On the double Roman domination number in trees

S. Nazari-Moghaddam
Department of Mathematics, Dehloran Branch
University of Applied Science and Technology, Dehloran Iran
sakine.nazari.m@gmail.com
M. Chellali
LAMDA-RO Laboratory, Department of Mathematics
University of Blida, B.P. 270, Blida
Algeria
m_chellali@yahoo.com

Abstract

For a graph G, let $\gamma_{d R}(G)$ and $\gamma_{R}(G)$ denote the double Roman domination number and the Roman domination number, respectively. In this paper, we show that for every tree T of order $n \geq 3$, with $\ell(T)$ leaves and $s(T)$ support vertices, $$
\begin{aligned} \gamma_{R}(T)+ & \left\lceil\frac{\ell(T)-s(T)}{\Delta(T)}\right\rceil \leq \gamma_{d R}(T) \\ & \leq \min \left\{\left\lfloor\frac{11 n-\ell(T)+4 s(T)}{10}\right\rfloor, 2 \gamma_{R}(T)-\left\lceil\frac{s(T)}{\Delta(T)}\right\rceil\right\} \end{aligned}
$$

The upper and lower bounds improve previous bounds given by Beeler, Haynes and Hedetniemi [Discrete Appl. Math. 211 (2016), 23-29].

1 Introduction

Throughout this paper, G is a simple graph with vertex set $V(G)$ and edge set $E(G)$ (briefly $V, E)$. The order $|V|$ of G is denoted by $n=n(G)$. For every vertex $v \in V(G)$, the open neighborhood of v is the set $N_{G}(v)=N(v)=\{u \in V(G) \mid u v \in E(G)\}$ and its closed neighborhood is the set $N_{G}[v]=N[v]=N(v) \cup\{v\}$. The degree of a vertex $v \in V$ is $\operatorname{deg}(v)=|N(v)|$. The maximum degree of a graph G is denoted by $\Delta=\Delta(G)$. A leaf of G is a vertex with degree one, a support vertex is a vertex adjacent to a leaf, and a strong support vertex is a support vertex adjacent to at least two leaves. The set of all leaves adjacent to a vertex v is denoted by $L(v)$,
while the set of leaves of a graph G is denoted by $L(G)$. A path of order n is denoted by P_{n}. The corona $\operatorname{cor}(H)$ of a graph H is the graph obtained from H, where for each vertex $v \in V(H)$, a new vertex v^{\prime} and a pendant edge $v v^{\prime}$ are added. A double star $D S_{p, q}$, with $q \geq p \geq 1$, is a graph consisting of the union of two stars $K_{1, q}$ and $K_{1, p}$ together with an edge joining their centers. The subdivision graph $S_{b}(G)$ of a graph G is that graph obtained from G by replacing each edge $u v$ of G by a vertex w and edges $u w$ and $v w$. A healthy spider is the subdivision graph of a star $K_{1, k}$ for $k \geq 2$. The distance $d_{G}(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u v$-path in G. The diameter $\operatorname{diam}(G)$ of a graph G is the greatest distance between two vertices of G. A diametral path of a graph G is a shortest path whose length is equal to $\operatorname{diam}(G)$. For a vertex v in a rooted tree T, let $C(v)$ denote the set of children of $v, D(v)$ denotes the set of descendants of v and $D[v]=D(v) \cup\{v\}$. Also, the depth of v, depth (v), is the largest distance from v to a vertex in $D(v)$. The maximal subtree at v is the subtree of T induced by $D[v]$, and is denoted by T_{v}. A grandchild of v is the descendant of v at distance 2 from v.

A Roman dominating function on G, abbreviated RDF, is a function $f: V \rightarrow$ $\{0,1,2\}$ such that every vertex $u \in V$ for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of an RDF f is the value $f(V)=\sum_{u \in V} f(u)$, and the Roman domination number $\gamma_{R}(G)$ of G is the minimum weight of an RDF on G. Roman domination was introduced by Cockayne et al. in [6] and was inspired by the work of ReVelle and Rosing [8] and Stewart [9]. Several new varieties of Roman domination have been introduced since 2004, among them, we quote the double Roman domination introduced by Beeler, Haynes and Hedetniemi in [5] and studied for example in $[1,2,3,4,7,10]$.

A double Roman dominating function (DRDF) on a graph G is a function f : $V \rightarrow\{0,1,2,3\}$ having the property that if $f(v)=0$, then vertex v has at least two neighbors assigned 2 under f or one neighbor w with $f(w)=3$, and if $f(v)=1$, then vertex v has at least one neighbor w with $f(w) \geq 2$. The weight of a DRDF f is the value $f(V)=\sum_{u \in V} f(u)$. The double Roman domination number $\gamma_{d R}(G)$ of a graph G is the minimum weight of a DRDF on G. A DRDF of G with weight $\gamma_{d R}(G)$ is called a $\gamma_{d R}(G)$-function. For a DRDF f, let $V_{i}=\{v \in V \mid f(v)=i\}$ for $i=0,1,2,3$. Since these four sets determine f, we can equivalently write $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ (or $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}, V_{3}^{f}\right)$ to refer $\left.f\right)$. We note that $\omega(f)=\left|V_{1}\right|+2\left|V_{2}\right|+3\left|V_{3}\right|$.

In this paper, we show that for every tree T of order $n \geq 3$, with $\ell(T)$ leaves and $s(T)$ support vertices, $\gamma_{R}(T)+\left\lceil\frac{\ell(T)-s(T)}{\Delta(T)}\right\rceil \leq \gamma_{d R}(T) \leq \min \left\{\left\lfloor\frac{11 n-\ell(T)+4 s(T)}{10}\right\rfloor, 2 \gamma_{R}(T)-\right.$ $\left.\left\lceil\frac{s(T)}{\Delta(T)}\right\rceil\right\}$. All these bounds improve previous bounds given in [5].

We make use of the following results.
Proposition 1.1 ([5]). In a double Roman dominating function of weight $\gamma_{d R}(G)$, no vertex needs to be assigned the value 1 .

Observation 1.2. If v is a strong support of a graph G, then there exists a $\gamma_{d R}(G)-$ function f with $f(v)=3$.

Proof. Let $f=\left(V_{0}, \emptyset, V_{2}, V_{3}\right)$ be a $\gamma_{d R}(G)$-function such that $f(v)$ is as large as
possible. If $f(v)=2$, then $f(x)=1$ for all $x \in L(v)$ which contradicts the choice of f. If $f(v)=0$, then $f(x)=2$ for all $x \in L(v)$ and thus the function g defined on $V(G)$ by $g(v)=3, f(x)=0$ for all $x \in L(v)$ and $g(x)=f(x)$ elsewhere, is a DRDF of G of weight less than $\gamma_{d R}(G)$ which is a contradiction. Hence, $f(v)=3$, as desired.

2 Upper bounds

Our main results in this section are two new upper bounds on the double Roman domination number of a tree. It was shown in [5] that every tree T of order $n \geq 3$ satisfied $\gamma_{d R}(T) \leq \frac{5 n}{4}$. The first bound we present improves this upper bound for trees T with $n>\frac{8 s(T)-2 \ell(T)}{3}$.

Let L_{t} consist of the disjoint union of t copies of P_{4} plus a path through a support vertices of these copies, as illustrated in Figure 1.

Figure 1: The tree L_{4}.
Let H_{k} consist of the disjoint union of k copies of P_{5} plus a path through a support vertices of these copies, as illustrated in Figure 2.

