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Abstract

A path in an edge (vertex)-colored graph is called a conflict-free path
if there exists at least one color that is used on only one of its edges
(vertices). An edge (vertex)-colored graph is called conflict-free (vertex-)
connected if for each pair of distinct vertices, there is a conflict-free path
connecting them. For a connected graph G, the conflict-free (vertex-)
connection number of G, denoted by cfc(G) (or vcfc(G)), is defined as
the smallest number of colors that are required to make G conflict-free
(vertex-)connected. We use C(G) to denote the subgraph induced by
the set of all cut-edges of G. It is easy to see that C(G) is a (possibly
empty) forest. Let h(G) = max{cfc(T ) : T isacomponentof C(G)}. In
this paper, we first give the exact value of cfc(T ) for any tree T with
diameter 2, 3 or 4. Based on this result, the conflict-free connection
number is determined for any graph G with diam(G) ≤ 4 except for
those graphs G with diameter 4 and h(G) = 2. In this case, we give some
graphs with conflict-free connection numbers 2 and 3. For the conflict-
free vertex-connection number, the exact value of vcfc(G) is determined
for any graph G with diam(G) ≤ 4.

1 Introduction

In this paper, all graphs considered are simple, finite and undirected. We refer
to Bondy and Murty’s book [1] for notation and terminology in graph theory not
defined here. Amongst all subjects of graph theory, chromatic theory is no doubt
among the most interesting ones. In this paper, we mainly deal with the conflict-free
(vertex-) connection coloring of graphs.
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In [8], Even, Lotker, Ron and Smorodinsky first introduced the hypergraph ver-
sion of conflict-free (vertex-)coloring, motivated by the problem of assigning fre-
quencies to different base stations in cellular networks. Since then, this coloring has
received wide attention due to its practical application value.

Afterwards, Czap, Jendrol’ and Valiska introduced the concept of conflict-free
connection coloring in [5]. In an edge-colored graph, a path is called conflict-free if
there is at least one color used on exactly one of its edges. This edge-colored graph
is said to be conflict-free connected if every pair of distinct vertices of the graph is
connected by a conflict-free path, and the coloring is called a conflict-free connection
coloring. The conflict-free connection number of a connected graph G, denoted by
cfc(G), is defined as the smallest number of colors required to make G conflict-free
connected. There are many results on this topic; for more details, please refer to
[2, 3, 4, 5, 6, 9]. It is easy to see that 1 ≤ cfc(G) ≤ n − 1 for a connected graph
G. The results on some derived concepts of conflict-free connection can be found in
[10, 11].

Motivated by the above concept, Li, Zhang, Zhu, Mao, Zhao and Jendrol’ [12]
introduced the concept of conflict-free vertex-connection. A path in a vertex-colored
graph is called conflict-free if there is at least one color that is used on exactly one
of its vertices. This vertex-colored graph is said to be conflict-free vertex-connected
if every two distinct vertices of the graph are connected by a conflict-free path,
and the coloring is called a conflict-free vertex-connection coloring. The conflict-free
vertex-connection number of a connected graph G, denoted by vcfc(G), is defined
as the smallest number of colors required to make G conflict-free vertex-connected.
In [7, 12, 13], several results about this notion were obtained. In particular, it was
proved that the bounds 2 ≤ vcfc(G) ≤ �log2(n+ 1)� hold for every connected graph
G with order at least 2.

The path of order n is denoted by Pn. We use Sn to denote the star graph on
n vertices and denote by T (n1, n2) the double star in which the degrees of its two
(adjacent) center vertices are n1 +1 and n2 +1, respectively. For a connected graph
G, the distance between two vertices u and v is the minimum length of all paths
between them, and we write it as dG(u, v). The eccentricity of a vertex v of G is
defined by eccG(v) = maxu∈V (G) dG(u, v). The diameter of G is defined by diam(G) =
maxv∈V (G) eccG(v) while the radius of G is defined by rad(G) = minv∈V (G) eccG(v).
These parameters have much to do with graph structures and are very significant in
the field of graph study. So it stimulates our interest to research on the conflict-free
(vertex-)connections of graphs with small diameter.

