv0 [`0] = +1) = p and Pr(x′v0
[`0] = +1) = p′.

Notice now that, for any −n+ 1 ≤ k ≤ n−1, by independence of feature choices,

Pr(X ≥ k) = Pr(xv0 [`0] = +1) Pr

(∑
u6=v0

xu[`] ≥ k

)

+ Pr(xv0 [`0] = −1) Pr

(∑
u6=v0

xu[`] ≤ −k
)

= p

(
Pr

(∑
u6=v0

xu[`] ≥ k

)
− Pr

(∑
u6=v0

xu[`] ≤ −k
))

+ Pr

(∑
u6=v0

xu[`] ≤ −k
)
.

Since p < p′ ≤ 1
2
, we have that Pr

(∑
u6=v0

xu[`] ≥ k
)
< Pr

(∑
u6=v0

xu[`] ≤ −k
)

, and

so Pr(X ≥ k) is a decreasing function of p. In particular, Pr(X ≥ k) > Pr(Y ≥ k),
for any −n+ 1 ≤ k ≤ n− 1, which completes the proof.

Applying the above lemma inductively and noting that Gn,m,p,1−p is identical to
Gn,m,1−p,p and also to Gn,m,P,1n×m−P, with Pv,` = p, for each v ∈ V , ` ∈ M, we get
the following:

Corollary 3.1. Let G ∼ Gn,m,p,1−p and G′ ∼ Gn,m,p′,1−p′ be two random instances of
the random signed intersection graphs model, where |2p−1| ≥ |2p′−1|. Then NG ≥st
NG′. In particular, the negativity of a random instance of Gn,m,p,1−p is statistically
minimal when p = 1

2
.

We conjecture that an analog to Corollary 3.1 also holds for the number of neg-
ative edges:

Conjecture 3.1. Let Gn,m,p,1−p and Gn,m,p′,1−p′ be two random instances of the ran-
dom signed intersection graphs model, where |2p− 1| ≥ |2p′ − 1|. Let also X and Y
denote the number of negative edges in Gn,m,p,1−p and Gn,m,p′,1−p′ respectively. Then
X ≤st Y , i.e. Pr(X ≥ k) ≤ Pr(Y ≥ k), for any k.
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It is easy to see that the above conjecture holds in the simple case of 2 vertices,

say u, v. Indeed, setting ap
def
= 2p(1− p), the probability that (u, v) is negative is

Pr(σG(uv) = −1) =
∑
`>m/2

(
m

`

)
a`p(1− ap)m−`.

Since the above probability is an increasing function of ap and ap is a convex function
of p within (0, 1), the maximum of Pr(σG(uv) = −1) is attained for p = 1/2, for which
ap is maximized.

By a similar proof one can also show that Conjecture 3.1 holds for the simple
case m = 2.

4 Balance in Gn,m,p,q

In a signed graph, a negative cycle is a cycle that contains an odd number of negative
edges. If the signed graph does not contain any negative cycle, we say that it is
balanced.

We first note that, when p + q is very small, then Gn,m,p,q is balanced, since
(forgetting edge signs) it has not cycles whatsoever.

Theorem 4.1. If p+ q = o
(

1
min{n,m}

)
, Gn,m,p,q is balanced with high probability.

Proof: Notice that the existence of a negative cycle of size larger than min{n,m} in
Gn,m,p,q implies the existence of a cycle of size at most 2 min{n,m} in Bn,m,p,q. But,
by the union bound, and because of independence of feature choices, the probability
that Bn,m,p,q has a cycle (either negative or positive) of size 2k is upper bounded by

nkmk(p+ q)2k def
= xk.

Therefore, the probability that Gn,m,p,q has a negative cycle is at most

min{n,m}∑
k=2

xk =
xmin{n,m} − x2

x− 1
.

For p+ q = o
(

1
min{n,m}

)
, we have x = o(1), which completes the proof.

