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Abstract

We show that the Vamos matroid is not representable in pregeometries
of rank greater than 4 satisfying a certain homogeneity condition, gener-
alizing the result of Ingleton and Main on non-algebraicity of the Vamos
matroid. We also show non-representability of the Vamos matroid in the
pregeometry of “small closure” in a dense pair of geometric structures, a
notion arising in model theory.

1 Introduction and preliminaries

In this short paper, we will be dealing with questions that are at the intersection
of matroid theory and model theory. Among the main references on matroid theory
and model theory are [13] and [10], respectively.

A set X together with a closure operator cl acting on its subsets,
c:P(X)— P(X),

is called a pregeometry (see, for example, [10], Section 4.6), if
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1. forany A C X, A C cl(A);

2. for any A, B C X, if A C ¢l(B) then cl(A) C cl(B) (note that this implies
monotonicity of ¢l and cl(cl(A)) = cl(A) for any A C X);

3. forany A C X, cl(A) = Upca finite U(B);
4. forany A C X and a,b € X, if a € cl(AU{b})\cl(A), then b € cl(AU {a}).

If, in addition, cl(()) = () we say that (X, cl) is a geometry. For any pregeometry
(X, cl) we can consider its associated geometry (X*,cl*) by taking classes modulo
the equivalence relation cl(x) = cl(y), and letting cl* be the closure operator on X*
induced by cl. For any pregeometry, (X, cl) and a subset D C X, we can define the
localization clp of the operator ¢l over D by clp(A) = cl(AU D) for any A C X. For
any D C X, (X, clp) is also a pregeometry. When D = {d} is a singleton, we denote
cligy as clg.

A finite pregeometry is called a matroid. A finite geometry is called a simple
matrotd. Model theorists are mostly concerned with infinite pregeometries. The
main examples of pregeometries in model theory arise from the algebraic closure
operator, denoted acl, in a first-order structure M. Here, for a set A C M, acl(A)
is the set of all solutions of algebraic formulas (that is, formulas having finitely
many solutions) in one variable with parameters in A. The operator acl always
satisfies the properties (1-3) above, and in some “nice” model theoretic settings (e.g.
strong mimimality, o-minimality), it also satisfies the “exchange property” (4), thus
inducing a pregeometry.

In any pregeometry (matroid) (X, cl), the operator ¢l gives rise to the natural
notion of independence, and one can define the rank r(A) of a finite subset A C X as
the cardinality of the maximal independent subset of A. The definition of rank can
be easily extended to finitely generated sets (that is, sets contained in the closure
of finitely many of their elements). Note that for a finite A, a € cl(A) exactly
when 7(A U {a}) = r(A). For the rank function associated with the pregeometry
(X, clp) obtained by localizing over D C X, we use the notation rp (or r4 when
D = {d}). Note that if (D) is finite then rp(A) = r(AU D) — r(D). Rank satisfies
the following properties for finitely generated subsets A, B C X, which can be used
as an alternative way to define matroids:

1. 0<r(A) <|Aj;

2. if AC B C X then r(A) <r(B);

3. "(ANB)+r(AUB) <r(A)+r(B).

The last property is known as submodularity. A closed set (that is, a set A such

that cl(A) = A) of finite rank is called a flat. Flats of rank 1 are called points, flat
of rank 2 are called lines and flats of rank 3 are referred to as planes. Any vector
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Figure 1.1: The Vamos Matroid.

space pregeometry (V) Spanp) satisfies a stronger property of modularity: for any
flats (finite dimensional subspaces) A, B in V' we have

r(ANB)+r(AUB) =r(A) + r(B).

Two important notions used in matroid theory are those of linear and algebraic
matroids. In order to define these, and some other notions, we will introduce the
following terms. Let (X, cl) and (Y, cl) be pregeometries, and let f : X — Y be
any map form X to Y. We say that f is closure preserving, if for any a € X and
A C X we have a € cl(A) if and only if f(a) € cl(f(A)). If f is injective and closure-
preserving, then we say that f is an embedding of (X, cl) into (Y, cl), and say that
(X, cl) embeds into (Y, cl), and that (X, cl) is representablein (Y, cl). If f: X — Y is
a closure-preserving bijection, we call f an isomorphism between the pregeometries
(X,cl) and (Y, cl). An isomorphism f : X — X is called an automorphism of the
pregeometry (X, cl).

