
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 77(2) (2020), Pages 157–179

Generalized ordered set partitions
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José L. Ramirez

Departamento de Matemáticas
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Abstract

In this paper, we consider ordered set partitions obtained by imposing
conditions on the size of the lists, and such that the first r elements are
in distinct blocks, respectively. We introduce a generalization of the Lah
numbers. For this new combinatorial sequence we derive its exponential
generating function, some recurrence relations, and combinatorial identi-
ties. We prove and present results using combinatorial arguments, gen-
erating functions, the symbolic method and Riordan arrays. For some
specific cases we provide a combinatorial interpretation for the inverse
matrix of the generalized Lah numbers by means of two families of posets.

1 Introduction

The (unsigned) Lah numbers, denoted by
⌊
n
k

⌋
, enumerate the number of partitions

of a set with n elements into k non-empty ordered lists. This sequence satisfies the
following recurrence ⌊

n

k

⌋
=

⌊
n− 1

k − 1

⌋
+ (n+ k − 1)

⌊
n− 1

k

⌋
,
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with the initial values
⌊
0
0

⌋
= 1 and

⌊
n
0

⌋
=
⌊
0
n

⌋
= 0 if n ≥ 1.

They can be computed by the following explicit formula (cf. [17])⌊
n

k

⌋
=
n!

k!

(
n− 1

k − 1

)
.

From the above equation it is possible to obtain the exponential generating function

∑
n≥k

⌊
n

k

⌋
xn

n!
=

1

k!

(
x

1− x

)k
.

The Lah numbers can also be defined as the connecting coefficients between the rising
and falling factorial polynomials

(x)n =
n∑
k=0

⌊
n

k

⌋
(x)k, (n ≥ 0), (1.1)

where (x)n = x(x+ 1) · · · (x+ n− 1) and (x)n = x(x− 1) · · · (x− n+ 1), for n ≥ 1,
with the initial values (x)0 = 1 = (x)0.

The Lah numbers are related to Stirling numbers by the following orthogonality
relation ⌊

n

k

⌋
=

n∑
j=k

[
n

j

]{
j

k

}
, 0 ≤ k ≤ n, (1.2)

where
[
n
m

]
and

{
n
m

}
are the Stirling numbers of the first and second kind, respectively.

Let us introduce the sequence L(n) as the total number of partitions of [n] into
ordered lists (also called fragmented permutations [11]) so that

L(n) :=
n∑
k=0

⌊
n

k

⌋
.

The first few terms are

1, 1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553, 5894109, . . .

For example, L(3) = 13, the ordered lists being

{{1}, {2}, {3}} , {{1, 2}, {3}} , {{2, 1}, {3}} , {{1, 3}, {2}} , {{3, 1}, {2}} ,
{{1}, {2, 3}} , {{1}, {3, 2}} , {{1, 2, 3}} , {{1, 3, 2}} , {{2, 1, 3}} ,
{{2, 3, 1}} , {{3, 1, 2}} , {{3, 2, 1}} .

The exponential generating function is given by

∞∑
n=0

L(n)
xn

n!
= ex/(1−x),
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and satisfies the recurrence relation (cf. [20])

L(n+ 1) = (2n+ 1)L(n)− (n2 − n)L(n− 1), n ≥ 1

with the initial values L(0) = L(1) = 1. The asymptotic behavior of the sequence
can be derived using the saddle point method (See [11], VIII. 7., p.562.):

L(n)

n!
∼ e−

1
2 e2
√
n

2
√
πn

3
4

.

In this paper, we study the number of partitions of [n] into k non-empty lists
(ordered blocks) such that the size s of each list belongs to a given set S. This
sequence is called S-Lah numbers (cf. [10, 15]). We use the Karamata-Knuth notation⌊
n
k

⌋
S

for this sequence. Notice that if S = Z+ = {1, 2, 3, . . .} we recover the classical
Lah numbers. If we take S = {1, 2, . . . ,m}, we obtain the restricted Lah numbers
[13]. In a similar way, if we take S = {m,m + 1, . . . }, we have the associated Lah
numbers introduced by Belbachir and Bousbaa [4]. Inspired by the well-known r-
Stirling numbers introduced by Broder [7], we introduce (S, r)-Lah numbers, denoted
by
⌊
n
k

⌋
S,r

, as the number of partitions of [n + r] into k + r non-empty ordered lists

with the additional condition that the first r elements are in distinct blocks. It is
clear that

⌊
n
k

⌋
S,0

=
⌊
n
k

⌋
S
.

The outline of the paper is as follows. First, we investigate S-Lah numbers,
derive the generating function by the symbolic method and further identities using
combinatorial arguments. In the next sections we study the (S, r)-Lah numbers.
In Section 3 we use classical combinatorial arguments and the symbolic method, in
Section 4 we use the theory of Riordan arrays for the study of the (S, r)-Lah matrix
and its inverse. In Section 5 we provide a new combinatorial interpretation of the
(S, r)-Lah numbers (that involves also the S-Lah numbers), and define a partial
order on the underlying set such that the Möbius cardinal is given by the entries
of the inverse of the (S, r)-Lah matrix. In Section 6 we complete our study with
the introduction and characterization of (S, r)-Fubini numbers, which count the lists
of blocks with the extra conditions on the sizes and on the elements 1, . . . , r (using
matrix theory, combinatorial arguments and the symbolic method). Finally, we show
some results on the number of doubly ordered partitions, “lists of lists”, with our
conditions on the size of the lists and on the elements [r].

2 S-Lah numbers

Restrictions and generalizations of Stirling numbers of the second and first kind were
studied recently by many authors, but these versions of Lah numbers have received
less attention yet. Engbers et al. [10] introduced the S-Lah numbers as the number
of partitions of [n] into k non-empty lists (ordered blocks) such that the size s of
each list belongs to a given set S. For further applications of this sequence see [5].

For the sake of completeness, we mention here another combinatorial interpreta-
tion of the S-Lah numbers in terms of Dyck paths. In particular, Callan [8] showed
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that the Lah number
⌊
n
k

⌋
counts n-Dyck paths with n + 1 − k labelled peaks. Ac-

cording to Callan’s bijection, the S-restricted Lah numbers counts the n-Dyck paths
with n + 1 − k labelled peaks, such that the length of any sequence of consecutive
peaks is contained in S. A peak of a Dyck path is an up step followed directly by
a down step: (UD), and a sequence of consecutive peaks is a sequence of up-down
step pairs UDUDUDUD = (UD)4, while the length of such a (UD)m is m.

