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Abstract

Let ‖i, j‖n be the minimum of (i − j) mod n and (j − i) mod n. Given
integers n and k, we seek a sequence a0, . . . , an−1 which is a permutation
of 0, 1, . . . , n−1 and such that whenever ‖i, j‖n < s we have ‖ai, aj‖n ≥ k,
with s as large as possible given k and n. We solve the problem completely
when k divides n or k and n are relatively prime and in some other cases,
but the problem remains open in general. We also consider the related
problem in which ‖i, j‖n < s is replaced with |i− j| < s and determine
the maximum possible s for all cases of n and k. We also prove similar
results for several extensions and variations of these problems.

1 Introduction

In this paper we consider permutations of Zn for positive integers n. For convenience,
we write such a permutation A as the sequence A = a0, a1, . . . , an−1, where A(i) = ai
for all i ∈ Zn. We are interested in certain conditions on permutations A based on
the following definition. For an integer n and elements i, j ∈ Zn, we define ‖i, j‖n to
be the shortest distance between i and j in Zn, that is,

‖i, j‖n = min{(i− j) mod n, (j − i) mod n}
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and note that
‖i, j‖n = ‖i− j, 0‖n (1.1)

for all i, j. We omit the subscript n when the modulus is clear from the context.

We say that an (s, k)-clash (or simply a clash when the parameters are clear)
occurs between (distinct) elements ai and aj in A if

‖i, j‖n < s and ‖ai, aj‖n < k.

If there is no such pair we say that A is clash-free. For example, the permutation
0, 2, 4, 6, 8, 1, 3, 5, 7 is (3,2)-clash-free but A = 0, 3, 5, 1, 4, 7, 2, 8, 6 is not since a clash
occurs between a5 = 7 and a7 = 8. Clearly, if a0, a1, . . . , an−1 is clash-free then so is
any of its rotations ai, ai+1, . . . , an−1, a0, . . . , ai−1 for 1 ≤ i ≤ n − 1, as is its reverse
an−1, an−2, . . . , a0. We let σ(n, k) be the maximum possible value of s for which an
(s, k)-clash-free permutation of Zn exists. Similarly, κ(n, s) is the maximum possible
value of k for which an (s, k)-clash-free permutation of Zn exists. We also write ν(s, k)
for the minimum value of n such that there exists an (s, k)-clash-free permutation of
Zn. The aim of this paper is to determine σ(n, k) and κ(n, s) (and to a lesser extent
ν(s, k)) for various values of n, k and s. We point out here that σ(n, k) (and κ(n, s))
is not non-decreasing in n. For example, we will see later that σ(17, 4) > σ(18, 4).

Before stating the results of this paper, we give a brief overview of previous
work related to clash-free permutations. Brualdi, Kiernan, Meyer and Schroeder [4],
page 254, considered a very special case of clash-free permutations and proved the
following theorem.

Theorem 1.1 For all n ≥ 3, σ(n, 2) = �(n− 1)/2�.

However, they formulated and proved Theorem 1.1 in a totally graph theoretical
setting. We give a brief description. Let G be a graph with vertices 0, 1, . . . , n − 1
and edges e0, . . . , em−1. The cyclic matching sequencibility of G, denoted cms(G), is
the largest integer s for which there exists an ordering ea0 , . . . , eam−1 of the edges of G
so that for all i, j with ‖i, j‖m < s, the edges eai and eaj are disjoint or equivalently
edges eai and eaj form a matching. If we let G be Cn, the cycle on n vertices, with
edges ei = {i, i + 1 mod n} for i = 0, . . . , n − 1, then the edges eai and eaj are
adjacent if and only if ‖ai, aj‖n < 2. Thus, cms(Cn) = s if and only if σ(n, 2) = s.
The question of the value of σ(n, k) can be seen as determining cyclic matching
sequencibility of the tight k-cycle on n vertices, but we do not explore this point of
view further.

Clash-free permutations can also be formulated as so-called permuted packings.
Roughly speaking, a permuted packing of some shape S into the plane [0, n]× [0, n]
is the collection of disjoint copies of S centred at points (i, π(i)) for each i ∈ Zn,
for some permutation π ∈ Sn. In [2] and [3], the authors considered permuted
packings of diamonds (spheres with respect to the L1 norm) for the study of so-
called d-prolific permutations. Clash-free permutations can be consider as permuted
packings of rectangles on the n × n torus, i.e., on [0, n] × [0, n], where the left and
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right edges are identified as are the top and bottom edges, in the following way. For
a permutation A = a0, . . . , an−1, and an element i ∈ Zn, let Ri, be the k × s open
rectangle in [0, n]× [0, n] centred at (i, ai). That is

Ri =
(
i− s

2
, i+

s

2

)
×

(
ai − k

2
, ai +

k

2

)
, (1.2)

where entries are considered modulo n. Then the permutation A is (s, k)-clash-free
if and only if the rectangles R0, . . . , Rn−1 are disjoint.

We now give a summary of the results and structure of this paper. In Section 2
we prove Theorem 2.1 which shows that there is a duality between the parameters
s and k. In fact, we show that σ and κ are the same function in Corollary 2.2.
Section 3 is devoted to the main results about σ(n, k) and is divided into three
subsections. In Subsection 3.2 we prove Theorem 3.2 which shows that if k and n
are relatively prime then σ(n, k) = �n/k� and, as a corollary, we obtain the value of
ν(s, k) for all s, k. In Subsection 3.3 we prove Theorem 3.6 which shows that if k
divides n then σ(n, k) = n/k−1. Combined with Theorem 3.2, this leaves open cases
when gcd(k, n) > 1 but k does not divide n. Subsection 3.4 is devoted to obtaining
bounds and, in some cases, exact results in such cases using Theorems 3.2 and 3.6.
However, in general the exact value of σ(n, k) remains open and a conjecture of our
expectations is presented at the end of Subsection 3.4.

In Section 4, we consider an extension of clash-free permutations arising from [6],
by introducing a new parameter r. This is more naturally explained as permuted
packings where we instead only require that no set of r+1 rectangles have a common
intersection, for an integer r ≥ 1. We extend the results on clash-free permutations
(corresponding to the case when r = 1) to general values of r. We also prove two
results that extend arbitrary clash-free permutations with r = 1 to those with r > 1;
see Propositions 4.6 and 4.7.

In Section 5 we consider two variations of clash-free permutations. For the first
in Subsection 5.2, we instead only require that in a permutation a0, . . . , an−1, there
is no pair i, j with |i − j| < s and ‖ai, aj‖n < k. Note that the analogue of this
for cyclic matching sequencibility has also been considered before in [1], [4] and [5].
When considered as a permuted packing of rectangles, this variation is equivalent to
changing the topology from an n×n torus to an n×n cylinder, i.e., [0, n]×[0, n] where
only one pair of the edges is identified. The weakened condition above simplifies the
problem significantly and the main result of this subsection is Theorem 5.2, which
determines the natural analogue of σ(n, k) for all values of n and k. In fact, we do this
for the natural analogue of the extension mentioned previously. In Subsection 5.3 we
also briefly consider a variation of σ(n, k) where we consider the permuted packing
of rectangles on the n×n plane, i.e., on [0, n]× [0, n] with no pairs of edges identified.
The paper ends with several conjectures and open questions.
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2 Preliminary results

In this section we show that σ and κ are equivalent and obtain necessary condition on
the parameters, s, k and n, for the existence of an (s, k)-clash-free permutations of Zn.
By definition, there exists an (s, k)-clash-free permutation of Zn only if σ(n, k) ≥ s
and κ(n, s) ≥ k and if either of these inequalities holds then a clash-free permutation
with these parameters exists. So σ(n, k) and κ(n, s) are related by

σ(n, k) ≥ s if and only if κ(n, s) ≥ k. (2.1)

Theorem 2.1 The permutation A is (s, k)-clash-free if and only if A−1, the inverse
permutation of A, is (k, s)-clash-free.