In view of the above, in what follows we consider balance of Gn,m,p,q in the more

interesting case p + q = Θ(1). We leave the case o
(

1
min{n,m}

)
= p + q = o(1) as an

open problem.

4.1 The case p+ q = Θ(1)

In this section we prove our main results for negative cycles of size 3 in Gn,m,p,q

when p + q = Θ(1), i.e. p + q is bounded below by a constant. We focus on the
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case m ≥ 3, since any Gn,m,p,q is balanced if m ≤ 2. Indeed, when m ≤ 2 we can
define the bi-partition A = {v : xv[`] = +1,∀` ∈ M} and B = V \A; observe now
that all negative edges have one endpoint in A and one in B and all positive edges
either have both points in A or both in B, which implies that all cycles have an even
number of negative edges.

We first present our proof for the special case where p + q = 1 and then show
how this can be used for the general case p + q = Θ(1). In particular, we prove the
following:

Theorem 4.2. Let p = q = 1
2

and m ≥ 3. Then Gn,m,p,q has Ω(n3) negative cycles
with high probability as n goes to infinity.

Proof: Fix distinct vertices x, y, z ∈ V . We will bound the probability that σ(yz) =
−1 and σ(xy) = σ(xz) = +1. Notice that, by symmetry, this probability is equal to
the probability that all edges are negative; indeed, alternating the signs of the feature
choices of x results in switching x (i.e. changing the signs of all incident edges of x).

Define K
def
= |E+

B (z) ∩ E+
B (y)|+ |E−B (z) ∩ E−B (y)| to be the random variable that

counts the number of features where z and y agree. Clearly, K ∼ B(m, p2 + q2) =
B
(
K, 1

2

)
.

Define also X
def
= |E+

B (z) ∩E+
B (y) ∩E+

B (x)|+ |E−B (z) ∩E−B (y) ∩E−B (x)| to be the
random variable that counts the number of features where z, y and x agree. Clearly,
X|K ∼ B

(
K, 1

2

)
, i.e., the distribution of X given K is binomial with parameters K

and 1
2
.

Finally, define Y
def
= |E−B (z)∩E+

B (y)∩E+
B (x)|+ |E+

B (z)∩E−B (y)∩E−B (x)| to be the
random variable that counts the number of features where only y and x agree (and
not z). Clearly, Y|K ∼ B

(
m−K, 1

2

)
, i.e., the distribution of Y given K is binomial

with parameters m−K and 1
2
. Furthermore, given K the random variables X|K and

Y|K are stochastically independent.

By the above definitions, first note that

Pr(σ(yz) = −1) = Pr
(
K <

m

2

)
. (4)

Furthermore, to have σ(xz) = +1 and σ(xy) = +1 at the same time, we need
X − (K − X) + min{Y,m − K − Y } − (m − K − min{Y,m − K − Y }) > 0, or
equivalently m − 2X < 2Y < m − 2(K −X). Indeed (please refer to Figure 1), to
have σ(x, z) = +1, we must have 0 <

∑
` xx[`]xz[`] = X − (K − X) − Y + m −

K − Y = m − 2(K − X) − 2Y . Furthermore, to have σ(xy) = +1, we must have
0 <

∑
` xx[`]xy[`] = X − (K −X) + Y − (m−K − Y ) = 2Y − (m− 2X). Therefore,

Pr(σ(xz) = +1, σ(xy) = +1|K) = Pr(m− 2X < 2Y < m− 2(K −X)|K)

= Pr
(m

2
−X < Y <

m

2
−K +X

∣∣∣K)

= Pr (|Y − E[Y |K]| < X − E[X|K]|K) (5)
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x

y

z

X

K

Y

m−K

Figure 1: An instance of the feature choices of 3 vertices x, y, z. Same color means
that the corresponding feature choices are the same. For simplicity, feature choices
have been grouped.

where in the last equation we used E[X|K] = K
2

and E[Y |K] = m−K
2

. Clearly, the
above probability is non-zero only if 2X > K.