The exponential generating function can immediately be obtained using the sym-
bolic method [11]. Let S be a given set of integers. Then, the construction of a
partition of lists of sizes containing in S is

SETk(SEQS(X )),

where SETk(X ) denotes k-sets of objects and SEQS(X ) denotes lists (sequences) of
sizes belonging to the set S. The construction above directly translates to

∞∑
n=k

⌊
n

k

⌋
S

xn

n!
=

1

k!

(∑
s∈S

xs

)k

.

In particular, for S being the odd (O), respectively the even numbers E , we have:

∞∑
n=k

⌊
n

k

⌋
O

xn

n!
=

1

k!

(
x

1− x2

)k
,

∞∑
n=k

⌊
n

k

⌋
E

xn

n!
=

1

k!

(
x2

1− x2

)k
.

The generating functions for the associated [4] and restricted Lah numbers are also
immediate:

∞∑
n=mk

⌊
n

k

⌋
≥m

xn

n!
=

1

k!

(
xm

1− x

)k
,

∞∑
n=k

⌊
n

k

⌋
≤m

xn

n!
=

1

k!

(
x− xm+1

1− x

)k
.

Similarly, if we do not care about the number of lists, the construction is modified
as

SET(SEQS(X )).

Hence, for the S-restricted version of the sequence L(n) we have:

∞∑
n=0

LS(n)
xn

n!
= exp

(∑
s∈S

xs

)
,

where LS(n) =
∑n

k=0

⌊
n
k

⌋
S
.
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Note that the S-restricted Lah sequence is a particular case of the partial Bell
polynomials [9]. Therefore, if S = {k1, k2, . . . }, then they are given by⌊

n

k

⌋
S

=
∑

c1k1+c2k2+···=n,
c1+c2+···=k

n!

c1!c2! · · ·
.

Moreover, it is possible to generalize the Identity (1.1) by means of the potential
polynomials ([9, Theorem B, pp. 141]). Let fS,t(x) be the function defined by

fS,t(x) := (1 +HS(x))t,

where HS(x) =
∑

s∈S x
s. Then

dn

dxn
fS,t(x)

∣∣∣∣
x=0

:= f
(n)
S,t (0) =

n∑
k=0

⌊
n

k

⌋
S

(t)k.

For a given set S of integers, let CS(n, k) denote the number of compositions of
n into exactly k parts such that the size of each part is included in S. Then we have
the following relation ⌊

n

k

⌋
S

=
n!

k!
CS(n, k).

Clearly,⌊
n

k

⌋
S

=
∑

i1+i2+···+ik=n
ij∈S

(n)i1(n− i1)i2(n− (i1 + i2))i3 · · · (n− (i1 + · · ·+ ik−1))ik
k!

,

which reduces to the formula above.
For S = {m,m + 1, . . .}, we recover the formula of the associated Lah numbers

given in [4] with CS(n, k) =
(
n−(m−1)k−1

k−1

)
. In particular, the number of partitions [n]

into k lists without singletons is
⌊
n
k

⌋
≥2 = n!

k!

(
n−k−1
k−1

)
. Further, using the results on

compositions of Heubach and Mansour [12], we have for the sets of odd, respectively
for even integers the following formulas.⌊

2n− k
k

⌋
O

=
(2n− k)!

k!

(
n− 1

k − 1

)
and

⌊
2n

k

⌋
E

=
2n!

k!

(
n− 1

k − 1

)
.

Hence, we have

(2n)k

⌊
2n− k
k

⌋
O

=

⌊
2n

k

⌋
E
.

Next, we derive some recurrences for the S-Lah numbers.

Theorem 2.1. For integers n, k and a given set of integers S, we have⌊
n

k

⌋
S

=
∑
s∈S

s(n− 1)s−1

⌊
n− s
k − 1

⌋
S

.
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Proof. Consider an n element set partitioned into k non-empty ordered blocks. As-
sume that the nth element is contained in a set of size s ∈ S. For this block we
choose in

(
n−1
s−1

)
ways the other elements, and order the elements in the block in s!

ways. The remaining elements can be partitioned in
⌊
n−s
k−1

⌋
S

ways.

We can derive a recursive formula for
⌊
n
k

⌋
S
, where we do not need to sum over

the whole set S, which means a simplification for some set S. A set S of integers is
the disjoint union of sequences of consecutive integers: Si = {i, i+ 1, . . . , i+ si− 1},
for some i. The least and greatest elements of the sets Si play an important role;
hence, we define S∗ to be the set of least elements, and S the set of greatest elements
of the sets Si. Further, we let Ŝ denote the set of greatest elements that are not
least elements: Ŝ = S∗ − S. Alternative definitions of S∗ and S are the following:
S∗ := {s ∈ S|s− 1 6∈ S} and S := {s ∈ S|s+ 1 6∈ S}, respectively.

Theorem 2.2. Given a set S, let S∗ and Ŝ be sets as defined above. We have⌊
n

k

⌋
S

= (n+k−1)

⌊
n− 1

k

⌋
S

+
∑
s∈S∗

(
n− 1

s− 1

)
s!

⌊
n− s

k − 1

⌋
S

−
∑
s∈Ŝ

(
n− 1

s

)
(s+1)!

⌊
n− s− 1

k − 1

⌋
S

.

Proof. The left hand side counts the partitions of n elements into lists such that each
list has size included in S. Consider the partition into lists of n − 1 elements. We
insert the nth element before each element or as a last element of any list. (This can
be done in (n+k−1)

⌊
n−1
k

⌋
S

ways.) But we do not obtain all the partitions this way,
since the partitions in which the nth element is in a list of size s with s ∈ S∗ are
missing.

∑
s∈S∗

(
n−1
s−1

)
s!
⌊
n−s
k−1

⌋
S

counts the number of such partitions. Moreover, we
obtained by the insertion partitions of n for that not every list has the required size.
This happens, if the nth element is inserted into a list of size s, where s ∈ Ŝ. Since
the number of such partitions is

∑
s∈Ŝ
(
n−1
s

)
(s + 1)!

⌊
n−s−1
k−1

⌋
S
, we need to reduce our

sum by this number.

