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Abstract

We introduce operators hare and tortoise, which act on words as natural
generalizations of West’s stack-sorting map. We show that the heuristi-
cally slower algorithm tortoise can sort words arbitrarily faster than its
counterpart hare. We relate the question of determining which words are
sortable by hare and tortoise to more classical problems in pattern avoid-
ance, and we derive a recurrence for the number of words with a fixed
number of copies of each letter (permutations of a multiset) that are
sortable by each map. In particular, we prove that the `-uniform words
on the alphabet [n] that avoid the patterns 231 and 221 are counted by
the (`+ 1)-Catalan number 1

`n+1

(
(`+1)n
n

)
. We conclude with several open

problems and conjectures.

1 Introduction

1.1 Background

Throughout this paper, the term word refers to a finite string of letters taken from
the alphabet N of positive integers. Given a word p = p1 · · · pk, we say a word
w = w1 · · ·wn contains the pattern p if there are indices i1 < · · · < ik such that
wi1 · · ·wik has the same relative order as p. Otherwise, we say w avoids p. For
example, 3422155 contains the pattern 211 because the letters 322 have the same
relative order in w as 211. On the other hand, 3422155 avoids the pattern 4321.
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A permutation is a word in which no letter appears more than once; it is in the
context of permutations that pattern avoidance has received the most attention. Let
Sn denote the set of permutations whose letters are the elements of the set {1, . . . , n}.
The study of pattern avoidance in permutations originated in Knuth’s monograph
The Art of Computer Programming [30]. Knuth defined a sorting algorithm that
makes use of a vertical stack, and he showed that this algorithm sorts a permutation
into increasing order if and only if it avoids the pattern 231. In his 1990 Ph.D. thesis,
West [39] introduced a deterministic variant of Knuth’s algorithm, which we call the
stack-sorting map and denote by s. This map operates as follows.

Place the input permutation on the right side of a vertical stack. At each point
in time, if the stack is empty or the leftmost entry on the right side of the stack
is smaller than the entry at the top of the stack, push that leftmost entry into the
stack. If there is no entry on the right of the stack or if the leftmost entry on the
right side of the stack is larger than the entry on the top of the stack, pop the top
entry out of the stack and add it to the end of the growing output permutation to
the left of the stack. Let s(π) denote the output permutation that is obtained by
sending π through the stack. Figure 1 illustrates this procedure for s(4162) = 1426.
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Figure 1: The stack-sorting map s sends 4162 to 1426.

If π is a permutation with largest entry n, we can write π = LnR, where L
(respectively, R) is the (possibly empty) substring of π to the left (respectively,
right) of the entry n. West observed that the stack-sorting map can be defined
recursively by s(π) = s(L)s(R)n. It is also possible to define the map s in terms of
tree traversals of decreasing binary plane trees (see [5]).

We do not attempt to give a comprehensive treatment of the extensive literature
concerning the stack-sorting map s. Instead, we provide the background that is
immediately relevant to our investigations and refer the interested reader to [5, 6,
18, 13] (and the references therein) for further information.

A permutation π ∈ Sn is called t-stack-sortable if st(π) = 123 · · ·n, where st

denotes the composition of s with itself t times. A 1-stack-sortable permutation is
simply called sortable. It follows from Knuth’s work that a permutation is sortable
if and only if it avoids the pattern 231. According to the well-known enumeration of
231-avoiding permutations, there are Cn sortable permutations in Sn, where Cn =
1

n+1

(
2n
n

)
is the n-th Catalan number. West [39] conjectured that there are exactly

2

(n+ 1)(2n+ 1)

(
3n

n

)
2-stack-sortable permutations in Sn, and Zeilberger [40] later proved this fact.
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Much of the study of the stack-sorting map can be phrased in terms of preimages
of permutations under s. In fact, the study of stack-sorting preimages of permuta-
tions dates back to West [39], who called |s−1(π)| the fertility of the permutation π
and computed this fertility for some specific types of permutations. Bousquet-Mélou
[7] later studied permutations with positive fertilities, which she called sorted per-
mutations. In doing so, she asked for a method for computing the fertility of any
given permutation. The first author achieved this in much greater generality in [17]
and [18] by developing a theory of new combinatorial objects called valid hook con-
figurations. These objects have since been applied to understand the stack-sorting
map (see [14, 15, 17, 18, 26] and the references therein), and they have been studied
as combinatorial objects in their own right in [16] and [33].

1.2 Definition of Stack-Sorting for Words

Several authors have extended the well-studied area of pattern avoidance in permu-
tations to pattern avoidance in words [1, 2, 8, 9, 10, 27, 28, 29, 31, 32, 34]. One
motivation for this line of inquiry comes from the study of sorting algorithms de-
fined on words [1, 2]. The first order of business in this article is to extend West’s
stack-sorting map s so that it can operate on words. There is one point of ambiguity
in how one defines this extension: should a letter be allowed to sit on top of a copy
of itself in the stack? If, for instance, we send the word 221 through the stack, we
want to know if the second 2 forces the first 2 to pop out of the stack. Depending
on which convention is used, the output permutation could either be 122 or 212; we
avoid this potential issue by considering both variations. With this background in
mind, we offer the following recursive definitions of the functions hare and tortoise
from the set of all words to itself.