In this paper, we first give the exact value of cfc(T ) for any tree T with diameter
2, 3 or 4. Based on this result, the conflict-free connection number is determined
for any graph G with diam(G) ≤ 4 except for those graphs G with diameter 4 and
h(G) = 2. In this case, we give some graphs with conflict-free connection numbers 2
and 3, respectively. For the conflict-free vertex-connection number, the exact value
of vcfc(G) is determined for any graph G with diam(G) ≤ 4.
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2 cfc-values for trees with diameter 2, 3 or 4

For a connected graph G, let X denote the set of all cut-edges of G, and let
C(G) denote the subgraph induced by X . It is easy to see that C(G) is a (pos-
sibly empty) forest. If C(G) is not empty, then we let h(G) = max{cfc(T ) :
T is a component of C(G)}. In [5], the authors obtained the following result.

Lemma 2.1. [5] If G is a connected graph with cut-edges, then h(G) ≤ cfc(G) ≤
h(G) + 1. Moreover, the bounds are sharp.

So, h(G) is a crucial parameter to determine the conflict-free connection number
of a connected graph G. Nevertheless, from the definition of h(G), we can see that
determining the value of h(G) depends on determining the conflict-free connection
numbers of trees. Therefore, in this section we first give the exact value of the
conflict-free connection number of trees with diameter 2, 3 or 4.

Theorem 2.2. If a tree T has diameter 2 or 3, then cfc(T ) = Δ(T ).

Proof. It is easy to see that T has diameter 2 if and only if it is a star Sn, and has
diameter 3 if and only if it is a double star T (n1, n2) (n1 ≥ n2). For the former
case, every two edges of T must be colored differently in any conflict-free connection
coloring, thus cfc(T ) = Δ(T ). While in the latter case, we can obtain that cfc(T ) =
n1 + 1 = Δ(T ) by a similar analysis.

For a tree T of diameter 4, we denote by u the unique vertex with eccentricity
two. The neighbors of u are pendent vertices w1, w2, . . . , w� and v1, v2, . . . , vr with
degrees p1 ≥ p2 ≥ · · · ≥ pr ≥ 2. Certainly, r + � = d(u). Observe that,

(i) in every conflict-free connection coloring c of T , the incident edges of every
vertex must receive different colors.

Without loss of generality, set c(uvi) = i (1 ≤ i ≤ r) and c(uwj) = r + j (1 ≤
j ≤ �). Also observe that,

(ii) if one incident edge of vi is assigned color j, then color i can not appear on
any edge incident with vj (1 ≤ i, j ≤ r).

Actually, we are seeking for the minimum number of colors satisfying (i) and (ii).

Next we define a vector class Sr (r ∈ N
+). We say that an r-tuple (s1, s2, s3, . . . ,

sr) (si (1 ≤ i ≤ r) ∈ N) belongs to Sr if and only if we can find a sequence of distinct
pairs (1, i1,1), (1, i1,2), . . . , (1, i1,s1), (2, i2,1), . . . , (2, i2,s2), . . . , (r, ir,sr) the components
of which are all from [r] such that (1) the two components of every pair are different,
(2) (i, j) and (j, i) (1 ≤ i, j ≤ r) cannot both appear. Note that if (s1, s2, s3, . . . , sr) ∈
Sr then any permutation of its components also belongs to Sr. Thus we may suppose
that s1 ≥ s2 ≥ s3 ≥ · · · ≥ sr.

Lemma 2.3. An r-tuple (s1, s2, s3, . . . , sr) (si ∈ N for (1 ≤ i ≤ r)) belongs to Sr if

and only if
j∑

i=1

si ≤ (2r − 1− j)j/2, (1 ≤ j ≤ r).
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Proof. First we show the necessity. If (s1, s2, s3, . . . , sr) ∈ Sr, then there is a sequence
of pairs for them according to the definition. Suppose that none of (i, j), (j, i) (1 ≤
i < j ≤ r) appears. Then add the pair (i, j) to the sequence. Repeat this operation

until nothing can be added. Finally there are (r−1)r
2

pairs and the corresponding
r-tuple is (s′1, s

′
2, s

′
3, . . . , s

′
r). Assume, to the contrary, that there exists a j such that

∑j
i=1 si >

(2r−1−j)j
2

. Then
∑j

i=1 s
′
i ≥

∑j
i=1 si >

(2r−1−j)j
2

. Obviously, j �= r. It is easy
to observe that the number of distinct pairs (a, b) (a, b ∈ N, a �= b, j + 1 ≤ a, b ≤ r)
is (r− j)(r− j−1). Since exactly half of them appear in the sequence (one and only

one of (a, b) and (b, a) is in the sequence),
∑r

i=j+1 s
′
i ≥

(r−j)(r−j−1)
2

. However, this

implies that (r−1)r
2

=
∑r

i=1 s
′
i =

∑j
i=1 s

′
i+

∑r
i=j+1 s

′
i >

(2r−1−j)j
2

+ (r−j)(r−j−1)
2

= (r−1)r
2

,
a contradiction. Thus the necessity holds.