For S = Z+, the formula is the well-known recurrence of the Lah numbers. For
S = {s, s + 1, s + 2, . . .}, we recover the recurrence for the associated Lah numbers
[4]: ⌊

n

k

⌋
≥s

= (n+ k − 1)

⌊
n− 1

k

⌋
≥s

+

(
n− 1

s− 1

)
s!

⌊
n− s
k − 1

⌋
≥s
.

Setting S = {1, 2, . . . , s}, we obtain the recurrence relation for the restricted Lah
numbers⌊

n

k

⌋
≤s

= (n+ k − 1)

⌊
n− 1

k

⌋
≤s

+

⌊
n− 1

k − 1

⌋
≤s
−
(
n− 1

s

)
(s+ 1)!

⌊
n− s− 1

k − 1

⌋
≤s
.

But it is also immediate to give the recurrence for the number of partitions into lists
of n element that do not contain lists of a given size, say p( 6= 1). This means namely

that S = Sp = Z+ \ {p}; hence, S∗p = {p+ 1} and Ŝp = {p− 1}. We have⌊
n

k

⌋
Sp

= (n+ k− 1)

⌊
n− 1

k

⌋
Sp

+

(
n− 1

p

)
(p+ 1)!

⌊
n− p− 1

k − 1

⌋
Sp

−
(
n− 1

p− 1

)
p!

⌊
n− p + 1

k − 1

⌋
Sp

.
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3 The r-Version

Now, we turn our attention to the S-restricted case of r-Lah numbers. Given a set of
positive integers S, let

⌊
n
k

⌋
S,r

denote the number of partitions of n+ r elements into

k+ r lists such that the size of each list is contained in S and the first r elements are
contained in distinct lists. We call the first r elements special elements and a list that
contains a special element special list. This generalization is inspired by the well-
known r-Stirling numbers introduced by Broder [7]. For S = Z∗ we obtain the r-Lah
numbers studied recently by several authors, [16, 2, 3], and for S = {1, 2, . . . , n} we
obtain the restricted r-Lah numbers that were introduced by Shattuck in [19].

Theorem 3.1 provides the relation between the S-Lah numbers and (S, r)-Lah
numbers.

Theorem 3.1. Let n, k ≥ 1 and n > r be integers, and S a set of integers. We have
the combinatorial identity⌊

n

k

⌋
S,r

=
n−k∑
m=0

(
n

m

) ∑
i1+···+ir=m

ij+1∈S

m!(i1 + 1) · · · (ir + 1)

⌊
n−m
k

⌋
S

.

Proof. Let ij be the number of non-special elements that are contained in the list of
the special element j. Further, let m be the sum of ij, i.e., the number of non-special
elements that are contained in any of the special lists. Fix m, and construct the
special lists and the non-special lists separately.⌊

n

k

⌋
S,r

=
n−k∑
m=0

∑
i1+···+ir=m

ij+1∈S

(i1 + 1)! · · · (ir + 1)!

(
n

i1, i2, . . . , ir, n−m

)⌊
n−m
k

⌋
S

.

After simplification we get the above formula.

Theorem 3.2. Let n, k ≥ 1 and n > r be integers, and S a set of integers. The
(S, r)-Lah numbers satisfy the following recurrence relation⌊

n+ 1

k

⌋
S,r

=

⌊
n

k − 1

⌋
S,r+1

+ r
∑
s∈S

s!

(
n

s− 2

)⌊
n− s+ 2

k

⌋
S,r−1

.

Proof. Assume that the (n + 1)-th (non-special) element is in a list that does not
contain any of the r special elements. Then, we can consider (n + 1) as an extra
special element; hence, the number of such partitions is

⌊
n
k−1

⌋
S,r+1

by definition.

Assume now that the (n + 1)-th element is contained in one of the r special lists.
Then, first we choose the special list in r ways, then we choose s − 2 elements out
of n. We permute now these s elements; s − 2 non-special elements, the special
element, and (n + 1), in order to obtain the list that contains the element (n + 1).
The remaining n− (s− 2) + (r − 1) elements construct a (S, r − 1)-partition into k
non-empty lists, which is counted by definition by

⌊
n−s+2
k

⌋
S,r−1.
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In Theorem 3.3 we give several combinatorial identities for the (S, r)-Lah num-
bers.

Theorem 3.3. Let n, k ≥ 1 and n > r be integers, and S a set of integers. The
(S, r)-Lah numbers satisfy the following identities

k

⌊
n

k

⌋
S,r

=
∑
s∈S

s!

(
n

s

)⌊
n− s
k − 1

⌋
S,r

; (3.1)

r

⌊
n

k

⌋
S,r

= r
∑
s∈S

s!

(
n

s− 1

)⌊
n− s+ 1

k

⌋
S,r−1

; (3.2)

(n+ r)

⌊
n

k

⌋
S,r

=
∑
s∈S

s!s

(
n

s

)⌊
n− s
k − 1

⌋
S,r

+ r
∑
s∈S

s!s

(
n

s− 1

)⌊
n− s+ 1

k

⌋
S,r−1

. (3.3)

Proof. The left hand side of (3.1) counts (S, r) partitions into k + r non-empty lists
with one non-special list coloured. Count these partitions another way: first choose
s elements, that will be coloured, and construct a list in s!

(
n
s

)
ways. The remaining

n − s + r elements form a partition into k − 1 + r non-empty lists, such that the r
special elements are in distinct lists and the size of the lists are included in S.

The identities (3.2) and (3.3) follow similarly, colouring a special list, respectively
an element.

Theorem 3.4. Let n, k ≥ 1 and n > r be integers, and S a set of integers. Further,
let u be an integer in S, u ∈ S. We have then⌊

n

k

⌋
S,r

=
r∑
i=0

k∑
j=0

(
r

i

)
(n)n−j

ui

(n− (u− 1)i− uj)!

⌊
n− (u− 1)i− uj

k − j

⌋
S−{u},r−i

.

(3.4)

Proof. Let i be the number of special lists of size u and j the number of non-special
lists of size u. Choose the i special elements in

(
r
i

)
ways that are contained in a list

of size u. Choose now for each of these i special lists further (u − 1) elements, for
the j non-special lists u elements and order the lists. These can be done in

n!

(u− 1)!iu!jj!(n− (u− 1)i− uj)!
(u!)i+j

ways. After simplification we obtain the formula.

Setting u = 1 into (3.4), we obtain⌊
n

k

⌋
S,r

=
r∑
i=0

k∑
j=0

(
r

i

)(
n

j

)⌊
n− j
k − j

⌋
S−{1},r−i

.