Proof: Let A = a0, . . . , an−1. Then A is (s, k)-clash-free if and only if there is no
pair i, j such that

‖ai, aj‖n < k and ‖i, j‖n < s

i.e., no i, j such that ‖ai, aj‖n < k and ‖A−1(ai),A−1(aj)‖n < s

i.e., no i, j such that ‖i, j‖n < k and ‖A−1(i),A−1(j)‖n < s.

As the final line is exactly the condition for A−1 to be (k, s)-clash-free, this completes
the proof. �

The following is immediate from the theorem.

Corollary 2.2 For any positive integer n and any m in [1, n],

σ(n,m) = κ(n,m).

Proof: Let A be a permutation of Zn that is (σ(n,m), m)-clash-free. Then A−1 is an
(m, σ(n,m))-clash-free permutation of Zn. This means κ(n,m) ≥ σ(n,m). Similarly
σ(n,m) ≥ κ(n,m) and the corollary follows. �

We now obtain a necessary condition of the parameters s, k and n for (s, k)-clash-
free permutations of Zn to exist and an upper bound on σ(n, k).

Lemma 2.3 If 1 < k < n and there exists an (s, k)-clash-free permutation of Zn,
then sk ≤ n− 1, and hence σ(n, k) ≤ �(n− 1)/k� and κ(n, s) ≤ �(n− 1)/s�.
Proof: Suppose that a0, a1, . . . , an−1 is an (s, k)-clash-free permutation. On an n ×
n torus construct n open rectangles R0, R1, . . . , Rn−1 such that Ri has centre at
(i, ai) and dimensions k × s. As described after (1.2), each of the k × s rectangles
R0, R1, . . . , Rn−1 are pairwise disjoint. Thus the sum of their areas cannot exceed
the area of the torus and so n · sk ≤ n2.

Suppose that sk = n. Then the rectangles tile the torus. Since the x-coordinate
of the centres of the rectangles are distinct there must be two contiguous rectangles
Ri and Rj as shown in Figure 1. The spot marked by X can only be covered by
a rectangle whose centre has the same y-coordinate as the centre of Ri, which is
impossible, so we conclude that sk < n. This means we have s ≤ (n− 1)/k and so
σ(n, k) ≤ �(n− 1)/k�. The bound on κ(n, s) is obtained in a similar fashion. �
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X
Ri

Rj

Figure 1: Contiguous rectangles: what rectangle can cover the spot marked X?

3 Results on σ(n, k)

3.1 Outline

In this section we determine the value of σ(n, k) in various cases of n and k, as
described in the Introduction. In the subsection to follow, we determine σ(n, k)
when gcd(k, n) = 1. As a corollary, we obtain the value of ν(s, k) in all cases. The
proof of Theorem 3.6, which gives the value of σ(n, k) when k divides n, is presented
in Subsection 3.3. In the final subsection, Subsection 3.4, a summary and discussion
of the implications of the results of the section is presented.

3.2 Case when gcd(k, n) = 1

In this subsection we prove Theorem 3.2 and Corollary 3.3. First we need the fol-
lowing result, which is Theorem 3 of [8].

Theorem 3.1 If n and q are relatively prime integers with 0 < q < n then the set
{�in/q� : i = 0, . . . , q−1} equals the set {iq mod n, i = 0, . . . , q−1} where qq = −1
(mod n).

Since

0 <

⌊
n

q

⌋
<

⌊
2n

q

⌋
< · · · <

⌊
(q − 1)n

q

⌋
< n

and

n−
⌊
(q − 1)n

q

⌋
=

⌈
n

q

⌉
it follows that

‖0, iq‖n ≥
⌊
n

q

⌋
(3.1)

for 0 < i < q.

Theorem 3.2 If gcd(s, n) = 1 then κ(n, s) = �(n− 1)/s� and if gcd(k, n) = 1 then
σ(n, k) = �(n− 1)/k�.
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Proof: By Corollary 2.2, the two parts of the theorem’s statement are equivalent.
We prove the first, so suppose that gcd(s, n) = 1. By Lemma 2.3, κ(n, s) cannot be
greater than �(n− 1)/s� so it is sufficient to present an (s, k)-clash-free permutation
achieving k = �(n − 1)/s�. Let s be the integer in the interval [1, n − 1] satisfying
ss = −1 (mod n). Then define the permutation A = a0, . . . , an−1 by

ai = is mod n for i = 0, . . . , n− 1.

We claim that no clash occurs in this permutation. Suppose, for the sake of contra-
diction, that a clash does occur between ai and aj where, without loss of generality,
j > i. Then,

‖i, j‖n < s and ‖ai, aj‖n <
⌊n
s

⌋
.

So by the definition of A,⌊n
s

⌋
> ‖ai, aj‖n = ‖is, js‖n = ‖0, s(j − i)‖n = ‖s(n+ i− j), 0‖n .

As 0 < ‖i, j‖n < s, and ‖i, j‖n is either ‖i, j‖ = j − i or ‖i, j‖ = n+ i− j, the above
inequality contradicts (3.1). This completes the proof. �

We now obtain the value of ν(s, k), as a corollary.

Corollary 3.3 Let s and k be integers greater than 1. Then ν(s, k) = sk + 1.

Proof: By Lemma 2.3, ν(s, k) ≥ sk + 1. For n = sk + 1, there is an (s, k)-clash-free
permutation of length n by Theorem 3.2, since gcd(k, n) = 1 and s = �(n − 1)/k�.
Thus, ν(s, k) ≤ sk + 1, completing the proof. �

3.3 Case when k divides n

In this section we show that if k divides n then σ(n, k) = �(n−1)/k� = n/k−1. That
is, we prove Theorem 3.6, which is mentioned in the Introduction. By Lemma 2.3,
we know that σ(n, k) ≤ n/k − 1, so it is sufficient to present an (s, k)-clash-free
permutation of Zn where k divides n and s = n/k − 1. We give an algorithm for
constructing such a permutation, then prove its correctness.

Algorithm: Let n = mk so that s = m−1. We construct a (k+1)×m array A with
rows indexed 0, . . . , k and columns indexed 0, . . . , m− 1 as follows. For i = 0, . . . , k
we define

A[i, 0] =

{
0 if i < (m− 1 mod k)

m− 1 if i ≥ (m− 1 mod k) .

For i = 0, . . . , k and j = 1, . . . , m− 1 we define

A[i, j] =

{
m− ⌈

m
k

⌉
+ m−i−j−1

k
if m− i− j − 1 ≡ 0 (mod k)

j − ⌈
m
k

⌉
+
⌈
m−i−j−1

k

⌉
otherwise.
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We then produce another array T defined for all i = 0, . . . , k and j = 0, . . . , m − 1
by

T [i, j] = A[i, j]k + i mod n .

Finally, we obtain the permutation

A = T [0, 0], T [0, 1], . . . , T [0, m− 1], T [1, 0], T [1, 1] . . . , T [k − 1, m− 1] . (3.2)

Note that the last row of T is not used in constructing the permutation A. It is
used, however, in the proof of correctness.

EXAMPLE. With k = 4 and m = 7 the formulas above become

A[i, 0] =

{
0 for i < (6 mod 4)
6 for i ≥ (6 mod 4) ,

and

A[i, j] =

{
5 + 6−i−j

4
if 6− i− j ≡ 0 (mod 4)

j − 2 +
⌈
6−i−j

4

⌉
otherwise,

(3.3)

for i = 0, . . . , 5 and j = 1, . . . , 6. This produces the array:

A =

⎡
⎢⎢⎢⎢⎣

0 1 6 2 3 4 5
0 6 1 2 3 5 4
6 0 1 2 5 3 4
6 0 1 5 2 3 4
6 0 5 1 2 3 4

⎤
⎥⎥⎥⎥⎦ .