For the sufficiency, we prove it by applying induction on r. When r = 2, the only
pair satisfying the required condition is (1, 0), and the corresponding sequence is
then (1, 2). Assume that the sufficiency holds for r = p. Consider the case r = p+1.
For (s1, s2, s3, . . . , sp+1), suppose s1 = p− q. We distinguish two cases to clarify.

Case 1. sq+1 > sq+2. In this case, we prove that (s2 − 1, s3 − 1, . . . , sq+1 −
1, sq+2, . . . , sp+1) ∈ Sp. When 2 ≤ j ≤ q+1, we have

∑j
i=2(si−1) ≤ (j−1)(p−q−1) <

(2p−j)(j−1)
2

. When q + 2 ≤ j ≤ p + 1,
∑q+1

i=2 (si − 1) +
∑j

i=q+2 si =
∑j

i=1 si − p ≤
(2p−j+1)j

2
−p = (2p−j)(j−1)

2
. Therefore, (s2−1, s3−1, . . . , sq+1−1, sq+2, . . . , sp+1) ∈ Sp,

so there exists a sequence for it. By adding (1, p + 1), (2, p+ 1), . . . , (q, p + 1), (p +
1, q + 1), (p + 1, q + 2), . . . , (p + 1, p) to this sequence, we get a sequence satisfying
(1), (2) for (s2, . . . , sp+1, s1), implying that (s1, s2, . . . , sp+1) belongs to Sp+1.

Case 2. sq+1 = sq+2. Obviously q �= 0, since otherwise
∑2

i=1 si = 2p > 2p− 1 =
2(2(p+1)−1−2)

2
, a contradiction to the condition. Let b be the maximum subscript such

that sq+1 = sb. We distinguish two subcases to clarify.

Subcase 1. s2 > sq+1. Let a be the maximum subscript such that sa > sq+1.
Again, we prove that s′ = (s′1, s

′
2, . . . , s

′
p) = (s2−1, s3−1, . . . , sa−1, sa+1, . . . , sb−q+a−1,

sb−q+a − 1, . . . , sb − 1, sb+1, . . . , sp+1) ∈ Sp (if b = p + 1, then “sb+1, sb+2, . . . ” does
not exist). As in the discussion in Case 1, for 1 ≤ j ≤ a − 1 or b − 1 ≤ j ≤ p,
∑j

i=1 s
′
i ≤

(2p−1−j)j
2

. Thus if s′ /∈ Sp, the first j such that
∑j−1

i=1 s
′
i ≤

(2p−j)(j−1)
2

and
∑j

i=1 s
′
i >

(2p−j−1)j
2

must appear between a and b − 2. Then we also deduce that

s′j > p − j, so s′i ≥ p− j (j + 1 ≤ i ≤ b − 1). However, this leads to (2(p+1)−1−b)b
2

≥
∑b

i=1 si =
∑b−1

i=1 s
′
i+p =

∑j
i=1 s

′
i+

∑b−1
i=j+1 s

′
i+p > (2p−j−1)j

2
+(b−1− j)(p− j)+p >

(2(p+1)−1−b)b
2

, a contradiction. Thus s′ ∈ Sp. By an analysis similar to the one in
Case 1, we can check that (s1, s2, . . . , sp+1) ∈ Sp+1.

