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Abstract

For a graph G, let v4r(G) and yg(G) denote the double Roman domi-
nation number and the Roman domination number, respectively. In this
paper, we show that for every tree T" of order n > 3, with ¢(T") leaves and
s(T) support vertices,

r(T) + {E(T)A(_TS)(T)} < var(T)
.o Un—0(T) +4s(T) s(T)
< min{| 10 1,2vr(T) — (A(T)W}

The upper and lower bounds improve previous bounds given by Beeler,
Haynes and Hedetniemi [Discrete Appl. Math. 211 (2016), 23-29].

1 Introduction

Throughout this paper, G is a simple graph with vertex set V' (G) and edge set E(G)
(briefly V, E'). The order |V'| of G is denoted by n = n(G). For every vertex v € V(G),
the open neighborhood of v is the set Ng(v) = N(v) = {u € V(G) | wv € E(G)}
and its closed neighborhood is the set Ng[v] = N[v] = N(v) U{v}. The degree of
a vertex v € V is deg(v) = |N(v)|. The maximum degree of a graph G is denoted
by A = A(G). A leaf of G is a vertex with degree one, a support vertex is a vertex
adjacent to a leaf, and a strong support vertexr is a support vertex adjacent to at
least two leaves. The set of all leaves adjacent to a vertex v is denoted by L(v),
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while the set of leaves of a graph G is denoted by L(G). A path of order n is denoted
by P,. The corona cor(H) of a graph H is the graph obtained from H, where for
each vertex v € V(H), a new vertex v’ and a pendant edge vv’ are added. A double
star DS, 4, with ¢ > p > 1, is a graph consisting of the union of two stars K; , and
K, together with an edge joining their centers. The subdivision graph S,(G) of a
graph G is that graph obtained from G by replacing each edge uv of G by a vertex
w and edges uw and vw. A healthy spider is the subdivision graph of a star K
for k > 2. The distance dg(u,v) between two vertices u and v in a connected graph
G is the length of a shortest wv-path in G. The diameter diam(G) of a graph G is
the greatest distance between two vertices of G. A diametral path of a graph G is a
shortest path whose length is equal to diam(G). For a vertex v in a rooted tree T,
let C'(v) denote the set of children of v, D(v) denotes the set of descendants of v and
Dv] = D(v) U {v}. Also, the depth of v, depth(v), is the largest distance from v to
a vertex in D(v). The mazimal subtree at v is the subtree of T" induced by D[v], and
is denoted by T,. A grandchild of v is the descendant of v at distance 2 from v.

A Roman dominating function on G, abbreviated RDF, is a function f : V —
{0, 1,2} such that every vertex u € V for which f(u) = 0 is adjacent to at least one
vertex v for which f(v) = 2. The weight of an RDF f is the value f(V) = " .\ f(u),
and the Roman domination number yg(G) of G is the minimum weight of an RDF
on G. Roman domination was introduced by Cockayne et al. in [6] and was inspired
by the work of ReVelle and Rosing [8] and Stewart [9]. Several new varieties of
Roman domination have been introduced since 2004, among them, we quote the
double Roman domination introduced by Beeler, Haynes and Hedetniemi in [5] and
studied for example in [1, 2, 3, 4, 7, 10].

A double Roman dominating function (DRDF) on a graph G is a function f :
V — {0, 1,2,3} having the property that if f(v) = 0, then vertex v has at least two
neighbors assigned 2 under f or one neighbor w with f(w) = 3, and if f(v) = 1, then
vertex v has at least one neighbor w with f(w) > 2. The weight of a DRDF f is the
value f(V) =3 v f(u). The double Roman domination number v4r(G) of a graph
G is the minimum weight of a DRDF on G. A DRDF of G with weight v4z(G) is
called a v4r(G)-function. For a DRDF f,let V; ={v e V | f(v) =i} fori=0,1,2,3.
Since these four sets determine f, we can equivalently write f = (Vp, V4, Vo, V3) (or
=i, Vi Vi Vi) to refer f). We note that w(f) = |Vi| + 2|Va| + 3|Vs].