The array T is then ⎡
⎢⎢⎢⎢⎣

0 4 24 8 12 16 20
1 25 5 9 13 21 17
26 2 6 10 22 14 18
27 3 7 23 11 15 19
0 4 24 8 12 16 20

⎤
⎥⎥⎥⎥⎦

and the required permutation is

0, 4, 24, . . . , 11, 15, 19.

Before showing that the algorithm produces a clash-free permutation, we require
the following notation and simple observations. Fix i ∈ [1, k− 1] and define Bi to be
the set of values of A[i, j], with j ≥ 1, for which k divides m− i− j − 1. These are
the values of A[i, j] defined by the first part of the definition of A[i, j]. Define Fi to
be the set of values of A[i, j] for which k does not divide m − i − j − 1. It is easy
but tedious to derive the following facts. Their derivation is left as an exercise for
the reader.

(1) The set Bi forms a decreasing arithmetic sequence with common difference 1,
and the set Fi forms an increasing arithmetic sequence with common difference 1.
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(2) If i < (m− 1 mod k), then

max(Bi) = m− 1

min(Bi) = m− 	m/k

max(Fi) = m− 1− 	m/k

min(Fi) = 1.

(3) If i ≥ (m− 1 mod k), then

max(Bi) = m− 2

min(Bi) = m− 	m/k

max(Fi) = m− 1− 	m/k

min(Fi) = 0.

Recall that A[i, 0] = 0 if i < (m− 1 mod k) and A[i, 0] = m − 1 if i ≥
(m− 1 mod k). Set F = Fi ∪ {A[i, 0]} = Fi ∪ {0} and B = Bi if i < (m− 1 mod k)
and B = Bi ∪ {A[i, 0]} = Bi ∪ {m − 1} and F = Fi if i ≥ (m− 1 mod k). We now
find that the sets F and B are independent of i and

F = {0, 1, . . . , m− 	m/k
 − 1}
B = {m− 	m/k
, . . . , m− 1}.

From this we see that the rows of A are permutations of 0, 1, . . . , m− 1.

Now we show that the permutation produced by the algorithm is clash-free, by
proving the following two lemmas. The first lemma determines the necessary condi-
tions for a clash to occur and the second establishes that these necessary conditions
cannot occur; thus the permutation produced by the algorithm is clash-free.

Lemma 3.4 Let i1 and i2 be elements of Zk such that ‖i1, i2‖ = i2 − i1 mod k.
Then the element T [i1, j1] of A clashes with the element T [i2, j2] only if each of the
following conditions holds
(a) Either i2 = i1 + 1 ≤ k − 1, or i1 = k − 1 and i2 = 0.
(b) j2 ≤ j1 − 2.
(c) Either A[i1, j1] = A[i1 + 1, j2] or A[i1, j1] = (A[i1 + 1, j2] + 1) mod m. Note that
if i1 = k − 1 then A[i1 + 1, j1] will be in the last row of array A.

Proof: We first assume that i1 ≤ i2 and {i1, i2} �= {0, k − 1}. The member of A
arising from entry A[i, j] has index mi + j and value T [i, j] = kA[i, j] + i. Suppose
a clash occurs between T [i1, j1] = kA[i1, j1] + i1 and T [i2, j2] = kA[i2, j2] + i2,

For the indices to clash we must have

‖mi1 + j1, mi2 + j2‖n < m− 1. (3.4)
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Since j1 and j2 are in the interval [0, m−1] and since we are not considering the case
when {i1, i2} = {0, k − 1} this implies that ‖i1, i2‖k ≤ 1 so that

i2 = i1 or i2 = i1 + 1. (3.5)

For the values to clash we must have

‖kA[i1, j1] + i1, kA[i2, j2] + i2‖n < k. (3.6)

If i1 = i2 this becomes k‖A[i1, j1], A[i1, j2]‖n < k which is impossible for j1 �= j2. This
observation together with (3.5) implies that i2 = i1 + 1. This means (3.4) becomes

‖j1, m+ j2‖n < m− 1 ⇒ j2 ≤ j1 − 2 (3.7)

and (3.6) becomes
‖kA[i1, j1], kA[i1 + 1, j2] + 1‖n < k

which implies that

A[i1, j1] = A[i1 + 1, j2] or A[i1, j1] = A[i1 + 1, j2] + 1 mod m

and the statement of the lemma is satisfied.

Now suppose that {i1, i2} = {0, k − 1}. We consider the k-th row of the array A. It
is easy to check that A[k, j] = A[0, j]− 1 mod m. Therefore,

T [k, j] = (A[0, j]− 1)k + k = A[0, j]k = T [0, j]

for all j. It follows that a clash occurs between T [k − 1, j1] and T [0, j2] if and only
if a clash occurs between T [k − 1, j1] and T [k, j2]. By the same reasoning as above
this occurs only if

A[k − 1, j1] = A[k, j2] mod m or A[k − 1, j1] = A[k, j2] + 1 mod m

and j2 ≤ j1 − 2. �

The next lemma shows that these conditions for a clash do not occur.

Lemma 3.5 For all i = 1, . . . , k− 1 and j = 2, . . . , m− 1, if A[i, j] = A[i+1, j′] or
A[i, j]− 1 = A[i+ 1, j′] then j′ ≥ j − 1.

Proof: We consider five cases.

Case 1. If A[i, j] = A[i+ 1, j′] and both are in B then

m−
⌈m
k

⌉
+

m− i− j − 1

k
= m−

⌈m
k

⌉
+

m− (i+ 1)− j′ − 1

k
⇒ m− i− j − 1 = m− i− j′ − 2

⇒ j′ = j − 1.
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Case 2. If A[i, j] = A[i+ 1, j′] and both are in F , then

j −
⌈m
k

⌉
+

⌈
m− i− j − 1

k

⌉
= j′ −

⌈m
k

⌉
+

⌈
m− i− j′ − 2

k

⌉

⇒
⌈
m− i− j − 1

k

⌉
−

⌈
m− i− j′ − 2

k

⌉
= j′ − j.

If m− i− j − 1 �≡ 1 (mod k), then both sides of the above equal 0 when j′ = j. If
m− i− j − 1 ≡ 1 (mod k), then both sides of the above are 1 when j′ = j + 1. By
(1), there is at most one entry in row i+ 1 equal to A[i, j] so that in either case we
must have j′ ≥ j.

Case 3. If A[i, j]− 1 = A[i+ 1, j′] and both are in B then

m−
⌈m
k

⌉
+

m− i− j − 1

k
− 1 = m−

⌈m
k

⌉
+

m− i− j′ − 2

k
⇒ −j − k = −j′ − 1

so that j′ = j + k − 1 ≥ j − 1.

Case 4. If A[i, j]− 1 = A[i+ 1, j′] and both are in F , then

j −
⌈m
k

⌉
+

⌈
m− i− j − 1

k

⌉
− 1 = j′ −

⌈m
k

⌉
+

⌈
m− i− j′ − 2

k

⌉

⇒
⌈
m− i− j − 1

k

⌉
−
⌈
m− i− j′ − 2

k

⌉
= j′ − (j − 1).

Both sides equal 0 if j′ = j − 1. Since there exists only one entry in row i+ 1 equal
to A[i, j]− 1 we must have j′ = j − 1.

Case 5. If A[i, j]− 1 = A[i+1, j′] and one is in B and the other in F we must have
A[i, j] being the least element in B and A[i+ 1, j′] being the greatest in F . By (3),
we have that the greatest element of F equals m − ⌈

m
k

⌉ − 1. Using the formula for
A[i, j] we see that A[i+1, m− 1] = m− ⌈

m
k

⌉− 1 so j′ = m− 1 which is greater than
or equal to j − 1 for any j ≤ m− 1.