Definition 1.1. First, let hare(ε) = tortoise(ε) = ε, where ε is the empty word.
Now, suppose w is a nonempty word with largest letter n. If the letter n appears k
times in w, then we can uniquely write w = A1nA2n · · ·nAk+1, where the letters in
the (possibly empty) words Ai are all at most n− 1. We now define

hare(w) = hare(A1) hare(A2) · · · hare(Ak+1)nn · · ·n,

where there are exactly k copies of the letter n at the end of the word, and

tortoise(w) = tortoise(A1) tortoise(A2)n tortoise(A3)n · · ·n tortoise(Ak)n tortoise(Ak+1)n.

The map hare operates by sending a word through the stack with the convention
that a letter can sit on top of a copy of itself in the stack. On the other hand,
tortoise operates by sending a word through the stack with the convention that a
letter cannot sit on top of a copy of itself. The main purpose of this article is to
compare the functions hare and tortoise and to explore some of their properties.

1.3 Notation

We require the following notation in order to state our main results.



C. DEFANT AND N.KRAVITZ/AUSTRALAS. J. COMBIN. 77 (1) (2020), 51–68 54

• Let W denote the set of all words of finite length over the alphabet N. This
set is a monoid with concatenation as its binary operation. As such, A1 · · ·Ak
denotes the concatenation of the words A1, . . . , Ak. We will often speak of a
word w = w1 · · ·wm; unless otherwise stated, w1, . . . , wm are assumed to be the
letters of the word w (so w has length m).

• Given a tuple c = (c1, . . . , cn) of nonnegative integers, let Wc be the set of all
words with exactly ci i’s for each 1 ≤ i ≤ n. One can think of Wc as the set of
permutations of the multiset {1c1 , 2c2 , . . . , ncn}.

• Let Idc be the unique word in Wc whose letters are nondecreasing from left to
right. By abuse of terminology, we call Idc the identity word in Wc. We will
omit the subscript when it is obvious from context.

• We call a word normalized if it is an element of Wc for some vector c =
(c1, . . . , cn) in which each ci is strictly positive. For example, 31341 is not
normalized because it does not contain the letter 2.

• Let harek denote the map hare composed with itself k times, and define tortoisek

similarly. Given a word w ∈ Wc, let 〈w〉hare be the smallest nonnegative integer
k such that harek(w) = Idc. Similarly, let 〈w〉tortoise be the smallest nonnegative
integer k such that tortoisek(w) = Idc. In particular, put 〈ε〉hare = 〈ε〉tortoise =
0. These values measure how “far” w is from the identity word under our
generalized stack-sorting maps.

1.4 Outline of the Paper

The operators hare and tortoise get their names from the heuristic idea that iteratively
applying the map hare to a word should produce an identity word at least as fast as
iteratively applying tortoise does. More formally, it seems reasonable to expect that
〈w〉hare ≤ 〈w〉tortoise for every word w. For example, 〈2221〉hare = 1 < 3 = 〈2221〉tortoise.
However, in some special cases, we find the fable had it right: slow and steady wins
the race! That is, there exist words w for which 〈w〉hare > 〈w〉tortoise. In Section 2, we
will construct a word ηn of length 2n+1 such that 〈ηn〉hare = 2n−2 and 〈ηn〉tortoise = n
for each positive integer n. In the same section, we show how to rewrite these maps in
terms of West’s stack-sorting map s and also analyze the worst-case-scenario sorting
for each map.

In Section 3, we show that a word w ∈ Wc satisfies hare(w) = Idc if and only if
it avoids the pattern 231 and satisfies tortoise(w) = Idc if and only if it avoids the
patterns 231 and 221. We discuss known results concerning words that avoid the
pattern 231 and present new enumerative results concerning words that avoid the
patterns 231 and 221. Specifically, we provide a recurrence for N (c1, . . . , cn), the
number of words in W(c1,...,cn) that avoid 231 and 221. We also use generating trees
to prove that

N (`, `, . . . , `︸ ︷︷ ︸
n

) =
1

`n+ 1

(
(`+ 1)n

n

)
.
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In Section 4, we study what we call hare-fertility numbers and tortoise-fertility
numbers. Specifically, we show that for every nonnegative integer f , there exists a
word w such that | hare−1(w)| = | tortoise−1(w)| = f . As demonstrated in [15], this
result is false if we require our words to be permutations.

In Section 5, we list several open problems and conjectures.

Remark 1.2. Given the effectiveness of valid hook configurations for understanding
the stack-sorting map s, we believe that it is useful to develop an analogous theory
of valid hook configurations for words. The main difficulty is figuring out how to
modify the original definitions from the context of permutations; the proofs of the
corresponding “fertility formulas” for hare and tortoise then follow the same basic
arguments as those in [17]. We carried out these fairly dense and tedious arguments
in a previous version of this paper, but we have removed them at the request of one
of the referees. The reader seeking additional details about valid hook configurations
for words can consult the preprint of this article on arXiv.org [20]. We also note that
it could be useful to have a “decomposition lemma” similar to the one in [13].