In this paper, we show that for every tree T of order n > 3, with ¢(7") leaves and

s(T) support vertices, yg(T)+ V(TA)(_TS)(T)} < 3ar(T) < min{ | 22D | o0 b (T) -
I s(T)

A(Tﬂ }. All these bounds improve previous bounds given in [5].

We make use of the following results.

Proposition 1.1 ([5]). In a double Roman dominating function of weight var(G),
no vertex needs to be assigned the value 1.

Observation 1.2. If v is a strong support of a graph G, then there exists a v4r(G)-
function f with f(v) = 3.

Proof. Let f = (V,,0, V2, V3) be a y4r(G)-function such that f(v) is as large as



S. NAZARI-MOGHADDAM ET AL./ AUSTRALAS. J. COMBIN. 77 (2) (2020), 256-268 258

possible. If f(v) = 2, then f(x) =1 for all # € L(v) which contradicts the choice
of f. If f(v) =0, then f(x) = 2 for all x € L(v) and thus the function g defined
on V(G) by g(v) = 3, f(z) = 0 for all x € L(v) and g(x) = f(z) elsewhere, is a
DRDF of G of weight less than 4z(G) which is a contradiction. Hence, f(v) = 3,
as desired. O

2 Upper bounds

Our main results in this section are two new upper bounds on the double Roman
domination number of a tree. It was shown in [5] that every tree T' of order n > 3
satisfied v4r(T') < %”. The first bound we present improves this upper bound for

trees 7" with n > w.

Let L; consist of the disjoint union of ¢ copies of Pj plus a path through a support
vertices of these copies, as illustrated in Figure 1.

11717

Figure 1: The tree Ly.

Let Hj consist of the disjoint union of k copies of Ps plus a path through a
support vertices of these copies, as illustrated in Figure 2.

Y Y

Figure 2: The tree Hj.

Theorem 2.1. If T is a tree of order n > 3 with {(T) leaves and s(T') support

vertices, then
1in —4T) + 4s(T
Yar(T) < | (13 ( )J

This bound is sharp for trees Ly with t > 1 and Hy, with k € {1,...,9}.

Proof. The proof is by induction on n. The statement holds for all trees of order
n € {3,4}. Suppose n > 5 and let the result hold for all trees T' of order less
than n. Let T be a tree of order n. If diam(7) = 2, then T is a star and we
have y4r(T) = 3 < L%&Hsmj. If diam(7") = 3, then T is a double star with
at least three leaves (because of n > 5), and thus assigning a 3 to each support

vertex and a 0 to the leaves is a DRDF of T" of weight 6. Clearly, v4r(7) < 6 <
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L%&HS(T”. Hence, we may assume that diam(7) > 4. Suppose there are

two adjacent vertices x and y, each of degree at least three. Let 7" and T” be
the subtrees of T' containing x and y, respectively, obtained from the deletion of
the edge xy. Clearly, each of 7" and T” has order at least three. By the induction
hypothesis, yar(T") < LH"LL](TIQHS(T” and yar(T") < LH"LZ(TIZ))HS(TN)J. Moreover,
since Jan(T) < Aar(T) +3an(1"), €(T) = ((T") + £(T") and 5(T) = s(T") + 5(T"), we
deduce that v4r(T) < L%&Hs(ﬂj. Hence we can assume that 7" no two vertices
of degree at least three are adjacent.

Let vivg...vx (kK > 5) be a diametral path in 7" such that deg(vy) is as large as
possible. Root T" at vy. If deg(vy) > 4, then let 7" = T — vy and f’ be a vr(T")-
function. By Observation 1.2, f'(ve) = 3 and so the function f’ can be extended to
a DRDF of T by assigning a 0 to v;. It follows from the induction hypothesis that

Yar(T) < var(T")
11(n— 1) — ((T) + 1 + 4s(T)

<| 10
_ L1171 — 6(713 +4s(T)

]

|.