We now prove the following bound on the probability that σ(yz) = −1, σ(xz) =
+1 and σ(xy) = +1. We make no attempt to optimize the various constants coming
from concentration bounds.

Claim. For p = q = 1
2
, and any m ≥ 3, there is a constant γ ∈ (0, 1), such that

Pr
(
K <

m

2
, |Y − E[Y ]| < X − E[X]

)
≥ γ, for any m ≥ 3. (6)

Proof: We will assume without loss of generality that m is sufficiently large (e.g.
m ≥ 1000), since the claim is obvious for small values of m.

We first note that with at least constant probability, we have K = Θ(m). In
particular, since X ∼ B

(
m, 1

2

)
, by symmetry,

Pr

(
4m

10
≤ K <

m

2

)
≥ 1

2
Pr
(∣∣∣K − m

2

∣∣∣ ≤ m

10

)
− Pr

(
K =

⌈m
2

⌉)
≥ 1

2
− exp

{
− m

400

}
+

(
m
m
2

)
2−m ≥ 1

3
. (7)

where in the second inequality we applied the Chernoff bound, and the last inequality
holds for all large enough m.

Second, we prove that, given K = Θ(m), with at least constant probability we
have |Y − E[Y ]| < X − E[X]. We first note that, by symmetry of B

(
K, 1

2

)
and

B
(
m−K, 1

2

)
around their expected values, we have that

Pr

(∣∣∣∣Y − m−K
2

∣∣∣∣ < X − K

2

∣∣∣K) =
1

2
Pr

(∣∣∣∣Y − m−K
2

∣∣∣∣ < ∣∣∣∣X − K

2

∣∣∣∣ ∣∣∣K) . (8)

Notice also that we can write Y
def
= X ′+Z, whereX ′ ∼ B

(
K, 1

2

)
is stochastically inde-

pendent ofX and Z ∼ B
(
m− 2K, 1

2

)
is stochastically independent of bothX andX ′.
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Finally, note that, among all the feature choices that satisfy
∣∣Y − m−K

2

∣∣ < ∣∣X − K
2

∣∣,
for at least half of them we also have

∣∣Y − m−K
2

∣∣ =
∣∣∣∣X ′ − K

2

∣∣− ∣∣Z − m−2K
2

∣∣∣∣; indeed,
flipping all feature choices corresponding to Z produces a distinct, equiprobable set
of feature choices. Therefore, by (8), we get

Pr

(∣∣∣∣Y − m−K
2

∣∣∣∣ < X − K

2

∣∣∣K)
≥ 1

4
Pr

(∣∣∣∣∣∣∣∣X ′ − K

2

∣∣∣∣− ∣∣∣∣Z − m− 2K

2

∣∣∣∣∣∣∣∣ < ∣∣∣∣X − K

2

∣∣∣∣ ∣∣∣K) (9)

Notice now that, for 4m
10
≤ K < m

2
(which is the event from inequality (7)), we

have that K > m − 2K. Therefore, by Lemma 2.2, with probability at least 1
2

we
have

∣∣Z − m−2K
2

∣∣ ≤ ∣∣X ′ − K
2

∣∣. Furthermore, by symmetry, given this event (call it

E), it is easy to see that with probability at least 1+Pr(X′=X|E)
2

> 1
2
, we will have∣∣X ′ − K

2

∣∣ ≤ ∣∣X − K
2

∣∣. Combining the above with (9), we then have

Pr

(∣∣∣∣Y − m−K
2

∣∣∣∣ < X − K

2

∣∣∣4m
10
≤ K <

m

2

)
≥ 1

16
. (10)

Finally, by the chain rule and equations (7) and (10), we get

Pr
(
K <

m

2
, |Y − E[Y ]| < X − E[X]

)
≥ 1

48
,

which completes the proof of the claim.