2 The Tortoise and the Hare

We begin this section by recasting hare and tortoise explicitly in terms of the action of
West’s stack-sorting map s. Given a vector c = (c1, . . . , cn) of nonnegative integers,
define the maps φascc , φdesc :Wc → Sc1+···+cn (recall that Sm is the set of permutations
of {1, . . . ,m}) as follows. For each 1 ≤ i ≤ n, let pi = c1 + · · · + ci−1. To obtain
φascc (w) from w, we replace the i’s by the integers pi+1, pi+2, . . . , pi+ci in ascending
order for each i. (In other words, the j-th occurrence of i becomes pi + j.) To obtain
φdesc (w), we replace the i’s by the integers pi + 1, pi + 2, . . . , pi + ci in descending
order for each i. (In other words, the j-th occurrence of i becomes pi + ci + 1 − j.)
Note that even though these maps are not surjective if any ci > 1, they are always
injective. We define the map ψc : Sc1+···+cn → Wc as follows. To obtain ψc(π)
from π, we replace all of the digits pi + 1, pi + 2, . . . , pi + ci by the letter i for each
1 ≤ i ≤ n. Clearly, ψc ◦ φascc = ψc ◦ φdesc : Wc → Wc is the identity map. Similarly,
φascc ◦ ψc : Im(φascc ) → Im(φascc ) and φdesc ◦ ψc : Im(φdesc ) → Im(φdesc ) are both the
identity map (restricted to the correct subset of Sc1+···+cn). Consequently, ψc is a left
inverse for both φascc and φdesc .

As an example, φasc(2,2,3)(3313221) = 5617342 and φdes(2,2,3)(3313221) = 7625431. We

emphasize that ψc depends strongly on c. For example, ψ(2,2,3)(5617342) = 3313221
as expected, whereas ψ(2,3,2)(5617342) = 2313221 and ψ(6,1)(5617342) = 1112111.
The following lemma reduces the computation of hare and tortoise to computations
involving s.

Proposition 2.1. For every word w ∈ Wc, we have

hare(w) = (ψc ◦ s ◦ φdesc )(w) and tortoise(w) = (ψc ◦ s ◦ φascc )(w).

Moreover, for every positive integer k, we have

tortoisek(w) = (ψc ◦ sk ◦ φascc )(w).
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Proof. Fix a word w ∈ Wc. For the first statement, consider the permutation φdesc (w).
We may associate each entry of φdesc (w) with the letter that appears in the corre-
sponding position in w. If we keep track of the positions of individual entries and
letters when we apply s to φdesc (w) and hare to w, we see that the corresponding
entries and letters enter the stack and pop out of the stack identically. Hence,
when we apply ψc to s(φdesc (w)), each entry is taken to the correct letter value in
hare(w). This shows that hare(w) = (ψc ◦ s ◦ φdesc )(w). The same argument shows
that tortoise(w) = (ψc ◦ s ◦ φascc )(w).

For the second statement, it suffices to note that s maps Im(φascc ) into itself.1

This follows from the simple observation that if a < b and a appears before b in a
permutation π, then a appears before b in s(π). Indeed, Im(φascc ) is precisely the
set of permutations in Sm such that the entries pi + 1, pi + 2, . . . , pi + ci appear in
increasing order in π for every i ∈ {1, . . . , n}.

The maps hare and tortoise do in fact “sort” words in the sense that iterative
applications of either map to any word will eventually reach an identity word, which
is a fixed point. A natural question is how many iterations it takes to reach this fixed
point. Recall that 〈·〉hare and 〈·〉tortoise measure this “distance” from the identity. In
each Wc, this metric equals 0 for only the identity word, and it equals 1 for the
nonidentity words that are completely sorted in a single pass.

Intuitively, hare should be the more efficient sorting algorithm because a later
occurrence of a large letter value does not cause the previous occurrences to pop out
of the stack prematurely. It is easy to show that worst-case-scenario sorting with
hare is much more efficient than worst-case-scenario sorting with tortoise. Observe
that if w is a word with largest letter n, then all of the n’s are at the very end of
hare(w), whereas only one n is guaranteed to be at the end of tortoise(w). In fact,
this “rate of progress” is the worst-case scenario for each map. In this sense, hare is
faster than tortoise.

Proposition 2.2. Let c = (c1, . . . , cn), where c1, . . . , cn are positive integers. For
every w ∈ Wc, we have

〈w〉hare ≤ n− 1 and 〈w〉tortoise ≤ c2 + c3 + · · ·+ cn.

Moreover, equality is achieved in both cases by the word ρ ∈ Wc that is obtained from
Idc by moving all of the 1’s to the end of the word.

