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Abstract

Let G be a graph, and let o03(G) be the minimum degree sum of three
independent vertices of G. We prove that if G is a graph of order at least
8k +5 and 03(G) > 9k — 2 with k£ > 1, then G contains k vertex-disjoint
chorded cycles. We also show that the degree sum condition on o3(G) is
sharp.

1 Introduction

The study of cycles in graphs is a rich and important area. One question of particular
interest is to find conditions that guarantee the existence of k vertex-disjoint cycles.
In 1963, Corradi and Hajnal [3] proved that if |G| > 3k and the minimum degree
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0(G) > 2k, then G contains k vertex-disjoint cycles. For an integer ¢ > 1, let

0¢(G) = min {Z dg(v) | X is an independent vertex set of G with | X| = t} ,

veX

and 0,(G) = oo when the independence number «(G) < ¢t. Enomoto [4] and Wang
[11] independently extended the Corradi and Hajnal result showing that, if |G| > 3k
and 05(G) > 4k — 1, then G contains k vertex-disjoint cycles. Fujita et al. [6] proved
that if |G| > 3k + 2 and 03(G) > 6k — 2, then G contains k vertex-disjoint cycles,
and in [9], this result was extended to o4(G) > 8k — 3.

A chord of a cycle is an edge between two non-adjacent vertices of the cycle, and
a chorded cycle is a cycle with at least one chord. In 2008, Finkel improved Corradi
and Hajnal’s result for chorded cycles.

Theorem 1.1. (Finkel [5]) Let k > 1 be an integer. If G is a graph of order at least
4k and §(G) > 3k, then G contains k vertex-disjoint chorded cycles.

In 2010, Chiba et al. proved Theorem 1.2 which is a stronger result than Theo-
rem 1.1, since 03(G) > 26(G).

Theorem 1.2. (Chiba, Fujita, Gao, Li [1]) Let k > 1 be an integer. If G is a graph
of order at least 4k and 02(G) > 6k — 1, then G contains k vertez-disjoint chorded
cycles.

In this paper, we consider a similar extension for chorded cycles, as Fujita et al.
[6] proved the existence of k vertex-disjoint cycles under the condition o3(G). In
particular, we first show the following.

Theorem 1.3. If G is a graph of order at least 7 and 03(G) > 7, then G contains a
chorded cycle.

Remark 1. We define the following graphs: G = Ky U Ky, Gy = Ky U K3, and
G3 = K3 U K3, where H; U Hy denotes the union of two disjoint graphs H; and H,.
Then for each 1 < i < 3, G satisfies the o3(G) condition of Theorem 1.3, since the
independence number a(G;) = 2. However, G; for each 1 < i < 3 does not contain
a chorded cycle. Thus |G| > 7 is necessary.

Our main result is the following theorem.

Theorem 1.4. Let k > 1 be an integer. If G is a graph of order at least 8k +5 and
03(G) > 9k — 2, then G contains k vertex-disjoint chorded cycles.

Remark 2. Theorem 1.4 is sharp with respect to the degree sum condition. Consider
the complete bipartite graph G = Ksg_1 ,—3k+1, where large n = |G|. Then o3(G) =
3(3k — 1) = 9k — 3. However, G does not contain k vertex-disjoint chorded cycles,
since any chorded cycle must contain at least 3 vertices from each partite set. Thus
03(G) > 9k — 2 is necessary. Also, since 03(G) > 303(G)/2, when the order of G is
sufficiently large, Theorem 1.4 is a stronger result than Theorem 1.2.
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For other related results on vertex-disjoint chorded cycles in graphs and bipartite
graphs, we refer the reader to see [2, 7, 10].

In this paper, all graphs are simple. Let G be a graph, H a subgraph of G and
X C V(G). For u € V(G), the set of neighbors of u in G is denoted by Ng(u), and
we denote dg(u) = |Ng(u)|. For u € V(G), we denote Ny (u) = Ng(u) N'V(H) and
di(u) = |[Ng(u)|. Also we denote dg(X) = > oy du(u). If H =G, then dg(X) =
dp(X). The subgraph of G induced by X is denoted by (X). Let G—X = (V(G)—X)
and G — H = (V(G) = V(H)). If X = {x}, then we write G — z for G — X. If there
is no fear of confusion, then we use the same symbol for a graph and its vertex set.
For a graph G, comp(G) is the number of components of G. If G is one vertex, that
is, V(G) = {«}, then we simply write = instead of G. For an integer » > 1 and two
vertex-disjoint subgraphs A, B of G, we denote by (dy,ds, ..., d,) a degree sequence
from A to B such that dg(v;) > d; and v; € V(A) for each 1 < ¢ <r. In this paper,
since it is sufficient to consider the case of equality in the above inequality, when we
write (dy,ds,...,d,.), we assume dg(v;) = d; for each 1 < ¢ < r. For two disjoint
X,Y CV(G), E(X,Y) denotes the set of edges of G connecting a vertex in X and
a vertex in Y. Let @) be a path or a cycle with a given orientation and = € V(Q).
Then 2t denotes the first successor of x on ) and x~ denotes the first predecessor of
zon Q. If x;y € V(Q), then Qlz,y] denotes the path of @ from x to y (including z
and y) in the given direction. The reverse sequence of Q[z,y| is denoted by Q~ [y, z].
We also write Q(xay] = Q[x+,y], Q[x,y) = Q[x,y_] and Q(x,y) = Q[x+,y_]. It Q
is a path (or a cycle), say QQ = x1, 2, ..., 2:(, 1), then we assume an orientation of
@ is given from x; to z;. If P is a path connecting z and y of V(G), then we denote
the path P as Plz,y]. A cycle of length ¢ is called a ¢-cycle. For terminology and
notation not defined here, see [§].

2 Preliminaries

Definition 2.1. Suppose C1,...,C, are r vertex-disjoint chorded cycles in a graph
G. We say {C1,...,C,} is minimal if G does not contain r vertex-disjoint chorded
cycles C1, ..., C! such that |UI_,V(C!)| < |U_,V(C))|.

Definition 2.2. Let C = vy,...,v;,v; be a cycle with chord v;v;, ¢ < j. We say a
chord vv’ # v;v; is parallel to vyv; if either v,v" € Clv;,v,] or v,v" € Clv;,v;]. Note
if two distinct chords share an endpoint, then they are parallel. We say two distinct
chords are crossing if they are not parallel.

Definition 2.3. Let w;v; and w,v,, be two distinct edges between two vertex-disjoint
paths P, = uy,...,us and P» = vy, ..., v.. We say w;v; and wev,, are parallel if either
1 </land j <m,or ¢ <iandm < j. Note if two distinct edges between P; and
P; share an endpoint, then they are parallel. We say two distinct edges between two
vertex-disjoint paths are crossing if they are not parallel.