By the above claim, Pr(xyz induce a negative cycle) ≥ γ. Now fix an ordering
H1, H2, . . . , H(n3)

of all subsets of vertices of size 3 and, for 1 ≤ i ≤
(
n
3

)
, define Ti to

be the indicator variable that the i-th triplet of vertices (i.e. Hi) induces a negative
cycle. In particular, we have that Pr(Ti = 1) ≥ γ, for each i. Let also T denote the
number of negative cycles in Gn,m,p,1−p. Then, by linearity of expectation, we have

that E[T ] =
∑(n3)

i=1 γ ≥
(
n
3

)
γ = Θ(n3), which goes to infinity with n.

It remains to show that T is also concentrated around its expected value. To
prove this, we employ a technique described in [1]. For indices i, j, we write i ∼ j if
the events {Ti = 1} and {Tj = 1} are not independent. Notice now that the events
{Ti = 1}, 1 ≤ i ≤

(
n
3

)
are symmetric, i.e. for any i 6= j, there is an automorphism

of the underlying probability space that sends event {Ti = 1} to {Tj = 1}. Now fix
i, and define ∆∗ =

∑
j∼i Pr(Tj = 1|Ti = 1). We will prove that ∆∗ = o(E[T ]), from

which the desired concentration follows from the following result from [1]:

Corollary 4.1 ( [1], chapter 4). If E[T ]→∞ and ∆∗ = o(E[T ]) then T > 0 almost
always. Furthermore, T ∼ E[T ] almost always.

Notice that, for any i, j, the events {Ti = 1} and {Tj = 1} are stochastically inde-
pendent when the corresponding triplets of vertices Hi and Hj are disjoint. However,
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we can prove independence also in the case |Hi∩Hj| = 1. Towards this end, suppose
that Hi∩Hj = v (i.e. v is the common vertex of Hi and Hj) and let xv be the vector
of feature choices for v; since p = q = 1

2
, all values in xv are non-zero. The crucial

observation is that, Pr{Ti = 1|xv} = Pr{Ti = 1|xv[`] = 1,∀` ∈ M}, i.e. the event
{Ti = 1} is stochastically independent of the specific feature choices of v. Indeed,
let Hi = {v, u, w} and let xu,xw be the feature choices of the other two vertices
in Hi respectively. Also let F (respectively, F ′) be the set of vectors xu,xw such
that Hi induces a negative cycle given xv (respectively, given xv[`] = 1,∀` ∈ M).
Then we can define a one-to-one correspondence f : F → F ′ between F and F ′ by
f(xu,xw) = (xu � xv,xw � xv), where � denotes component-wise multiplication. A
similar argument shows that the event {Tj = 1} is stochastically independent of the
specific feature choices of v.

In view of the above, and also taking into account that, i � j if |Hi ∩ Hj| = 3,
we conclude that i ∼ j only if |Hi ∩ Hj| = 2. Therefore, for fixed i, there are
3(n− 3) indices j such that j ∼ i, which gives ∆∗ = O(n) = o(E[T ]), and the proof
is complete.

We now consider the more general case 1 ≤ p+ q = Θ(1).

Theorem 4.3. Let 1
2
≥ p = q ≥ c, for some positive constant c ≤ 1

2
, and let m ≥ 3.

Then Gn,m,p,q has Θ(n3) negative cycles with high probability.

Proof: Fix distinct vertices x, y, z ∈ V . We will use the Claim in the proof of
Theorem 4.2 to prove a constant lower bound on the probability that {x, y, z} induce
a negative cycle in Gn,m,p,q. Towards this end, let Mxyz denote the set of features
that have been selected (either with +1 or −1) by all three vertices. Furthermore,
letMxyz̄ denote the set of features that have been selected by x and y but not z. Let
Mx̄yz and Mxȳz be defined similarly. Note that |Mxyz| ∼ B(m, (p + q)3) and each
of |Mxyz̄|, |Mx̄yz|, |Mxȳz| follows B(m, (p + q)2(1− p− q)); note that these random
variables are not independent.