Therefore, we will assume that deg(vy) € {2,3}. We consider the following cases.

Case 1. degp(vg) = 3.

By assumption, deg,(v3) = 2. Let 7" =T — T, and f" be a y4g(T")-function. The
function f defined on V(T') by f(vy) =3, f(z) =0 forall x € L(vy) and f(x) = f'(z)
for all x € V(T') — V(T,,) is a DRDF of T of weight w(f’) + 3. It follows from the
induction hypothesis and the fact ¢(T") = ¢(T) — 1 and s(7") < s(T') that

Yar(T) < var(T') + 3
11(n—3)—{T)+1+4s(T)
=1 10
1in —((T) + 4s(T)
<l 10 J.

|+3

Case 2. degp(va) = 2.

By the choice of diametral path, we may assume that all children of v3 with depth 1,
have degree 2. Assume first that degp(v3) = 2. Let 7" =T —T,,, and f’ is a y4r(T")-
function. If 7" has order 2, then T' = Pj, and clearly the result holds. Hence we
assume that |V(7")| > 3. Then the function f defined on V(T') by f(v2) =3, f(v1) =
f(vs) = 0 and f(x) = f'(x) for all z € V(T") is a DRDF of T of weight w(f’) + 3.
Using the induction hypothesis and the fact £(7") > ¢(T) — 1 and s(T") < s(T'), the
result follows. Now, let deg,(v3) = p > 3. We distinguish the following.

Subcase 2.1. v3 is a support vertex.
By assumption, deg;(vy) = 2. Assume first that T,, = DS}, 5. Let 7" =T — 1T,

and let [’ be a yar(T")-function. If |[V(T")| = 1, then vur(T) =7 < L%&Hs(ﬂj.

If [V(T")] = 2, then one can see that yur(T) < 8 < L%&Hs(ﬂj. Thus let
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|[V(T")| > 3. Then the function f defined on V(T') by f(v3) =3, f(v1) =2, f(z) =0
for x € N(v3) and f(z) = f'(x) for x € V(T") — {vs4} is a DRDF of T of weight
w(f") + 5. It follows from the induction hypothesis that

Yar(T) < var(T") +5
< IIn—p—2)—¢T)—p+1+4s(T) -4
< 10
_ L11n — 6(713 + 4S(T)J.

|+5

Suppose now that T, # DS ,_2, that is v3 has at least two children of depth 1.
Let 7" =T — {vy,v2} and f’ be a y4r(T")-function. Assume that uy # v, is a child
of v3 with depth 1 and w; is the leaf neighbor of uy. If f'(v3) = 0, then f'(z) = 2
for every x € L(vs) and f'(u1) + f'(u2) = 3. Then the function g defined on V (77)
by g(vs) = 3, g(u1) = 2, g(xz) =0 for x € L(vs) U {uz} and g(x) = f'(x) elsewhere
is a DRDF of T" with g(v3) = 3. Hence, we may assume that f’(v3) > 2 and
thus the function f defined on V(T') by f(vi) = 2, f(ve) = 0 and f(z) = f'(z) for
all v € V(1) is a DRDF of T of weight w(f’) + 2. It follows from the induction
hypothesis that

Yar(T) < Yar(T") + 2
11(n—2)—0T)+1+4s(T) -4
=1 10
_ L1171 - 6(713 + 4S(T)J-

] +2

Subcase 2.2. v3 is not a support vertex.

Hence T, is a healthy spider centered at vs. First let vs has at least three children.
Suppose that 7" =T — {vy, v} and f’ be a y4r(T")-function. We may assume that
f'(vs) > 2. Then the function f defined on V(T) by f(v1) = 2, f(v2) = 0 and
f(z) = f'(z) for x € V(T") is a DRDF of T of weight w(f’) + 2. It follows from the
induction hypothesis that

Yar(T) < Yar(T') + 2
11(n—2)—4T)+1+4s(T) — 4

<l 10
< L11n — 6(71“3 +4s(T)

|+2

|.