Proof. The inequalities follow directly from the observation above. Let us prove the
second part of the lemma. By definition, ρ = 2c23c3 · · ·ncn1c1 . Induction on k shows
that

harek(ρ) = 2c23c3 · · · (n− k)cn−k1c1(n− k + 1)cn−k+1 · · ·ncn

1It is easy to see that (s ◦ φdesc )(w) 6∈ Im(φdesc ) if two letters of w with the same value are ever
in the stack simultaneously during the hare-sorting process. For this reason, one cannot obtain an
analogous simple formula for iterations of hare.
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for each 0 ≤ k ≤ n− 1. Hence, 〈ρ〉hare = n− 1. Similarly, each iterative application
of tortoise to ρ moves the letter directly to the left of the 1’s to the position directly
to the right of the 1’s (which stay together). Hence, 〈ρ〉tortoise = c2 + · · ·+ cn.

In light of the previous lemma, one might expect hare to sort all words faster
than tortoise, i.e., 〈w〉hare ≤ 〈w〉tortoise. However, this turns out not always to happen:
even though hare seems to make more progress in the first few iterations, sometimes
tortoise catches up and reaches the identity first! For example, we have

3662451
hare−−→ 3241566

hare−−→ 2314566
hare−−→ 2134566

hare−−→ 1234566

and
3662451

tortoise−−−−→ 3624156
tortoise−−−−→ 3214566

tortoise−−−−→ 1234566,

so
〈3662451〉hare = 4 > 3 = 〈3662451〉tortoise.

The following theorem shows that tortoise can actually be arbitrarily faster than hare.

Theorem 2.3. For any integer n ≥ 3, the word

ηn = 357 · · · (2n− 3)(2n)(2n)246 · · · (2n− 2)(2n− 1)1

has length 2n+ 1 and satisfies

〈ηn〉hare = 2n− 2 and 〈ηn〉tortoise = n.

Proof. The proof of the theorem amounts to observing what happens to ηn under
repeated applications of hare and tortoise. One could write out these calculations for
general n, but we fear that doing so would only obfuscate the computations with a
sea of ellipses (· · · ). Instead, we show the calculations for the case n = 5; the general
case is completely analogous. For hare, note that the 1 moves only a single entry
closer to the beginning of the word with each iteration after the first; for tortoise,
note that the 1 moves two entries forward and that two more entries at the end
become sorted with each iteration (after the second application).

We have η5 = 3 5 7 10 10 2 4 6 8 9 1. Now,

3 5 7 10 10 2 4 6 8 9 1 3 5 7 10 10 2 4 6 8 9 1y hare
y tortoise

3 5 7 2 4 6 8 1 9 10 10 3 5 7 10 2 4 6 8 1 9 10y hare
y tortoise

3 5 2 4 6 7 1 8 9 10 10 3 5 7 2 4 6 1 8 9 10 10y hare
y tortoise

3 2 4 5 6 1 7 8 9 10 10 3 5 2 4 1 6 7 8 9 10 10
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y tortoise

2 3 4 5 1 6 7 8 9 10 10 3 2 1 4 5 6 7 8 9 10 10y hare
y tortoise

2 3 4 1 5 6 7 8 9 10 10 1 2 3 4 5 6 7 8 9 10 10.y hare

2 3 1 4 5 6 7 8 9 10 10y hare

2 1 3 4 5 6 7 8 9 10 10y hare

1 2 3 4 5 6 7 8 9 10 10

Say a word w is exceptional if 〈w〉hare > 〈w〉tortoise. Let Em be the set of exceptional
normalized words of length m. It turns out that Em = ∅ when m ≤ 6. We have used
a computer to find that

E7 = {3662451, 3664251, 6362451, 6364251}.

The sets E8 and E9 have 172 and 5001 elements, respectively. Furthermore, we have
checked that each element of E8 contains one of the words in E7 as a pattern. We have
also found that there are 72 words w of length 9 (but no shorter words) that satisfy
〈w〉hare = 〈w〉tortoise + 2. These observations lead to a host of questions concerning
exceptional words, many of which we list in Section 5.

3 Sortable Words

The t-stack-sortable permutations mentioned in the introduction have received a
large amount of attention [5, 6, 18, 39, 40]. We define a t-hare-sortable word to be
a word w such that haret(w) is an identity word. In other words, it is a word w
such that 〈w〉hare ≤ t. We define t-tortoise-sortable words similarly. Our goal in this
section is to investigate the 1-hare-sortable words and 1-tortoise-sortable words. For
brevity, we call these words hare-sortable and tortoise-sortable, respectively.

Recall that a permutation is sortable if and only if it avoids the pattern 231. We
begin with the corresponding characterization for sortable words.

Proposition 3.1. A word is hare-sortable if and only if it avoids the pattern 231. A
word is tortoise-sortable if and only if it avoids the patterns 231 and 221.