In each case we have shown that j′ ≥ j − 1. This completes the proof. �

We can now determine σ(n, k), when k divides n.

Theorem 3.6 If k divides n, then σ(n, k) = �(n − 1)/k� = n/k − 1. Equivalently,
if s divides n, then κ(n, s) = �(n− 1)/s� = n/s− 1

Proof: By Corollary 2.2, the two statements of the theorem are equivalent, so we only
prove the first. Let A be the permutation of Zn formed by the algorithm given in the
first part of this subsection for k dividing n. By Lemma 3.4, an (n/k − 1, k)-clash
can only occur between T [i, j] and T [i′, j′] for 0 ≤ i ≤ i′ ≤ k − 1 in A if conditions
(a) and (c) are satisfied and j′ ≤ j − 2. Lemma 3.5 shows that in fact j′ ≥ j − 1
whenever conditions (a) and (c) are satisfied. Thus, A is (n/k − 1, k)-clash-free and
so σ(n, k) ≥ �(n − 1)/k�. By Lemma 2.3, σ(n, k) ≤ �(n − 1)/k� and the theorem
follows. �
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3.4 Consequences and results in other cases

In this subsection we bring together the results of the previous two subsections;
see Theorem 3.7. We also consider the value of σ(n, k) in cases not covered by the
previous results, by proving Corollary 3.8, which demonstrates that in some instances
that exact results can still be obtained. The subsection ends with a brief discussion
about cases that remain open and a conjecture of what we expect.

We begin by proving the following consequence of Theorems 3.2 and 3.6.

Theorem 3.7 Let n and k be integers and s = �(n− 1)/k�. If at least one of k | n,
s | n, gcd(n, k) = 1 or gcd(n, s) = 1 holds, then

σ(n, k) = s .

Proof: The cases when gcd(n, k) = 1 and k | n follow immediately from Theorems 3.2
and 3.6, respectively. So let either gcd(n, s) = 1 or s | n hold. By assumption,
sk ≤ n− 1 from which it follows that k ≤ �(n− 1)/s�. So by Theorems 3.2 and 3.6,
κ(n, s) = �(n − 1)/s� ≥ k, when gcd(n, s) = 1 and s | n, respectively. Thus (2.1),
implies that σ(n, k) ≥ s. As Lemma 2.3 says σ(n, k) ≤ �(n− 1)/k� = s, we conclude
that σ(n, k) = s. �

We can also determine the value of σ(n, k) for some of the values of n and k that do
not satisfy the condition of Theorem 3.7, using the following result.

Corollary 3.8 If k1, k2 and n are integers with k1 < k2 < n, and

σ(n, k2) =

⌊
n− 1

k2

⌋
and

⌊
n− 1

k1

⌋
=

⌊
n− 1

k2

⌋

then

σ(n, k1) =

⌊
n− 1

k1

⌋
.

Proof: First we note that if a, b and n are positive integers with n ≥ b ≥ a then

σ(n, a) ≥ σ(n, b) , (3.8)

which is immediate from definitions. Since k2 > k1, the inequality (3.8) implies
that σ(n, k1) ≥ σ(n, k2). Lemma 2.3 says that σ(n, k1) ≤ �(n− 1)/k1�. With the
hypothesis that σ(n, k2) = �(n− 1)/k2�, we obtain the result. �

As an example of the use of Corollary 3.8 consider the case n = 46, k1 = 10 and
k2 = 11. Here σ(46, 11) = 4 by Theorem 3.2 and �46−1

10
� = �46−1

11
�, so σ(46, 10) = 4.

From this example we see that the conditions in Theorem 3.7 are not necessary for
σ(n, k) = �(n− 1)/k� to hold.

We summarise the values of σ(n, k) for n ≤ 30. in Table 1. Each of the values
given is obtained from Theorem 3.7, Corollary 3.8 and the fact that σ(n, k) = 1
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n k: 4 6 8 9 10 12 14
9 2 1 1 1 1 1 1
10 2 1 1 1 1 1 1
12 2 1 1 1 1 1 1
14 3 2 1 1 1 1 1
15 3 2 1 1 1 1 1
16 3 2 1 1 1 1 1
18 ≥ 3 2 2 1 1 1 1
20 4 3 2 2 1 1 1
21 5 3 2 2 2 1 1
22 5 3 2 2 2 1 1
24 5 3 2 2 2 1 1
25 6 4 3 2 2 2 1
26 ≥ 5 ≥ 3 3 2 2 2 1
27 6 4 3 2 2 2 1
28 6 4 3 3 2 2 1
30 7 4 3 3 2 2 2

σ(n, k) = �(n− 1)/k� σ(n, k) = 1

for each prime n and k for 2k ≥ n

Table 1: Values of σ(n, k) for selected small values of n and k.

when 2k ≥ n, which follows easily from the definition of σ(n, k). For simplicity, we
have excluded particularly simple cases, each of which the value of σ(n, k) can be
determined by the fact that σ(n, k) = 1 when 2k ≥ n or the immediate consequence
of Theorem 3.7 that σ(n, k) = �(n − 1)/k� if either n or k is prime. For the three
cases when σ(n, k) cannot be determined using any of the results given thus far, we
provide the lower bound determined by the fact that σ(n, k) ≥ σ(n, k + 1).

By the table, the only cases when σ(n, k) is not determined for n ≤ 30 are σ(18, 4),
σ(26, 4) and σ(26, 6). By a computer search, we determined that no (4, 4)-clash-free
permutations of Z18 or (6, 4)-clash-free permutations of Z26 exist (and therefore (4, 6)-
clash-free permutations of Z26 do not exist). As summarised in Table 1, equation
(3.8) and Theorem 3.7 imply that σ(18, 4) ≥ σ(18, 5) = 3, σ(26, 4) ≥ σ(26, 5) = 5
and σ(26, 6) ≥ σ(26, 7) = 3. Thus, σ(18, 4) = 3, σ(26, 4) = 5, σ(26, 6) = 3, while
σ(n, k) = �(n− 1)/k� in all other cases for n ≤ 30.

We determined that ν(s, k) = sk + 1 for all s, k > 1 in Subsection 3.2. But,
perhaps surprisingly, it is possible that n > ν(s, k), yet no (s, k)-clash-free permu-
tation of Zn exists. For example, with s = 4 and k = 4 we have ν(4, 4) = 17
but σ(18, 4) = 3. That is, there is a (4, 4)-clash-free permutation of Z17, but no
(4, 4)-clash-free permutation of Z18.

There can be a wide gap between the highest theoretically possible value of
σ(n, k) determined by Lemma 2.3 and the lower bound we can obtain. For example
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σ(420, 47) = 8 by Theorem 3.2, so (2.1) and Theorem 2.1 imply σ(420, 8) ≥ 47 (note
that (3.8) only yields σ(420, 8) ≥ σ(420, 9) = 46). On the other hand by Lemma
2.3, σ(420, 8) ≤ 52. However, we do not expect the actual value σ(n, k) to be much
different than �(n−1)/k� for any values of n and k. In particular, we conjecture the
following.

Conjecture 3.9 Let n and k be integers and s = �n−1
k
�. Then

s− 1 ≤ σ(n, k) ≤ s .