Figure 2: The tree H_{3}.

Theorem 2.1. If T is a tree of order $n \geq 3$ with $\ell(T)$ leaves and $s(T)$ support vertices, then

$$
\gamma_{d R}(T) \leq\left\lfloor\frac{11 n-\ell(T)+4 s(T)}{10}\right\rfloor
$$

This bound is sharp for trees L_{t} with $t \geq 1$ and H_{k} with $k \in\{1, \ldots, 9\}$.
Proof. The proof is by induction on n. The statement holds for all trees of order $n \in\{3,4\}$. Suppose $n \geq 5$ and let the result hold for all trees T of order less than n. Let T be a tree of order n. If $\operatorname{diam}(T)=2$, then T is a star and we have $\gamma_{d R}(T)=3<\left\lfloor\frac{\lfloor 1 n-\ell(T)+4 s(T)}{10}\right\rfloor$. If $\operatorname{diam}(T)=3$, then T is a double star with at least three leaves (because of $n \geq 5$), and thus assigning a 3 to each support vertex and a 0 to the leaves is a DRDF of T of weight 6 . Clearly, $\gamma_{d R}(T) \leq 6 \leq$
$\left\lfloor\frac{11 n-\ell(T)+4 s(T)}{10}\right\rfloor$. Hence, we may assume that $\operatorname{diam}(T) \geq 4$. Suppose there are two adjacent vertices x and y, each of degree at least three. Let T^{\prime} and $T^{\prime \prime}$ be the subtrees of T containing x and y, respectively, obtained from the deletion of the edge $x y$. Clearly, each of T^{\prime} and $T^{\prime \prime}$ has order at least three. By the induction hypothesis, $\gamma_{d R}\left(T^{\prime}\right) \leq\left\lfloor\frac{11 n^{\prime}-\ell\left(T^{\prime}\right)+4 s\left(T^{\prime}\right)}{10}\right\rfloor$ and $\gamma_{d R}\left(T^{\prime \prime}\right) \leq\left\lfloor\frac{11 n^{\prime \prime}-\ell\left(T^{\prime \prime}\right)+4 s\left(T^{\prime \prime}\right)}{10}\right\rfloor$. Moreover, since $\gamma_{d R}(T) \leq \gamma_{d R}\left(T^{\prime}\right)+\gamma_{d R}\left(T^{\prime \prime}\right), \ell(T)=\ell\left(T^{\prime}\right)+\ell\left(T^{\prime \prime}\right)$ and $s(T)=s\left(T^{\prime}\right)+s\left(T^{\prime \prime}\right)$, we deduce that $\gamma_{d R}(T) \leq\left\lfloor\frac{11 n-\ell(T)+4 s(T)}{10}\right\rfloor$. Hence we can assume that T no two vertices of degree at least three are adjacent.

Let $v_{1} v_{2} \ldots v_{k}(k \geq 5)$ be a diametral path in T such that $\operatorname{deg}\left(v_{2}\right)$ is as large as possible. Root T at v_{k}. If $\operatorname{deg}\left(v_{2}\right) \geq 4$, then let $T^{\prime}=T-v_{1}$ and f^{\prime} be a $\gamma_{d R}\left(T^{\prime}\right)-$ function. By Observation 1.2, $f^{\prime}\left(v_{2}\right)=3$ and so the function f^{\prime} can be extended to a DRDF of T by assigning a 0 to v_{1}. It follows from the induction hypothesis that

$$
\begin{aligned}
\gamma_{d R}(T) & \leq \gamma_{d R}\left(T^{\prime}\right) \\
& \leq\left\lfloor\frac{11(n-1)-\ell(T)+1+4 s(T)}{10}\right\rfloor \\
& <\left\lfloor\frac{11 n-\ell(T)+4 s(T)}{10}\right\rfloor
\end{aligned}
$$

Therefore, we will assume that $\operatorname{deg}\left(v_{2}\right) \in\{2,3\}$. We consider the following cases.
Case 1. $\operatorname{deg}_{T}\left(v_{2}\right)=3$.
By assumption, $\operatorname{deg}_{T}\left(v_{3}\right)=2$. Let $T^{\prime}=T-T_{v_{2}}$ and f^{\prime} be a $\gamma_{d R}\left(T^{\prime}\right)$-function. The function f defined on $V(T)$ by $f\left(v_{2}\right)=3, f(x)=0$ for all $x \in L\left(v_{2}\right)$ and $f(x)=f^{\prime}(x)$ for all $x \in V(T)-V\left(T_{v_{2}}\right)$ is a DRDF of T of weight $\omega\left(f^{\prime}\right)+3$. It follows from the induction hypothesis and the fact $\ell\left(T^{\prime}\right)=\ell(T)-1$ and $s\left(T^{\prime}\right) \leq s(T)$ that

$$
\begin{aligned}
\gamma_{d R}(T) & \leq \gamma_{d R}\left(T^{\prime}\right)+3 \\
& \leq\left\lfloor\frac{11(n-3)-\ell(T)+1+4 s(T)}{10}\right\rfloor+3 \\
& \leq\left\lfloor\frac{11 n-\ell(T)+4 s(T)}{10}\right\rfloor .
\end{aligned}
$$

Case 2. $\operatorname{deg}_{T}\left(v_{2}\right)=2$.
By the choice of diametral path, we may assume that all children of v_{3} with depth 1 , have degree 2. Assume first that $\operatorname{deg}_{T}\left(v_{3}\right)=2$. Let $T^{\prime}=T-T_{v_{3}}$ and f^{\prime} is a $\gamma_{d R}\left(T^{\prime}\right)$ function. If T^{\prime} has order 2 , then $T=P_{5}$, and clearly the result holds. Hence we assume that $\left|V\left(T^{\prime}\right)\right| \geq 3$. Then the function f defined on $V(T)$ by $f\left(v_{2}\right)=3, f\left(v_{1}\right)=$ $f\left(v_{3}\right)=0$ and $f(x)=f^{\prime}(x)$ for all $x \in V\left(T^{\prime}\right)$ is a DRDF of T of weight $\omega\left(f^{\prime}\right)+3$. Using the induction hypothesis and the fact $\ell\left(T^{\prime}\right) \geq \ell(T)-1$ and $s\left(T^{\prime}\right) \leq s(T)$, the result follows. Now, let $\operatorname{deg}_{T}\left(v_{3}\right)=p \geq 3$. We distinguish the following.