Finally, the Identity (1.1) can be also generalized for the (S, r)-Lah numbers by
using Theorem 8 of [15]. Let fS,r,t(x) be the function defined by

fS,r,t(x) := (1 +HS(x))t

(∑
s∈S

sxs−1

)r

,



B. BÉNYI ET AL. / AUSTRALAS. J. COMBIN. 77 (2) (2020), 157–179 165

where HS(x) =
∑

s∈S x
s. Then

dn

dxn
fS,r,t(x)

∣∣∣∣
x=0

:= f
(n)
S,r,t(0) =

n∑
k=0

⌊
n

k

⌋
S,r

(t)k.

From the symbolic method it is possible to obtain the exponential generating
function for the (S, r)-Lah numbers for a given set S. We have the construction

SETk(SEQS(X ))× SEQr(Θ
∗(SEQS−1(X ))).

In this construction Θ∗ denotes a modification of the classical pointing operator.
This operator is defined by a class B by

A = Θ∗B iff An = {1, 2, . . . , n+ 1} × Bn.

That is, in order to generate an element in A, create a gap for inserting our distin-
guished element, in a list we can point to any element (and the gap is created after
this pointed element) or the gap is at the beginning of the list, we insert the element
as the starting element. So An = (n+ 1)Bn, then A(x) = d

dx
(xB(x)).

From the construction above, we directly obtain the translation

∞∑
n=k

⌊
n

k

⌋
S,r

xn

n!
=

1

k!

(∑
s∈S

xs

)k(∑
s∈S

sxs−1

)r

. (3.5)

Notice that if LS,r(n) denotes the total number of ordered (S, r)-partitions of an
n-element set, then

∞∑
n=0

LS,r(n)
xn

n!
= exp

(∑
s∈S

xs

)(∑
s∈S

sxs−1

)r

.

4 The (S, r)-Lah Matrix

In this section we study the (S, r)-Lah matrix by using the theory of Riordan arrays
[18]. This theory is especially useful for the study of combinatorial matrices like
Pascal matrix, Catalan matrix, Stirling matrices of both kinds, among other.

The (S, r)-Lah matrix is the infinite matrix defined by

LS,r :=

[⌊
n

k

⌋
S,r

]
n,k≥0

.

An infinite lower triangular matrix L = [dn,k]n,k∈N is called an exponential Riordan

array, (cf. [1]), if its column k has generating function g(x) (f(x))k /k!, k = 0, 1, 2, . . . ,
where g(x) and f(x) are formal power series with g(0) 6= 0, f(0) = 0 and f ′(0) 6= 0.
The matrix corresponding to the pair f(x), g(x) is denoted by 〈g(x), f(x)〉.
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If we multiply 〈g(x), f(x)〉 by a column vector (c0, c1, . . . )
T with exponential gen-

erating function h(x), then the resulting column vector has exponential generating
function g(x)h(f(x)). This property is known as the fundamental theorem of expo-
nential Riordan arrays. The product of two exponential Riordan arrays 〈g(x), f(x)〉
and 〈h(x), `(x)〉 is then defined by:

〈g(x), f(x)〉 ∗ 〈h(x), `(x)〉 = 〈g(x)h (f(x)) , ` (f(x))〉 .

The set of all exponential Riordan matrices is a group under the operator ∗ (cf.
[1, 18]).

For example, the Pascal matrix P , the Stirling matrix of the second kind S2, and
the Stirling matrix of the first kind S1 are all given by the Riordan matrices:

P = 〈ex, x〉 =

[(
n

k

)]
n,k≥0

, S2 = 〈1, ex − 1〉 =

[{
n

k

}]
n,k≥0

,

S1 = 〈1,− ln(1− x)〉 =

[[
n

k

]]
n,k≥0

.

From Equation (3.5), and the definition of Riordan matrix we obtain the following
theorem.

Theorem 4.1. For all S ⊆ Z+ with 1 ∈ S, the matrix LS,r is an exponential Riordan
matrix given by

LS =

〈(∑
s∈S

sxs−1

)r

,
∑
s∈S

xs

〉
.

Note that the row sum of the matrix LS,r is the sequence LS,r(n).
The inverse exponential Riordan array of LS,r is denoted by

FS,r :=

[⌊
n

k

⌋−1
S,r

]
n,k≥0

.

In the following section we give a combinatorial interpretation for the absolute

values of the entries
⌊
n
k

⌋−1
S,r

. Note that Engbers et al. [10] give an interesting combi-

natorial interpretation for the case r = 0.
Since LS,r ∗ FS,r = I, where I is the identity matrix, we have the orthogonality

relation:
n∑
i=k

⌊
n

i

⌋
S,r

⌊
i

k

⌋−1
S,r

=
n∑
i=k

⌊
n

i

⌋−1
S,r

⌊
i

k

⌋
= δk,n.

For the case S = Z+ and r = 0 we recover the Equation (1.2). From the orthogonality
relation, we obtain the inverse relation:

fn =
n∑
k=0

⌊
n

k

⌋−1
S,r

gk ⇐⇒ gn =
n∑
k=0

⌊
n

k

⌋
S,r

fk.
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Now we define the (S, r)-Lah polynomials by the combinatorial expression

Ln,S,r(x) :=
n∑
k=0

⌊
n

k

⌋
S,r

xk.

Therefore, we obtain the equality:

X = L−1S,rLS,r,

where X = [1, x, x2, . . . ]T and LS,r = [L0,S,r(x), L1,S,r(x), L2,S,r(x), . . . ]T . Further,
X = FS,rLS,r and

xn =
n∑
k=0

⌊
n

k

⌋−1
S,r

Lk,S,r(x).

Therefore,

Ln,S,r(x) = xn −
n−1∑
k=0

⌊
n

k

⌋−1
S,r

Lk,S,r(x), n ≥ 0. (4.1)

From the above identity we obtain a determinantal identity for the polynomials
Ln,S,r(x).

Theorem 4.2. For all S ⊆ Z+ with 1 ∈ S, the (S, r)-Lah polynomials satisfy

Ln,S,r(x) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣

1 x · · · xn−1 xn

1
⌊
1
0

⌋−1
S,r

· · ·
⌊
n−1
0

⌋−1
S,r

⌊
n
0

⌋−1
S,r

0 1 · · ·
⌊
n−1
1

⌋−1
S,r

⌊
n
1

⌋−1
S,r

... · · · ...