A matroid (X, ¢l) is called linear or (linearly) representable over a field F if (X, ¢l)
can be embedded into (V, Spany) where V' is a vector space over a field F and Spang
is the operator of linear span in V. A matroid (X, ¢l) is called algebraic (over a
field ) if (X, ¢l) embeds into (K, acly), where K is an algebraically closed extension
of the field F' and acly is the operator of algebraic closure over I, that is, for any
A C K, aclg(A) = F(A). Note that any matroid linearly representable over F is also
algebraic over IF, but the converse is not true (see [13], Section 6.7).

The smallest matroid not (linearly) representable over any field, known as the
Vimos matroid, was introduced by Peter Vamos in 1968 (see [13], Example 2.1.25).
It is a rank 4 matroid defined on a set of 8 elements

S - {ab bla az, b27 as, b37 Qaq, b4}a

where any set of 3 or fewer elements is independent, and the only dependent sets of
4 elements are

{ab b17 Ay, b2}7 {a17 b17 as, b3}7 {a‘17 bl; ayq, b4}7 {0’27 b27 as, 63}7 {CLQ, b27 Qayq, b4}
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(see Fig. 1.1).

In the 1975 paper [11], Ingleton and Main showed that the Vdmos matroid is
also not algebraic over any field. To show non-algebraicity of the Vamos matroid,
the authors proved the following result which we call the Ingleton-Main Lemma. It
essentially states that in the pregeometry (K, cl) = (K, acly), any three non-coplanar
but pairwise coplanar lines must meet at a common point.

Ingleton-Main Lemma. Let K be an algebraically closed extension of a field T,
and (K, cl) the corresponding pregeometry induced by algebraic dependence over F.
Let aq, by, as,be,a3,b3 € K be such that

1. r(ai, by, a;) = r(a;, b, bj) = r(aba;b;) =3, for all i # j;
2. ’I"(Cll, bl, as, bg, as, bg) = 4.
Then there ezists e € K such that r(e) =1 and

e c cl(al, b1> N Cl(ag, bg) N Cl(@g, bg)

We refer to the configuration of 6 points satisfying the conditions (1) and (2) of
the Ingleton-Main Lemma, as the Ingleton-Main configuration.

Note that in any pregeometry (matroid), if r(a,b) = r(a’,t’) = 2 then, by sub-
modularity,

r(cl(a,b) Nel(a' b)) <4 —r(a,b,d V).

Thus, we have:

e two lines that are not coplanar, have no points of intersection (that is,
r(cl(a,b) Nel(a', V') =0), and

e two distinct coplanar lines either intersect in a point or have a zero rank inter-
section (that is, r(cl(a,b) Ncl(a', b)) < 1).

If the VAmos matroid were embeddable in (K, cl) = (K, aclg), identifying its
elements with the elements of (K, cl), we would have

cl(ay,by) Nel(ag, by) = cl(e) = cl(ag, bs) N cl(ay, by),

thus implying r(as, bs, a4, by) = 3, which contradicts the assumptions.

One of the key ingredients of the proof of Ingleton-Main Lemma is the observation
that if each pair of the three lines has a point of intersection, then there is a common
point for all three. We will include the proof of this result for completeness.

Lemma 1.1. Suppose (X, cl) is a pregeometry and ay, by, as, bs, as, b3 € X satisfy the
conditions (1) and (2) of the Ingleton-Main Lemma (that is, form an Ingleton-Main
configuration). Suppose r(cl(ay,by) Ncl(asz,be)) = 1. Then

r(cl(ay, by) O cl(ag, by) Nel(as, b)) =1,
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that is, there exists e € X such that r(e) =1 and
cl(e) = cl(ay, by) Nel(ag, by) Nel(ag, bs) =
cl(ay,br) Nel(az, be) = cl(ar, by) Nel(as, by) = cl(ag, by) N el(ag, bs).
Proof. Let e € cl(ay, by) Ncl(as, bs). Then also
e € cl(ay, by, as,bs) Nel(ag, by, as, bs) = cl(ag, bs),

since these are two distinct planes both of which contain the line cl(as, b3). Thus,
e € cl(as, bs), as needed. O

Note that due to modularity, in the pregeometry of a vector space (V,cl) =
(V, Spang), any two distinct coplanar lines have a point of intersection. Thus, by
Lemma 1.1, the three lines in the Ingleton-Main configuration in a vector space
will necessarily meet in a common point. This shows that the Vamos matroid is not
linear. In the setting of algebraically closed fields, where modularity fails, the authors
in [11] used Chevalley’s Place Extension Theorem to establish pairwise intersection
of the lines in the Ingleton-Main configuration.