Subcase 2.1. v_{3} is a support vertex.
By assumption, $\operatorname{deg}_{T}\left(v_{4}\right)=2$. Assume first that $T_{v_{3}}=D S_{1, p-2}$. Let $T^{\prime}=T-T_{v_{4}}$ and let f^{\prime} be a $\gamma_{d R}\left(T^{\prime}\right)$-function. If $\left|V\left(T^{\prime}\right)\right|=1$, then $\gamma_{d R}(T)=7 \leq\left\lfloor\frac{11 n-\ell(T)+4 s(T)}{10}\right\rfloor$. If $\left|V\left(T^{\prime}\right)\right|=2$, then one can see that $\gamma_{d R}(T) \leq 8 \leq\left\lfloor\frac{11 n-\ell(T)+4 s(T)}{10}\right\rfloor$. Thus let
$\left|V\left(T^{\prime}\right)\right| \geq 3$. Then the function f defined on $V(T)$ by $f\left(v_{3}\right)=3, f\left(v_{1}\right)=2, f(x)=0$ for $x \in N\left(v_{3}\right)$ and $f(x)=f^{\prime}(x)$ for $x \in V\left(T^{\prime}\right)-\left\{v_{4}\right\}$ is a DRDF of T of weight $\omega\left(f^{\prime}\right)+5$. It follows from the induction hypothesis that

$$
\begin{aligned}
\gamma_{d R}(T) & \leq \gamma_{d R}\left(T^{\prime}\right)+5 \\
& \leq\left\lfloor\frac{11(n-p-2)-\ell(T)-p+1+4 s(T)-4}{10}\right\rfloor+5 \\
& <\left\lfloor\frac{11 n-\ell(T)+4 s(T)}{10}\right\rfloor .
\end{aligned}
$$

Suppose now that $T_{v_{3}} \neq D S_{1, p-2}$, that is v_{3} has at least two children of depth 1 . Let $T^{\prime}=T-\left\{v_{1}, v_{2}\right\}$ and f^{\prime} be a $\gamma_{d R}\left(T^{\prime}\right)$-function. Assume that $u_{2} \neq v_{2}$ is a child of v_{3} with depth 1 and u_{1} is the leaf neighbor of u_{2}. If $f^{\prime}\left(v_{3}\right)=0$, then $f^{\prime}(x)=2$ for every $x \in L\left(v_{3}\right)$ and $f^{\prime}\left(u_{1}\right)+f^{\prime}\left(u_{2}\right)=3$. Then the function g defined on $V\left(T^{\prime}\right)$ by $g\left(v_{3}\right)=3, g\left(u_{1}\right)=2, g(x)=0$ for $x \in L\left(v_{3}\right) \cup\left\{u_{2}\right\}$ and $g(x)=f^{\prime}(x)$ elsewhere is a DRDF of T^{\prime} with $g\left(v_{3}\right)=3$. Hence, we may assume that $f^{\prime}\left(v_{3}\right) \geq 2$ and thus the function f defined on $V(T)$ by $f\left(v_{1}\right)=2, f\left(v_{2}\right)=0$ and $f(x)=f^{\prime}(x)$ for all $x \in V\left(T^{\prime}\right)$ is a DRDF of T of weight $\omega\left(f^{\prime}\right)+2$. It follows from the induction hypothesis that

$$
\begin{aligned}
\gamma_{d R}(T) & \leq \gamma_{d R}\left(T^{\prime}\right)+2 \\
& \leq\left\lfloor\frac{11(n-2)-\ell(T)+1+4 s(T)-4}{10}\right\rfloor+2 \\
& <\left\lfloor\frac{11 n-\ell(T)+4 s(T)}{10}\right\rfloor .
\end{aligned}
$$

Subcase 2.2. v_{3} is not a support vertex.
Hence $T_{v_{3}}$ is a healthy spider centered at v_{3}. First let v_{3} has at least three children. Suppose that $T^{\prime}=T-\left\{v_{1}, v_{2}\right\}$ and f^{\prime} be a $\gamma_{d R}\left(T^{\prime}\right)$-function. We may assume that $f^{\prime}\left(v_{3}\right) \geq 2$. Then the function f defined on $V(T)$ by $f\left(v_{1}\right)=2, f\left(v_{2}\right)=0$ and $f(x)=f^{\prime}(x)$ for $x \in V\left(T^{\prime}\right)$ is a DRDF of T of weight $\omega\left(f^{\prime}\right)+2$. It follows from the induction hypothesis that

$$
\begin{aligned}
\gamma_{d R}(T) & \leq \gamma_{d R}\left(T^{\prime}\right)+2 \\
& \leq\left\lfloor\frac{11(n-2)-\ell(T)+1+4 s(T)-4}{10}\right\rfloor+2 \\
& \leq\left\lfloor\frac{11 n-\ell(T)+4 s(T)}{10}\right\rfloor
\end{aligned}
$$

Now, let v_{3} have exactly two children. By assumption, $\operatorname{deg}_{T}\left(v_{4}\right)=2$. If $\operatorname{deg}_{T}\left(v_{5}\right) \geq 3$, then let $T^{\prime}=T-T_{v_{4}}$ and f^{\prime} be a $\gamma_{d R}\left(T^{\prime}\right)$-function. Then the function f defined on $V(T)$ by $f\left(v_{3}\right)=3, f(x)=2$ for $x \in L\left(T_{v_{3}}\right), f(x)=0$ for $x \in N\left(v_{3}\right)$ and $f(x)=f^{\prime}(x)$ for $x \in V\left(T^{\prime}\right)$ is a DRDF of T of weight $\omega\left(f^{\prime}\right)+7$. It follows from the induction
hypothesis that

$$
\begin{aligned}
\gamma_{d R}(T) & \leq \gamma_{d R}\left(T^{\prime}\right)+7 \\
& \leq\left\lfloor\frac{11(n-6)-\ell(T)+2+4 s(T)-8}{10}\right\rfloor+7 \\
& \leq\left\lfloor\frac{11 n-\ell(T)+4 s(T)}{10}\right\rfloor .
\end{aligned}
$$

Hence we assume that $\operatorname{deg}_{T}\left(v_{5}\right)=2$. If $\operatorname{deg}_{T}(x) \leq 2$ for $x \in V(T)-\left\{v_{3}\right\}$, then let $T^{\prime}=T-T_{v_{5}}$. If $\left|V\left(T^{\prime}\right)\right| \leq 2$, then T is a tree obtained from a path P_{5} attached by its center to a leaf of a path $P_{2+\left|V\left(T^{\prime}\right)\right| \text {. In this case, one can easily see that }}$ $\gamma_{d R}(T) \leq\left\lfloor\frac{11 n-\ell(T)+4 s(T)}{10}\right\rfloor$. Hence we assume that $\left|V\left(T^{\prime}\right)\right| \geq 3$. Note that, $\ell(T)=3$ and then, since $\gamma_{d R}\left(T_{v_{3}}\right)=8$, we have $\gamma_{d R}(T) \leq \gamma_{d R}\left(T^{\prime}\right)+8$. It follows from the induction hypothesis and the fact $\ell\left(T^{\prime}\right)=\ell(T)-1$ and $s\left(T^{\prime}\right)=s(T)-1$ that

$$
\begin{aligned}
\gamma_{d R}(T) & \leq \gamma_{d R}\left(T^{\prime}\right)+8 \\
& \leq\left\lfloor\frac{11(n-7)-\ell(T)+1+4 s(T)-4}{10}\right\rfloor+8 \\
& =\left\lfloor\frac{11 n-\ell(T)+4 s(T)}{10}\right\rfloor .
\end{aligned}
$$

Now let $t \geq 5$ be the smallest integer such that $\operatorname{deg}\left(v_{t}\right)=2$ and $\operatorname{deg}\left(v_{t+1}\right) \geq 3$. Suppose that $T^{\prime}=T-T_{v_{t}}$. Clearly, $\gamma_{d R}(T) \leq \gamma_{d R}\left(T^{\prime}\right)+t+3, \ell\left(T^{\prime}\right)=\ell(T)-2$ and $s\left(T^{\prime}\right)=s(T)-2$. It follows from the induction hypothesis that

$$
\begin{aligned}
\gamma_{d R}(T) & \leq \gamma_{d R}\left(T^{\prime}\right)+t+3 \\
& \leq\left\lfloor\frac{11(n-t-2)-\ell(T)+2+4 s(T)-8}{10}\right\rfloor+t+3 \\
& \leq\left\lfloor\frac{11 n-\ell(T)+4 s(T)}{10}\right\rfloor .
\end{aligned}
$$

This completes the proof.
Beeler et al. in [5] proved that for every graph $G, \gamma_{d R}(G)<2 \gamma_{R}(G)$. In the next theorem, we improve this bound for trees.