0 0 · · · 1
⌊
n
n−1

⌋−1
S,r

∣∣∣∣∣∣∣∣∣∣∣∣
.

Proof. This identity follows from Equation (4.1) and by expanding the determinant
by the last column.

For example, if S = {1, 2, 5} and r = 2, then

L{1,2,5},2 =
〈(

1 + 2x+ 5x4
)2
, x+ x2 + x5

〉

=



1 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0
8 10 1 0 0 0 0 0 0
0 48 18 1 0 0 0 0 0

240 96 156 28 1 0 0 0 0
2400 1320 720 380 40 1 0 0 0

0 24480 5760 3000 780 54 1 0 0
0 120960 126000 24360 9240 1428 70 1 0

1008000 0 1330560 483840 92400 23520 2408 88 1


,
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and

F{1,2,5},2 =

[⌊
n

k

⌋−1
{1,2,5},2

]
n,k≥0

=

1 0 0 0 0 0 0 0 0
−4 1 0 0 0 0 0 0 0
32 −10 1 0 0 0 0 0 0
−384 132 −18 1 0 0 0 0 0
5904 −2232 348 −28 1 0 0 0 0
−110400 45000 −7800 740 −40 1 0 0 0
2422080 −1051920 198000 −21120 1380 −54 1 0 0
−60641280 27921600 −5624640 656040 −48720 2352 −70 1 0
1697351040 −826801920 176863680 −22176000 1812720 −100464 3752 −88 1


.

The first few ({1, 2, 5}, 2)-Lah polynomials are

1, x+ 4, x2 + 10x+ 8, x3 + 18x2 + 48x, x4 + 28x3 + 156x2 + 96x+ 240,

x5 + 40x4 + 380x3 + 720x2 + 1320x+ 2400,

x6 + 54x5 + 780x4 + 3000x3 + 5760x2 + 24480x,

x7 + 70x6 + 1428x5 + 9240x4 + 24360x3 + 126000x2 + 120960x, . . .

In particular,

L6,{1,2,5},2(x) = −(x5 + 40x4 + 380x3 + 720x2 + 1320x+ 2400)

=

∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 x3 x4 x5

1 −4 32 −384 5904 −110400
0 1 −10 132 −2232 45000
0 0 1 −18 348 −7800
0 0 0 1 −28 740
0 0 0 0 1 −40

∣∣∣∣∣∣∣∣∣∣∣∣
.

5 Combinatorial Interpretation: Möbius inversion on Posets

In this section we provide another combinatorial interpretation for the Lah matrix
 LS,r, different from the combinatorial definition given at the beginning of Section 3.
Using that interpretation, for the class of sets S such that S − 1 is an additive
monoid, we construct a family of posets whose Möbius function gives us the Lah
inverse matrix FS,r. A fundamental role in our construction is played by the asterisk
lists. An asterisk list of size k is a list in k symbols, plus an extra ‘ghost’ element
∗. For example, 2 4 1 ∗ 3 5 6 is an asterisk list of length 6. An asterisk list may be
identified with an ordered pair of lists, ˜̀ = `1 ∗ `2 = (`1, `2) (one, or even both of
them, are allowed to be empty).
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Proposition 5.1. The (S, r)-Lah number⌊
n

k

⌋
S,r

counts the pairs of the form ( ˜̀, a), where

1. The first component is an r-tuple of asterisk lists, ˜̀ = ( ˜̀
1, ˜̀

2, . . . , ˜̀
r). The size

of each component ˜̀
i is in S − 1.

2. The second component of the pair, a, is a k partition of non-empty lists, a =
{`1, `2, . . . , `k}. The size of each list in a is in S.

3. The sum of the sizes of the lists in the whole pair ( ˜̀, a) is n.

Proof. Let a′ = {`′1, `′2, . . . , `′r, `′r+1, `
′
r+2, . . . `

′
r+k} be a partition of lists as in the

definition of
⌊
n
k

⌋
S,r

. The elements of a′ are ordered in such a way that for i =

1, 2, . . . , r the list `i contains the element i. For i = 1, 2, . . . , r, define ˜̀
i to be the

asterisk list obtained by substituting the element i in `i by the asterisk ∗. Then make
a := {`′r+1, `

′
r+2, . . . , `

′
r+k}. The correspondence a′ 7→ ( ˜̀, a) is clearly a bijection.

The pair ( ˜̀, a) will be denoted by separating the r-tuple ˜̀ from a by a double
bar, and the elements of a by simple bars, ˜̀||a.

As an example of the notation, the pair

((1 3 2 ∗, ∗ 5, 4 9 ∗ 7 6), {8 11, 12 10})

will be written as
(1 3 2 ∗, ∗ 5 , 4 9 ∗ 7 6)||8 11|12 10.

Definition 5.2. A subset S of Z+ such that S − 1 is an additive monoid will be
called a +1 monoid.

For example, the set S of odd integers is a +1 monoid, since S−1, the set of even
integers is an additive monoid. More generally, for a positive integer m, the set of
multiples of m plus one is a +1 monoid.

Proposition 5.3. Let S be a +1 monoid. Then

1. If s1, s2, . . . , st and t are all elements of S, then s1 + s2 + · · ·+ st is in S.

2. If s1, s2, . . . , st−1 are elements of S, and t is also in S (equivalently, t − 1 ∈
S − 1), then s1 + s2 + · · ·+ st−1 is in S − 1.

Proof. (1) Since S − 1 is a monoid, we have that

(s1 − 1) + (s2 − 1) + · · ·+ (st − 1) + (t− 1) = s1 + s2 + · · ·+ st − 1 ∈ S − 1,

hence, s1 + s2 + · · ·+ st ∈ S.
(2) Since S − 1 is a monoid, 0 ∈ S − 1, and hence, 1 ∈ S. By (1), making, st = 1

we get

s1 + s2 + · · ·+ st = s1 + s2 + · · ·+ st−1 + 1 ∈ S ⇒ s1 + s2 + · · ·+ st−1 ∈ S − 1.
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The +1 monoids are of independent interests. Applications in the construction
of posets defined on compositions and combinatorial interpretations of its Möbius
function will be given in a forthcoming paper.

We let LS,r[n] denote the set of pairs ˜̀||a on the set of labels [n] = {1, 2, . . . , n},
and by LS,r[n, k] the same kind of pairs such that a has exactly k lists. By Proposition
5.1, we have

|LS,r[n, k]| =
⌊
n

k

⌋
S,r

.