4 Extension

In this section we consider an extension of clash-free permutations, which we call
(s, k, r)-clash-free permutations, that arises from introducing a new parameter r.
As stated in the Introduction from the viewpoint of permuted packings of k × s
rectangles, this extension is to consider packing rectangles (as given in (1.2)), so that
no set of r + 1 rectangles have a non-empty intersection for a fixed integer r ≥ 1.
When r = 1, we recover the condition for (s, k)-clash-free permutations described
earlier. The main purpose of this section is to extend Theorems 3.2 and 3.6 to
(s, k, r)-clash-free permutations; see Theorem 4.2 and Corollary 4.5, respectively.
The section ends with two methods for constructing (s, k, r)-clash-free permutations
from (s, k)-clash-free permutations. We start by explicitly describing the extension,
using the following notation. For 1 ≤ r < n and 0 ≤ i0 < · · · < ir ≤ n, let

‖i0, . . . , ir‖n = min{il − il+1 mod n : l = 0, . . . , r} ,

where we use the convention ir+1 = i0. That is, ‖i0, . . . , ir‖n is the minimum length
l of a cyclic interval {i + j mod n : j = 0, . . . , l} that contains all of i0, . . . , ir. So
clearly ‖ij0 , . . . , ijr′‖n ≤ ‖i0, . . . , ir‖n for any subset {ij0 , . . . , ijr′} of {i0, . . . , ir}. For
a permutation A = a0, a1, . . . , an−1, an (s, k, r)-clash occurs between the (distinct)
elements ai0 , . . . , air if

‖i0, . . . , ir‖n < s and ‖ai0, . . . , air‖n < k .

If the permutation A does not contain any such elements, then it is said to be (s, k, r)-
clash-free (or just clash-free if the parameters are clear). For example when k = 3,
s = 3, n = 7 and r = 2 the permutation A = 0, 3, 6, 2, 5, 1, 4 is (3, 3, 2)-clash-free,
but A = 0, 2, 5, 6, 4, 1, 3 is not as the elements a2 = 5, a3 = 6 and a4 = 4 clash. The
maximum value of s for which an (s, k, r)-clash-free permutation exists for a given
n, k and r is denoted by σ(n, k, r). Similarly, the maximum value of k for which a
clash-free permutation exists for a given n, s and r is denoted by κ(n, s, r). Note
that then natural analogues of (2.1), Lemma 2.1 and Corollary 2.2 hold for σ and κ
when r ≥ 1 hold.

Before proving the main results of this section we first show that Lemma 2.3 can
be extended to the following.
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Lemma 4.1 Let k, n and r be integers with k and r both less than n. If r ≥ k then

σ(n, k, r) = n

and if r < k then
σ(n, k, r) ≤ �(rn− 1)/k�.

Proof: It is easy to check that no (s, k, r)-clash can occur if r ≥ k, so in this case
σ(n, k, r) = n, which is the first part of the lemma. Now suppose that r < k and that
a0, a1, . . . , an−1 is an (s, k, r)-clash-free permutation. On an n× n torus construct n
open rectangles R0, R1, . . . , Rn−1. Each Ri has centre at (i, ai) and dimensions k×s.
If Ri and Rj are different rectangles then i �= j and ai �= aj . Since no point on the
torus can belong to more than r rectangles we have

nsk ≤ rn2. (4.1)

Suppose we have equality in (4.1). Then every point on the torus that is not on the
boundary of a rectangle belongs to exactly r rectangles, which means each point on
the boundary of one rectangle must also be on the boundary of another rectangle.
Suppose Ri is on the left and Rj on the right of a section of a common vertical
boundary. This section cannot be the whole of the common vertical boundary for
then we’d have ai = aj which is impossible. So part of the right hand vertical
boundary of Ri must be shared with a rectangle other than Rj , say with Rl. But
this would mean j = l, which is impossible. We conclude that there is strict inequality
in (4.1) so that sk < rn and therefore s ≤ (rn− 1)/k and

σ(n, k, r) ≤ �(rn− 1)/k�.
�

We can now show the following theorem.

Theorem 4.2 If gcd(s, n) = 1 then κ(n, s, r) = �(rn − 1)/s� and if gcd(k, n) = 1
then σ(n, k, r) = �(rn− 1)/k�.

Proof: By the duality of σ and κ, the two parts of the Theorem’s statement are
equivalent. We will prove the first, so suppose that gcd(s, n) = 1.

Lemma 4.1 implies that σ(n, k, r) ≤ �(rn− 1)/k� and the duality between σ(n, k, r)
and κ(n, k, r) implies that κ(n, s, r) cannot be greater than �(rn − 1)/s� = �rn/s�.
Therefore it is sufficient to present a permutation achieving k = �rn/s�. Let s̄ be
the integer in [2, n − 1] such that ss̄ ≡ −1 (mod n). Then define A = a0, . . . , an−1

by
ai = is̄ mod n for i = 0, . . . , n− 1.

We claim that no clash occurs in this permutation. Suppose, for the sake of contra-
diction, that a clash does occur between ai0 , . . . , air , i.e,

‖i0, . . . , ir‖ < s and ‖ai0 , . . . , air‖ < k
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where, without loss of generality, i0 < · · · < ir. If ‖i0, . . . , ir‖ = ir − i0, then

‖ai0 , . . . , air‖ = ‖i0s̄, i1s̄, . . . , irs̄‖ = ‖0, (i1 − i0)s̄, . . . , (ir − i0)s̄‖
where 0 < i1 − i0 < · · · < ir − i0 < s. If ‖i0, . . . , ir‖ = n + il − il+1 for some
0 ≤ l ≤ r − 1, then

‖ai0 , . . . , air‖ = ‖i0s̄, i1s̄, . . . , irs̄‖
= ‖0, (il+2−il+1)s̄, . . . , (ir−il+1)s̄, (n+i0−il+1)s̄, . . . , (n+ il − il+1)s̄‖

where 0 < il+2 − il+1 < · · · < ir − il+1 < n + i0 − il+1 < · · · < n + il − il+1 < s. In
either case, there are integers 0 = j0 < j1 < · · · < jr < s such that

‖ai0, . . . , air‖ = ‖0, j1s̄, . . . , jrs̄‖ .
By Theorem 3.1, {0, j1s̄ mod n, . . . , jrs̄ mod n} ⊆ {�in/s� : i = 0, . . . , s − 1}. So
let {0, j1s̄ mod n, . . . , jrs̄ mod n} = {0, �h1n/s�, . . . , �hrn/s�}, where 0 = h0 < h1 <
· · · < hr < s. We cannot have ‖0, �h1n/s�, . . . , �hrn/s�‖ = �hrn/s� − 0 as hr ≥ r
and we have assumed

‖0, �h1n/s�, . . . , �hrn/s�‖ = ‖ai0 , . . . , air‖ (4.2)

< k

= �rn/s�.
So there is some 0 ≤ l ≤ r − 1 such that ‖0, �h1n/s�, . . . , �hrn/s�‖ = n+ �hln/s� −
�hl+1n/s�. As hr < s,

s− 1 ≥ hr − h0

=
r−1∑
i=0

(hi+1 − hi)

= hl+1 − hl +
∑
i �=l

(hi+1 − hi)

≥ hl+1 − hl + r − 1

i.e., hl+1 − hl ≤ s− r. Therefore, using the inequality �a� > a− 1 implies that

n+

⌊
hln

s

⌋
−
⌊
hl+1n

s

⌋
> n+

hln

s
− 1− hl+1n

s

=
(s− (hl+1 − hl))n

s
− 1

≥ rn

s
− 1

≥
⌊rn
s

⌋
− 1 .

On the other hand, by (4.2),

n+ �hln/s� − �hl+1n/s� = ‖0, �h1n/s�, . . . , �hrn/s�‖ <
⌊rn
s

⌋
.
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Therefore we have the contradiction,

⌊rn
s

⌋
> n+

⌊
hln

s

⌋
−
⌊
hl+1n

s

⌋
>

⌊rn
s

⌋
− 1 .

This proves the theorem. �

Let ν(s, k, r) be the minimum n such that an (s, k, r)-clash-free permutation exists.
We have a partial result on the value of ν(s, k, r), by the theorem above.

Corollary 4.3 Let n, s, k and r be positive integers such that k > r, s > r and
n = 	(sk + 1)/r
. If gcd(n, k) = 1 or gcd(n, s) = 1, then ν(s, k, r) = n.