Theorem 2.2. If T is a tree of order $n \geq 3$ with $s(T)$ support vertices, then

$$
\gamma_{d R}(T) \leq 2 \gamma_{R}(T)-\left\lceil\frac{s(T)}{\Delta(T)}\right\rceil .
$$

This bound is sharp for $\operatorname{cor}\left(P_{3 k}\right)$ with $k \geq 1$.
Proof. The proof is by induction on n. The statement holds for all trees of order $n \in\{3,4\}$. Let $n \geq 5$ and assume that the result holds for all tree T^{\prime} of order n^{\prime} such that $3 \leq n^{\prime}<n$. Let T be a tree of order $n \geq 5$. If $\operatorname{diam}(T)=2$, then T
is a star, where $\gamma_{d R}(T)=3=4-\left\lceil\frac{1}{n-1}\right\rceil$. If $\operatorname{diam}(T)=3$, then $T=D S_{p, q}$ with $q \geq p \geq 1$. If $p=1$, then $\gamma_{d R}(T)=5 \leq 6-\left\lceil\frac{2}{n-2}\right\rceil$. Suppose that $p \geq 2$. Then $\gamma_{d R}(T)=6<8-\left\lceil\frac{2}{\Delta(T)}\right\rceil$. Henceforth we may assume that $\operatorname{diam}(T) \geq 4$.

Let $v_{1} v_{2} \ldots v_{k}$ be a diametral path in T such that $\operatorname{deg}\left(v_{2}\right)$ is as large as possible. Root T at v_{k}. If T has a support vertex v with $L(v) \geq 3$, then let T^{\prime} obtained from T by removing a leaf v^{\prime} belonging to $L(v)$. Clearly, $\Delta(T) \geq \Delta\left(T^{\prime}\right), s\left(T^{\prime}\right)=s(T)$. Moreover, it is easy to see that $\gamma_{R}\left(T^{\prime}\right) \leq \gamma_{R}(T)$ and $\gamma_{d R}(T) \leq \gamma_{d R}\left(T^{\prime}\right)$. By the induction hypothesis on T^{\prime} we obtain that

$$
\gamma_{d R}(T) \leq \gamma_{d R}\left(T^{\prime}\right) \leq 2 \gamma_{R}\left(T^{\prime}\right)-\left\lceil\frac{s\left(T^{\prime}\right)}{\Delta\left(T^{\prime}\right)}\right\rceil \leq 2 \gamma_{R}(T)-\left\lceil\frac{s(T)}{\Delta(T)}\right\rceil
$$

Hence, every support vertex of T has at most two leaves, in particular $\operatorname{deg}_{T}\left(v_{2}\right) \in$ $\{2,3\}$. Now, assume that $\operatorname{deg}_{T}\left(v_{3}\right)=2$, and let $T^{\prime}=T-T_{v_{3}}$. If $\left|V\left(T^{\prime}\right)\right|=2$, then $\gamma_{d R}(T)=6<8-\left\lceil\frac{2}{\Delta(T)}\right\rceil$. Hence we assume that $\left|V\left(T^{\prime}\right)\right| \geq 3$. Clearly, $\Delta(T) \geq \Delta\left(T^{\prime}\right)$, $s(T)-1 \leq s\left(T^{\prime}\right)$. Moreover, it is easy to see that $\gamma_{R}\left(T^{\prime}\right) \leq \gamma_{R}(T)-2$ and $\gamma_{d R}(T) \leq$ $\gamma_{d R}\left(T^{\prime}\right)+3$. By the induction hypothesis on T^{\prime} we obtain

$$
\begin{aligned}
\gamma_{d R}(T) & \leq \gamma_{d R}\left(T^{\prime}\right)+3 \\
& \leq 2 \gamma_{R}\left(T^{\prime}\right)-\left\lceil\frac{s\left(T^{\prime}\right)}{\Delta\left(T^{\prime}\right)}\right\rceil+3 \\
& \leq 2 \gamma_{R}(T)-4-\left\lceil\frac{s(T)-1}{\Delta(T)}\right\rceil+3 \\
& \leq 2 \gamma_{R}(T)-\left\lceil\frac{s(T)}{\Delta(T)}\right\rceil .
\end{aligned}
$$

Hence, let $\operatorname{deg}_{T}\left(v_{3}\right) \geq 3$, and consider the following two cases.
Case 1. $\operatorname{deg}_{T}\left(v_{2}\right)=3$.
If v_{3} is a strong support vertex or v_{3} has a child of depth 1 different from v_{2}, then let $T^{\prime}=T-T_{v_{2}}$. Clearly, $\Delta(T) \geq \Delta\left(T^{\prime}\right), s\left(T^{\prime}\right)=s(T)-1$. Moreover, it is easy to see that $\gamma_{R}\left(T^{\prime}\right) \leq \gamma_{R}(T)-2$ and $\gamma_{d R}(T) \leq \gamma_{d R}\left(T^{\prime}\right)+3$. Using the induction on T^{\prime}, the result follows. Suppose that v_{3} is a support vertex and $\operatorname{deg}_{T}\left(v_{3}\right)=3$. Let $T^{\prime}=T-T_{v_{3}}$. If $\left|V\left(T^{\prime}\right)\right|=2$, then $\gamma_{d R}(T)=8, \gamma_{R}(T)=5, \Delta(T)=s(T)=3$ and thus the result is valid. Hence we assume that $\left|V\left(T^{\prime}\right)\right| \geq 3$. Clearly, $\Delta(T) \geq \Delta\left(T^{\prime}\right), s(T)-2 \leq s\left(T^{\prime}\right)$. Moreover, it is easy to see that $\gamma_{R}\left(T^{\prime}\right) \leq \gamma_{R}(T)-3$ and $\gamma_{d R}(T) \leq \gamma_{d R}\left(T^{\prime}\right)+5$. By the induction hypothesis on T^{\prime} we obtain that

$$
\begin{aligned}
\gamma_{d R}(T) & \leq \gamma_{d R}\left(T^{\prime}\right)+5 \\
& \leq 2 \gamma_{R}\left(T^{\prime}\right)-\left\lceil\frac{s\left(T^{\prime}\right)}{\Delta\left(T^{\prime}\right)}\right\rceil+5 \\
& \leq 2 \gamma_{R}(T)-6-\left\lceil\frac{s(T)-2}{\Delta(T)}\right\rceil+5 \\
& \leq 2 \gamma_{R}(T)-\left\lceil\frac{s(T)}{\Delta(T)}\right\rceil .
\end{aligned}
$$

Case 2. $\operatorname{deg}_{T}\left(v_{2}\right)=2$.
By the choice of diametral path, we may assume that all children of v_{3} with depth 1 have degree 2 . In the sequel, let s_{1} be the number of children of v_{4} that are leaves and let $s_{\geq 2}$ be the number of children of v_{4} of degree at least 2 having no grandchild. We distinguish the following subcases.