Consider now the random signed intersection graph instance G0 with associated
signed bipartite graph B0 having vertex set {x, y, z}∪Mx,y,z and edge set E+

B0
∪E−B0

,
where E+

B0
= {(v, `) : ` ∈ S+

v ∩ Mx,y,z, v ∈ {x, y, z}} and E−B0
= {(v, `) : ` ∈

S−v ∩Mx,y,z, v ∈ {x, y, z}}. In particular, G0 is the signed intersection graph instance
constructed by considering only vertices x, y, z and the set of features that have been
selected by all three vertices. Notice then that, given Mx,y,z, G1 is distributed as
G3,|Mx,y,z |, 12 ,

1
2
. Furthermore, since Pr(|Mx,y,z| ≥ 3) ≥ c3, we can apply the Claim

from the proof of Theorem 4.2 to conclude that, with (constant) probability at least
c3γ (where γ is the constant defined in the Claim), G0 will be a negative cycle.

We now show that, with constant probability the remaining set of features does
not reduce this probability by more than a multiplicative constant factor. To prove
this, we define the random signed intersection graph instances G1, G2, G3 similarly to
G0; in particular G1 (respectively, G2, G3) is the signed intersection graph instance
constructed by considering only vertices x, y, z and the set of featuresMxyz̄ (respec-
tively, Mx̄yz,Mxȳz). Notice that, given Mxyz̄, G1 induces at most a single edge
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between x, y, which is distributed as G2,|Mxyz̄ |, 12 ,
1
2
. Similarly, given Mx̄yz, G2 has at

most one edge between y, z, which is distributed as G2,|Mx̄yz |, 12 ,
1
2
, and, given Mxȳz,

G3 has at most one edge between x, z, which is distributed as G2,|Mxȳz |, 12 ,
1
2
. The cru-

cial observation is that, given the set of featuresMx,y,z,Mxyz̄,Mx̄yz,Mxȳz the signs
σ1(xy), σ2(yz), σ3(xz) ∈ {0,±1} of edges in G1, G2, G3 are mutually independent and
are independent of the signs of edges σ0(xy), σ0(yz), σ0(xz) in G0. Furthermore, by
independence and by the definition of G1, we have

Pr(σ1(xy)σ0(xy) ≥ 0) ≥ 1

2
.

In particular, this inequality implies that, with constant probability the sign σ(xy)
of the edge between x, y in the original instance Gn,m,p,q will be equal to σ0(x, y)
(i.e. the sign in G0). Identical inequalities hold for Pr(σ2(yz)σ0(yz) ≥ 0) and
Pr(σ3(xz)σ0(xz) ≥ 0). Putting this all together, if E is the event {xyz induce a
negative cycle in Gn,m,p,q} we have

Pr(E) ≥ c3 Pr(E|{|Mx,y,z| ≥ 3})
≥ c3 1

23
Pr(E|{σ1(xy)σ0(xy) ≥ 0, σ2(yz)σ0(yz) ≥ 0, σ3(xz)σ0(xz) ≥ 0},
{|Mx,y,z| ≥ 3}) (11)

= c3 1

23
Pr(xyz induce a negative cycle in G0|{|Mx,y,z| ≥ 3}) (12)

≥ c3 1

23
γ,

where γ is the constant from the Claim in the proof of Theorem 4.2. In particu-
lar, inequality (11) above follows by mutual independence of σ1(xy), σ2(yz), σ3(xz),
σ0(xy), σ0(yz), σ0(xz); notice also that {|Mx,y,z| can only affects these signs indi-
rectly by forcing some of the feature sets Mxyz̄,Mx̄yz,Mxȳz to be empty; however,
in this case the corresponding signs are equal to 0, which works in our favor. Finally,
equality (12) follows by observing that the when the signs of edges xy, yz, xz are
determined by G0, E is identical to the event {xyz induce a negative cycle in G0}.