Now, let v3 have exactly two children. By assumption, deg;(vy) = 2. If degp(vs) > 3,
then let 7" =T — T, and f’ be a y4g(T")-function. Then the function f defined on
V(T) by f(vs) =3, f(z) =2forx € L(T,,), f(x) =0forx € N(vs) and f(x) = f'(z)
for x € V(T") is a DRDF of T of weight w(f’) + 7. It follows from the induction
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hypothesis that

Yar(T) < var(T') +7
11(n—6) —T)+2+4s(T) — 8
<l 10
< L11n — 6(712 + 4S(T)J.

Hence we assume that deg,(vs) = 2. If degp(z) < 2 for z € V(T') — {v3}, then let
T"=T-1T,. If |V(T")| < 2, then T is a tree obtained from a path Ps attached

by its center to a leaf of a path Ppijy (/). In this case, one can easily see that

var(T) < L%&Hs(ﬂj. Hence we assume that |V (7”)| > 3. Note that, {(T) =3

and then, since v4r(7Ty,) = 8, we have yr(T) < var(T’) + 8. It follows from the
induction hypothesis and the fact ¢(7") = ¢(T) — 1 and s(7") = s(T') — 1 that

|+7

Yar(T) < var(T') + 8
1In—=7)—UT)+1+4s(T) -4
=1 10
11n —4(T) + 4s(T)
=1 10 J

|+38

Now let t > 5 be the smallest integer such that deg(v;) = 2 and deg(v;11) > 3.
Suppose that 7" =T — T,,. Clearly, vir(T) < var(T") +t+ 3, ((T") = {(T) — 2 and
s(T") = s(T') — 2. It follows from the induction hypothesis that

Yar(T) < var(T') +t +3
H(n—t—2) - UT)+2+4s(T) -8

= 10
< L11n — 6(713 +4s(T)

|+t+3

I.

This completes the proof. 0

Beeler et al. in [5] proved that for every graph G, 74r(G) < 2vg(G). In the next
theorem, we improve this bound for trees.

Theorem 2.2. If T is a tree of order n > 3 with s(T') support vertices, then

Yar(T) < 29p(T) — |

This bound is sharp for cor(Psy) with k > 1.

Proof. The proof is by induction on n. The statement holds for all trees of order
n € {3,4}. Let n > 5 and assume that the result holds for all tree 7" of order n’
such that 3 < n’ < n. Let T be a tree of order n > 5. If diam(7") = 2, then T
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is a star, where yp(T) = 3 = 4 — [-5]. If diam(T") = 3, then T' = DS, , with
qg>p=>1 Ifp=1, then vr(T) =5 < 6 — [-%5]. Suppose that p > 2. Then
var(T) =6 < 8 — (ﬁ} Henceforth we may assume that diam(7) > 4.

Let v1vg ... v be a diametral path in 7" such that deg(vq) is as large as possible.
Root T at vy. If T has a support vertex v with L(v) > 3, then let 7" obtained from
T by removing a leaf v' belonging to L(v). Clearly, A(T) > A(T"), s(T") = s(T).
Moreover, it is easy to see that vgr(T") < vg(T) and v4r(T) < v4r(T"). By the
induction hypothesis on 7" we obtain that

s(1") s(T)

PYdR(T) < PYdR(T/> < QPYR(T/) - (A(T,)—I < Q’VR( ) - (A(T)—‘

Hence, every support vertex of 7" has at most two leaves, in particular deg;,(ve) €
{2,3}. Now, assume that deg,(vs) = 2, and let 7" =T — T,,. If |V(T")| = 2, then
Yar(T) =6 < 8— (ﬁ} Hence we assume that |V(7")| > 3. Clearly, A(T') > A(T"),
s(T) — 1 < s(T"). Moreover, it is easy to see that yr(T") < vg(T) — 2 and 4r(T) <
var(T") + 3. By the induction hypothesis on 7" we obtain

Yar(T) < var(T") + 3

< 29(T") - (Z(g,)ﬂ +3
< (1) - 4 - (U5 + 3
< 2elT) - [ 35

Hence, let deg,(v3) > 3, and consider the following two cases.