Subcase 2.1. v_{3} is not a support vertex.
Let $T^{\prime}=T-T_{v_{3}}$. If $\left|V\left(T^{\prime}\right)\right|=2$, then T is a healthy spider, where $\gamma_{d R}(T)=$ $2 \operatorname{deg}_{T}\left(v_{3}\right)+2, \gamma_{R}(T)=2+\operatorname{deg}_{T}\left(v_{3}\right), \Delta(T)=s(T)=\operatorname{deg}_{T}\left(v_{3}\right)$ and thus the result is valid. Hence let $\left|V\left(T^{\prime}\right)\right| \geq 3$. Clearly, $\Delta(T) \geq \Delta\left(T^{\prime}\right), s(T)-\operatorname{deg}_{T}\left(v_{3}\right)+1 \leq s\left(T^{\prime}\right)$. If $s_{1} \geq 2$ or $s_{\geq 2} \geq 1$ or v_{4} has a child of depth 2 different from v_{2}, then it is easy to see that $\gamma_{R}\left(T^{\prime}\right) \leq \gamma_{R}(T)-\left|C\left(v_{3}\right)\right|-2$ and $\gamma_{d R}(T) \leq \gamma_{d R}\left(T^{\prime}\right)+2\left|C\left(v_{3}\right)\right|+2$. By the induction hypothesis on T^{\prime} we obtain

$$
\begin{aligned}
\gamma_{d R}(T) & \leq \gamma_{d R}\left(T^{\prime}\right)+2\left|C\left(v_{3}\right)\right|+2 \\
& \leq 2 \gamma_{R}\left(T^{\prime}\right)-\left\lceil\frac{s\left(T^{\prime}\right)}{\Delta\left(T^{\prime}\right)}\right\rceil+2\left|C\left(v_{3}\right)\right|+2 \\
& \leq 2 \gamma_{R}(T)-2\left|C\left(v_{3}\right)\right|-4-\left\lceil\frac{s(T)-\operatorname{deg}_{T}\left(v_{3}\right)+1}{\Delta(T)}\right\rceil+2\left|C\left(v_{3}\right)\right|+2 \\
& \leq 2 \gamma_{R}(T)-\left\lceil\frac{s(T)}{\Delta(T)}\right\rceil .
\end{aligned}
$$

Hence, let $s_{1} \leq 1, s_{\geq 2}=0$ and say v_{4} has no child of depth 2 different from v_{2}. If $s_{1}=1$, then let $\overline{T^{\prime}}=T-T_{v_{4}}$. If $\left|V\left(T^{\prime}\right)\right|=1$, then $\gamma_{d R}(T)=2 \operatorname{deg}_{T}\left(v_{3}\right)+3$, $\gamma_{R}(T)=\operatorname{deg}_{T}\left(v_{3}\right)+3, \Delta(T)=s(T)=\operatorname{deg}_{T}\left(v_{3}\right)$, and if $\left|V\left(T^{\prime}\right)\right|=2$, then $\gamma_{d R}(T)=$ $2 \operatorname{deg}_{T}\left(v_{3}\right)+5, \gamma_{R}(T)=\operatorname{deg}_{T}\left(v_{3}\right)+4, \Delta(T)=\operatorname{deg}_{T}\left(v_{3}\right), s(T)=\operatorname{deg}_{T}\left(v_{3}\right)+1$. In both cases, we have $\gamma_{d R}(T)<\gamma_{R}(T)-\left\lceil\frac{s(T)}{\Delta(T)}\right\rceil$. Hence let $\left|V\left(T^{\prime}\right)\right| \geq 3$. Clearly, $\Delta(T) \geq \Delta\left(T^{\prime}\right), s(T)-\operatorname{deg}_{T}\left(v_{3}\right) \leq s\left(T^{\prime}\right)$. Moreover, one can see that $\gamma_{R}\left(T^{\prime}\right) \leq$ $\gamma_{R}(T)-\left|C\left(v_{3}\right)\right|-3$ and $\gamma_{d R}(T) \leq \gamma_{d R}\left(T^{\prime}\right)+2\left|C\left(v_{3}\right)\right|+4$. By the induction hypothesis on T^{\prime} we obtain that

$$
\begin{aligned}
\gamma_{d R}(T) & \leq \gamma_{d R}\left(T^{\prime}\right)+2\left|C\left(v_{3}\right)\right|+4 \\
& \leq 2 \gamma_{R}\left(T^{\prime}\right)-\left\lceil\frac{s\left(T^{\prime}\right)}{\Delta\left(T^{\prime}\right)}\right\rceil+2\left|C\left(v_{3}\right)\right|+4 \\
& \leq 2 \gamma_{R}(T)-2\left|C\left(v_{3}\right)\right|-6-\left\lceil\frac{s(T)-\operatorname{deg}_{T}\left(v_{3}\right)}{\Delta(T)}\right\rceil+2\left|C\left(v_{3}\right)\right|+4 \\
& \leq 2 \gamma_{R}(T)-\left\lceil\frac{s(T)}{\Delta(T)}\right\rceil .
\end{aligned}
$$

Finally, assume that $s_{1}=0$, and let $T^{\prime}=T-T_{v_{4}}$. If $\left|V\left(T^{\prime}\right)\right|=2$, then $\gamma_{d R}(T)=$ $2 \operatorname{deg}_{T}\left(v_{3}\right)+3, \gamma_{R}(T)=\operatorname{deg}_{T}\left(v_{3}\right)+3, \Delta(T)=s(T)=\operatorname{deg}_{T}\left(v_{3}\right)$, and the result holds. Hence let $\left|V\left(T^{\prime}\right)\right| \geq 3$. Clearly, $\Delta(T) \geq \Delta\left(T^{\prime}\right), s(T)-\operatorname{deg}_{T}\left(v_{3}\right)+1 \leq s\left(T^{\prime}\right)$. Moreover, $\gamma_{R}\left(T^{\prime}\right) \leq \gamma_{R}(T)-\left|C\left(v_{3}\right)\right|-2$ and $\gamma_{d R}(T) \leq \gamma_{d R}\left(T^{\prime}\right)+2\left|C\left(v_{3}\right)\right|+3$. By
the induction hypothesis on T^{\prime} we obtain

$$
\begin{aligned}
\gamma_{d R}(T) & \leq \gamma_{d R}\left(T^{\prime}\right)+2\left|C\left(v_{3}\right)\right|+3 \\
& \leq 2 \gamma_{R}\left(T^{\prime}\right)-\left\lceil\frac{s\left(T^{\prime}\right)}{\Delta\left(T^{\prime}\right)}\right\rceil+2\left|C\left(v_{3}\right)\right|+3 \\
& \leq 2 \gamma_{R}(T)-2\left|C\left(v_{3}\right)\right|-4-\left\lceil\frac{s(T)-\operatorname{deg}_{T}\left(v_{3}\right)+1}{\Delta(T)}\right\rceil+2\left|C\left(v_{3}\right)\right|+3 \\
& \leq 2 \gamma_{R}(T)-\left\lceil\frac{s(T)}{\Delta(T)}\right\rceil .
\end{aligned}
$$