Definition 2.4. Let v;v; and vv,, be two distinct edges between vertices of a path
P =wvy,...,v, with j > i+ 2 and m > £+ 2. We say v;v; and vpv,, are nested if
either i <l <m<jorl <i<j<m.
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Definition 2.5. Let P = vy,...,v; be a path. We say a vertex v; on P has a left
edge if there exists an edge v;v; for some j <7 — 1. We also say v; has a right edge
if there exists an edge v;v; for some j > ¢ + 1.

3 Lemmas

Lemma 3.1. Let r > 1 be an integer, and let € = {C,...,C.} be a minimal set
of r vertex-disjoint chorded cycles in a graph G. For any 1 <1 <r, C; cannot have
two or more parallel chords.

Proof. This follows easily from the minimality of €. O

Lemma 3.2. Let r > 1 be an integer, and let € = {C1,...,C.} be a minimal set of
r vertez-disjoint chorded cycles in a graph G. If |C;| > 7 for some 1 < i <r, then C;
has at most two chords. Furthermore, if C; has two chords, then these chords must
be crossing.

Proof. Let |C;| > 7 for some 1 < i < r. Suppose C; contains at least three chords.
By Lemma 3.1, no two of them can be parallel. Thus they are all mutually crossing.
Label the endpoints of these three chords vy, vs, ..., vg in that order on C;. Since the
chords are mutually crossing, the three chords are given by vyvy, vovs, v3v4. These six
endpoints partition C; into six intervals C;[v;,v41),1 < j < 6, where v; = v;. Since
|C;] > 7, some interval contains at least one vertex of C; which is not an endpoint
of the three chords. Without loss of generality, we may assume C;[vq,vy) contains
some vertex of C; other than v;. Then Cjvy, vy, v1, C; [v1,v5], v2 is a shorter cycle
with chord vsvg. Thus C; has at most two chords. If the C; has two chords, then
these chords must be crossing by Lemma 3.1. U

Lemma 3.3. Let r > 1 be an integer, and let € = {C1,...,C.} be a minimal set of
r vertez-disjoint chorded cycles in a graph G. Then de,(x) < 4 for any 1 < i <r
and any x € V(G) — U_,V(C;). Furthermore, for some C € € and some x €

V(G) = U_\V(Cy), if do(x) =4, then |C| =4, and if de(x) = 3, then |C| < 6.

Proof. Suppose d¢(z) > 5 for some C' € € and some z € V(G) — U_,V(C;). Let
v; € Ne(z) with 1 < j < 5, and let vy,vs,...,v5 be in that order on C. Then
x,Clvy,v3], x is a shorter cycle with chord zvy, contradicting the minimality of €.
Thus de,(x) <4 for any 1 < ¢ <r and any x € V(G) — U_, V().

Next suppose do(z) = 4 for some C € € and some x € V(G) — U_,V(C;).
Let v; € Neo(z) with 1 < i < 4, and let vy, vy, v3,v4 be in that order on C. Let
X = {v1,v9,v3,v4}. These neighbors define four intervals Clv;, v;11),1 < @ < 4,
where v5 = v1. Assume |C| > 5. Then a vertex of C'— X lies in one of the intervals.
Without loss of generality, we may assume there exists a vertex of C'— X in Clvy, vg).

Then x, Clvg, v4], x is a shorter cycle with chord xvs, contradicting the minimality of
¢. Thus |C] = 4.
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Finally, suppose d¢(x) = 3 for some C' € € and some z € V(G) — U_, V().
Let v; € Ne(x) with 1 < ¢ < 3, and let vy, vy, v3 be in that order on C. Let
X = {v1,v9,v3}. These neighbors define three intervals Clu;, v;41),1 < i < 3,
where vy = vy. If |C| > 7, then some interval contains at least two vertices of
C' — X. Without loss of generality, we may assume Cf[vy, v9) contains them. Then
x,Clvg, v1], x is a shorter cycle with chord zvs, contradicting the minimality of €.
Thus |C] < 6. O

Lemma 3.4. Suppose there exist at least five edges connecting two vertex-disjoint
paths Py and P,. Then there exist at least three mutually parallel edges or at least
three mutually crossing edges.

Proof. Let z;y; € E(Py, Py) for each 1 < ¢ < 5. Without loss of generality, let
x1,To,...,Ts appear in that order on P;. Also we may assume that y;,ys; are in
that order on P,, otherwise, we consider the reverse orientation of P. Let P, =
Uy, Usg, ..., us (§ > 1). If s =1, then all the edges connecting P, and P, are mutually
parallel. Thus we may assume that s > 2. Now we claim that y; # u;. Suppose
not. Then there exist at least two parallel edges in {z;y; |2 < i < 5}, otherwise,
the lemma holds. Let z;,v;,, %y, for 2 < 43 < 45 < 5 be the parallel edges.
Then z1y1, x4,Yiy, Ti,Yi, are three mutually parallel edges. Thus the claim holds.
By symmetry, ys # us. If y; € Pylyy,ys] for some 2 < i < 4, then x1y1, x:y:, T5Ys
are three mutually parallel edges. Thus y; & Ps|y;,ys] for each 2 < ¢ < 4. Then
[ Polus, y1) N {y2, ys, yat] > 2 or [Py(ys, us] N {y2, ys, ya}| > 2. By symmetry, we may
assume that |Peu1,y1) N {y2, ys, ya}| > 2. Let 41,15 be integers such that 2 < iy <
ia < 4 and vy, yi, € Polur,y1). If vy, yi, are in that order on Py, then x;, i, i, Yi,
are parallel edges, and z;,y;,, x;,¥i,, T5y5 are three mutually parallel edges. On the
other hand, if y,,,y;, are in that order on P, then xz;,v;,,;,y;, are crossing edges,
and x1y1, T4, Vi, , Ti, Vi, are three mutually crossing edges. Thus the lemma holds. [

Lemma 3.5. Suppose there exist at least three mutually parallel edges or at least
three mutually crossing edges connecting two vertex-disjoint paths Py and Py. Then
there exists a chorded cycle in (P, U Py).

Proof. 1f there exist at least three mutually crossing edges connecting the paths
P, and P, then we consider the reverse orientation of P,. Then the edges are all
mutually parallel. Thus we have only to consider the case where all the edges are
mutually parallel. Now let x1y1, x2ys, x3y3 be the edges. Without loss of generality,
let x1,x9, x5 appear in that order on P;. Note that the endpoints vy, y2, y3 appear in
that order on Py. Then Pi|xy, 23], y3, Py [ys, y1], 1 is a cycle with chord zays. O

Lemma 3.6. Suppose there exist at least five edges connecting two vertex-disjoint
paths Py and Py with |Py U Py| > 7. Then there exists a chorded cycle in (P U P)
not containing at least one vertex of (P, U Py).