Case 1. degp(vg) = 3.

If v3 is a strong support vertex or vz has a child of depth 1 different from vs, then let
T"=T-T,,. Clearly, A(T) > A(T"), s(T") = s(T")—1. Moreover, it is easy to see that
Yr(T") < yr(T) — 2 and v4r(T) < v4r(T") + 3. Using the induction on 7", the result
follows. Suppose that vs is a support vertex and degp(v3) = 3. Let 7" =T — T,,. If
[V(T")| = 2, then vr(T) = 8, yr(T) = 5, A(T) = s(T) = 3 and thus the result is
valid. Hence we assume that |V(7")| > 3.Clearly, A(T) > A(T"), s(T) —2 < s(T").
Moreover, it is easy to see that yr(T") < vg(T) — 3 and v4r(T) < var(T’) + 5. By
the induction hypothesis on 7" we obtain that

Yar(T) < var(T") +5

< 2l = [ 3] +5
< 2(T) -6 - "2 45
< 2y5(T) - [ 20
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Case 2. degp(v9) = 2.

By the choice of diametral path, we may assume that all children of v3 with depth 1
have degree 2. In the sequel, let s; be the number of children of v, that are leaves
and let s>5 be the number of children of v, of degree at least 2 having no grandchild.
We distinguish the following subcases.

Subcase 2.1. v3 is not a support vertex.

Let 7" =T —T,,. If [V(T')] = 2, then T is a healthy spider, where v4r(T) =
2degy(v3) + 2, vr(T) = 2+ degp(vs), A(T) = s(T') = degp(v3) and thus the result
is valid. Hence let |V (7")| > 3. Clearly, A(T) > A(T"), s(T) — degp(vs) + 1 < s(T7).
If sy > 2 or ss9 > 1 or vy has a child of depth 2 different from v, then it is easy to
see that Yr(T") < Yr(T) — [C(vs)| — 2 and 4r(T) < Yar(T") + 2|C(vs)| + 2. By the
induction hypothesis on 7" we obtain

Yar(T) < var(T") +2|C(vs)| + 2

< 2l ~ [ 3] +2C() +2
< (1) = 20 (wn)] — 4 - T TEI R ol +2
< 2(T) = [3 51

Hence, let s; < 1,559 = 0 and say vy has no child of depth 2 different from v,.
If s; =1, then let 77 =T —T,,. If |[V(T")| = 1, then v4r(T) = 2degp(vs) + 3,
Yr(T) = degp(vs) + 3, A(T) = s(T') = degy(vs), and if |V (T")| = 2, then vr(T) =
2 degr(v5) + 5, 1r(T) = degr(vs) + 4, A(T) = degy(vy), s(T) = degr(vs) + 1.
In both cases, we have v4r(T) < vr(T) — (Z((?)] Hence let [V/(1")] = 3. Clearly,
A(T) > A(T"), s(T) — degyp(vs) < s(T"). Moreover, one can see that yr(T") <
Yr(T) —|C(v3)| =3 and Y4r(T') < var(T")+2|C(vs)|+4. By the induction hypothesis
on T" we obtain that

Yar(T) < var(T") + 2|C(vs)| 4 4

(T') — degy(vs)

< 294(T) — 2|C(v3)] = 6 — [° A(T)

14 2|C(vs)| + 4

< 29g(T) — [

Finally, assume that s; = 0, and let 77 =T — T,,. If |[V(T")| = 2, then v4r(T) =
2degy(v3) + 3, Yr(T) = degyp(vs) + 3, A(T) = s(T) = degyp(vs), and the result
holds. Hence let |V (T")| > 3. Clearly, A(T) > A(T"), s(T') — degp(vs) +1 < s(17).
Moreover, Yp(T") < yr(T) — |C(vs)| — 2 and y4r(T) < var(T') + 2|C(vs)| + 3. By
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the induction hypothesis on 7" we obtain
Yar(T) < var(T") +2|C(vs)| + 3