Subcase 2.2. v_{3} is a support vertex.
Let $T^{\prime}=T-T_{v_{3}}$, and $t=\left|L\left(v_{3}\right)\right|$. Recall that we see that every support vertex has at most two leaves, and thus $t \in\{1,2\}$. If $\left|V\left(T^{\prime}\right)\right|=2$, then $\gamma_{d R}(T)=3+2\left(\operatorname{deg}_{T}\left(v_{3}\right)-t\right)$, $\gamma_{R}(T)=2+\left(\operatorname{deg}_{T}\left(v_{3}\right)-t\right), \Delta(T)=\operatorname{deg}_{T}\left(v_{3}\right), s(T)=\operatorname{deg}_{T}\left(v_{3}\right)-t$ and the result holds. Hence let $\left|V\left(T^{\prime}\right)\right| \geq 3$. Clearly, $\Delta(T) \geq \Delta\left(T^{\prime}\right), s(T)-\operatorname{deg}_{T}\left(v_{3}\right)+t+1 \leq s\left(T^{\prime}\right)$. If $s_{1} \geq 2$ or $s_{\geq 2} \geq 1$ or v_{4} has a child of depth 2 different from v_{2}, it is easy to see that $\gamma_{R}\left(T^{\prime}\right) \leq \gamma_{R}(T)-\left|C\left(v_{3}\right)\right|-2+t$ and $\gamma_{d R}(T) \leq \gamma_{d R}\left(T^{\prime}\right)+2\left|C\left(v_{3}\right)\right|+3-2 t$. By the induction hypothesis on T^{\prime} we obtain

$$
\begin{aligned}
\gamma_{d R}(T) & \leq \gamma_{d R}\left(T^{\prime}\right)+2\left|C\left(v_{3}\right)\right|+3-2 t \\
& \leq 2 \gamma_{R}\left(T^{\prime}\right)-\left\lceil\frac{s\left(T^{\prime}\right)}{\Delta\left(T^{\prime}\right)}\right\rceil+2\left|C\left(v_{3}\right)\right|+3-2 t \\
& \leq 2 \gamma_{R}(T)-2\left|C\left(v_{3}\right)\right|-4+2 t-\left\lceil\frac{s(T)-\operatorname{deg}_{T}\left(v_{3}\right)+t+1}{\Delta(T)}\right\rceil+2\left|C\left(v_{3}\right)\right|+3-2 t \\
& \leq 2 \gamma_{R}(T)-\left\lceil\frac{s(T)}{\Delta(T)}\right\rceil
\end{aligned}
$$

Hence, let $s_{1} \leq 1, s_{\geq 2}=0$ and v_{4} has no a child of depth 2 different from v_{2}, Assume that $s_{1}=1$, and let $T^{\prime}=T-T_{v_{4}}$. If $\left|V\left(T^{\prime}\right)\right|=1$, then $\gamma_{d R}(T)=2 \operatorname{deg}_{T}\left(v_{3}\right)+4-2 t$, $\gamma_{R}(T)=\operatorname{deg}_{T}\left(v_{3}\right)+3-t, \Delta(T)=\operatorname{deg}_{T}\left(v_{3}\right), s(T)=\operatorname{deg}_{T}\left(v_{3}\right)-t+1$ and if $\left|V\left(T^{\prime}\right)\right|=2$, then $\gamma_{d R}(T)=2 \operatorname{deg}_{T}\left(v_{3}\right)+6-2 t, \gamma_{R}(T)=\operatorname{deg}_{T}\left(v_{3}\right)+4-t, \Delta(T)=\operatorname{deg}_{T}\left(v_{3}\right)$, $s(T)=\operatorname{deg}_{T}\left(v_{3}\right)+2-t$. In either case, we have $\gamma_{d R}(T) \leq \gamma_{R}(T)-\left\lceil\frac{s(T)}{\Delta(T)}\right\rceil$. Hence let $\left|V\left(T^{\prime}\right)\right| \geq 3$. Clearly, $\Delta(T) \geq \Delta\left(T^{\prime}\right), s(T)-\operatorname{deg}_{T}\left(v_{3}\right)-1+t \leq s\left(T^{\prime}\right)$. Moreover, $\gamma_{R}\left(T^{\prime}\right) \leq \gamma_{R}(T)-\left|C\left(v_{3}\right)\right|-3+t$ and $\gamma_{d R}(T) \leq \gamma_{d R}\left(T^{\prime}\right)+2\left|C\left(v_{3}\right)\right|+4-2 t$. By the induction hypothesis on T^{\prime} we obtain

$$
\begin{aligned}
\gamma_{d R}(T) & \leq \gamma_{d R}\left(T^{\prime}\right)+2\left|C\left(v_{3}\right)\right|+4-2 t \\
& \leq 2 \gamma_{R}\left(T^{\prime}\right)-\left\lceil\frac{s\left(T^{\prime}\right)}{\Delta\left(T^{\prime}\right)}\right\rceil+2\left|C\left(v_{3}\right)\right|+4-2 t \\
& \leq 2 \gamma_{R}(T)-2\left|C\left(v_{3}\right)\right|-6+2 t-\left\lceil\frac{s(T)-\operatorname{deg}_{T}\left(v_{3}\right)-1+t}{\Delta(T)}\right\rceil+2\left|C\left(v_{3}\right)\right|+4-2 t \\
& \leq 2 \gamma_{R}(T)-\left\lceil\frac{s(T)}{\Delta(T)}\right\rceil .
\end{aligned}
$$

Finally, assume that $s_{1}=0$ and let $T^{\prime}=T-T_{v_{4}}$. If $\left|V\left(T^{\prime}\right)\right|=2$, then $\gamma_{d R}(T)=$ $4+2\left(\operatorname{deg}_{T}\left(v_{3}\right)-t\right), \gamma_{R}(T)=3+\left(\operatorname{deg}_{T}\left(v_{3}\right)-t\right), \Delta(T)=\operatorname{deg}_{T}\left(v_{3}\right), s(T)=\operatorname{deg}_{T}\left(v_{3}\right)-$ $t+1$ and the result holds. Hence let $\left|V\left(T^{\prime}\right)\right| \geq 3$. Clearly, $\Delta(T) \geq \Delta\left(T^{\prime}\right), s(T)-$ $\operatorname{deg}_{T}\left(v_{3}\right)+t \leq s\left(T^{\prime}\right)$. Moreover, $\gamma_{R}\left(T^{\prime}\right) \leq \gamma_{R}(T)-\left|C\left(v_{3}\right)\right|-2+t$ and $\gamma_{d R}(T) \leq$ $\gamma_{d R}\left(T^{\prime}\right)+2\left|C\left(v_{3}\right)\right|+3-2 t$. By the induction hypothesis on T^{\prime} we obtain

$$
\begin{aligned}
\gamma_{d R}(T) & \leq \gamma_{d R}\left(T^{\prime}\right)+2\left|C\left(v_{3}\right)\right|+3-2 t \\
& \leq 2 \gamma_{R}\left(T^{\prime}\right)-\left\lceil\frac{s\left(T^{\prime}\right)}{\Delta\left(T^{\prime}\right)}\right\rceil+2\left|C\left(v_{3}\right)\right|+3-2 t \\
& \leq 2 \gamma_{R}(T)-2\left|C\left(v_{3}\right)\right|-4+2 t-\left\lceil\frac{s(T)-\operatorname{deg}_{T}\left(v_{3}\right)+t}{\Delta(T)}\right\rceil+2\left|C\left(v_{3}\right)\right|+3-2 t \\
& \leq 2 \gamma_{R}(T)-\left\lceil\frac{s(T)}{\Delta(T)}\right\rceil
\end{aligned}
$$

Note that if $T=\operatorname{cor}\left(P_{3 k}\right)$ for with $k \geq 1$, then we have $\Delta(T)=3, s(T)=3 k$, $\gamma_{d R}(T)=7 k$ and $\gamma_{R}(T)=4 k$. This completes the proof.