Proof. By Lemma 3.4, there must be at least three mutually parallel edges or at
least three mutually crossing edges. Then by Lemma 3.5, there exists a chorded
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cycle C'in (PLU Py). If V(C) # V(P1 U B,), then the lemma holds. Thus suppose
V(C) =V(P,UP,). Let C’" be a cycle obtained from C' by removing all chords. Since
|[E((PLU P,)) — E(C")| > 3, C has at least three chords. By |C| = |PLU Py > 7,
a shorter chorded cycle exists in (P U P) as in the proof of Lemma 3.2. Thus the
lemma holds. 0

Lemma 3.7. Let Py, Py be two vertex-disjoint paths, and let uy,us (u3 # uz) be in
that order on Py. Suppose dp,(u;) > 2 for each i € {1,2}. Then there exists a
chorded cycle in (Py[uy, us) U Py).

Proof. Let P, = vy,..., v, and let v;,v; € Np,(u;) with @ < j. If up has a neigh-
bor that lies in Ps[vy,v;] or Pylvj, ve], then we can easily form a chorded cycle in
(Py[uy, ug] U Py). Thus both of us’s neighbors in P, must lie in Py (v;, v;), call them
Ve, v with € < 0. Then Pyluy, us, ve, Py [vp,v;],u; is a cycle with chord uqvy. O

Lemma 3.8. Let H be a connected graph of order at least 4. Suppose H contains
neither a chorded cycle nor a Hamiltonian path. Let P, = uy,...,us (s > 3) be a
longest path in H, and let Py = vy, ..., v, (t > 1) be a longest path in H — P;. Then
the following statements hold.

(i) Ng—p, (u;) =0 for each i € {1, s}.

(ii) dy(w;) = dp,(u;) <2 for each i € {1, s}.

(iii) Ng—(pupy)(v;) =0 for each j € {1,t}.

(iv) dp,(v;) <2 for each j € {1,t}.

(v) uru, ¢ E(H).

(Vi) If dg(v1) < dg(vy), then dg({us,us,v1}) <6

Proof. Since P, is a longest path, clearly, (i) holds. By (i), dg(u;) = dp, (u;) for each
i € {1,s}. Since H does not contain a chorded cycle, dp, (u;) < 2 for each i € {1, s}.
Thus (ii) holds. Since P; is a longest path in H — P, clearly, (iii) holds. Also, since
H does not contain a chorded cycle, (iv) holds. Furthermore, since H is connected
and P, is a longest path in H, ujus ¢ E(H). Thus (v) holds.

Finally, we prove (vi). Let X = {uj,us,v1}. By (ii), dg(u;) < 2 for each
i€ {l,s}. If dy(v1) < 2, then dy(X) < 6, and (vi) holds. Thus we may assume
dy(vy) > 3. Then dy(v;) > 3 by the assumption. If t = 1, then dp (v1) > 3. Thus
there exists a chorded cycle in (v;UP;), a contradiction. If ¢t = 2, then dp, (v1) > 2 and
dp,(ve) > 2 by (iii), and so by Lemma 3.7, there exists a chorded cycle in (P, U P,),
a contradiction. Thus we may assume ¢t > 3. By Lemma 3.7, dp,(v;) < 1 for some
j € {1,t}. Suppose j = 1, that is, dp,(v1) < 1. By (iii) and (iv), dp,(v1) = 2.
Since Np, (v) # O for each £ € {1,t} by (iii) and (iv), there exists a cycle with chord
adjacent to vy in (P; U P,), a contradiction. If j = ¢, that is, dp (v;) < 1, then we
get a contradiction as in the case where j = 1. Thus (vi) holds. O

Lemma 3.9. Let H be a graph containing a path P. If there exist nested edges
between vertices of P, then H contains a chorded cycle.

Proof. Let wvy,v9,v3,v4 be in that order on P. Suppose vivy and vyvs are nested
edges. Then Plvy, vy, v; is a cycle with chord vyvs. O
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Lemma 3.10. Let H be a graph containing a path P = vy, vy, ..., v, (t > 4). For
any 2 <1 <t—2, if v; has a right edge and v;11 has a left edge, then H contains a
chorded cycle.

Proof. Let viv; € E(H) with i +2 < j <t and viqv, € E(H) with 1 < ¢ <¢—1.
Then Plvg, vi], v, P~[v;, vit1], ve is a cycle with chord v;v;41. O

Lemma 3.11. Let H be a graph containing a path P = vy, ..., v (t > 3), and not
containing a chorded cycle. If viv; € E(H) for some i > 3, then dp(v;) < 3 for any
j <i—1 and in particular, dp(v;_1) = 2. And if vov; € E(H) for some 1 <t — 2,
then dp(v;) <3 for any j > i+ 1 and in particular, dp(viy1) = 2.

Proof. Suppose viv; € E(H) for some i > 3. No vertex v; with j <4 — 1 has a left
edge, otherwise the edge nests with vyv;, and by Lemma 3.9, H contains a chorded
cycle, a contradiction. Also, no vertex v; with j <4 —1 has two or more right edges,
otherwise the edges nest, and again H contains a chorded cycle, a contradiction. Thus
dp(vj) <3 for any j <i— 1. Furthermore, v;_; cannot have a right edge by Lemma
3.10. Thus dp(v;—1) = 2. By symmetry, the same proof shows that if v,v; € E(H)
for some ¢ <t — 2, then dp(v;) < 3 for any j > ¢+ 1 and dp(vi41) = 2. O

Lemma 3.12. Let H be a graph containing a path P = vy, ..., v (t > 6), and not
containing a chorded cycle. If dp(vy) = 1, then dp(v;) =2 for some 3 < i <5, orif
vivg € E(H), then dp(v;) = 2 for some 4 < i <6.

Proof. Suppose either dp(vy) =1 or vivg € E(H). If dp(vy) = 1, then we let i = 3,
and if vjvg € E(H), then we let ¢ = 4. Vertex v; cannot have a left edge, otherwise
in the first case, we have dp(v;) = 2, and in the second case, we get a chorded cycle
by Lemmas 3.9 and 3.10. Thus we have a contradiction in either case. If dp(v;) = 2,
then the lemma holds. Thus suppose dp(v;) > 3. Then v; must have a right edge, say
vv; with j > i+ 2. If j =4+ 2, then dp(v;11) = 2, otherwise we get a contradiction
by Lemma 3.10. Thus 7 > ¢+ 2. By Lemma 3.10, v;y; cannot have a left edge. If
dp(viy1) = 2, then the lemma holds. Thus dp(v;11) > 3, and v;;; has a right edge,
say v;11vp for some ¢ > i+ 3. If £ < j, then we have nested edges and a chorded
cycle by Lemma 3.9, a contradiction. Thus ¢ > j. By the same arguments as for
Vi1, either dp(v;2) = 2, or v; 19 has a right edge v; vy for some ¢/ > £. In the later
case, Pv;, viyo], ver, P~ [vp,vj],v; is a cycle with chord v;4qvp, a contradiction. Thus
dp(vit2) = 2, and the lemma holds. O

Lemma 3.13. Let H be a graph containing a path P = vy,...,v; (t > 6), and not
containing a chorded cycle. If dp(vy) = 1, then dp(v;) = 2 for somet—4 < i <t—2,
or if vw_o € E(H), then dp(v;) =2 for somet —5 <1 <t—3.