Proof: By Lemma 4.1 we have ν(s, k, r) ≥ n. If gcd(n, k) = 1, then Theorem 4.2
implies that an (s, k, r)-clash-free permutation of Zn exists and so ν(s, k, r) ≤ n. The
case when gcd(n, s) = 1 is similar. This completes the proof. �

Next we prove Corollary 4.5. First we require the following result, which is a special
case of Proposition 2.5 from [7]. Note that Proposition 2.5 from [7] is formulated
in terms of cyclic matching sequencibility and applies to any graph or hypergraph
G; choosing G appropriately yields the result presented here. We avoid using a
formulation in terms of cyclic matching sequencibility here and present a proof for
completeness. In the proof, for a given r and l with gcd(r, l) = 1, we let α(i) =
ir−1 mod l for all i ∈ Zl. Also for an l×m array T and A = T [0, 0], T [0, 1], . . . , T [l−
1, m− 1], we let α(A) = T [α(0), 0], T [α(0), 1], . . . , T [α(1), 0], . . . , T [α(l− 1), m− 1].

Theorem 4.4 Let T [i, j] be an l × m array and A = T [0, 0], T [0, 1], . . . , T [l −
1, m − 1] be an (s, k) clash-free permutation such that ‖T [i, j], T [i, j′]‖ ≥ k for all
i = 0, . . . , m − 1 and j �= j′. If gcd(l, r) = 1, then α(A) is an (s′, k, r)-clash-free
permutation of Zn where s′ = (r − 1)m+ s .

Proof: For x and y in Zn let

Iy := {y, . . . , y + k − 1 mod n}

and

Sx := {T [α(i), j] : im+j = x, . . . , x+s′−1 mod n, i ∈ Zl, j ∈ Zm}={ax, . . . , ax+s′−1}

and note that |Iy| = k and |Sx| = s′. Let {ai1 , . . . , aip} be a subset of Sx for some x.
Then

‖i1, i2, . . . , ip‖ < s′ (4.3)

and if {ai1, . . . , aip} is also a subset of Iy for some y then

‖ai1 , . . . , aip‖ < k. (4.4)
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It follows that α(A) is (s′, k, r)-clash-free if and only if for all values of x and y in
Zn we have |Iy ∩ Sx| ≤ r. We’ll now show that this condition holds.

The condition that ‖T (i, j), T [i, j′]‖ ≥ k for all i ∈ Zm and j �= j′ means that at
most one element of each row of T belongs to Iy. The set Sx contains s′ = (m− 1)r
consecutive elements modulo n of α(A). These must come from r or r+1 consecutive
rows modulo l of T . If they come from exactly r rows of T then Sx ∩ Iy contains at
most r elements and we are done. Suppose the elements of Sx come from r+ 1 rows
of T , say from rows α(i′), . . . , α(i′ + r).

Then Sx consists of the last z elements of row α(i′) for some positive z less than s,
all of rows α(i′ + 1) to α(i′ + r − 1) (each of which contains at most one element
of Iy), and the first s − z elements of row α(i′ + r) of T . That is, Sx contains
{T [α(i′), j], j = m− z . . . ,m− 1} and {T [α(i′ + r), j], j = 0, . . . , s− z − 1}. But

α(i′ + r) = (i′ + r)r−1 mod l = α(i′) + 1 mod l.

So these s elements are

T [α(i′), m− z + 1], . . . , T [α(i′), m− 1], T [α(i′) + 1, 0] . . . T [α(i′), s− z − 1]

which form a sequence of s consecutive members of A. Since A was assumed to be
(s, k)-clash-free this sequence can contain at most one element of Iy so |Iy ∩ Sx| ≤ r
as required. �

Recall that the proof of Theorem 3.6 used an array T constructed from the
algorithm from Subsection 3.3. One can easily check that the array T satisfies the
condition of Lemma 4.4, since each row of T is the set of residues of k modulo n.
Therefore, the following result is immediate from Theorem 4.4 and the array T
constructed from the algorithm from Subsection 3.3.

Corollary 4.5 Let k divide n and gcd(r, k) = 1. Then

σ(n, k, r) =
rn

k
− 1 .

Proof: By Theorems 3.6 and 4.4, σ(n, k, r) ≥ (r − 1)n
k
+ n

k
− 1 = rn

k
− 1 and

σ(n, k, r) ≤ rn
k
− 1, by Lemma 4.1. �

We end the section with two results about constructing clash-free permutations
for general r from those with r = 1.

Proposition 4.6 Let A = a0, . . . , an−1 be an (s, k)-clash-free permutation. Then
A′ = ra0, ra0 + 1, . . . , ra0 + r − 1, ra1, . . . , ran−1 + r − 1 is an (rs, rk, r)-clash-free
permutation of Zrn.
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Proof: Let A′ = a′0, . . . , a
′
rn−1, where a′ir+j = rai + j for every i ∈ Zn and j ∈ Zr.

Suppose a clash occurs in A′. That is, there exist r + 1 members a′i0 , . . . , a
′
ir of A′

whose indices lie is some interval modulo rn of length rs−1, and whose corresponding
values in the permutation lie in an interval modulo rn of length less than rk. Say
the set of indices modulo rn is:

{i′r + j : j = j′ + 1, . . . , r − 1}
∪ {ir + j : i = i′ + 1, . . . , i′ + s− 1, j = 0, . . . , r − 1}
∪ {(i′ + s)r + j : j = 0, . . . , j′ − 1}.

for integers i′ and j′. Now consider our r+1 members of the permutation. Since each
of these has index in the set above and their residue modulo r can take only r different
values, there must be at least one pair of indices with with the same residue modulo
r. Say these indices are i1r+ j1 and i2r+ j1. By assumption ‖i1r+ j1, i2r+ j1‖ < rs
so that ‖i1, i2‖ < s. Also by assumption, ‖rai1 + j1, rai2 + j1‖ < rk, which implies
that ‖ai1 , ai2‖ < k. This contradicts the hypothesis that A = a0, a1, . . . , an−1 is
(s, k)-clash-free. We conclude that no clash occurs in A′. �

The following example demonstrates that Proposition 4.6 is best possible in the
sense that the conclusion for A′ is no longer true if either rs is replaced with s′ > rs,
or rk is replaced with k′ > rk.

EXAMPLE. Let A = 0, 3, 6, 2, 5, 1, 4. It is easy to check that A is (2, 3)-clash-free.
The permutation (of Z14) constructed from A as in the proposition above for r = 2 is
A′ = 0, 1, 6, 7, 12, 13, 4, 5, 10, 11, 2, 3, 8, 9 and is by the proposition (4, 6, 2)-clash-free.
On the other hand A is not (5, 6, 2)-clash-free as a0 = 0, a1 = 1 and a4 = 12 would
clash and is not (4, 7, 2)-clash-free as a0 = 0, a1 = 1 and a2 = 6 would clash.

Proposition 4.7 Let A be an (s, k)-clash-free permutation. Then A is also (rs, k, r)-
clash-free.

Proof: Let A = a0, . . . , an−1 and suppose for a contradiction that ai0 , . . . , air clash.
That is

‖i0, . . . , ir‖ < rs and ‖ai0 , . . . , air‖ < k (4.5)

where without loss of generality i0 < i1 · · · < ir.

Now

‖i0, . . . , ir‖ =

r−1∑
j=0

(ij+1 − ij) + (n + i0 − ir)−m,

where m is the largest of the r + 1 terms in parentheses. Since the sum is less than
rs at least one of the remaining r terms, say il+1 − il, is less than s. That is,

‖il, il+1‖ < s.

We also have
‖ail, ail+1

‖ ≤ ‖ai0 , . . . , air‖ < k

so that ail and ail+1
(s, k)-clash in A, contradicting the hypothesis of the proposition.

�
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As pointed out by a referee, one could instead prove the proposition using the fact
that no k × s rectangle which is open on the north and east sides and closed on the
other sides can contain more than one point (i, ai).