Proof. We prove the contrapositive of each statement. Let w = w1w2 · · ·wm. First,
suppose w contains the pattern 231, i.e., there exist 1 ≤ a < b < c ≤ m such that
wc < wa < wb. Consider the action of hare on w. Because wa < wb, it is clear that



C. DEFANT AND N.KRAVITZ/AUSTRALAS. J. COMBIN. 77 (1) (2020), 51–68 59

wb will force wa to pop out of the stack if it has not already left the stack, and this
occurs before wc even enters the stack. Hence, wa precedes wc in hare(w), which
implies that hare(w) 6= Id. Second, suppose hare(w) = w′1w

′
2 · · ·w′m 6= Id. Then there

exist 1 ≤ d < e ≤ m − 1 such that w′d > w′e. (We have the restriction e ≤ m − 1
because no letter is larger than w′m.) The letter w′d must have exited the stack before
w′e could even enter it. Let w′f be the letter that forces w′d to pop out of the stack.
We must have w′f > w′d > w′e. Furthermore, these letters must appear in the order
w′d, w

′
f , w

′
e in w, which means that these three letters form a 231 pattern in w. This

establishes the first statement.

The proof of the second statement proceeds in a similar manner. The only dif-
ference is that we replace the inequalities wa < wb and w′d < w′f by wa ≤ wb and
w′d ≤ w′f .

This proposition yields an immediate comparison between | hare−1(Idc)| and
| tortoise−1(Idc)| for various vectors c = (c1, . . . , cn); the result holds particular inter-
est in light of the discussion of Section 2.

Corollary 3.2. For any c = (c1, . . . , cn), where c1, . . . , cn are positive integers, we
have

tortoise−1(Idc) ⊆ hare−1(Idc).

Moreover, equality holds exactly when ci = 1 for all i > 1.

Proof. Fix some c = (c1, . . . , cn). Since any word w ∈ tortoise−1(Idc) avoids the pat-
terns 231 and 221, it is also in hare−1(Idc). This establishes the desired containment.
Now, suppose ci = 1 for all i > 1. Then it is impossible for any word w ∈ Wc

to contain the pattern 221, so the conditions for w ∈ Wc being in hare−1(Idc) and
tortoise−1(Idc) are equivalent. We can conclude that hare−1(Idc) = tortoise−1(Idc) in
this case. Finally, suppose that ci ≥ 2 for some i > 1. Consider the word w ∈ Wc

that is obtained from Idc by moving all of the i − 1’s to the right of the i’s. Since
w contains the pattern 221 but not the pattern 231, it is in hare−1(Idc) but not in
tortoise−1(Idc). Hence, hare−1(Idc) strictly contains tortoise−1(Idc) in this case.

We devote the remainder of this section to enumerating the hare-sortable and
tortoise-sortable words. According to Proposition 3.1, this is equivalent to the more
classical problem of enumerating the words that avoid 231 and the words that avoid
both 231 and 221.

Let us focus first on hare. In its most general form, our problem is to find a
formula depending on c1, . . . , cn for the number of hare-sortable words in W(c1,...,cn).
An explicit formula seems unattainable in this level of generality, but we can at least
obtain a recurrence. In fact, this has already been done. Because of Proposition 3.1,
the following theorem is equivalent to Lemma 3 in [2].

Theorem 3.3 ([2]). For nonnegative integers c1, . . . cn, let

M(c1, . . . , cn) = | hare−1(Id(c1,...,cn))|
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denote the number of hare-sortable words in W(c1,...,cn). We have M(c1) = 1 for all
choices of c1. For n ≥ 2, we have

M(c1, . . . , cn) =

{
M(c1 + c2, c3, . . . , cn) +

∑c1
r=1M(r, c2 − 1, c3, . . . , cn) if c2 ≥ 1

M(c1, c3, . . . , cn) if c2 = 0.

The authors of [2] used Theorem 3.3 to find an explicit formula for the generating
function of M(c1, . . . , cn). Specifically, given variables x1, x2, . . ., let yi = xi(1− xi).
Let A(z1, . . . , zm) =

∏
1≤i<j≤m(zi − zj). The following theorem is Theorem 3 in [2].

Theorem 3.4 ([2]). In the above notation, we have∑
a1,...,an≥0

M(a1, . . . , an)xa11 · · ·xann = −
∑n

i=1(−1)ixiy
n−2
i A(y1, . . . , yi−1, yi+1 . . . , yn)

A(y1, . . . , yn)
.

As a corollary of Theorem 3.4, the authors of [2] proved the surprising fact that
M(c1, . . . , cn) is a symmetric function of the arguments c1, . . . , cn. That is, for any
permutation σ1 · · ·σn ∈ Sn,

M(c1, . . . , cn) =M(cσ1 , . . . , cσn).

We now turn our attention to deriving a recurrence relation for the tortoise-
fertility of Id(c1,...,cn). Let N (c1, . . . , cn) = | tortoise−1(Idc)| denote the number of
tortoise-sortable words in W(c1,...,cn). Equivalently, N (c1, . . . , cn) is the number of
words in W(c1,...,cn) that avoid the patterns 231 and 221. The following theorem
reveals N (c1, . . . , cn) not to depend on the value of cn.