Let `1 and `2 be two lists over disjoint sets. We denote by `1+`2 the concatenation
of both lists (also denoted by juxtaposition `1`2).

Our objective is to construct a partial order, ≤, on LS,r[n] such that

1. The poset (LS,r[n],≤) would have a zero 0̂ = (∗, ∗, . . . , ∗)||1|2| . . . |n.

2. Denoting by µ the Möbius function of LS,r[n], the Möbius cardinal of LS,r[n, k]
on the partial order:

|LS,r[n, k]|µ :=
∑

˜̀||a∈LS,r[n,k]

µ(0̂, ˜̀||a) (5.1)

would give us the entries of the inverse Lah matrix:

|LS,r[n, k]|µ = FS,r[n, k]. (5.2)

For our purposes we need some definitions.

Definition 5.4. (Asterisk product) For two asterisk lists ˜̀= `1 ∗ `2, ˜̀′ = `′1 ∗ `′2, we
define the product ˜̀~ ˜̀′ to be the asterisk list obtained by the substitution of the
asterisk symbol in the first list by the second list

˜̀~ ˜̀′ := `1`
′
1 ∗ `′2`2.

For two r-tuples ˜̀, ˜̀′ of asterisk lists we define the asterisk product to be the r-tuple
of the asterisk products of the components:

˜̀~ ˜̀′ := (˜̀
1 ~ ˜̀′

1,
˜̀
2 ~ ˜̀′

2, . . . ,
˜̀
r ~ ˜̀′

r).

Observe that, since S − 1 is a monoid, the operation ~ is closed under r-tuples
whose component sizes are all in S−1. It is easy to check that the product ~ satisfies
the cancellation law,

˜̀~ ˜̀′ = ˜̀~ ˜̀′′ ⇒ ˜̀′ = ˜̀′′. (5.3)

Definition 5.5. Let a be a partition of lists such that |a| ∈ S − 1, and ˜̀ an asterisk
list. We say that ˜̀ can be constructed from a if it can be obtained by concatenation
(in any order) of the lists in a together with the asterisk symbol ∗. More generally,
we say that an r-tuple ˜̀ of asterisk lists can be constructed from a if a can be written
as a disjoint union a = ]ri=1ai (some of them may be empty) such that each ˜̀

i can
be constructed from ai, for every i = 1, 2, . . . , r.
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In the previous definition, if all the sizes of the lists in a are in S and ˜̀ can be
constructed from a, then the size of ˜̀ is in S − 1. This claim follows easily from
Proposition 5.3 (2). Similarly, if ˜̀ can be constructed from a, the size of every
component of ˜̀ is in S − 1.

We first define the partial order for the special case r = 0.

Definition 5.6. Let a and a′ be two partitions of lists, a in LS,0[n]. We say that
a 4 a′ if every list ` in a′ is the concatenation of s` lists of a, s` being an element of
S.

Remark 5.7. From Proposition 5.3 (1), we have that all the sizes of the lists in a′ are
also in S. Hence, 4 is a well defined relation on the set LS,0[n]. It is easy to check
that 4 is an order relation with the partition of singleton lists 1|2| . . . |n as the zero
element.

Now, we are ready to define the partial order on LS,r[n] for general r.

Definition 5.8. Let ˜̀||a and ˜̀′||a′ be two elements of LS,r[n]. We say that ˜̀||a ≤
˜̀′||a′ if there exists a subset a′′ of a, and ˜̀′′ constructed from a′′ such that

1. a− a′′ 4 a′.

2. ˜̀′ = ˜̀~ ˜̀′′.

The intuition behind this partial order is the following. We get up in the poset
in two ways,

1. One is by concatenating lists in the righthand side.

2. The other is by moving elements from the right to the left. This is done by
constructing first an r-tuple of asterisk lists from the elements to be moved,
and then inserting it in the left hand side by the operation ~.

The partial order is then obtained by the iteration of the two ways of going up.

Example 5.9. Let S = O and r = 2. Let `1, `2, . . . , `12 be linear orders of odd size.
By the definition of ≤, we have that

(`11 ∗ `10, `12∗)||`1|`2| . . . |`9 ≤ (`11`1 ∗ `2`10, `12`5 ∗ `4)||`3`7`6|`8|`9

because (`11`1 ∗ `2`10, `12`5 ∗ `4) = (`11 ∗ `10, `12∗) ~ (`1 ∗ `2, `5 ∗ `4), (`1 ∗ `2, `5 ∗ `4)
constructed from a′′ = `1|`2|`4|`5 and

a− a′′ = `3|`6|`7|`8|`9 4 `3`7`6|`8|`9.

It is not difficult to verify that the poset LS,r[n] has a zero (∗, ∗, . . . , ∗)||1|2| . . . |n.
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Figure 1: Intervals [0̂, (∗ 1 2 3 4, ∗)||∅ ] and [0̂, (1 ∗ 2, ∗ 3 4)||∅].

Example 5.10. Let us consider the case S = O, and r = 2. The zero of the poset
LO,2[3] is (∗, ∗)||1|2|3. The asterisk lists in the left hand side are allowed only to have
even size, while those in the right hand size only odd size (one or three). Then, there
are 3! = 6 elements covering 0̂ that we can get without moving elements from the
right to the left, (∗, ∗)||σ1 σ2 σ3, all the permutations of 1 2 3. We can move only two
elements from the left to the right, to one of the two components. The number of
ways of choosing them is

(
3
2

)
= 3. Assume we are moving 1 and 2. The asterisk pairs

of lists that we can construct from them are 3! + 3! = 12. The maximal elements of
this form are:

(12∗, ∗)||3, (1 ∗ 2, ∗)||3, (21∗, ∗)||3, (2 ∗ 1, ∗)||3, (∗12, ∗)||3, (∗21, ∗)||3,
(∗, 12∗)||3, (∗, 1 ∗ 2)||3, (∗, 21∗)||3, (∗, 2 ∗ 1)||3, (∗, ∗12)||3, (∗, ∗21)||3.

We have 3 × 12 = 36 of such kind of maximal elements. Then, the poset has
42 maximal elements, all of them covering 0̂. We have that |LO,2[3, 3]|µ = 1,
|LO,2[3, 2]|µ = 0 (since LO,2[3, 2] = ∅), |LO,2[3, 1]|µ = −42, and |LO,2[3, 0]|µ = 0,
because LO,2[3, 0] = ∅.