We now proceed similarly to the proof of Theorem 4.2. In particular, let T
denote the expected number of negative cycles in Gn,m,p,q. In view of the above,
we have E[T ] = Θ(n3). To prove concentration of T around its expected value, we
apply Corollary 4.1; for simplicity we use the same notation. The main difference
here is that, since p + q can be smaller than 1, we can no longer claim that the
events {Ti = 1} and {Tj = 1} are stochastically independent when |Hi ∩ Hi| = 1.
Nevertheless, for fixed i, there are 3

(
n−3

2

)
indices j such that |Hi ∩Hi| = 1, and so

∆∗ = O(n2) = o(E[T ]) as needed.

It is easy to see that if m is small and both p and q are constants, then the
probability that Gn,m,p,q has a 3-negative cycle is large enough (for example, if m is
also constant, this probability is constant as well). On the other hand, when m is
sufficiently large, we prove the following:
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Theorem 4.4. Let m = ω(log n). If |p − q| ≥ ε, for any arbitrarily small positive
constant 0 < ε ≤ 1, then Gn,m,p,q is balanced with high probability as n→∞.

Proof: We assume without loss of generality that p > q. For any two vertices v, u,
let Mvu denote the set of features that have been selected (either with +1 or −1)
by both vertices; note that |Mvu| ∼ B(m, (p + q)2). Therefore, by the lower tail
Chernoff bound, setting δ = 1

2
, we have

Pr

(
|Mvu| ≤

1

2
m(p+ q)2

)
≤ e−

m(p+q)2

8 ≤ e−
mε2

8 = o(n−2), (13)

where the second inequality follows from the fact p + q ≥ ε and the final equation
follows from the fact m = ω(log n). In particular, the above inequality states that
|Mvu| > 1

2
m(p + q)2 ≥ mε2

2
= ω(log n) with probability 1 − o(n−2). Notice now

that, by definition, given Mvu, the sign of vu in Gn,m,p,q is distributed as the sign
of the (single) edge in a random signed intersection graph instance G2,|Mvu|, p

p+q
, q
p+q

,

i.e. with 2 vertices, |Mvu| features and + (respectively, −) selection probability
p
p+q

(respectively, q
p+q

). Indeed, the latter follows by independence and by observ-

ing that Pr(` ∈ S+
v |` ∈ S+

v ∪ S−v ) = p
p+q

. Therefore, given Mvu, the number

Cvu of features on which v, u agree follows B
(
|Mvu|, p2

(p+q)2 + q2

(p+q)2

)
. In particu-

lar, we have E
[
Cvu
∣∣|Mvu|

]
= |Mvu|

(
p2

(p+q)2 + q2

(p+q)2

)
= |Mvu|

(
1
2

+ 1
2

(
p−q
p+q

)2
)
≥

|Mvu|
(

1
2

+ 1
2
ε2
)
. By the lower tail Chernoff bound, we then have, for any 0 < δ < 1,

Pr

(
Cvu ≤ (1− δ)|Mvu|

(
p2

(p+ q)2
+

q2

(p+ q)2

) ∣∣∣|Mvu|
)
≤ e−

δ2(1+ε2)|Mvu|
8 . (14)

Selecting δ = ε2

1+ε2
we have that

(1− δ)|Mvu|
(

p2

(p+ q)2
+

q2

(p+ q)2

)
≥ (1− δ)|Mvu|

(
1

2
+

1

2
ε2
)

=
|Mvu|

2
.