5 Variants of clash-free permutations

5.1 Outline

In this section, we consider two variations of (s, k, r)-clash-free permutations. As
explained in the Introduction, when considered from the viewpoint of permuted
packing, these variations change the topology from a torus to a cylinder or to a
plane. It turns out that the cylinder is significantly easier than the torus and we
determine the analogue of σ(n, k, r) for all n, k and r; see Theorem 5.2 below. In the
final subsection, we consider (s, k)-clash-free permutations on the plane and prove
an analogue to Theorem 3.6.

5.2 Variant on the cylinder

We begin by defining the variant of (s, k, r)-clash-free permutations on the cylinder,
using the following notation. For i0, . . . , ir we let |i0, . . . , ir| = max{i0, . . . , ir} −
min{i0, . . . , ir}. When r = 1, we have that |i0, i1| = |i1 − i0|. For a permutation
A = a0, a1, . . . , an−1, a weak (s, k, r)-clash occurs between the (distinct) elements
ai0 , . . . , air if

|i0, . . . , ir| < s and ‖ai0 , . . . , air‖n < k. (5.1)

If the permutation A does not contain any such elements, then it is said to be weakly
(s, k, r)-clash-free. For example when k = 3, s = 3, n = 7 and r = 2, the permutation
A = 0, 2, 4, 6, 3, 5, 1 is weakly clash-free but is not clash-free as a0 = 0, a1 = 2 and
a6 = 1 clash. Let σ̂(n, k, r) be the maximum s for which a weakly (s, k, r)-clash-free
permutation exists for n, k and r. As |i0, . . . , ir| < s implies that ‖i0, . . . , ir‖ < s, we
have that σ̂(n, k, r) ≥ σ(n, k, r) for all n, k and r. We will determine σ̂(n, k, r) for all
parameters n, k and r. First we prove the natural analogue to Lemma 4.1 for weakly
(s, k, r)-clash-free permutations.

Lemma 5.1 Let k, n and r be integers with k and r both less than n. If r ≥ k then

σ̂(n, k, r) = n

and if r < k then
σ̂(n, k, r) ≤ �(rn− 1)/k�.

Proof: It is immediate from definitions that any permutation of Zn is weakly (n, k, r)-
clash-free when r ≥ k and so in this case σ̂(n, k, r) = n. Suppose instead that r < k.
Let A = a0, . . . , an−1 be a weakly (s, k, r)-clash-free permutation, for some integer
s ≤ n. For x and y in Zn let

Iy = {y, y + 1, . . . , y + k − 1 mod n}



A. MAMMOLITI AND J. SIMPSON/AUSTRALAS. J. COMBIN. 78 (1) (2020), 11–34 30

and
Sx = {ax′ : x ≤ x′ ≤ min{x+ s− 1, n}} .

Note that |Iy| = k for all y and |Sx| = s if x ≤ n− s+ 1 and |Sx| = n− x+ 1 when
x ≥ n − s + 2. If there exists a set A = {ai0 , . . . , air} of r + 1 elements of A such
that A ⊆ Sx ∩ Iy for some x, y ∈ Zn, then

|i0, . . . , ir| < s and ‖ai0 , . . . , air‖ < k, (5.2)

by the definitions of Sx and Iy, respectively. Since A is weakly (s, k, r)-clash-free,
(5.2) cannot hold, so we conclude that |Sx ∩ Iy| ≤ r for all x and y in Zn.

For each x ∈ Zn, consider the sum
∑

y∈Zn
|Iy ∩ Sx|. As each element of Sx appears

in exactly k sets Iy, and |Sx ∩ Iy| ≤ r for all y ∈ Zn, it follows that

|Sx| k =
∑
y∈Zn

|Iy ∩ Sx| ≤ rn. (5.3)

In particular, as |S0| = s, we have that sk ≤ rn. Therefore, σ̂(n, k, r) ≤ �rn/k�,
which proves the lemma when rn is not divisible by k.

It only remains to show that if k divides rn then s, and therefore, σ̂(n, k, r), cannot
be rn/k. Suppose for the sake of contradiction that s = rn/k. Let x ∈ Zn be an
element such that |Sx| = s. Then equality holds in (5.3) and so |Iy ∩ Sx| = r for all
y ∈ Zn. So for any z ∈ Sx, as z ∈ Iz ∩Sx, z /∈ Iz+1∩Sx and |Iz+1∩Sx| = r, it follows
that (z + k mod n) ∈ Sx. Therefore, Sx is the union of residue classes of Zn modulo
k. In particular, as |S0| = s = |S1|, S0 and S1 are each union of residue classes of Zn

modulo k. However, S0 \ S1 and S1 \ S0 each contain one element while any residue
class of Zn modulo k contains at least two elements, which is a contradiction. Thus,
s < rn/k and the result follows. �

Now we can determine σ̂(n, k, r).

Theorem 5.2 Let n, k and r be integers with r < k < n. Then

σ̂(n, k, r) =

⌊
rn− 1

k

⌋
.

Proof: By Lemma 5.1, we only need to find a weakly (s, k, r)-clash-free permutation
with s = � rn−1

k
�. Let d = gcd(k, n). For i = 0, . . . , d − 1 and j = 0, . . . , n/d − 1 let

T [i, j] = i+ kj mod n. Then we construct the permutation

A = T [0, 0], T [0, 1], . . . , T [0, n/d− 1], T [1, 0], . . . , T [d− 1, n/d− 1]

:= a0, . . . , an−1.

It is easy to check that ain/d+j = T [i, j] for all i = 0, . . . , d−1 and j = 0, . . . , n/d−1.
We prove that A is clash-free. For the sake of contradiction, suppose the elements
T [i0, j0], . . . , T [ir, jr] clash. That is∣∣∣i0n

d
+ j0, . . . , ir

n

d
+ jr

∣∣∣ < s and ‖i0 + kj0, . . . , ir + kjr‖ < k. (5.4)
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Without loss of generality we assume that 0 ≤ i0
n
d
+ j0 < · · · < ir

n
d
+ jr ≤ n− 1. As

0 ≤ ja ≤ n/d − 1, it follows that i0 ≤ · · · ≤ ir. Therefore |i0 n
d
+ j0, . . . , ir

n
d
+ jr| =

|i0 n
d
+ j0, ir

n
d
+ jr| = (ir − i0)n/d + (jr − j0). For 0 ≤ a ≤ r let i′a = ia and

j′a = (ia − i0)
n
d
+ ja. Clearly, ‖i0 + kj0, . . . , ir + kjr‖ = ‖i′0 + kj′0, . . . , i

′
r + kj′r‖. As

0 ≤ ja ≤ n/d − 1, no two j′a and j′b can be the same. So we have that i′0 + kj′0 <
i′1 + kj′1 < · · · < i′r + kj′r where i′a+1 + kj′a+1 − (i′a + kj′a) ≥ k for all 0 ≤ a ≤ r − 1.

Let I be the smallest interval that contains all of i0 + kj0, . . . , ir + kjr modulo n,
i.e., I is the smallest set of the form I = {a+ b mod n : b = 0, . . . , c} that contains
il + kjl mod n for all 0 ≤ l ≤ r. By (5.4), |I| < k. If n − 1 and 0 are both in I,
we replace each ja with ja − 1 (and each j′a with j′a − 1), so that, without loss of
generality, I is a set of consecutive integers. For 0 ≤ a ≤ r let i′a+kj′a = la+man for
integer la and ma such that 0 ≤ la ≤ n− 1. Clearly i′a + kj′a mod n = la and la ∈ I
for all a. Also, as la+1 +ma+1n − (la +man) ≥ k for any 0 ≤ a ≤ r − 1 and I is a
set of less than k consecutive integers, ma < ma+1, i.e, each value of ma is different.
Therefore, lr +mrn − (l0 +m0n) = (mr −m0)n + (lr − l0) > rn − k. On the other
hand by (5.4), (ir − i0)

n
d
+ (jr − j0) = |i0 n

d
+ j0, . . . , ir

n
d
+ jr| ≤ s− 1 and so

i′r + kj′r − i′0 − kj′0 = ir + (ir − i0)
nk

d
+ jrk − i0 − kj0 ≤ (s− 1)k + ir − i0 .