Proof. The lemma follows from the proof of Lemma 3.12 by symmetry. O

Lemma 3.14. Let H be a graph of order at least 13. Suppose H does not contain
a chorded cycle. If H contains a Hamiltonian path, then there exists an independent
set X of four vertices in H such that dg(X) < 8.
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Remark 3. We consider the following graph H of order 12. (See Fig.1.) Then H
satisfies all the conditions except for the order in Lemma 3.14. However, H does not
contain an independent set X of four vertices such that dy(X) < 8. Thus |H| > 13
is necessary.

LN LT DN LN

Fig. 1. The graph H of order 12. The white
vertex (o) shows degree 2, and the black ver-
tex (o) shows degree 3.

Proof. Let P =wvy,...,v (t > 13) be a Hamiltonian path in H. If v;v, € E(H), then
dy(v) = 2 for any v € V(H), otherwise, a chorded cycle exists in H, a contradiction.
Then X = {vy,vs,vs,v7} is an independent set of four vertices such that dy(X) = 8.
Thus we may now assume v1v; € E(H). Since P is a Hamiltonian path in H, note

dp(v) = dy(v) for any v € V(P). Also, dy(v1) < 2 and dg(v;) < 2 by Lemma 3.9.

Case 1. Suppose dg(v1) =1 and dg(v;) = 1.

By Lemmas 3.12 and 3.13, dy(v;) = 2 for some 3 <4 < 5 and dy(v;) = 2 for
some t —4 < j <t—2. Since t > 13, vv; € E(H). Thus X = {vy,v;,v;,v:} is the
desired set.

Case 2. Suppose dy(v1) =1 and dg(v) = 2, or dg(v1) = 2 and dy(vy) = 1.

In this case, we may assume dgy(v;) = 1 and dy(v;) = 2, otherwise, we consider
the reverse orientation of P. Let vv; € E(H) for some 2 < j <t — 2. Suppose
2 <j<t—5. Since dy(v;) = 2, vjyve & E(H) and vjy3v, ¢ E(H). By Lemma
3.11, dy(vj41) = 2 and dy(vjy3) < 3. Then X = {v1,v;41,v,43, v} is the desired
set. Thust —4 < j <t —2. By Lemma 3.12, dy(v;) = 2 for some 3 < i < 5. If
j € {t —4,t — 3}, then v;4; is still non-adjacent to v; and dy(v;4+1) = 2 by Lemma
3.11. Since t > 13, vvj41 € E(H). Then X = {v1,v;,vj41,v:} is the desired set.
Thus j =t —2. By Lemma 3.13, dy(v) = 2 for some t —5 < ¢ < t—3. Since t > 13,
vivg € E(H). Then X = {vy,v;,vp, v} is the desired set.

Case 3. Suppose dy(v1) = 2 and dg(v;) = 2.

Suppose vivg € E(H) or vv,_9 € E(H). Then we may assume v,v3 € E(H),
otherwise, we consider the reverse orientation of P. By Lemma 3.12, dg(v;) = 2 for
some 4 < i < 6. If 9 € E(H), then dy(v;) = 2 for some t —5 < j <t —3
by Lemma 3.13. As before, since ¢ > 13, v;v; ¢ E(H). Then X = {vy, v;,v;, v} is
the desired set. Thus vv,_o & E(H). Then vy € E(H) for some s <t — 3. By
Lemma 3.11, dy(vsy1) = 2. Note s > 3 since vivg € E(H). If vgyq & {vi1,vi, 041},
then X = {vy,v;,v541,0:} is the desired set. Thus vsy1 € {vi_1,v;,vi41}. This
implies that vy, € {v;_2,v;_1,v;}. Note vy # v; since vv, € E(H) and dy(v;) = 2.
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Thus vy € {v;_2,v;_1}. Since v; € {v4,v5,v6} and s > 3, vy € {vs3,vy,v5}. If
dy(v) = 2 for some v € {vgi4,Vs45}, then X = {vy,v;,v,0;:} is the desired set.
Thus dy(v) > 3 for each v € {vs14,vs:5}. Furthermore, neither v, 4 nor v, 5 has a
right edge, otherwise, this edge nests with vsv;, and H contains a chorded cycle by
Lemma 3.9, a contradiction. Thus both v, 4 and v, 5 have left edges. It follows that
Vs140Up, V150 € E(H), and then ¢ < ¢/ < s, otherwise, we have nested edges and a
chorded cycle by Lemma 3.9, a contradiction. Then Plvg, v, vy, P~ [vg, Usyal, vg 1S a
cycle with chord vpvsy5, a contradiction.

Suppose vivz & E(H) and v, ¢ E(H). Then viv; € E(H) for some 4 <
i <t—1and vw; € E(H) for some 2 < j <t —3. Note i # j+ 1, otherwise, H
contains a cycle with chord v;v;41, a contradiction. By Lemma 3.11, dy(v;—1) = 2
and dy(vjy1) = 2. If i & {j + 2,7+ 3}, then X = {vy,v;_1,vj11, v} is the desired
set. Thus i € {j + 2,7 + 3}. Now we claim that dy (v, ) = 2 for some ¢; € {3,4}. If
J € {2,3}, then dy(vj41) = 2 by Lemma 3.11. Suppose 4 < j <t —3. If dy(vs) > 3,
then vgvy € E(H) for some ¢’ > i by Lemma 3.9. Then Plvy, v;], vy, P~ [vy, vy], 01 is a
cycle with chord v3v;, a contradiction. Thus dgy(vs) = 2. In all cases, the claim holds.
By symmetry, dg(ve,) = 2 for some lo € {t — 3,¢t — 2}. Then X = {v1,v¢,,v¢,, v4} is
the desired set. Thus Lemma 3.14 holds. 0

Lemma 3.15. Let k > 2 be an integer, and let G be a graph. Suppose G does not
contain k vertez-disjoint chorded cycles. Let {C1,...,Cx_1} be a minimal set of k—1
vertea-disjoint chorded cycles in G, H = G —%, where € = U'=}C;, and X C V(H)
with | X| = 4. Suppose H contains a Hamiltonian path. Then de,(X) < 12 for each
1<i<k—-1.