The goal of this paper is to extend the Ingleton-Main Lemma to the wide class
of “weakly homogenous” pregeometries that includes both the algebraic (induced by
acly) and vector space (induced by Spang) pregeometries. Our motivation comes
from model theory, where homogeneity is quite common. Both algebraically closed
fields and (infinite) vector spaces are examples of strongly minimal structures, first-
order structure where sets defined by formulas in one variable (with parameters)
are either finite or co-finite. The model theoretic algebraic closure operator acl (as
defined above) in such a structure M induces a pregeometry that is homogeneous in
the following sense: for any finitely generated set A and b,c & acl(A), there exists
an automorphism of M fixing A pointwise and mapping b to ¢. We will work with
a somewhat weaker condition, which we call “weak homogeneity”. In Section 2, we
show that for any weakly homogeneous pregeometry (X, cl) of rank > 4 a certain
version of the Ingleton-Main lemma holds, with the common intersection point found
after localizing over a generic point. As a corollary, we show that the Vamos matroid
cannot be embedded (represented) in (X, cl).

In Section 3, we introduce the notion of a “dense” subset D of a pregeome-
try (X, cl) (the notion motivated by the second author’s work on unary predicate
expansions of geometric theories). We show that the Ingleton-Main lemma holds
for the pregeometry (X, clp) (known as the pregeometry of “small closure”). As a
consequence, the Vamos matroid is not embeddable (representable) in (X, clp).

2 Weakly Homogeneous Pregeometries

In this section we introduce the notion of weakly homogeneous pregeometry, and
prove that the Vamos matroid is not representable in any such pregeometry of rank
greater than 4.
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Definition 2.1. Let (M, cl) be a pregeometry (matroid). We say that (M,cl) is
homogeneous, if for any ay,...,a,,b,c € M such that b,c¢ & cl(ay,...,a,), there
exists an automorphism f of (M, cl) such that f(b) = ¢ and f(a) = a for all a €
clag, ..., ap).

It is well-known that for any strongly minimal first-order structure M, the prege-
ometry (M, acl) is homogeneous. In particular, for any vector space V over a field (or
a division ring) F, (V| Spany) is homogeneous, and for any algebraically closed field
K extending a field IF, the pregeometry (K, acly) is homogeneous. Although vector
spaces and algebraically closed fields are the main classical examples, the class of
strongly minimal structures is much wider. For example, it includes “exotic” struc-
tures obtained by a variant of the Fraisse limit known as the Hrushovski construction
that are nontrivial but do not allow any definable group operation. Thus, homogene-
ity is not necessarily associated with the classical algebraic structures. We will be
working with a slightly weaker version of homogeneity sufficient for our purposes.

Definition 2.2. Let (M, cl) be a pregeometry (matroid). We say that (M,cl) is
weakly homogeneous, if for any ay,...,a,,b,c € M such that b,c & cl(ay,...,a,),

there exists a closure preserving bijection f : cl(ay,...,a,,b) — cl(ay, ..., a,,c) such
that f(b) = c and f(a) = a for all a € cl(aq, ..., a,).

Proposition 2.3. Suppose (M, cl) is a weakly homogeneous pregeometry of rank > 4.
Then the Vamos matroid is not embeddable (representable) in (M, cl).

Proof. For the sake of contradiction, assume the Vamos matroid is embeddable in
(M, cl). So there exists a subset S = {ay, by, as, by, as, bs, ag, by} of M which has the
following properties:

1. r(a;, bi,a;) = r(a;,b;,b;) = r(ai, b;,a;,b;) = 3 for all i # j except for (i,7) =
(3, 4);

2. T(a3, b37 Gy, b4) = 47

3. r(alablaa27b27a37b3aa'4ab4) =4.

Choose d € (M, cl) such that d ¢ cl(S). This is possible since (M, cl) has rank
greater than 4 and r(S) = 4. Note that r(d) = 1. Note also that since d ¢ cl(5),
rqa(A) = r(A) for any A C S, so the properties (1-3) above hold for r; as well.