3 Lower bound

Beeler et al. in [5] proved that for every graph $G, \gamma_{d R}(G)>\gamma_{R}(G)$. In the next theorem, we improve this bound for trees.

Theorem 3.1. If T is a tree of order $n \geq 3$ with $\ell(T)$ leaves and $s(T)$ support vertices, then

$$
\gamma_{d R}(T) \geq \gamma_{R}(T)+\left\lceil\frac{\ell(T)-s(T)}{\Delta(T)}\right\rceil
$$

This bound is sharp for double stars $D S_{p, q}$ with $q \geq p \geq 4$.
Proof. The proof is by induction on n. The statement holds for all trees of order $n \in\{3,4\}$. Let $n \geq 5$ and assume that the result holds for all tree T^{\prime} of order n^{\prime} such that $3 \leq n^{\prime}<n$. Let T be a tree of order $n \geq 5$. If $\operatorname{diam}(T)=2$, then T is a star, where $\gamma_{d R}(T)=3=2+\left\lceil\frac{n-2}{n-1}\right\rceil$. If $\operatorname{diam}(T)=3$, then $T=D S_{p, q}$, with $q \geq p \geq 1$. If $p=1$, then $\gamma_{d R}(T)=5>3+\left\lceil\frac{n-4}{n-2}\right\rceil$. If $p \geq 2$, then $\gamma_{d R}(T)=6 \geq 4+\left\lceil\frac{n-4}{\Delta(T)}\right\rceil$, and clearly the result is valid since $\left\lceil\frac{n-4}{\Delta(T)}\right\rceil \leq 2$. Henceforth we may assume that $\operatorname{diam}(T) \geq 4$.

Let $v_{1} v_{2} \ldots v_{k}$ be a diametral path in T. Root T at v_{k}. Let $\operatorname{deg}_{T}\left(v_{3}\right)=2$ and $T^{\prime}=T-T_{v_{3}}$. Clearly, $\left|V\left(T^{\prime}\right)\right| \geq 2$. If $\left|V\left(T^{\prime}\right)\right|=2$, then $\gamma_{d R}(T)=5, \gamma_{R}(T)=$ $4, \Delta(T)=\ell(T)=\operatorname{deg}_{T}\left(v_{2}\right), s(T)=2$, and thus the result is valid. Hence we assume that $\left|V\left(T^{\prime}\right)\right| \geq 3$. Then $\Delta(T) \geq \Delta\left(T^{\prime}\right), \ell(T)-\left|L\left(v_{2}\right)\right| \leq \ell\left(T^{\prime}\right), s\left(T^{\prime}\right) \leq s(T)$. Moreover, it is easy to see that $\gamma_{R}(T) \leq \gamma_{R}\left(T^{\prime}\right)+2$ and $\gamma_{d R}\left(T^{\prime}\right) \leq \gamma_{d R}(T)-3$. By
the induction hypothesis on T^{\prime} we obtain

$$
\begin{aligned}
\gamma_{d R}(T) & \geq \gamma_{d R}\left(T^{\prime}\right)+3 \\
& \geq \gamma_{R}\left(T^{\prime}\right)+\left\lceil\frac{\ell\left(T^{\prime}\right)-s\left(T^{\prime}\right)}{\Delta\left(T^{\prime}\right)}\right\rceil+3 \\
& \geq \gamma_{R}(T)-2+\left\lceil\frac{\ell(T)-\left|L\left(v_{2}\right)\right|-s(T)}{\Delta(T)}\right\rceil+3 \\
& \geq \gamma_{R}(T)+\left\lceil\frac{\ell(T)-s(T)}{\Delta(T)}\right\rceil .
\end{aligned}
$$

Assume now that $\operatorname{deg}_{T}\left(v_{3}\right) \geq 3$. First, let v_{3} be a support vertex and either has two children of depth 1 or v_{3} is a strong support vertex. Let $T^{\prime}=T-T_{v_{2}}$. Clearly, $\Delta(T) \geq \Delta\left(T^{\prime}\right), \ell\left(T^{\prime}\right)=\ell(T)-\left|L\left(v_{2}\right)\right|, s\left(T^{\prime}\right)=s(T)-1$. If $\operatorname{deg}_{T}\left(v_{2}\right) \geq 3$, then $\gamma_{R}(T) \leq \gamma_{R}\left(T^{\prime}\right)+2$ and $\gamma_{d R}\left(T^{\prime}\right) \leq \gamma_{d R}(T)-3$. By the induction hypothesis on T^{\prime} we obtain that

$$
\begin{aligned}
\gamma_{d R}(T) & \geq \gamma_{d R}\left(T^{\prime}\right)+3 \\
& \geq \gamma_{R}\left(T^{\prime}\right)+\left\lceil\frac{\ell\left(T^{\prime}\right)-s\left(T^{\prime}\right)}{\Delta\left(T^{\prime}\right)}\right\rceil+3 \\
& \geq \gamma_{R}(T)-2+\left\lceil\frac{\ell(T)-\left|L\left(v_{2}\right)\right|-s\left(T^{\prime}\right)+1}{\Delta(T)}\right\rceil+3 \\
& \geq \gamma_{R}(T)+\left\lceil\frac{\ell(T)-s(T)}{\Delta(T)}\right\rceil .
\end{aligned}
$$

If $\operatorname{deg}_{T}\left(v_{2}\right)=2$, then $\gamma_{R}(T) \leq \gamma_{R}\left(T^{\prime}\right)+2$ and $\gamma_{d R}\left(T^{\prime}\right) \leq \gamma_{d R}(T)-2$. By the induction hypothesis on T^{\prime} we obtain

$$
\begin{aligned}
\gamma_{d R}(T) & \geq \gamma_{d R}\left(T^{\prime}\right)+2 \\
& \geq \gamma_{R}\left(T^{\prime}\right)+\left\lceil\frac{\ell\left(T^{\prime}\right)-s\left(T^{\prime}\right)}{\Delta\left(T^{\prime}\right)}\right\rceil+2 \\
& \geq \gamma_{R}(T)-2+\left\lceil\frac{\ell(T)-1-s\left(T^{\prime}\right)+1}{\Delta(T)}\right\rceil+2 \\
& =\gamma_{R}(T)+\left\lceil\frac{\ell(T)-s(T)}{\Delta(T)}\right\rceil .
\end{aligned}
$$