Since LO,2[4, 1] = ∅ = LO,2[4, 3] we have |LO,2[4, 1]|µ = |LO,2[4, 3]|µ = 0. The

Möbius function of the intervals of the form [0̂, (˜̀, ∗)||∅ ] and [0̂, (∗, ˜̀)||∅ ], |˜̀| = 4,
is 2 (see Fig. 1 (a)). There are 5! + 5! = 240 of them. The Möbius function of
the intervals of the form [0̂, (˜̀

1, ˜̀
2)||∅ ] (See Fig. 1 (b)), is equal to 1, and there are

6× 6× 6 = 216 of them. Hence, |LO,2[4, 0]|µ = 240× 2 + 216× 1 = 480 + 216 = 696.
The Möbius cardinal |LO,2[4, 2]|µ is easier to compute and left to the reader.

See the first few rows of the matrix FO,2. The fourth and fifth row agree with
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Eq. (5.2) and our computations.

FO,2 =

[⌊
n

k

⌋−1
O,2

]
n,k≥0

=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
−12 0 1 0 0 0 0 0

0 −42 0 1 0 0 0 0
696 0 −96 0 1 0 0 0
0 4440 0 −180 0 1 0 0

−93600 0 16560 0 −300 0 1 0
0 −887040 0 47040 0 −462 0 1


.

If n ∈ S − 1, all the maximal elements of LS,r[n] are of the form ˜̀||∅. An-
other consequence of the Definition 5.8 is that a 4 a′ is equivalent to say that
(∗, ∗, . . . , ∗)||a ≤ (∗, ∗, . . . , ∗)||a′. Hence, given S, the partial order4 on LS,0[n], is
the same partial order as ≤ restricted to pairs where the left hand side is the trivial
tuple (∗, ∗, . . . , ∗).

Proposition 5.11. Let ˜̀||a be a fixed element of LS,r[n, k], and j a non-negative

integer, k ≥ j. The set C ˜̀||a[j] = { ˜̀′||a′ : ˜̀′||a′ ≥ ˜`||a, |a′| = j} is equipotent with
LS,r[k, j],

|C ˜̀||a[j]| = |LS,r[k, j]|.

Proof. Choose one element ˜̀′||a′ in C ˜̀||a[j]. By the left cancellation law (Eq. 5.3) and

Definition 5.8 there exists a unique ˜̀′′ such that ˜̀′ = ˜̀~ ˜̀′′, ˜̀′′ constructed from some
subset a′′ of a and such that a− a′′ 4 a′. Hence, the correspondence ˜̀′||a′ 7→ ˜̀′′||a′ is
a bijection. Ordering the elements of a, a = {`1, `2, . . . , `k}, we substitute by i any
appearance of `i as a segment either in the components of ˜̀′′ or in any of the orders
in a′. In that way we obtain a pair ˜̀′′′||a′′′ in LS,r[k, j]. The correspondence obtained
by the composition

˜̀′||a′ 7→ ˜̀′′||a′ 7→ ˜̀′′′||a′′′

is a bijection. We can go back by restituting `i in the place of i and then making
˜̀′ = ˜̀~ ˜̀′′. In Example 5.9, ˜̀′||a′ = (`11`1 ∗ `2`10, `12`5 ∗ `4)||`3`7`6|`8|`9 is sent
by the above bijection to (1 ∗ 2, 5 ∗ 4)||3 7 6|8|9 in LO,2[9, 3], since ˜̀||a = (`11 ∗
`10, `12∗)||`1|`2| . . . |`9 ∈ LO,2[n, 9] for some undetermined n.

Theorem 5.12. The Möbius function of the posets LS,r[n], n ∈ Z+, gives us the
entries of the inverse of Lah matix,

|LS,r[n, k]|µ = FS,r[n, k],

where |LS,r[n, k]|µ is as in Eq. (5.1).
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Proof. It is enough to prove that for every 0 ≤ j ≤ n,∑
j≤k≤n

|LS,r[n, k]|µ|LS,r[k, j]| = δn,j.

Let ˜̀′||a′ be an element of LS,r[k, j]. By the properties of the Möbius function we
have that ∑

0̂≤˜̀||a≤˜̀′||a′

µ(0̂, ˜̀||a) = δn,j.

Summing over all the elements of LS,r[k, j], interchanging sums, and classifying by
the size of a, we get

δn,j =
∑

˜̀′||a′∈LS,r[n,j]

∑
0̂≤˜̀||a≤˜̀′||a′

µ(0̂, ˜̀||a)

=
∑
0̂≤˜̀||a

∑
˜̀′||a′≥˜̀||a, |a′|=j

µ(0̂, ˜̀||a)

=
∑
j≤k≤n

∑
0̂≤˜̀||a, |a|=k

µ(0̂, ˜̀||a)|{˜̀′||a′ : ˜̀′||a′ ≥ ˜̀||a, |a′| = j}|

=
∑
j≤j≤n

|LS,r[n, k]|µ||LS,r[k, j]|.

The last identity is obtained from Proposition 5.11.

6 Ordered (S, r)-Partitions

The Fubini numbers Fn count the number of ordered set partitions. It is natural to
generalize them by restricting the size of the blocks used in the partitions by a given
set S, with r special elements. This gives the (S, r)- Fubini numbers, Fn,S,r, where
the size of each block is contained in the set S ⊆ Z+ and the first r elements are
contained in distinct blocks.

From the above definition it is clear that

Fn,S,r =
n∑
k=0

(k + r)!

{
n

k

}
S,r

, (6.1)

where
{
n
k

}
S,r

are the (S, r)-Stirling numbers of the second kind. This sequence was

recently studied in [6]. The sequence
{
n
k

}
S,r

counts the total number of set partitions

of n+ r elements into k+ r non-empty blocks such that the cardinality of each block
is contained in the set S and the first r elements are in distinct blocks.

For the (S, r)-Stirling numbers of the second kind we have the construction

SETk(SETS(X ))× SEQr(SETS−1(X )).
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Then from the symbolic method we obtain the exponential generating function

∞∑
n=k

{
n

k

}
S,r

xn

n!
=

1

k!

(∑
s∈S

xs

s!

)k(∑
s∈S

xs−1

(s− 1)!

)r

. (6.2)

Let gS,r,t(x) be the function defined by

gS,r,t(x) := (1 + ES(x))t

(∑
s∈S

xs−1

(s− 1)!