S 2’7R(T/> - (Z((j;,))

s(T) — degp(v3) + 1
A(T)

< 29R(T) = 2|C(vg)| —4 — [ 1 +2|C(vs)[ +3

s(T) ]
A(T) "

< 29g(T) — [

Subcase 2.2. v3 is a support vertex.

Let 7" =T-T,,, and t = |L(v3)| . Recall that we see that every support vertex has at
most two leaves, and thus ¢ € {1,2}. If |V(T")| = 2, then v4r(T) = 3+2(degy(vs)—1),
Yr(T) = 2 + (degy(vs) — t), A(T) = degy(vs), s(T) = degp(vs) — t and the result
holds. Hence let |V(T7)| > 3. Clearly, A(T) > A(T"), s(T') —degp(vs) +t+1 < s(17).
If sy > 2 or s> > 1 or vy has a child of depth 2 different from v, it is easy to see
that yr(T") < Yr(T) — |C(vs)| — 2+t and Yar(T) < 7ar(1") +2|C(v3)| + 3 — 2t. By
the induction hypothesis on 7" we obtain

'VdR(T) S /YdR(T,) + 2|C(U3)| —|— 3 — 2t

14 2|C(vs)| +3 — 2t

T)—degp(vs)+t+1
A(T)

< 29a(T) — 2/C(v)] — A2t 14210 (v3) | +3—21

s(T) ]
A(T) ™

< 29g(T) — [

Hence, let 51 < 1,59 = 0 and v4 has no a child of depth 2 different from vy, Assume
that sy =1, and let 7" =T — T,,,. If |V(T")] = 1, then v4r(T) = 2degy(vs) + 4 — 2t,
Yr(T) = degp(vs)+3—t, A(T) = degp(vs), s(T) = degp(vs)—t+1 and if |[V(T")| = 2,
then Yar(T) = 2degp(vs) + 6 — 2t, YR(T) = degp(vs) +4 — ¢, A(T) = degy(vs),
s(T) = degp(vs) + 2 — t. In either case, we have y4r(T) < vr(T) — (Z((TT))] Hence
let |V(T")] > 3. Clearly, A(T) > A(T"), s(T') — degp(vs) — 14+t < s(T"). Moreover,
Vr(T") < yr(T) — |C(vs)| = 3+t and Yar(T) < yar(T") + 2|C(vs)| 4 4 — 2t. By the
induction hypothesis on 7" we obtain

Yar(T) < Yar(T') +2|C(vs)| +4 — 2t
< 29g(T") - (%1 +2|C (vs)| +4 — 2t
s(T)—degy(vs)— 1+t

< 29R(T) = 2|C(vs)|—6+2t— A(T)

142|C(v3)|+4—2¢

s(T) ]
A(T) ™

< 29g(T) — [
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Finally, assume that s; = 0 and let 79 = T — T,,. If |V(T")| = 2, then v4r(T) =
4+ 2(dogy (v3) — 1), 7a(T) = 3+ (detgr (v5) — 1), A(T) = dogy(es), 5(T) = dogy(vs) —
t + 1 and the result holds. Hence let |[V(T")| > 3. Clearly, A(T) > A(T"), s(T) —
degp(vs) + 1 < s(T"). Moreover, va(T’) < a(T) — |C(us)| — 2 + ¢ and 2us(T) <
var(T") + 2|C(vs)| + 3 — 2t. By the induction hypothesis on 7" we obtain

Yar(T) < var(T") +2|C(vs)| + 3 — 2t

< 20e(T") = [ 3] + 240 (en) + 3 2
< 295(T) — 2|C(uy)| — 4+ 2t — L) _i‘z%?)(”?’) ) 200(g) + 3 - 2
< 2(T) - [ 35

Note that if T = cor(Ps) for with k& > 1, then we have A(T) = 3, s(T) = 3k,
var(T) = Tk and yg(T) = 4k. This completes the proof. O

3 Lower bound

Beeler et al. in [5] proved that for every graph G, v4r(G) > vr(G). In the next
theorem, we improve this bound for trees.