Theorem 3.5. For any (strictly) positive integer c1, we have N (c1) = 1. Moreover,
for n ≥ 2 and any positive integers c1, . . . , cn, we have

N (c1, . . . , cn) = 2N (c1, . . . , cn−1) +
n−2∑
i=1

N (c1, . . . , ci)N (ci+1, . . . , cn−1)

+
n−1∑
i=1

ci−1∑
k=1

N (c1, . . . , ci−1, k)N (ci − k, ci+1, . . . , cn−1).

Proof. The n = 1 case is easy: W(c1) consists of only the identity word, which is
clearly tortoise-sortable, so N (c1) = 1.

Now, consider n ≥ 2. Consider a tortoise-sortable word w ∈ W(c1,...,cn). Since
w avoids the pattern 221, all but one of the n’s must be at the very end of w, i.e.,
w = AnBnn · · ·n (where there are cn−1 n’s appearing at the end) for some (possibly
empty) words A and B that do not contain the letter n. We can now compute

tortoise(AnBnn · · ·n) = tortoise(A) tortoise(B)nnn · · ·n,

and this sorted word is the identity exactly when both A and B are tortoise-sortable
and no letter of A is larger than a letter of B. Note that AB ∈ W(c1,...,cn−1).
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If A is empty, then B ∈ W(c1,...,cn−1), and by definition there are N (c1, . . . , cn−1)
possible choices forB. Similarly, ifB is empty, then there areN (c1, . . . , cn−1) possible
choices for A. This pair of possibilities gives the first term in the recurrence relation.

Now, suppose both A and B are nonempty and there is no letter value that
appears in both A and B. Then there exists some 1 ≤ i ≤ n − 2 such that
A ∈ W(c1,...,ci) and B ∈ W(0,...,0,ci+1,...,cn−1) (with i 0’s). In this case, there are
N (c1, . . . , ci)N (ci+1, . . . , cn−1) such pairs of sortable words (A,B). Summing over
i gives the second term in the recurrence relation.

Finally, consider the case where there is some value 1 ≤ i ≤ n − 1 that appears
in both A and B. Then there exists 1 ≤ k ≤ ci− 1 such that A contains k i’s and B
contains ci − k i’s. Hence, we have A ∈ W(c1,...,ci−1,k) and B ∈ W(0,...,0,ci−k,ci+1,...,cn−1)

(with i− 1 0’s). As above, there are N (c1, . . . , ci−1, k)N (ci − k, ci+1, . . . , cn−1) such
pairs of sortable words (A,B). Summing over i and k gives the third term in the
recurrence relation. This exhausts all possibilities.

Some formulas for N (c1, . . . , cn) and M(c1, . . . , cn) for small values of n are as
follows:

N (c1) = 1, N (c1, c2) = c1 + 1,

N (c1, c2, c3) =
1

2
c21 + c1c2 +

3

2
c1 + c2 + 1 =

1

2
(c1 + 1)(c1 + 2c2 + 2);

M(c1) = 1, M(c1, c2) =

(
c1 + c2
c1

)
,

M(c1, c2, c3) = 2c1+c2+c3 −
3∑
i=1

ci−1∑
r=0

(
c1 + c2 + c3

r

)
.

Using these formulas, one can show that N (c1, . . . , cn) grows as cn−ii in each i (e.g.,
N (c1, c2, c3) grows quadratically in c1 and linearly in c2). We also remark that
this type of argument yields a similar but more complicated recurrence relation for
M(c1, . . . , cn); we do not pursue this line of inquiry here.

Although the general formula in Theorem 3.5 looks complicated, it simplifies in
some special cases. In particular, we investigate the `-uniform (normalized) words.
These are words in which each letter value that appears in the word appears exactly
` times, i.e., c = (`, `, . . . , `).

To count these words, we make use of generating trees, an enumerative tool that
was introduced in [11] and studied extensively afterward [3, 36, 37, 38]. In particular,
generating trees have been used to study pattern avoidance in permutations. To
describe a generating tree of a class of combinatorial objects, we first specify a
scheme by which each object of size n can be uniquely generated from an object of
size n− 1. We then label each object with the number of objects it generates. The
generating tree consists of an “axiom” that specifies the labels of the object(s) of
size 1 along with a “rule” that describes the labels of the objects generated by each
object with a given label. For example, in the generating tree

Axiom: (2) Rule: (1) (2), (2) (1)(2),
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the axiom (2) tells us that we begin with a single object of size 1 that has label 2.
The rule (1)  (2), (2)  (1)(2) tells us that each object of size n − 1 with label
1 generates a single object of size n with label 2, whereas each object of size n − 1
with label 2 generates one object of size n with label 1 and one object of size n with
label 2. This example generating tree describes objects counted by the Fibonacci
numbers.

Theorem 3.6. The number of `-uniform words on the alphabet [n] that avoid the
patterns 231 and 221 is

N (`, `, . . . , `︸ ︷︷ ︸
n

) =
1

`n+ 1

(
(`+ 1)n

n

)
.