Proof. Suppose not, then de,(X)>13 forsome 1 < i < k—1. Let X ={x1, xq, x3, 4 }.
By Lemma 3.3, d¢,(x;) < 4 for each 1 < j < 4. Now we consider degree sequences
defined in Section 1 (Introduction) from four vertices of X to C;. Recall that when
we write (dy,ds,ds, dy), we assume dg,(z;) = d; for each 1 < j < 4, since it is
sufficient to consider the case of equality. Without loss of generality, we may assume
de,(z1) > de,(z2) > de,(z3) > de,(z4). Then the possible degree sequences from
X to C; are (4,4,4,1), (4,4,3,2) or (4,3,3,3). Since d¢,(x1) = 4, |C;] = 4 by
Lemma 3.3. Let C; = vy, v9,v3,v4,v;. We show the existence of two vertex-disjoint
chorded cycles in (H U C;), and then G contains k vertex-disjoint chorded cycles,
a contradiction. Now we consider the following three cases based on the degree
sequences.

Case 1. The sequence is (4,4,4,1).

Then d¢,(x;) = 4 for each 1 < j < 3 and d¢,(x4) = 1. Without loss of generality,
we may assume x4v; € E(G). Since H is connected, there exists a path from x,
to some other x € X not containing X — {x4,z}. Without loss of generality, we
may assume there exists a path P in H connecting z4 and z3. Since dg,(x3) = 4,
v1,v3 € Ng,(x3). Then x4, vy, v, x3, Plxs, x4] is a cycle with chord xzv;. For each
J € {1,2}, since d¢,(z;) = 4, vs,v4 € Ng,(x;). Then xy,vs, 29, v4, 21 is the other
cycle with chord vzvy. Thus we have two vertex-disjoint chorded cycles in (H U C;),
a contradiction.
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Case 2. The sequence is (4,4, 3,2).

Then d¢,(z1) = de,(x2) =4, deo,(x3) = 3, and d¢,(x4) = 2. Since H is connected,
there exists a path P from x4 to some other z € X not containing X — {xy, z}.

First suppose x = z3, that is, the path P connects x4 and x3. Since d¢,(z3) = 3,
without loss of generality, we may assume v; € N, (z3) for each 1 < j < 3. Assume
v1 € Ng,(z4). Then Plxs,z4],v1,v9, 23 is a cycle with chord z3v;. For each j €
{1,2}, since d¢,(z;) = 4, vs,vs € Ng,(x;). Then z1,v3, 29, v4, 21 is the other cycle
with chord vzvy. Thus we have two vertex-disjoint chorded cycles in (H U C}), a
contradiction. Hence vy € N¢,(z4). Similarly, vs € Ng¢,(x4) by symmetry. Since
de,(z4) = 2, v9 € Ng,(x4). Then Plxs, x4], v9,v1, x5 is a cycle with chord xzzve. Since
v3, vy € Ne¢,(z;) for each j € {1,2}, x1,vs, 29,04, 21 is the other cycle with chord
v3v4. Thus we have two vertex-disjoint chorded cycles in (H U C;), a contradiction.

Next suppose x = x1 (or zy), that is, the path P connects z; and z; (or z3).
Without loss of generality, we may assume P connects x4 and . Since d¢,(x3) = 3,
without loss of generality, we may assume v; € N, (z3) for each 1 < j < 3. Assume
vy € Ng,(z4). Since de,(x1) = 4, v1,v4 € Ng,(21). Then Plxy, x4, v1,v4, 21 1S a
cycle with chord zyv1. Since de,(x9) = 4, vo,v3 € Ng,(z2). Then xo, vq, 3, v3, 9 is
the other cycle with chord vyvs. Thus we have two vertex-disjoint chorded cycles in
(HUC;), a contradiction. Hence vy € N¢,(z4). Similarly, v & N¢,(z4) by symmetry.
Since d¢,(z4) = 2, v4 € Ng,(z4), and since de,(x1) = 4, vs,v4 € Ng,(z1). Then
Pz, x4],v4,v3, 21 is a cycle with chord zjvs. Since de,(x2) = 4, vi, vy € Ng,(22).
Then z9, vy, x3, V9, T2 is the other cycle with chord v;vs. Thus we have two vertex-
disjoint chorded cycles in (H U C;), a contradiction.

Case 3. The sequence is (4, 3,3, 3).

Then d¢,(x1) = 4 and d¢,(x;) = 3 for each 2 < j < 4. Since H contains a
Hamiltonian path by the assumption, we let P be the Hamiltonian path. We may
assume the order of x1, x4, x3, x4 on P is either x1, x5, x3, x4 Or X9, T1, T3, T4, Otherwise
we consider the reverse orientation of P. Since d¢,(z4) = 3, the vertex x4 is adjacent
to at least two consecutive vertices on C;. Without loss of generality, we may assume
v1,v3 € Ng,(x4). Since de,(z3) = 3, without loss of generality, we may assume
v1 € Ng,(x3). Then Plxs, 4], v2,v1, x5 is a cycle with chord x4v;.

Next we prove that if 1,y (resp. xq, 1) are in that order on P, then there ex-
ists the other chorded cycle in (P[xy,z2] U {vs,v4}) (resp. (Plxo, z1] U {vs,v4})).
Suppose that x1,z, are in that order on P. (If x5,z are in that order on P,
then we consider the reverse orientation of P[z,z1].) Since dg¢,(z1) = 4, vs,v4 €
Ne¢,(x1), and since d¢,(z2) = 3, vy € Ng,(x2) for some ¢ € {3,4}. If v3 € N¢,(z2),
then P[xq,xs],vs, vy, 21 is the other cycle with chord zjvs. If vy € Ng,(z3), then
Pz, x5],v4,v3, 1 is the other cycle with chord zjv4. Thus we have two vertex-
disjoint chorded cycles in (H U C;), a contradiction. O
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4 Proof of Theorem 1.3

Suppose G does not contain a chorded cycle.

Claim 4.1. G is connected.

Proof. Suppose not, then comp(G) > 2. Let Gy, Gy, . . ., Geomp(e) be the components
of G. First suppose comp(G) > 3. By Theorem 1.1, there exists x; € V(G;) for
each 1 <4 < 3 such that dg,(x;) < 2. Then X = {1, 29, 23} is an independent set
and dg(X) < 6. This contradicts the 03(G) condition. Next suppose comp(G) = 2.
Without loss of generality, we may assume |G| > |Ga|. Since |G| > 7, |G| > 4.
If G; is complete, then GG contains a chorded cycle. Thus G is not complete. By
Theorem 1.2, there exist non-adjacent zg, 21 € V(Gy) such that dg, ({zo,21}) < 4.
On the other hand, by Theorem 1.1, there exists x5 € V(G2) such that dg,(z2) < 2.
Then X = {x,x1,22} is an independent set and dg(X) < 6. This contradicts the
03(G) condition. Thus Claim 4.1 holds. O

Let P = uy,...,us be a longest path in G. Note s > 3 since |G| > 7 and G is
connected by Claim 4.1.