Subcase 2. s2 = sq+1. We prove that s′ = (s′1, s
′
2, . . . , s

′
p) = (s2, s3, . . . , sb−q,

sb−q+1−1, . . . , sb−1−1, sb−1, sb+1, . . . , sp+1) ∈ Sp (if b = p+1, then “sb+1, sb+2, . . . ”

does not exist). Again, for b − 1 ≤ j ≤ p,
∑j

i=1 s
′
i ≤

(2p−1−j)j
2

. Thus if s′ /∈ Sp, the

first j such that
∑j−1

i=1 s
′
i ≤

(2p−j)(j−1)
2

and
∑j

i=1 s
′
i >

(2p−j−1)j
2

must appear between
1 and b− 2. By an analysis similar to the one in Subcase 1, we get a contradiction.
Thus s′ ∈ Sp, we can check that (s1, s2, . . . , sp+1) ∈ Sp+1. The proof is complete.
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Theorem 2.4. Let T be a tree with diameter 4, and denote by u its unique vertex
with eccentricity two. The neighbors of u are pendent vertices w1, w2, . . . , w� and
v1, v2, . . . , vr with degrees p1 ≥ p2 ≥ · · · ≥ pr ≥ 2. Then cfc(T ) = max{r + b, d(u)}
where b = max{�max{

∑j
i=1

ci
j
: 1 ≤ j ≤ r}�, 0} and ci = pi − r + i− 1 (1 ≤ i ≤ r).

Proof. Recall that we give color i to the edge uvi (1 ≤ i ≤ r) and color r + j to the
edge uwj (1 ≤ j ≤ �). We call the colors from [r] the old colors. In any conflict-free
connection coloring of T , we denote by hi (1 ≤ i ≤ r) the number of old colors
used on the edges incident with vi except uvi. Obviously (h1, h2, . . . , hr) ∈ Sr. In
order to add new colors as few as possible, we are actually seeking for the number
a = min{max{pi − 1− hi : 1 ≤ i ≤ r} : (h1, h2, . . . , hr) ∈ Sr}.

Let ci = pi − r + i − 1 (1 ≤ i ≤ r), b = max{�max{
∑j

i=1
ci
j
: 1 ≤ j ≤ r}�, 0}.

Suppose that max{
∑j

i=1
ci
j
: 1 ≤ j ≤ r} is obtained when j = t. Assume a < b.

Then a <
∑t

i=1
ci
t
. Thus there exists an r-tuple (h1, h2, . . . , hr) ∈ Sr such that

hi ≥ pi − 1 − a > pi − 1 −
∑t

i=1
ci
t
for every i, 1 ≤ i ≤ r. However, this implies

that
∑t

i=1 hi >
∑t

i=1(pi − 1)−
∑t

i=1 ci =
∑t

i=1(r − i) = (2r−1−t)t
2

, a contradiction to
(h1, h2, . . . , hr) ∈ Sr by Lemma 2.3. Thus a ≥ b. Next, we only need to construct
(h1, h2, . . . , hr) ∈ Sr with b = max{pi − 1 − hi : 1 ≤ i ≤ r}. Let hi = max{pi −
1 − b, 0}; we now verify that (h1, h2, . . . , hr) satisfies our demand. If b = 0, then
for every j, 1 ≤ j ≤ r,

∑j
i=1 ci ≤ 0, which means

∑j
i=1(pi − 1) ≤

∑j
i=1(r − i).

So
∑j

i=1 hi =
∑j

i=1(pi − 1) ≤
∑j

i=1(r − i) = (2r−1−j)j
2

for every j, 1 ≤ j ≤ r.
Thus, (h1, h2, . . . , hr) ∈ Sr by Lemma 2.3. Besides, b = 0 = max{pi − 1 − hi :
1 ≤ i ≤ r}. As a result, a = b. If b = �max{

∑j
i=1

ci
j

: 1 ≤ j ≤ r}�, then
∑j

i=1(pi − 1 − b) −
∑j

i=1(r − i) =
∑j

i=1(ci − b) = j(
∑j

i=1
ci
j
− b) ≤ 0 for every j,

1 ≤ j ≤ r. Note that
∑j

i=1(r − i) = (2r−1−j)j
2

. If hi = pi − 1− b for 1 ≤ i ≤ r, then
(h1, h2, . . . , hr) ∈ Sr by Lemma 2.3. Otherwise, let k be the minimum subscript such

that hk = 0 �= pi − 1 − b, then
∑j

i=1 hi ≤ (2r−1−j)j
2

for 1 ≤ j ≤ k − 1 and
∑j

i=1 hi =
∑k−1

i=1 hi ≤ (2r−k)(k−1)
2

≤ (2r−1−j)j
2

for k ≤ j ≤ r. Again, (h1, h2, . . . , hr) ∈ Sr by
Lemma 2.3. Easy to check that b ≥ max{pi − 1 − hi : 1 ≤ i ≤ r}, thus a ≤ b. As a
result, a = b since a ≥ b.