Proof. The authors of [3] show (their Example 9) that (` + 1)-ary trees, which are
counted by the (` + 1)-Catalan numbers 1

`n+1

(
(`+1)n
n

)
, can be described via the gen-

erating tree

Axiom: (`+ 1) Rule: (m) (`+ 1)(`+ 2) · · · (`+m) for every m ∈ N. (3.1)

Fix some positive integer `, and let P`(231, 221) denote the set of all normalized
`-uniform words that avoid the patterns 231 and 221; we will show that these words
can be described using the generating tree in (3.1).

Let us say that a word w′ ∈ P`(231, 221) over the alphabet [n] is generated from
a word w ∈ P`(231, 221) over the alphabet [n − 1] if we can obtain w′ by inserting
` copies of the letter n into spaces between the letters in w. For example, when
` = n = 3, the word 121122 generates the words

312112233, 132112233, 121132233, 121123233, 121122333. (3.2)

Because w′ avoids 221, the last `− 1 letters of w′ all have value n. Therefore, w′ is
determined by specifying w along with the position j of the first appearance of the
letter n in w′. In the above example, the possible positions j where we could have
placed the first appearance of the letter 3 were 1, 2, 5, 6, 7. In general, we can place
the first appearance of n into position j if and only if 1 ≤ j ≤ `(n− 1) + 1 and there
do not exist α, β such that 1 ≤ α < j ≤ β ≤ `(n − 1) and wα > wβ. Indeed, this
follows from the requirement that the new word w′ avoids 231. We label the word
w with the number of such positions j, or, equivalently, the number of words that w
generates.

Suppose we are given the word w ∈ P`(231, 221) over the alphabet [n−1]. Let m
be the label of w. Let j1 < · · · < jm be the positions where we can place the letter
n so that, after appending an additional ` − 1 copies of n to the end of the word,
we obtain a word w′ ∈ P`(231, 221) over the alphabet [n] that is generated by w. If
we place the letter n in the jthr position between letters of w and then append an
additional `− 1 copies of n to the end, we obtain a word w′ with label `+ r. Indeed,
the words generated by w′ can be formed by inserting the letter n+ 1 into one of the
positions j1, . . . , jr, `(n− 1) + 2, . . . , `n+ 1 between letters in w′ and appending `− 1
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copies of n + 1 to the end. Therefore, w (which has label m) generates words with
labels `+1, `+2, . . . , `+m. For example, the word 121122 has label 5 and generates
the words in (3.2), which have labels 4, 5, 6, 7, 8, respectively. This is precisely the
rule in the generating tree in (3.1). Of course, the only word in P`(231, 221) over
the alphabet [1] is 11 · · · 1 (of length `). This word has label `+ 1, which yields the
axiom of the generating tree in (3.1).

4 Fertility Numbers

Recall that West defined the fertility of a permutation π to be |s−1(π)|. In [15],
the first author defined a fertility number to be a nonnegative integer f such that
there exists a permutation with fertility f . Among other things, he showed that
3, 7, 11, 15, 19, and 23 are not fertility numbers, and he has conjectured that infinitely
many positive integers are not fertility numbers. By analogy, we define a hare-
fertility number to be a nonnegative integer f such that there exists a word w with
| hare−1(w)| = f . We define tortoise-fertility numbers similarly. It turns out that
hare-fertility and tortoise-fertility numbers are much less mysterious than ordinary
fertility numbers.

Theorem 4.1. For every nonnegative integer f , there exists a word w such that
| hare−1(w)| = | tortoise−1(w)| = f .

Proof. It is clear that the word 21 has fertility 0 under both hare and tortoise and that
the word 1 has fertility 1 under each map. In [15], it is shown that the permutation

ξm = m(m− 1) · · · 321(m+ 1)(m+ 2) · · · (2m)

has fertility 2m for every integer m ≥ 1. Since hare and tortoise both restrict to the
map s on the set of permutations, this tells us that

| hare−1(ξm)| = | tortoise−1(ξm)| = |s−1(ξm)| = 2m.

For each integer m ≥ 1, let

ξ′m = m(m− 1) · · · 3211(m+ 1)(m+ 2) · · · (2m)

be the word obtained from ξm by inserting an additional 1 directly next to the 1 in
ξm. We now claim that

| hare−1(ξ′m)| = | tortoise−1(ξ′m)| = 2m+ 1,

which will complete the proof. We will exhibit a proof of this claim only for hare;
the proof for tortoise is completely analogous.

Let Xm be the set of words in hare−1(ξ′m) in which the two occurrences of the
letter 1 appear consecutively. Given a word in Xm, one can obtain a permutation in
s−1(ξm) by deleting one of the 1’s; note that this map is in fact a bijection from Xm

to s−1(ξm).
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(For example, with m = 3, the word 3624115 ∈ X3 is mapped to the permutation
362415 ∈ s−1(ξ3).) So |Xm| = |s−1(ξm)| = 2m, and it remains to show that there
is exactly one word in hare−1(ξ′m) in which the two occurrences of 1 do not appear
consecutively.