Note that each of {ay, by, as, by, as, b3} and {aq, by, as, by, ag, by} forms an Ingleton-
Main configuration with respect to both ¢l and cly.

Consider the subset {ay, by, as,bo} of S. Since d,bs ¢ cl(ay, by, az,bs), by weak
homogeneity, there exists a bijection

[ :cl(ay, by, az, by, bs) — cl(ay, by, az, by, d)
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preserving cl such that f(b3) = d and f(z) = z for any = € cl(ay, by, as,bs). Let
e = f(a3); then we have
as € cl(al, bl, b3>,

e = flas) € cl(f(ar), f(b1), f(bs3)) = cl(ar, by, d) = cla(ar, by);
e € cly(ay, by).

Similarly,

as € Cl((lg, bQ, bg);

e = f(ag) € cl(f(a2), f(b2), f(bs)) = cl(ag, by, d) = clg(az, bs);
e € cly(az, bs).

Thus, e € cly(ay, by)Nely(az, be). Note also that ag ¢ cl(bs) and hence e = f(a3) ¢
cl(f(bs)) = cl(d), that is, rq(e) = 1.

By Lemma 1.1, e € cly(as, bs) and e € cly(aq, by). Thus,
rq(clg(as, b3) Nclg(ayg,by)) = 1,
and, therefore,
rq(as, bs, ag,by) < rg(as,bs) + rq(aq, by) — ra(cly(as, bs) Nclg(aq, by)) =2+2—1=3.

Thus, r4(as, bs, as,bs) = 3 and since r coincides with r4 on subsets of S, we conclude
that r(ag, bs, as, by) = 3, contradicting r(as, b3, ay, by) = 4. O

Remark 2.4. We have essentially shown the following variant of the Ingleton-Main
Lemma for a weakly homogeneous geometry (M, cl): if the subset S = {ay, by, as, ba,
as, bz} C M forms an Ingleton-Main configuration, then for any d € M\cl(S), there
exists e € M such that r4(e) = 1 and

cla(e) = clg(ar, by) Nclg(ag, ba) N cly(as, bs)
= cly(ay,by) Ncly(az, bs)
= cly(ay,br) Necly(as, bs)
= clg(az, be) Nely(as, bs).

In other words, the three lines in the Ingleton-Main configuration meet after localizing
over a ‘“generic point”.

Remark 2.5. In the case when (M, cl) is the pregeometry induced by the algebraic
closure in a strongly minimal structure M, the non-representability of the Vamos
matroid in (M, ¢l) follows from Lemma 6(b) in [15]. The following quick proof in the
strongly minimal case, using canonical bases, was suggested to the second author by
David Evans (see [14] for the notions of canonical base and U-rank). First, using the
notation from the proof of Proposition 2.3 and working in M/, we have

Cc = Cb(a3bg/a1a2b1b2) = Cb(agbg/a,lbl) = Cb((lgbg/dgbg).

Note that U(c) > 1 and ¢ € acl®(ayby) Nacl®(azby). It follows that U(c) = 1. Then
also ¢ € acl®(asbs) N acl®(asby), contradicting U (agbzasby) = 4.