Combining Lemma 2.3 with the above analysis, we complete the proof.

3 Results for graphs with diameter 2, 3 or 4

Based on the results in the above section for trees with diameter 2, 3 or 4, we are
now ready to determine the values of cfc(G) and vcfc(G) for graphs G with diameter
2, 3 or 4. We first present some auxiliary lemmas that will be used in the sequel.

Lemma 3.1. [5] Let u, v be distinct vertices and let e = xy be an edge of a 2-
connected graph G. Then there is a u-v path in G containing the edge e.

Lemma 3.2. [12] Let G be a 2-connected graph and w be a vertex of G. Then for
any two distinct vertices u and v in G, there is a u-v path containing the vertex w.
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Lemma 3.3. [12] If G is a connected graph with order at least 3, then vcfc(G) = 2
if and only if G is 2-connected or G has only one cut-vertex.

Lemma 3.4. [12] If G is a connected graph, then vcfc(G) ≤ rad(G) + 1.

For the conflict-free connection of graphs, the following results have already been
obtained.

Lemma 3.5. [5] If G is a noncomplete 2-connected graph, then cfc(G) = 2.

Lemma 3.6. [3] If G is a noncomplete 2-edge-connected graph, then cfc(G) = 2.

Lemma 3.7. [5] If G is a connected graph and C(G) is a linear forest each component
of which is of order 2, then cfc(G) = 2.

Lemma 3.8. [3] Let G be a connected graph with h(G) ≥ 2. If there exists a unique
component T of C(G) such that cfc(T ) = h(G), and T has an optimal conflict-free
connection coloring with a color used on exactly one edge of T , then cfc(G) = h(G).

We have calculated the exact value of cfc(T ) for any tree T with diam(T ) ≤ 4
in Section 2. If G is a connected graph with diam(G) ≤ 4, then any component of
C(G) must be a tree with diameter at most 4. Thus we can calculate h(G) according
to the theorems in Section 2.

For graphs with diameter 2, we have the following result.

Theorem 3.9. If G is a connected graph with diameter 2, then vcfc(G) = 2 and
cfc(G) = max{2, h(G)}.

Proof. Since G has diameter 2, G clearly has at most one cut-vertex. According
to Lemma 3.3, vcfc(G) = 2. If G is 2-edge-connected, then cfc(G) = 2 by Lemma
3.6. Otherwise, C(G) must be a star. Since every used color appears just once in
an optimal conflict-free connection coloring of the star, cfc(G) = max{2, h(G)} by
Lemmas 3.7 and 3.8.

For graphs with diameter 3, we have the following result. Recall that a vertex in
a block of a graph G is called an internal vertex if it is not a cut-vertex of G.

Theorem 3.10. If G is a connected graph with diameter 3, then vcfc(G) ≤ 3
and cfc(G) = max{2, h(G)} except for the graph H depicted in Figure 1 which has
conflict-free connection number h(H) + 1 = 3.

Proof. If G contains at most one cut-vertex, then vcfc(G) = 2 according to Lemma
3.3. We first claim that if we remove all internal vertices of the end blocks of G,
then at most one block is left. Indeed, if there are two blocks B1 and B2 left,
then we can always find two other blocks C1, C2 such that V (Bi) ∩ V (Ci) �= ∅ and
V (Bi) ∩ V (C3−i) = ∅ (i = 1, 2) and for every two internal vertices u ∈ V (C1), v ∈
V (C2), every u-v path is a u-C1-B1-B2-C2-v path. However, this implies that the
distance between u and v is at least 4, contradicting the fact that diam(G) = 3. The
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· · ·

· · ·

· · ·

v1

v3v2

u1

u2

u3

w1

w3

w2

: nontrivial block with all internal vertices

adjacent to the cut-vertex it contains

Figure 1: The graph H.

unique left block B1 contains all cut-vertices of G. We then assign color 3 to one of
them and color 2 to all remaining vertices of V (B1). Other unmentioned vertices of
G share color 1. It is easy to check that G is conflict-free vertex-connected under
this coloring. As a result, vcfc(G) ≤ 3.