Since k and n are multiples of d and s < rn
k
, sk ≤ rn − d. Thus as ir − i0 < d,

i′r + kj′r − i′0 − kj′0 < rn− d− k + d = rn− k. Hence we have the contradiction

rn− k < lr +mrn− (l0 +m0n) = i′r + kj′r − (i′0 + kj′0) < rn− k .

�

Let ν̂(s, k, r) be the minimum integer n such that a weakly (s, k, r)-clash-free
permutation of length n exists.

Corollary 5.3 For positive integers s, k and r, with r < k and r < s,

ν̂(s, k, r) =
⌈sk + 1

r

⌉
.

Proof: By Lemma 5.1, ν̂(s, k, r) ≥ 	 sk+1
r


. By Theorem 5.2 a weakly (s, k, r)-clash-
free permutation of Zn with n = 	sk+1

r

 exists, since n ≥ k and n ≥ s. Therefore,

ν̂(s, k, r) ≤ 	 sk+1
r


 and the result follows. �

One can also consider permutations A = a0, a1, . . . , an−1, that are free of elements
ai0 , . . . , air such that

‖i0, . . . , ir‖n < s and |ai0, . . . , air | < k. (5.5)

Call such a permutation A weak dual (s, k, r)-clash-free and let σ̃(n, k, r) be the
maximum s for which a weak dual (s, k, r)-clash-free permutation A of Zn exists.
We show that the value σ̃(n, k, r) is determined by σ̂(n, k, r).
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Analogous to Theorem 2.1 , it is easy to check that A is weak (s, k, r)-clash-free
if and only if A−1 is weak dual (k, s, r)-clash-free. Thus, σ̃(n, k, r) ≥ s if and only
if σ̂(n, s, r) ≥ k. So, as Lemma 5.1 implies a weak (s, k, r)-clash-free permutation
of Zn exist only if sk ≤ (rn − 1), we have that σ̃(n, k, r) ≤ �(rn − 1)/k�. For
r < k < n, let s be the largest integer such that sk ≤ rn− 1, i.e., s = �(rn− 1)/k�.
By Theorem 5.2, σ̂(n, s, r) = �(rn− 1)/s� ≥ k. So σ̃(n, k, r) ≥ s. It follows that
σ̃(n, k, r) = �(rn− 1)/k�.

5.3 Variant on the plane

We now briefly consider a variant of clash-free permutations in which we change
the topology of the set [0, n] × [0, n] from a torus to a plane. For a permutation
A = a0, a1, . . . , an−1, a very weak (s, k, r)-clash occurs between the (distinct) elements
ai0 , . . . , air if

|i0, . . . , ir| < s and |ai0 , . . . , air | < k. (5.6)

Let σvw(n, k, r) denote the maximum s for which a very weak (s, k, r)-clash-free
permutation of Zn exists. As |ai0, . . . , air | < k implies ‖ai0 , . . . , air‖ < k, it follows
that σvw(n, k, r) ≥ σ̂(n, k, r). In particular, σvw(n, k, r) ≥ �(rn − 1)/k� for all r <
k < n, by Theorem 5.2. However, σvw(n, k, r) can exceed σ̂(n, k, r), as the following
demonstrates.

Proposition 5.4 For integers 1 < k < n, such that k | n,

σvw(n, k) =
n

k
.

Proof: Let ain/k+j = jk + (k − 1 − i) for 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ n
k
− 1 and

A = a0, . . . , an−1. We show that A is very weak (n/k, k)-clash-free. If distinct ain/k+j

and ai′n/k+j′ elements very weakly clash, then∣∣∣in
k
+ j − i′

n

k
− j′

∣∣∣ < n

k
and |jk + (k − 1− i)− j′k − (k − 1− i′)| < k

and with simplification∣∣∣(i− i′)
n

k
+ (j − j′)

∣∣∣ < n

k
and |(j − j′)k + (i′ − i)| < k (5.7)

Without loss of generality j ≥ j′. The latter condition of (5.7), occurs only if j = j′

or j = j′ +1 and i′ < i. Since j ≥ j′, the first condition of (5.7), occurs only if i = i′

or i′ = i + 1. As ain/k+j and ai′n/k+j′ are distinct, both condition of (5.7) cannot
occur simultaneously. Thus we have shown that σvw(n, k) ≥ �n/k�.
Now we show that σvw(n, k) ≤ �n/k�. Suppose an arbitrary permutation A =
a0, . . . , an−1 is very weak (s, k)-clash-free. Let ai, ai+1, . . . , ai+s−1 be a sequence of el-
ements ofA that contains n−k. Relabel the set {ai, ai+1, . . . , ai+s−1} as {b0, . . . , bs−1}
where 0 ≤ b0 < b1 < · · · < bs−1 ≤ n− 1. As A is clash-free, bs−1 ≤ n− k, otherwise
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bj = n − k for j < s − 1 and so n − k < bs−1 ≤ n − 1 which would imply that
|bj − bs−1| < k. So

n− k ≥ (bs−1 − b0) =

s−2∑
i=0

(bi+1 − bi) ≥ k(s− 1).

It follows that σvw(n, k) ≤ �n/k�. Hence, σvw(n, k) = n/k. �

In general we expect the following.

Conjecture 5.5 Let n, k and r be integers. Then

σvw(n, k, r) =
⌊rn
k

⌋
.

6 Concluding remarks

We began by considering the function σ(n, k), and its sister function κ(n, s), and
showed that if gcd(k, n) = 1 then σ(n, k) = �n/k� (Theorem 3.2) and that if k
divides n then σ(n, k) = n/k − 1 (Theorem 3.6). Theorem 3.7 and Corollary 3.8
allowed us to extend these results to some other cases but the values of σ(n, k) for
general n and k remains open. However, we conjecture (Conjecture 3.9) that

�(n− 1)/k� − 1 ≤ σ(n, k) ≤ �(n− 1)/k�

for all n and k.

We also considered the functions σ̂(n, k, r) and σ(n, k, r) and their sister functions.
In Lemma 4.1 and Theorem 5.2 we showed that if r < k < n then

σ̂(n, k, r) = �(rn− 1)/k�

and that
σ̂(n, k, r) = n

if k ≤ r < n.

For the function σ(n, k, r) we showed that if gcd(k, n) = 1 then σ(n, k, r) =
�rn/k� and if k divides n and gcd(r, k) = 1 then σ(n, k, r) = rn/k − 1 (Theorem
4.2 and Corollary 4.5). Lemma 19 allowed us to extend these results to some other
cases but we are unable to obtain values of σ(n, k, r) for all n, k, and r. Instead,
analogously to Conjecture 3.9 we expect the following.

Conjecture 6.1 Let n, k and r be integers and s = �(rn− 1)/k�. Then

s− 1 ≤ σ(n, k, r) ≤ s .
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We also considered the function ν(s, k) and proved ν(s, k) = sk + 1 in Corol-
lary 3.3. As noted at the end Subsection 3.4, it is possible that n > ν(s, k), yet
no (s, k)-clash-free of Zn exists. So it is natural to ask, how many such values of n
can exists for a given s and k? And for how many pairs (s, k) does there exist an
n > ν(s, k) such that no (s, k)-clash-free of Zn exists?

We also consider the function ν(s, k, r) and proved ν(s, k, r) = 	(sk + 1)/r
 in
certain cases in Corollary 4.3. Can this be extended to all appropriate values of r, s
and k?
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