M.M. MUKHOPADHYAY EY AL./AUSTRALAS. J. COMBIN. 75 (1) (2019), 158-170 165

3 Dense pairs

In this section we will prove an analogue of the Ingleton-Main Lemma for the local-
ization of a pregeometry (M, cl) over a subset D C M satisfying a certain “richness”
property we call density. The notion of dense subset in the sense of pregeometry is
motivated by the model theoretic notion of lovely pairs of geometric structures, as
introduced in [1]. A first-order theory T is called geometric if in all of its models
the algebraic closure operator acl satisfies the exchange property (hence, induces a
pregeometry) and the theory eliminates the quantifier 3°°, that is, for every formula
¢(x,y) in the language of T there exists a number n such that if @ is a tuple in a
model M of T, and ¢(z,d) has more than n solution in M, then it has infinitely
many solutions in M. Models of geometric theories are called geometric structures.
Examples include strongly minimal structures (e.g. pure infinite set, vector spaces,
algebraically closed fields), o-minimal structures (e.g. real closed field, its reducts and
some “tame” expansions), pseudofinite fields, and the field of p-adics. We say that
a subset D of a geometric structure M is dense in M, if any infinite definable (with
parameters in M) subset ¢(M, @) of M intersects D. We call D co-dense if no such
¢(M, @) is contained in acl(@D). If, in addition, D = acl(D) (and the pair (M, D) is
sufficiently saturated), we refer to (M, D) as a lovely pair. In the o-minimal setting,
the notions of density and co-density are equivalent to the classical notions density
and co-density defined in terms of order. Dense pairs in this context were studied in
[7]. Dense/co-dense expansions have been studied actively in recent years, both in
o-minimal [6, 8, 9] and general geometric contexts [3, 4, 5]. With any pair (M, D)
where D C M and M is geometric, we can associate the pregeometry (M, scl) of
the small closure operator scl(—) = acl(— U D) (that is, the localization of acl over
D). The (pre)geometry of small closure was of special interest in the study of the
linear /nonlinear dichotomy. In particular, it was shown in [2] that the property of
weak one-basedness of M (the appropriate linearity notion in the general context of
geometric theories) is equivalent to (M, scl) being modular whenever D is a dense
co-dense subset of M (and (M, D) is sufficiently saturated). Moreover, in this case,
the associated geometry of (M, scl) is either trivial, or splits into a disjoint union of
infinite dimensional projective geometries over division rings (and possibly, a trivial
geometry). The role of (M, scl) is less clear in the nonlinear case (e.g. in the field
setting).

In the proof of non-algebraicity of the Vamos matroid in [11], the main argument
can, in fact, be formulated in the language of pairs and derived using model theory.
Namely, given an Ingleton-Main configuration {ay, by, as, by, as, b3} in an algebraically
closed extension K of a field F (where F can also be assumed to be algebraically

—

closed), one can find ¢ € F and d € K\F with the property that d € acl(ay, by, ¢, f)N
acl(ag, by, c, f), witnessed by the same polynomials as the ones that witness ag €
acl(ay, by, bs, f) Nacl(agy, by, bs, f), where fis a tuple in [F. The existence of such ¢ and
d can be derived from the model theoretic fact that all proper pairs of algebraically
closed fields of the given characterstic are elementarily equivalent, and therefore,

(K,F) is elementarily equivalent to a pair where the smaller field has an infinite
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—

transcendence degree, thus, any ¢ ¢ acl(ay, by, as, by, f) will work in that pair. Also,
note that the closure operator in the Ingleton-Main lemma is precisely the small
closure operator in the pair (K,F), and F is dense in K.

These observations motivate us to examine whether Ingleton-Main lemma will
hold for scl in an arbitrary geometric structure expanded with a dense subset. How-
ever, for the sake of generality, we will work in the context of pregeometries rather
than first-order structures, and therefore, will consider the version of density appro-
priate for the context of pregeometry. This property is satisfied by (M, acl) for any
sufficiently saturated pair (M, D) where D = acl(D) is dense and M is geometric (in
this case, D is an elementary substructure of M).

Definition 3.1. We say that a subset D of any pregeometry M is dense in M if for
any finite subset A of M and any b ¢ cl(A), there exists b’ € D, and a bijection

f i cl(Ab) — cl(AY),

such that

1. f(a) =a for all a € A;
2. f(b) =10

3. f is closure preserving.

Note that if (M, cl) is a weakly homogeneous pregeometry and D = cl(D) C M
has an infinite rank, then D is dense in (M, cl).

Proposition 3.2. Let D be a dense subset of a pregeometry M.
Let ay, by, as,bs,a3,b3 € M be such that

1. rp(ai, b;,a;) = rp(ai, b, b;) = rp(a;ba;b;) = 3, for all i # j;
2. rp(ay, by, as, by, as, by) = 4.
Then there exists e € M such that rp(e) =1 and
e € clp(ay,by) Nelp(ag, be) Nelp(as, bz).

Proof. We may assume D =cl(D). Let d be a tuple in D such that as € cl(ay, by, bs, d)
and a3 € cl(ag,be,b3,d). By density of D, there exists d € D and a bijection

— -

fc(ay, by, as, by, bs,d) — cl(ay, by, as, by, d', d) such that:

1. f fixes ay, by, as, bs, cfpointwise;
2. f(bs) =d;

3. f preserves closure.
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Figure 3.1: Ingleton-Main Lemma for localization over a dense subset.