The conflict-free connection number of G has been determined by Lemmas 3.6,
3.7 and 3.8 when h(G) ≤ 1 or h(G) ≥ 2 and there exists a unique component T such
that cfc(T ) = h(G). Since G has diameter 3, this T must have diameter at most
3 meaning it is a star or double star. Either of them has an optimal conflict-free
connection coloring with a color used on exactly one edge (This color appears on the
center edge of the double star). Thus we only need to consider the remaining cases.
This implies that B1 exists and it is nontrivial. Besides, every component of C(G)
is a star with its center belonging to B1.

Let h(G) = k. If k ≥ 3, since cfc(G) ≥ k, to prove cfc(G) = k, we only need
to provide a conflict-free connection k-coloring of G. To each component of C(G),
give a conflict-free connection coloring using {1, 2, . . . , k}. Now, for each nontrivial
block, give to two of its edges colors 2 and 3 respectively and all other edges color 1.
It can be verified that G is conflict-free connected in this way.

When k = 2, we denote by n1 the number of vertices of B1 and � the number of
components of C(G). If � < n1, then there exists a vertex v ∈ V (B1) not belonging to
any component of C(G). Note that since diam(G) = 3, the subgraph ofB1 induced by
the vertices each of which belongs to some component of C(G) is complete. We only
need to give a conflict-free connection 2-coloring of G: The edges of each component
of C(G) receive different colors from {1, 2}. Randomly choose an edge e of B1

incident with v and an edge for each of the other nontrivial blocks, then assign to
them color 2. The remaining edges are given color 1. Since every nontrivial block
B of G is 2-connected, there exists a u-v path in both B \ w and B \ e for any
u, v, w ∈ V (B), w /∈ {u, v}, e ∈ E(B). Combining with Lemmas 3.1 and 3.2, we can
choose freely if the u-v path uses or avoids any designated vertex or edge. Observing
this, the checking process is very easy.

For the case � = n1, certainly B1 is complete with vertices v1, v2, . . . , vn1. Since
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diam(G) = 3, for any end block of G, all its internal vertices are adjacent to the
cut-vertex it contains. If n1 ≥ 4, we construct a conflict-free connection 2-coloring
of G as follows: Assign different colors to the edges of each component of C(G) from
{1, 2}; give color 2 to all edges of the path v1v2 . . . vn1 and color 1 to the remaining
edges of B1. Observe that each edge of B1 with color i (i ∈ {1, 2}) is contained in a
triangle the other two edges of which receive distinct colors. Then pick one edge for
each end block and give it color 2. Other edges are given color 1. The verification is
similar.

Suppose n1 = 3 with at least one component of C(G) being P2. Choose one such
P2 and give its edge color 1. Without loss of generality, assume that this edge is
incident with v1 ∈ V (B1), then pick one edge of B1 incident with v1 and give it color
2. Again, other edges of B1 share color 1. We color the edges of other components of
C(G) and nontrivial blocks the way as we did in the previous paragraph. Obviously,
this is a conflict-free connection 2-coloring for G.

If n1 = 3 and every component of C(G) is P3, we show that two colors are not
enough. Note that there are always two adjacent edges of B1 sharing the same color if
only two colors are used. Without loss of generality, suppose that the edges v3v1, v3v2
both have color 1. Let v1u1, v2u2 have color 1 and v1w1, v2w2 have color 2 where these
edges are all cut-edges. It is easy to check that there is no conflict-free path either
between u1 and u2 or between w1 and w2 no matter what color the edge v1v2 is
assigned, a contradiction. Thus according to Lemma 2.1, cfc(G) = h(G)+1 = 3.

Finally, we study the conflict-free (vertex-)connection number of graphs with
diameter 4 in the next two results.

Theorem 3.11. If G is a connected graph with diameter 4, then vcfc(G) ≤ 3.
Besides, cfc(G) = 2 if h(G) ≤ 1 and cfc(G) = h(G) if h(G) ≥ 3.

Proof. Since G has diameter 4, then after removing all internal vertices of the end
blocks, the resulting graph has at most one cut-vertex. If there is none, we can give
colors to vertices as we did in the proof of Theorem 3.10. Note that although the
diameter of G is not the same, the graph structure is the same. For a connected
graph G, it is its graph structure not diameter that determines the way of vertex-
coloring to make it conflict-free vertex-connected. For example, if G is 2-connected,
we can make G conflict-free vertex-connected by giving one of its vertices color 2 and
all remaining ones color 1 no matter what the diameter of G is.