Suppose v ∈ hare−1(ξ′m) does not have two consecutive 1’s. For each i ∈ {2, . . . ,
m}, let f(i) be the leftmost letter in v that is larger than i and appears to the right
of i. (Such a f(i) exists because otherwise in hare(v), the letter i would be followed
by only larger letters.) Note that f(i) is the letter that forces i to leave the stack
when we apply hare to v. Let f(1) be the letter that appears immediately to the
right of the first 1 in v. For every i ∈ {2, . . . ,m}, the letter f(i) must appear in v
to the left of every letter that is smaller than i, since otherwise such a smaller letter
would exit the stack before i when we apply hare. So we must have

v = mf(m) (m− 1) f(m− 1) · · · 2 f(2) 1 f(1) 1.

In particular, the sequence f(1), . . . , f(m) is some rearrangement of m + 1, . . . , 2m.
We claim that the f(i)’s are increasing. Indeed, if we had f(i) > f(j) for some
1 ≤ i < j ≤ m, then f(j) would exit the stack before the second 1 could enter the
stack; this would force f(j) to appear to the left of the second 1 in ξ′m, which is
impossible. Thus, f(1) < f(2) < · · · < f(m), and we conclude that f(i) = m+ i for
all i ∈ {1, . . . ,m}. Then

v = m(2m)(m− 1)(2m− 1) · · · 2(m+ 2)1(m+ 1)1

is the last word in hare−1(ξ′m), and this completes the proof.

5 Concluding Remarks and Further Directions

The introduction of the maps hare and tortoise leads to a variety of interesting prob-
lems, which we list in this section.

Theorem 2.3 tells us that for each positive integer k, there is a word ηk+2 of
length 2k + 5 with the property that 〈ηk+2〉hare − 〈ηk+2〉tortoise = k. More precisely,
〈ηk+2〉hare = 2k+ 2 and 〈ηk+2〉tortoise = k+ 2. We suspect that ηk+2 is minimal among
such words in the sense of the following conjectures.

Conjecture 5.1. If w is a word of length m, then

〈w〉hare ≤ 〈w〉tortoise +
m− 5

2
.

Conjecture 5.2. For every word w, we have

〈w〉hare ≤ 2〈w〉tortoise − 2.

After Theorem 2.3, we defined an exceptional word to be a word w such that
〈w〉hare > 〈w〉tortoise. We also let Em denote the set of exceptional normalized words
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of length m. We have calculated that |Em| = 0 for m ≤ 6, |E7| = 4, |E8| = 172, and
|E9| = 5001. Let NWm denote the set of normalized words of length m. We are in-
terested in the ratios |Em|/|NWm|. These values for m = 7, 8, 9 are (approximately)
0.000085, 0.000315, 0.000706. This leads us to the following question.

Question 5.3. Determine the asymptotics of the sequence of ratios

|Em|
|NWm|

.

Each element of E8 contains one of the words in E7 as a pattern. This suggests
that it could be possible to find conditions based on pattern avoidance that are
necessary and/or sufficient for a word to be exceptional.

We saw in Section 4 that every nonnegative integer is a hare-fertility number and
a tortoise-fertility number. In other words, if we define maps Fhare,Ftortoise : W →
N ∪ {0} by Fhare(w) = | hare−1(w)| and Ftortoise(w) = | tortoise−1(w)|, then

Fhare(W) = Ftortoise(W) = N ∪ {0}.

Let P denote the set of all permutations. The first author has conjectured [15]
that there are infinitely many positive integers that are not in the set Fhare(P) =
Ftortoise(P) (where these sets are identical because hare, tortoise, and s all agree on
permutations). It would be interesting to see if this phenomenon persists when we
restrict attention to certain natural sets of words. For example, we have the following
question. Recall that a 2-uniform word is a word in which each letter that appears
actually appears exactly twice.

Question 5.4. What can we say about Fhare(P2) and Ftortoise(P2), where P2 denotes
the set of all 2-uniform words?

Recall that a word w is t-hare-sortable (respectively, t-tortoise-sortable) if
〈w〉hare ≤ t (respectively, 〈w〉tortoise ≤ t). We have not said anything about these
families of words when t ≥ 2. It would be interesting to investigate t-hare-sortable
words and t-tortoise-sortable words in general. In the past, there has been a huge
amount of interest in 2-stack-sortable permutations [4, 5, 6, 12, 22, 23, 25, 39, 40]. It is
probably very difficult to obtain an explicit formula for the number of 2-hare-sortable
words (or 2-tortoise-sortable words) inWc for arbitrary vectors c, but deriving recur-
rences might be possible. Also, one might be able to prove more refined statements
about specific choices of c, such as (1, 2, . . . , 2︸ ︷︷ ︸

n−1

), (1, . . . , 1︸ ︷︷ ︸
n−1

, 2), and (2, . . . , 2︸ ︷︷ ︸
n

).

Finally, let us mention that the authors of [14, 19, 26] have found several in-
teresting properties of uniquely sorted permutations, which are permutations with
fertility 1. Let us say a word w is uniquely hare-sorted if | hare−1(w)| = 1 and
is uniquely tortoise-sorted if | tortoise−1(w)| = 1. We propose the investigation of
uniquely hare-sorted words and uniquely tortoise-sorted words as a potential area for
future research.
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