Claim 4.2. G contains a Hamiltonian path.

Proof. Suppose not, then P; is not a Hamiltonian path in G. Thus V(G — P;) # (.
Let Py = vy,...,v; (t > 1) be a longest path in G — P;. Without loss of generality,
we may assume dg(vy) < dg(vy). Let X = {uy,us,v1}. By Lemma 3.8 (i), (v), and
(vi), X is an independent set and dg(X) < 6. This contradicts the o3(G) condition.
Thus Claim 4.2 holds. 0

By Claim 4.2, P; is a Hamiltonian path in G. Note s = |G| > 7. If wju, €
E(G), then dg(u) = 2 for any u € V(G), otherwise a chorded cycle exists in G, a
contradiction. Then X = {uy,us, us} is an independent set and dg(X) = 6. This
contradicts the o3(G) condition. Thus uyus ¢ E(G). Since Py is a Hamiltonian path
in G, note dp,(u) = dg(u) for any u € V(P;). We also note dp, (u;) < 2 for each
i € {1,s}. Suppose dp,(u;) = 1. By Lemma 3.12, dg(u;) = 2 for some 3 < i < 5.
Since s > 7, X = {uy, u;, us} is an independent set and dg(X) < 6, a contradiction.
Thus dp, (u1) = 2. Now suppose ujus € E(G). By Lemma 3.12, dg(u;) = 2 for some
4<i<6. If s > 8, then X = {uy,u;, us} is an independent set and dg(X) < 6, a
contradiction. Thus s = 7. Then dg(u;) > 3 for each j € {4,5}, otherwise we get
a contradiction, since X = {uy,u;,ur} for some j € {4,5} would be an independent
set with dg(X) < 6. Thus dg(ug) = 2 by Lemma 3.12. Since uy does not have a
left edge by Lemmas 3.9 and 3.10, uy must have a right edge. Since dg(ug) = 2,
ugur; € E(G). By Lemma 3.11, dg(us) = 2, a contradiction. Thus wus ¢ E(G),
that is, uyu; € E(G) for some 4 < i < s — 1. By Lemma 3.11, dg(u;—1) = 2. Then
X = {uy,u;_1,us} is an independent set and dg(X) < 6, a contradiction. This
completes the proof of Theorem 1.3. O
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5 Proof of Theorem 1.4

By Theorem 1.3, we may assume k& > 2. Suppose Theorem 1.4 does not hold. Let
G be an edge-maximal counter-example. If G is complete, then G contains k vertex-
disjoint chorded cycles. Thus we may assume G is not complete. Let zy ¢ E(G) for
some z,y € V(G), and define G’ = G + zy, the graph obtained from G by adding
the edge xy. Since G’ is not a counter-example by the edge-maximality of G, G’
contains k vertex-disjoint chorded cycles (7, ..., Cy. Without loss of generality, we
may assume ry & UF E(C;), that is, G contains k — 1 vertex-disjoint chorded cycles.
Over all sets of k — 1 vertex-disjoint chorded cycles in G, choose C4,...,Cy_; with
C = uf;f(]i, H =G — %, and with P; be a longest path in H, such that

(A1) |%] is as small as possible,

(

A2) subject to (Al), comp(H) is as small as possible, and,
(A3) subject to (Al) and (A2), |P,| is as large as possible.

We may assume H does not contain a chorded cycle, otherwise G contains k
vertex-disjoint chorded cycles, a contradiction.

Claim 5.1. H has order at least 13.

Proof. Suppose |H| < 12. First suppose |C;| < 8 for each 1 < ¢ < k — 1. Since
by assumption, |G| > 8k + 5, it follows that |H| > (8k +5) —8(k — 1) = 13, a
contradiction. Thus |C;| > 9 for some 1 < i < k — 1. Without loss of generality, we
may assume C] is a longest cycle in €. Then |C}| > 9. By Lemma 3.2, C} has at
most two chords, and if C; has two chords, then these chords must be crossing. For
integers t and r, let |C}| = 3t +r, where t > 3 and 0 < r < 2.

Subclaim 5.1.1. The cycle Cy contains t (> 3) vertex-disjoint sets Xy, ..., X; of
three independent vertices each in G such that de, (Ul_; X;) < 6t + 4.

Proof. For any 3t vertices of (', their degree sum in C' is at most 3t x 244 = 6t +4,
since C has at most two chords. Thus it only remains to show that C; contains ¢
vertex-disjoint sets of three independent vertices each. Start anywhere on €} and
label the first 3t vertices of C'; with labels 1 through ¢ in order, starting over again
with 1 after using label ¢. If » > 1, label the remaining r vertices of C; with the
labels t+1,...,t+7r. (See Fig.2.) The labeling above yields t vertex-disjoint sets of
three vertices each, where all the vertices labeled with 1 are one set, all the vertices
labeled with 2 are another set, and so on. Given this labeling, since t > 3, any vertex
x in C) has a different label than = and 2t. Let Cy be the cycle obtained from C;
by removing all chords. Then the vertices in each of the ¢ sets are independent in
Cp. Thus the only way vertices in the same set are not independent in C is if the
endpoints of a chord of C}] were given the same label. Note any vertex labeled i is
distance at least 3 in Cj from any other vertex labeled ¢. Thus even if we exchange
the label of z in Cj for the one of = (or 1), the vertices in each of the resulting ¢
sets are still independent in Cj.
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Fig. 2. An example when t =4 and r = 2.

Case 1. No chord of C'; has both endpoints with the same label.

Then there exist t vertex-disjoint sets of three independent vertices each in Cf.

Case 2. Exactly one chord of (] has both endpoints with the same label.

Recall that C; has at most two chords, and if C7 has two chords, then these
chords must be crossing. Since |C;] > 9, even if C] has two chords, each chord
has an endpoint x such that there exists some vertex 2/ € {z~, 2"} which is equal
to no endpoint of the other chord. Choose such an endpoint x of the chord whose
endpoints were assigned the same label, and exchange the label of = for the one of
2’. Then no chord of C has endpoints with the same label, and the vertices in each
of the resulting ¢ sets are independent in €. Thus there exist ¢ vertex-disjoint sets
of three independent vertices each in Cf.

Case 3. Two chords of C; each have both endpoints with the same label.