Theorem 3.1. If T is a tree of order n > 3 with {(T) leaves and s(T') support

vertices, then
an(T) 2 10(T) + [

This bound is sharp for double stars DS, , with ¢ > p > 4.

Proof. The proof is by induction on n. The statement holds for all trees of order
n € {3,4}. Let n > 5 and assume that the result holds for all tree 7" of order n’ such
that 3 < n' < n. Let T be a tree of order n > 5. If diam(7T") = 2, then T is a star,
where yar(T) = 3 = 24 [2=2]. If diam(T) = 3, then T = DS, ,, with ¢ > p > 1.

If p = 1, then y4r(T) = 5 > 3+ [25]. If p > 2, then 4r(T) = 6 > 4+ [3571,
and clearly the result is valid since (&‘T‘ﬂ < 2. Henceforth we may assume that

diam(7") > 4.

Let v1vy...v, be a diametral path in 7. Root T at vg. Let degy(vs) = 2 and
T"=T-1T,,. Clearly, |V(T") > 2. If |V(T")| = 2, then v4r(T) = 5,7&(T) =
4, AN(T) = UT) = degyp(va), s(T) = 2, and thus the result is valid. Hence we
assume that [V(T")| > 3. Then A(T) > A(T"), {(T) — |L(vy)| < U(T"), s(T") < s(T).
Moreover, it is easy to see that yr(T') < yr(T") 4+ 2 and y4r(T") < v4r(T) — 3. By
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the induction hypothesis on 7" we obtain

Yar(T) > var(T') + 3
> w(T") + [
(T) = |L(v)| = s(T)
A(T)

1+3

>yr(T) =2+ (ﬁ

Ur) - S(T)1
A(T)

1+3

> yr(T)+ [

Assume now that degp(v3) > 3. First, let v3 be a support vertex and either has two
children of depth 1 or vs is a strong support vertex. Let 7" = T — T,,. Clearly,
A(T) > A(T"), ¢(T") = UT) — |L(vg)|, s(T") = s(T) — 1. If degp(vy) > 3, then
Yr(T) < vr(T") + 2 and v4r(T") < v4r(T') — 3. By the induction hypothesis on 7"
we obtain that

Yar(T) > var(T') + 3
vaTU+(gZ%é%g31+3
UT) — |L(vg)| — s(T") + 1
A(T)

>r(T) =2+ 1+3

UT) = s(T)

If degp(v2) = 2, then yg(T) < vr(T")+2 and Y4r(T") < v4r(T)—2. By the induction
hypothesis on 7" we obtain

Yar(T) > var(T") + 2

ZWMTU+(gZ%é%QQW+2
ZvMT)—2+(aTy_Z&§T”+11+2

= (1) + [T

We can now suppose that v, is the unique child of v with depth 1 and |L(vs)| = 1. If
degp(ve2) > 3, then let 7" =T — T,,. Clearly, |V(T")| > 2. Assume that |V (T")| = 2.
Then v4r(T) =8, vr(T) =5, A(T) = degp(va), €(T) = degp(va) + 1, s(T') = 3, and
thus the result is valid. Hence we assume that |V/(7")] > 3. Then A(T) > A(T"),
UT) — |L(vg)| = 1 < (T") and s(T") < s(T') — 1. Moreover, it is easy to see that
Yr(T) < vr(T") + 3 and v4r(T") < v4r(T') — 4. By the induction hypothesis on 7"
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we obtain

Yar(T) = var(T") +4
> (") 4 [
(T) — |L(vy)| — 1 —s(T) + 1
A(T)