Otherwise, give color 3 to this cut-vertex v1 and color 2 to all vertices of blocks
incident with v1 except for v1. Finally, assign color 1 to all remaining vertices. Surely,
G is conflict-free vertex-connected under this coloring.

Let h(G) = k. If k ≤ 1, the result follows from Lemmas 3.6 and 3.7. If k ≥ 3, we
assign to E(G) k colors as we did in the third paragraph of the proof of Theorem 3.10.
For every pair of distinct vertices u, v ∈ V (G), any path between them contains the
same set of cut-edges. If they belong to the same component of C(G), the conflict-free
path is clear. Otherwise, since diam(G) = 4, there are at most three cut-edges on the
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path. Thus at least one color of 2 and 3 (say 2) appears at most once. If it does not
appear, then we can choose a u-v path using the 2-colored edge of a nontrivial block
and avoiding all other such edges of the nontrivial blocks it goes through. Otherwise,
the desired path is one avoiding all 2-colored edges of the nontrivial blocks it passes.
Thus, k colors are enough in this case.

Corollary 3.12. If G is a connected graph with diam(G) ≤ 4, then vcfc(G) = 3 if
and only if G has more than one cut-vertex.

Proof. The result is an immediate corollary of Lemma 3.3, Theorems 3.9, 3.10 and
3.11.

If h(G) = k = 2, according to Lemma 2.1, we have 2 ≤ cfc(G) ≤ 3. The situation
in this case is complicated. Suppose there are exactly � components of C(G) with
conflict-free connection number 2. Then for each � ≥ 2, we give some graphs of
diameter 4 with conflict-free connection numbers 2 and 3, respectively.

v1 v2

u1

u2

v� v�+1
· · · · · ·

2

2

1

1 1
1

2
2

G�

Figure 2: The graph G� with cfc(G�) = 2 (� ≥ 2).

See Figure 2 for the graph G� with cfc(G�) = 2 (� ≥ 2). Each vi (2 ≤ i ≤ � + 1)
of G� is the center of a P3. We give each such P3 colors 1 and 2 to its two edges,
respectively. Besides, give color 1 to u1vi and 2 to u2vi (3 ≤ i ≤ �+1). The coloring
for other edges are labelled in Figure 2. It is easy to check that this is a conflict-free
connection 2-coloring for G�.

x8

x6

x7x3x4

x2

x1

x5

y7

y2

y1

y11

y3
y10

y9

y6

y4

y5

y8

y12

v1 v2

u1

u2

v�−1 v�
· · · · · ·

H�(� ≥ 4)H3H2

w4
w3

w2
w1

Figure 3: The graph H� with cfc(H�) = 3 (� ≥ 2).

The graph H� with cfc(H�) = 3 (� ≥ 2) is depicted in Figure 3. Suppose, to
the contrary, that there exists a conflict-free connection 2-coloring c for H�. When
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� = 2, without loss of generality, let c(x1x2) = c(x3x4) = c(x6x7) = 1, c(x2x3) =
c(x7x8) = 2. Then if c(x3x7) = 1, to ensure a conflict-free path between x4 and x6,
there must be c(x3x5) �= c(x5x7). However, there is no conflict-free path between
x1 and x8, a contradiction. The case when c(x3x7) = 2 can be dealt with similarly.
Thus cfc(H2) = 3. With the same method, we can deduce that cfc(H3) = 3.

For H� (� ≥ 4), without loss of generality, set c(v1w1) = c(v2w3) = 1, c(v1w2) =
c(v2w4) = 2. Suppose there exist two paths (say u1v1u2 and u1v2u2) with the same
color between u1 and u2. Then there is no conflict-free path between w1 and w3 or
w2 and w4, contradicting our assumption. If these two monochromatic paths receive
different colors, then there is no w1-w4 conflict-free path, a contradiction. Assume
that c(u1v1) = c(u1v2) �= c(u2v1) = c(u2v2). For the sake of the existence of conflict-
free paths between w1 and w3, w2 and w4, there must be two monochromatic u1-u2

paths with different colors, a contradiction to our above analysis. Therefore, u1 and
u2 are connected by at most three distinct paths, in contradiction with � ≥ 4. As a
result, cfc(H�) = 3 (� ≥ 4).
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