Then the two chords are crossing. Since endpoints of a chord have the same label
in this case, recall that these endpoints have distance at least 3. Suppose there is
an endpoint z of one chord of C; which is adjacent to an endpoint y (= z*) of the
other chord on C;. (See Fig.3(a).) Now we exchange the label of  for the one of y.
Then no chord of C'; has endpoints with the same label, and the vertices in each of
the resulting ¢ sets are independent in C';. Thus there exist ¢ vertex-disjoint sets of
three independent vertices each in Cf.

Suppose no endpoint of one chord of C} is adjacent to an endpoint of the other
chord on Cy. (See Fig.3(b).) Let z1x2, 3192 be the two distinct chords of C;. Since
the two chords are crossing, without loss of generality, we may assume x1, y1, T2, Yo
are in that order on C';. Now we exchange the labels of z; and xf, and next the
ones of yo and y, . Then no chord of C; has endpoints with the same label, and
the vertices in each of the resulting ¢ sets are independent in C;. Thus there exist ¢
vertex-disjoint sets of three independent vertices each in Cf. O

Since |Cy| > 9, d¢, (v) < 2 for any v € V(H) by (Al) and Lemma 3.3. Thus,
since |H| < 12 by our assumption, it follows that |E(H,C1)| < 24. Let Xq,..., X
be as in Subclaim 5.1.1, and let 2" = X; U--- U X;. By the o3(G) condition,
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(a)

Fig. 3. Examples: (a) — the labels of  and y are 1 and 2, (b) — the
labels of z1 and y are 1 and 3. ([{] means i is a new label for a
vertex after the exchange.)

da(Z) > t(9k —2). Suppose k = 2. Then ¥ has only one cycle C. Since k = 2 and
t >3, |E(C,H)| >dy(Z) > t(9 —2) — (6t +4) = 10t — 4 > 26, a contradiction.

Now suppose k& > 3. Then we have

|E(Z,€ — C)| =da(2) —dey(27) — du(Z)
> t(9k — 2) — (61 + 4) — 24
— Okt — 8t — 28,

and since t > 3,

Okt — 8t — 28 = Ot(k — 1) +t — 28 > 9t(k — 1) — 25
>9t(k—1)—9t
= 9t(k — 2).

Thus |E(Z",C")| > 9t for some C’" in € — C}, since € — C) contains k — 2 vertex-
disjoint chorded cycles. Let h = max{dc/(v)|v € Z'}. Let v* be a vertex of 2~
such that dev(v*) = h. If h < 3, then |E(27,C")| < 3 x 3t = 9¢, a contradiction.
Thus h > 4. By the maximality of Cy, |C'| < |Ci| = 3t + r. It follows that
h=de(v*) <|C'| <3t+7r. Recall t > 3 and 0 <r < 2. Then

E(Z — {v*},C)] > (9t +1) —der(v*) > (9t +1) — (3t +7)
—6t—r+1>17. (1)

Since h = der(v*) > 4, let vy, va, v3, v4 be neighbors of v* in that order on C’. Note
v1, Vg, V3, v4 partition C” into four intervals C’[v;,v;41) for all 1 < i < 4, where
vs = v1. By (1), there exist at least 17 edges from C) —v* to C". Thus C'[v;, v;41) for
some 1 < i < 4 contains at least five of these edges. Without loss of generality, we
may assume ¢ = 4, that is, C'[vg,v1). Then by Lemma 3.6, ((C; — v*) U C'[vg, v1))
contains a chorded cycle not containing at least one vertex of ((Cy — v*) U C'[vg, v1)).
Note v*, C'[vy, v3], v* is a cycle with chord v*vq, and it uses no vertices from C’[vy, v1).
Thus we have two shorter vertex-disjoint chorded cycles in (C; U C"), contradicting
(A1). Hence Claim 5.1 holds. O
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Claim 5.2. H is connected.

Proof. Suppose not. First we prove the following subclaim.

Subclaim 5.2.1. Let X be an independent set of three vertices in H such that
dy(X) < 6. Then there exists some C in € such that the degree sequences from the
vertices of X to C are (4,4,2) or (4,3,3). Furthermore, then |C| = 4.

Proof. By the 03(G) condition, dg(X) > (9% —2) — 6 = 9k — 8 > 9(k — 1). Thus
there exists some C in ¥ such that do(X) > 10. By Lemma 3.3, deo(x) < 4 for any
x € X. It follows that the degree sequences from three vertices of X to C are (4,4, 2)
or (4,3,3). Then by Lemma 3.3, |C| = 4. O

Now we consider the following two cases based on comp(H).

Case 1. Suppose comp(H) > 3.

Let Hq, Hy, H3 be three distinct components of H. For each 1 < i < 3, let x;
be an endpoint of a longest path in H;. Since H does not contain a chorded cycle,
dy,(x;) < 2 for each 1 < ¢ < 3. Note x; for each 1 <i < 3 is not a cutvertex of H;,
since x; is an endpoint of a longest path. Then X = {z1, x5, 23} is an independent
set and dy(X) < 6. By Subclaim 5.2.1, the degree sequences from three vertices of
X to some C' in € are (4,4,2) or (4,3,3), and |C| = 4. Without loss of generality,
we may assume dg(x1) > do(za) > do(xs). Let C = vy, v9,v3,v4,v1. By the degree
sequences, rs and xs have a common neighbor in C. Without loss of generality,
we may assume vy € Ng(z2) N No(zg). Then (He U Hz U vyg) is connected. Since
de(z1) =4, v; € Ne(xq) for each 1 < i < 3. Then C' = x1,v1,v9,v3, 27 is a 4-cycle
with chord z1vy. Replacing C in € by C’, we consider the new H’. Since H; — x; is
connected, comp(H') < comp(H) — 1. This contradicts (A2).

Case 2. Suppose comp(H) = 2.

Let Hy, Hy be two distinct components of H. Recall P; is a longest path in H.
Without loss of generality, we may assume H; contains P;. Let P = uq,..., us.
Then |Hy| > |P;| = s. By Claim 5.1, |H| > 13. Thus |H;| > 7 for some i € {1, 2}.
Since H; is connected, there exists a path of order at least 3 in H;. Thus s > 3, since
Py is a longest path in H. Also, we let P, = vy,...,v; (t > 1) be a longest path in
H,. Since P; for each i € {1,2} is a longest path in H;, dg, (u;) = dp, (u;) < 2 for
each j € {1,s} and dg,(v,) = dp,(vs) < 2 for each ¢ € {1,t}. Let X = {uy,us,v1}.
Then dy(X) < 6.

First suppose ujus ¢ F(H;). Then X is an independent set. By Subclaim 5.2.1,
the degree sequences from three vertices of X to some C in ¢ are (4,4,2) or (4,3, 3),
and |C| = 4. Without loss of generality, we may assume dc(ui) > do(us). Let
C =x1,29, %3, T4, 21.