We know:
as € cl(ay, by, bs, d);
as € Cl(a2,b27b3>(i)'

We can now apply the bijection f. Recall that f(b3) = d’. Let e = f(a3). Then
we have:

e= f(as) € cl(al,bl,d',cf);
e = f(as) € Cl(ag,bg,d/,dj.

Now, since d' = f(bs) € D and d € D we have:
e € clp(ay,by) Nelp(as,bs).

By Lemma 1.1, e € clp(as, bs).
We need to show that rp(e) = 1, or, equivalently, e ¢ D (recall that D = cl(D)).
For contradiction, suppose e € D. By the exchange property,

ay € Cl(b17a37b3ad_j;

as € cl(ay, by, by, d)\cl(by, bs, d).
Applying f again, we get:
flar) = a1 € cl(f(as), f(br), £(bs), f(d));
a; € cl(e,bl,d/,cij.

Note that e,d’,d € D, which means a; € clp(by), a contradiction. Therefore,
e ¢ D. Hence, rp(e) = 1. O
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Corollary 3.3. Suppose (M, cl) is a pregeometry of rank > 4. Let D be a dense
subset of M. Then the Vamos matroid is not embeddable (representable) in (M, clp).

Proof. If a Vamos matroid is embeddable in (M, clp) then there exists a subset
S = {ay,by,a9,by,a3,bs,ay,bs} of M, which has the following properties:

1. rp(ai, bi,a;) = rpla;,bi,b;) = rp(a;,b;,a;,b;) = 3 for all i # j except for
(4,5) = (3,4);
2. rpl(as, bs, as,by) = 4;

3. TD(a/hbl)aQaan 0’37b37a47b4) =4.

Then by Proposition 3.2, there exists
e c ch(al, bl) N ClD(a27 bg) N CZD((Zg, bg)

with rp(e) = 1. By Lemma 1.1, we also have e € clp(ay, by). Then, as in the proof
of Proposition 2.3, rp(as, b3, as, by) = 3, a contradiction.

O

4 Open questions

Note that the proof of non-representability of the Vamos matroid in a weakly homo-
geneous pregeometry requires the rank to be greater than 4. Thus, the following is
a natural question.

Question 4.1. Is the Vamos matroid representable in a weakly homogeneous prege-
ometry of rank 47

Although the Vamos matroid is not itself homogeneous, it is not obvious that we
cannot extend it to a homogeneous matroid of rank 4 by adding (possibly infinitely
many) points to the original 8 element set. Note also that for any weakly homoge-
neous pregeometry (M, cl) and a closed subset A of M, and the restriction ¢l|4 of
the operator ¢l to the subsets of A, (A,cl|4) also forms a weakly homogeneous pre-
geometry. Thus, a negative answer to the question above would give another proof
of Proposition 2.3.

A natural question regarding the pregeometry (M, clp) where D is dense in (M, cl)
is how far this pregeometry is from being homogeneous. In the case when T is a
weakly one-based geometric theory (see [2]) we know that for any dense-codense pair
(M, P) of models of T (also known as a “lovely pair”), the associated geometry of
(M, scl) = (M, aclp(ary) splits in a disjoint union of homogeneous geometries (either
trivial or projective over a division ring).

Question 4.2. Suppose (M, P) is a dense-codense pair of geometric structures. Is
the associated geometry of (M, scl) a disjoint union of homogeneous geometries?
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We end this section with the following question.

Question 4.3. Does there exist a (finite) non-algebraic matroid representable in a
(weakly) homogeneous pregeometry?

In [12], Lindstrém shows that the (rank 3) “non-Desargues” matroid (see [13],
p.167, Fig. 6.4) is not algebraic. His proof works for any pregeometry satisfying the
Ingleton-Main lemma and the following “limited” homogeneity condition: for any
line L (closed set of rank 2) and a point a not on L, there exists a’ not in the plane
generated by L and a and a closure preserving bijection

f:el(La) — cl(La')

fixing L pointwise. Clearly, these conditions hold in (M, clp), where M is any homo-
geneous pregeometry and D is a closed subset of M of infinite rank. It follows that
the non-Desargues matroid is not representable in any infinite dimensional homoge-
neous geometry.
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