We can now suppose that v_{2} is the unique child of v_{3} with depth 1 and $\left|L\left(v_{3}\right)\right|=1$. If $\operatorname{deg}_{T}\left(v_{2}\right) \geq 3$, then let $T^{\prime}=T-T_{v_{3}}$. Clearly, $\left|V\left(T^{\prime}\right)\right| \geq 2$. Assume that $\left|V\left(T^{\prime}\right)\right|=2$. Then $\gamma_{d R}(T)=8, \gamma_{R}(T)=5, \Delta(T)=\operatorname{deg}_{T}\left(v_{2}\right), \ell(T)=\operatorname{deg}_{T}\left(v_{2}\right)+1, s(T)=3$, and thus the result is valid. Hence we assume that $\left|V\left(T^{\prime}\right)\right| \geq 3$. Then $\Delta(T) \geq \Delta\left(T^{\prime}\right)$, $\ell(T)-\left|L\left(v_{2}\right)\right|-1 \leq \ell\left(T^{\prime}\right)$ and $s\left(T^{\prime}\right) \leq s(T)-1$. Moreover, it is easy to see that $\gamma_{R}(T) \leq \gamma_{R}\left(T^{\prime}\right)+3$ and $\gamma_{d R}\left(T^{\prime}\right) \leq \gamma_{d R}(T)-4$. By the induction hypothesis on T^{\prime}
we obtain

$$
\begin{aligned}
\gamma_{d R}(T) & \geq \gamma_{d R}\left(T^{\prime}\right)+4 \\
& \geq \gamma_{R}\left(T^{\prime}\right)+\left\lceil\frac{\ell\left(T^{\prime}\right)-s\left(T^{\prime}\right)}{\Delta\left(T^{\prime}\right)}\right\rceil+4 \\
& \geq \gamma_{R}(T)-3+\left\lceil\frac{\ell(T)-\left|L\left(v_{2}\right)\right|-1-s(T)+1}{\Delta(T)}\right\rceil+4 \\
& \geq \gamma_{R}(T)+\left\lceil\frac{\ell(T)-s(T)}{\Delta(T)}\right\rceil .
\end{aligned}
$$

Suppose that $\operatorname{deg}_{T}\left(v_{2}\right)=2$. If $\operatorname{deg}_{T}\left(v_{4}\right) \geq 3$, then let $T^{\prime \prime}=T-T_{v_{3}}$. Then $\Delta(T) \geq$ $\Delta\left(T^{\prime \prime}\right), \ell\left(T^{\prime \prime}\right)=\ell(T)-2$ and $s\left(T^{\prime \prime}\right)=s(T)-2$. Moreover, it is easy to see that $\gamma_{R}(T) \leq \gamma_{R}\left(T^{\prime \prime}\right)+3$ and $\gamma_{d R}\left(T^{\prime \prime}\right) \leq \gamma_{d R}(T)-3$. By the induction hypothesis on $T^{\prime \prime}$ we obtain

$$
\begin{aligned}
\gamma_{d R}(T) & \geq \gamma_{d R}\left(T^{\prime \prime}\right)+3 \\
& \geq \gamma_{R}\left(T^{\prime \prime}\right)+\left\lceil\frac{\ell\left(T^{\prime \prime}\right)-s\left(T^{\prime \prime}\right)}{\Delta\left(T^{\prime \prime}\right)}\right\rceil+3 \\
& \geq \gamma_{R}(T)-3+\left\lceil\frac{\ell(T)-2-s\left(T^{\prime \prime}\right)+2}{\Delta(T)}\right\rceil+3 \\
& \geq \gamma_{R}(T)+\left\lceil\frac{\ell(T)-s(T)}{\Delta(T)}\right\rceil .
\end{aligned}
$$

If $\operatorname{deg}_{T}\left(v_{4}\right)=2$, then let $T^{\prime \prime}=T-T_{v_{4}}$. If $\left|V\left(T^{\prime \prime}\right)\right| \leq 2$, we can see that $\gamma_{d R}(T) \geq$ $\gamma_{R}(T)+\left\lceil\frac{\ell(T)-s(T)}{\Delta(T)}\right\rceil$. Hence we assume that $\left|V\left(T^{\prime \prime}\right)\right| \geq 3$. Then $\Delta(T) \geq \Delta\left(T^{\prime \prime}\right)$, $\ell(T)-2 \leq \ell\left(T^{\prime \prime}\right)$ and $s\left(T^{\prime \prime}\right) \leq s(T)-1$. Moreover, it is easy to see that $\gamma_{R}(T) \leq$ $\gamma_{R}\left(T^{\prime \prime}\right)+3$ and $\gamma_{d R}\left(T^{\prime \prime}\right) \leq \gamma_{d R}(T)-5$. By the induction hypothesis on $T^{\prime \prime}$ we obtain

$$
\begin{aligned}
\gamma_{d R}(T) & \geq \gamma_{d R}\left(T^{\prime \prime}\right)+5 \\
& \geq \gamma_{R}\left(T^{\prime \prime}\right)+\left\lceil\frac{\ell\left(T^{\prime \prime}\right)-s\left(T^{\prime \prime}\right)}{\Delta\left(T^{\prime \prime}\right)}\right\rceil+5 \\
& \geq \gamma_{R}(T)-3+\left\lceil\frac{\ell(T)-2-s(T)+1}{\Delta(T)}\right\rceil+5 \\
& >\gamma_{R}(T)+\left\lceil\frac{\ell(T)-s(T)}{\Delta(T)}\right\rceil .
\end{aligned}
$$

Finally, assume that v_{3} is not a support vertex, and let $T^{\prime}=T-T_{v_{2}}$. Clearly, $\Delta(T) \geq \Delta\left(T^{\prime}\right), \ell\left(T^{\prime}\right)=\ell(T)-\left|L\left(v_{2}\right)\right|$ and $s\left(T^{\prime}\right)=s(T)-1$. On the other hand, if $\operatorname{deg}_{T}\left(v_{2}\right) \geq 3$, then $\gamma_{R}(T) \leq \gamma_{R}\left(T^{\prime}\right)+2$ and $\gamma_{d R}\left(T^{\prime}\right) \leq \gamma_{d R}(T)-3$, and if $\operatorname{deg}_{T}\left(v_{2}\right)=2$, then $\gamma_{R}(T) \leq \gamma_{R}\left(T^{\prime}\right)+2$ and $\gamma_{d R}\left(T^{\prime}\right) \leq \gamma_{d R}(T)-2$. Using the induction on T^{\prime} and according to each situation, the result follows. This completes the proof.

References

[1] H. Abdollahzadeh Ahangar, J. Amjadi, M. Atapour, M. Chellali and S. M. Sheikholeslami, Double Roman trees, Ars Combin. 145 (2019), 173-183.
[2] H. Abdollahzadeh Ahangar, J. Amjadi, M. Chellali, S. Nazari-Moghaddam and S. M. Sheikholeslami, Trees with double Roman domination number twice the domination number plus two, Iran. J. Sci. Technol. Trans. A Sci. 43 (2019), 1081-1088.
[3] H. Abdollahzadeh Ahangar, M. Chellali and S. M. Sheikholeslami, On the double Roman domination in graphs, Discrete Appl. Math. 232 (2017), 1-7.
[4] J. Amjadi, S. Nazari-Moghaddam, S. M. Sheikholeslami and L. Volkmann, An upper bound on the double Roman domination number, J. Comb. Optim. 36 (2018), 81-89.
[5] R. A. Beeler, T. W. Haynes and S. T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016), 23-29.
[6] E. J. Cockayne, P. A. Dreyer Jr., S. M. Hedetniemic and S. T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), 11-22.
[7] R. Khoeilar, H. Karami, M. Chellali and S. M. Sheikholeslami, An improved upper bound on the double Roman domination number of graphs with minimum degree at least two, Discrete Appl. Math. 270 (2019), 159-167.
[8] C.S. Revelle and K.E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly. 107 (7) (2000), 585-594.
[9] I. Stewart, Defend the Roman Empire, Sci. Amer. 281 (6) (1999), 136-139.
[10] X. Zhang, Z. Li, H. Jiang and Z. Shao, Double Roman domination in trees, Inform. Process. Lett. 134 (2018), 31-34.