Suppose the degree sequence is (4,4,2). By the degree sequence, since u; and
vy have a common neighbor in C, without loss of generality, we may assume x, €
Ne(us) N Ne(vp). Note wuy is not a cutvertex of Hy, since uy is an endpoint of a
longest path. Thus H; — uq is connected, and ((Hy —u1) U HyUzy4) is also connected.



R.J. GOULD ET AL./AUSTRALAS. J. COMBIN. 77 (3) (2020), 355-372 370

Since de(u1) =4, x; € No(uq) for each 1 < j < 3. Then C' = uy, x1, 22,23, u1 is a
4-cycle with chord uizs. Replacing C' in € by C’, we consider the new H’. Then
comp(H') < comp(H) —1=2—1=1. This contradicts (A2).

Suppose the degree sequence is (4,3,3). If do(ur) = 4 and do(us) = de(vy) =
3, then we get a contradiction similar to the case where (4,4,2). Thus dc(u;) =
de(us) = 3 and de(v1) = 4. Without loss of generality, we may assume x; € N (uy).
Since d¢(v1) = 4, x; € No(vy) for each 2 < i < 4. Then C" = vy, w9, T3, 24,01 1S a
4-cycle with chord vyz3. Replacing C in € by C’, we consider the new H'. Assume
|Hy| = 1. Then comp(H’) = 1, a contradiction. Thus |Hs| > 2. Note Hy — v is
connected. By (A2), comp(H') = comp(H). Then xy, Py[uy, us] is a longer path than
Py in H'. This contradicts (A3).

Next suppose ujus € E(H;). Since H; is connected and P; is a longest path,
Cy1 = Piluy, ug),up is a Hamiltonian cycle. Assume s > 4. Let X = {uy,us, v}
Since H; does not contain a chorded cycle, ujus ¢ E(H;) and dp, (u;) = 2 for each
i € {1,3}. Thus X is an independent set and dy(X) < 6. Now, letting ug play the
role of ug in the case where ujus ¢ E(Hp), we get a contradiction, similarly. Hence,
s = 3. Since (' is a Hamiltonian cycle in Hy, |Hy| = 3. Note |Hy| > 10 by Claim
5.1, and H, does not contain a longer path than P;. Thus Hy = K, where p > 9.
Let V(K1) = {a1} U {b1,ba,...,b,}, and let X = {by,bo,b3}. Since dg,(b;) =1 for
each 1 <i <3, dy,(X) = 3. Also, X is an independent set. By Subclaim 5.2.1, the
degree sequences from three vertices of X to some C' in € are (4,4,2) or (4,3,3),
and |C| = 4. Let C' = xq, 9, x3, x4, 1. Without loss of generality, we may assume
de(by) > de(be) > de(bs). Since de(by) > 3 by the degree sequences, without loss of
generality, we may assume x; € N (by) for each 2 < ¢ < 4. Then C' = by, x5, x3, 74, by
is a 4-cycle with chord byxs. Since do(by) = 4, x1 € Ne(b1). Replacing C'in € by C’,
we consider the new H'. Note Hy — by is connected. By (A2), comp(H') = comp(H).
Then x1, by, ay,bs is a longer path than P;. This contradicts (A3). O

Claim 5.3. H contains a Hamiltonian path.

Proof. Suppose not, then by Claims 5.1 and 5.2, |H| > 13 and H is connected. Recall
Py is a longest path in H. Then V(H — Py) # (). Let Py = uy,...,us (s > 3), and let
Py =wv,...,u (t > 1) be a longest path in H — P;. Without loss of generality, we
may assume dg(v1) < dg(v;). Let X = {uq, us,v1}. Then by Lemma 3.8 (i), (v), and
(vi), X is an independent set and dy(X) < 6. Noting o3(G) > 9k — 2 and Lemma
3.3, as in Subclaim 5.2.1 in the proof of Theorem 1.4, there exists some C in % such
that the degree sequences from three vertices of X to C are (4,4,2) or (4,3,3), and
|C| = 4. Let C' = z1,x9,x3, 24,71 be a 4-cycle with chord z;x3. Without loss of
generality, we may assume d¢(u1) > de(us).

Suppose do(u1) = 4. By the degree sequence, ug and v, have a common neighbor
in C, say x, for some 1 < ¢ < 4. Note u; is not a cutvertex of H, since u; is an
endpoint of a longest path. Thus H —u; is connected. Since d¢(u1) = 4, (u1U(C'—xy))
contains a chorded 4-cycle, say C’. Replacing C in € by C’, we consider the new
H'. Note H' is connected. Then P;[ug, us|, z¢, Pa[v1, v is a longer path than Py in
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H'. This contradicts (A3). Thus de(uy) < 3, that is, do(u1) = do(us) = 3 and
de(vy) = 4. Since do(u1) = 3, 21,23 € No(uy) or xo, 24 € Ne(uq).

First suppose z1,x3 € Neo(up). Recall zix3 is a chord of C. Since dgo(us) = 3,
without loss of generality, we may assume x4 € N¢(ug). Then C' = uy, 1, g, 3, uy is
a 4-cycle with chord zyx3. Since do(v1) =4, x4 € Ne(v1). Note H —u;y is connected.
Replacing C' in € by C’, we consider the new H'. Then Pj[ug, us], x4, Po[v1, v] is a
longer path than P, in H’. This contradicts (A3).

Next suppose x2, 24 € Ne(up). Since do(uq) = 3, without loss of generality, we
may assume x3 € Ne(up). Since de(us) = 3, without loss of generality, we may
assume 24 € Ne(ug). Then C" = uy, x9, 21, 3, uy is a 4-cycle with chord xexs. Since
de(vy) = 4, x4 € Ne(vy). Note H — wy is connected. Replacing C' in € by C’, we
consider the new H'. Then Pj[us,us], x4, Pao[v1, vy is a longer path than P, in H'.
This contradicts (A3). O

By Claims 5.1, 5.3, and Lemma 3.14, there exists an independent set X of
four vertices in H such that dy(X) < 8. Let X = {x1, 29, 23,24}, and let X; =
{z1, 29,23}, Xo = {x1,29, 24}, X3 = {21,723, 24}, and Xy = {xo,23,24}. Then
3[X| = 30, |Xi|. Note X; for each 1 < i < 4 is an independent set. By the
03(G) condition,

3 da(X) = idG(Xi) > 403(G) > 4(9k — 2) = 36k — 8.

i=1
On the other hand, by Claim 5.3 and Lemma 3.15,
3 dg(X) = 3(de(X) + du(X)) < 3(12(k — 1) + 8) = 36k — 12,

a contradiction. This completes the proof of Theorem 1.4. O
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