Therefore, we have

Pr(σ(vu) = −1
∣∣|Mvu|) = Pr

(
Cvu <

|Mvu|
2

∣∣∣|Mvu|
)

≤ Pr

(
Cvu < (1−δ)|Mvu|

(
p2

(p+q)2
+

q2

(p+q)2

)∣∣∣|Mvu|
)

≤ e−
ε2|Mvu|

8 , (15)

where the last inequality follows from (14) by setting δ = ε2

1+ε2
. We can now bound

the probability that vu is negative as follows:

Pr(σ(vu) = −1) ≤ Pr

(
|Mvu| ≤

1

2
m(p+ q)2

)
+ Pr

(
σ(vu) = −1

∣∣|Mvu| >
1

2
m(p+ q)2

)
(16)

≤ o(n−2) + e−
ε2m(p+q)2

16 = o(n−2), (17)
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for all m = ω(log n), where the second inequality follows by (13) and (15). By the
union bound, we then have that, with probability that goes to 1 as n→∞, any pair
of vertices agrees in more than m/2 features. This implies that all edges are positive,
and so Gn,m,p,q is balanced with high probability as needed.

5 Further Research

In this paper we defined and initiated the study of the random signed intersection
graphs model Gn,m,p,q. As our main contribution, we proved that, if p = q = Θ(1),
then with high probability Gn,m,p,q is not balanced. On the other hand, if m =
ω(log n) and |p−q| is lower bounded by some arbitrarily small constant, then Gn,m,p,q

is not balanced with high probability. A natural open problem related to balance of
Gn,m,p,q is to determine the line index, namely the smallest number of edges whose
inversion of signs results in a balanced graph. By Theorems 4.3 and 4.4 we get the
following:

Corollary 5.1. Let p, q be such that 1 ≥ p+ q ≥ c, for some positive constant c. If
m ≥ 3 and p = q, then the line index of Gn,m,p,q is Θ(n2) with high probability. On
the other hand, if m = ω(log n) and |p − q| ≥ ε, for any arbitrarily small positive
constant 0 < ε ≤ 1, then the line index of Gn,m,p,q is equal to 0 with high probability.

We note that the proof of our result concerning the imbalance of random instances
of the model Gn,m,p,q with p = q relies on a rough lower bound of the probability that
a fixed triplet of vertices induces a negative cycle (see the Claim in the proof of
Theorem 4.2). This is one of the main reasons why we cannot prove more detailed
results concerning the line index, such as for example its distribution. In particular,
we believe that new tools are required to make progress on that front. This is also
true for various related definitions to the line index as for instance the smallest
number of vertices whose deletion results in a balanced graph and also the feature
line index of Gn,m,p,q, namely the smallest number of feature choices whose inversion
of signs results in a balanced graph. It is easy to verify that if the number of negative
cycles is Ω(n3), then the feature line index is Ω(n). However, it seems that it could
be as large as Θ(nm). We leave the investigation of which bound is closer to the
truth as an open problem.

Furthermore, to the best of our knowledge, research related to random signed
graphs is still at an early stage. Taking into account the volume of results for random
(unsigned) graphs and the special characteristics that signed graphs have, we believe
that a new, quite interesting research area could be emerging. In particular, there
are several important questions that remain open. For example, we mention the
problem of determining the maximum size of a balanced clique in a signed graph, the
existence of a balancing vertex (i.e. a vertex whose deletion along with all adjacent
edges results in a balanced signed graph), the existence of negative cycles of size
larger than 3, the existence of at most n negative faces provided that the underlying
graph is planar, etc. Especially the last question is related to matroids since planar
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signed graphs with at most two vertex disjoint faces form the main building blocks
for the class of quaternary and non-binary signed-graphic matroids, see e.g [13].
Moreover, it is known that a connected signed-graphic matroid is binary if and only
if the associated signed graph has no two vertex disjoint negative cycles. Therefore,
based on such statements, asymptotic results for signed graphs can be used in order
to study the asymptotic behavior of the associated matroids. In view of this, we
believe that research related to random signed graphs may also contribute to the
recent development of a theory of matroid asymptotics (see e.g. [2, 9, 11]).
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