)r

,

where ES(x) =
∑

s∈S
xs

s!
. Then from Theorem 8 of [15] we have

dn

dxn
gS,r,t(x)

∣∣∣∣
x=0

:= g
(n)
S,r,t(0) =

n∑
k=0

{
n

k

}
S,r

(t)k.

Theorem 6.1. The exponential generating function for the (S, r)-restricted Fubini
numbers is

∞∑
n=0

Fn,S,r
xn

n!
=

r!

(1− ES(x))r+1

(∑
s∈S

xs−1

(s− 1)!

)r

,

where

ES(x) =
∑
s∈S

xs

s!
.

Proof. From Equations (6.1) and (6.2) we have

∞∑
n=0

Fn,S,r
xn

n!
=
∞∑
n=0

n∑
k=0

(k + r)!

{
n

k

}
S,r

xn

n!
=
∞∑
k=0

(k + r)!
∞∑
n=k

{
n

k

}
S,r

xn

n!

=
r!

(1− ES(x))r+1

(∑
s∈S

xs−1

(s− 1)!

)r

.

We can also derive the generating function using the symbolic method. We
obtain an ordered partition of (n+ r) elements into (k+ r) blocks such that the first
r elements are in distinct blocks the following way: we take a sequence of ordinary
blocks, eventually empty, then a special block, again a sequence of ordinary blocks,
eventually empty, followed again by a special block and so on. There are r special
blocks, among the r + 1 sequences of ordinary blocks. Finally, we put one of the r
elements into each special block, which can be done in r! ways. This leads to the
construction:

SEQ(SETS(X ))×SETS−1(X )SEQ(SETS(X ))×· · ·×SETS−1(X )×SEQ(SETS(X )),



B. BÉNYI ET AL. / AUSTRALAS. J. COMBIN. 77 (2) (2020), 157–179 176

which translates by the symbolic method into

1

(1− ES(x))r+1

(∑
s∈S

xs−1

(s− 1)!

)r

.

Multiplying with r! we obtain the generating function.
In Theorem 6.2 we give a recurrence relation for the sequence Fn,S,r

Theorem 6.2. Let n ∈ N. Then the (S, r)-Fubini numbers satisfy the recurrence
relation

Fn,S,r =
∑
s∈S

(
n

s

)
Fn−s,S,r + r

∑
s∈S

(
n

s− 1

)
Fn−(s−1),S,r−1.

Proof. The left-hand side counts the (S, r)-ordered set partitions of [n+r]. Consider
the last block of an ordered set partition. Assume the last block is non-special
and has s elements, for some s ∈ S. This is done in

(
n
s

)
Fn−s,S,r ways. If the last

block is special then there are r
(
n
s−1

)
Fn−(s−1),S,r options. Summing over s gives the

identity.

Theorem 6.3. The (S, r)-restricted Fubini numbers satisfy

Fn,S,r =
r!

2r+1

∞∑
`=0

1

2`

(
r + `

`

) n∑
k=0

{
n

k

}
S,r

(`)k. (6.3)

Proof. From Theorem 6.1 we have

∞∑
n=0

Fn,S,r
xn

n!
=

r!

(2− (ES(x) + 1))r+1

(∑
s∈S

xs−1

(s− 1)!

)r

=
r!

2r+1

1(
1−

(
ES(x)+1

2

))r+1

(∑
s∈S

xs−1

(s− 1)!

)r

=
r!

2r+1

∞∑
`=0

(
r + `

`

)(
ES(x) + 1

2

)`(∑
s∈S

xs−1

(s− 1)!

)r

=
r!

2r+1

∞∑
`=0

1

2`

(
r + `

`

)
g`,S,r(x).

Since

[xn]gS,r,k(x) =
1

n!

dn

dxn
gS,r,k(x)

∣∣∣∣
x=0

=
1

n!

n∑
`=0

{
n

`

}
S,r

(k)`,

we have

∞∑
n=0

Fn,S,r
xn

n!
=

r!

2r+1

∞∑
`=0

1

2`

(
r + `

`

) ∞∑
n=0

(
1

n!

n∑
k=0

{
n

k

}
S,r

(`)k

)
xn.

Comparing the n-th coefficient we obtain the desired result.
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Note that the above equality is a generalization of the identity (cf. [9, pp. 228])

Fn =
1

2

∞∑
k=0

kn

2k
.

7 Doubly Ordered (S, r)-Partitions

In this section we consider ordered lists such that the order of the elements in each list
matters. This kind of ordered partitions are called doubly ordered partition (cf. [14]).
In particular, we denote by Dn,S,r the total number of doubly ordered partitions of
[n + r] such that the size s of each list belongs to a given set S of positive integers
and the first r elements are in distinct blocks. It is clear that

Dn,S,r =
∑
k=0

k!

⌊
n

k

⌋
S,r

.

Theorem 7.1. The exponential generating function for the sequence Dn,S,r is

∞∑
n=0

Dn,S,r
xn

n!
=

r!

(1−
∑

s∈S x
s)r+1

·

(∑
s∈S

sxs−1

)r

.

Proof. We obtain a doubly ordered partition of [n+ r] taking a sequence of ordinary
lists, eventually empty, then a special list, again a sequence of ordinary lists, eventu-
ally empty, followed again by a special list and so on. There are r special lists among
the r + 1 sequences of ordinary lists. We have to point to a gap in each special list
where we can insert one of the special elements. This leads to the construction:

SEQ(SEQS(X ))×Θ∗(SEQS−1(X ))SEQ(SEQS(X ))×· · ·×Θ∗(SEQS−1X )×SEQ(SEQS(X )),

which translates by the symbolic method into

1

(1−
∑

s∈S x
s)r+1

·

(∑
s∈S

sxs−1

)r

.

Multiplying with r! we obtain the desired result.

The proofs of the following two theorems are analogous to the one given for
Theorems 6.2 and 6.3.

Theorem 7.2. Let n ∈ N. Then the sequence Dn,S,r satisfies the recurrence relation

Dn,S,r =
∑
s∈S

(n)sDn−s,S,r + r
∑
s∈S

s(n)s−1Dn−(s−1),S,r−1.

Theorem 7.3. The sequence Dn,S,r satisfies

Dn,S,r =
r!

2r+1

∞∑
`=0

1

2`

(
r + `

`

) n∑
k=0

⌊
n

k

⌋
S,r

(`)k.
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