1+4

> n(T) — 34 [

Ur) - S(T)1
A(T)

1+4
> yr(T) + [

Suppose that deg,(vy) = 2. If degy(vs) > 3, then let 77 =T — T,,,. Then A(T') >
A(T"), L(T") = ¢(T) — 2 and s(T") = s(T) — 2. Moreover, it is easy to see that
Yr(T) < vr(T") 4+ 3 and var(T") < var(T") — 3. By the induction hypothesis on 7"
we obtain

Yar(T) > var(T") +3

«T") — 5(T")

“amn TP

UT) =2 — s(T") +2
A(T)

> yr(T") + [

> r(T) =3+ 143

If degp(vy) = 2, then let 77 =T — T,,. If |V(T")] < 2, we can see that yar(T) >
vr(T) + [%1 Hence we assume that |[V(T")| > 3. Then A(T) > A(T"),
0T)—2 < UT") and s(T") < s(T) — 1. Moreover, it is easy to see that vz(7T) <

Yr(T") + 3 and v4r(T") < var(T) — 5. By the induction hypothesis on 7" we obtain

Yar(T) > var(T") +5
(T - S(T")
A(T//)
UT)—2—-5s(T)+1
A(T)
UT) - S(T)W
AT)

Finally, assume that vs is not a support vertex, and let 7" = T — T,,. Clearly,
A(T) > A(T"), {(T") = ¢(T) — |L(ve)| and s(T") = s(T") — 1. On the other hand, if
degy(v2) > 3, then yr(T') < yr(T")+2 and y4r(T") < 7ar(T)—3, and if degp(v2) = 2,
then vr(T) < vr(T") + 2 and v4r(T") < var(T) — 2. Using the induction on 7" and
according to each situation, the result follows. This completes the proof. 0

> vr(T") + [ 1+5

>vr(T) =3+ 145

> yr(T) + [



S. NAZARI-MOGHADDAM ET AL./ AUSTRALAS. J. COMBIN. 77 (2) (2020), 256-268 268

References

1]

2]

H. Abdollahzadeh Ahangar, J. Amjadi, M. Atapour, M. Chellali and S. M. Sheik-
holeslami, Double Roman trees, Ars Combin. 145 (2019), 173-183.

H. Abdollahzadeh Ahangar, J. Amjadi, M. Chellali, S. Nazari-Moghaddam and
S. M. Sheikholeslami, Trees with double Roman domination number twice the

domination number plus two, Iran. J. Sci. Technol. Trans. A Sci. 43 (2019),
1081-1088.

H. Abdollahzadeh Ahangar, M. Chellali and S. M. Sheikholeslami, On the double
Roman domination in graphs, Discrete Appl. Math. 232 (2017), 1-7.

J. Amjadi, S. Nazari-Moghaddam, S. M. Sheikholeslami and L. Volkmann, An
upper bound on the double Roman domination number, J. Comb. Optim. 36
(2018), 81-89.

R. A. Beeler, T.W. Haynes and S.T. Hedetniemi, Double Roman domination,
Discrete Appl. Math. 211 (2016), 23-29.

E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemic and S.T. Hedetniemi,
Roman domination in graphs, Discrete Math. 278 (2004), 11-22.

R. Khoeilar, H. Karami, M. Chellali and S. M. Sheikholeslami, An improved
upper bound on the double Roman domination number of graphs with minimum
degree at least two, Discrete Appl. Math. 270 (2019), 159-167.

C.S. Revelle and K.E. Rosing, Defendens imperium romanum: a classical
problem in military strategy, Amer. Math. Monthly. 107 (7) (2000), 585-594.

[. Stewart, Defend the Roman Empire, Sci. Amer. 281 (6) (1999), 136-139.

X. Zhang, Z. Li, H. Jiang and Z. Shao, Double Roman domination in trees,
Inform. Process. Lett. 134 (2018), 31-34.

(Received 1 Jan 2020; revised 11 May 2020)



