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Abstract

Zero forcing is a process that colors the vertices of a graph blue by start-
ing with some vertices blue and applying a color change rule. Throttling
minimizes the sum of the number of initial blue vertices and the time to
color the graph. In this paper, we study throttling for skew zero forc-
ing. We characterize the graphs of order n with skew throttling numbers
1, 2, n − 1, and n. We find the exact skew throttling numbers of paths,
cycles, and balanced spiders with short legs. In addition, we find a lower
bound on the skew throttling number in terms of the diameter of the
graph for graphs of minimum degree at least two.

1 Introduction

Zero forcing is a process on graphs in which vertices have two possible colors, blue
and white. In each round (also called a time step), each current blue vertex with
only one white neighbor will force (or color) that neighbor blue (we use the words
“color” and “force” interchangeably in this paper). We call the set of blue vertices
at the beginning of the zero forcing process an initial coloring. An initial set S
of blue vertices that eventually colors the whole graph blue is called a zero forcing
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set. For any graph G, the minimum possible size of a zero forcing set is called the
zero forcing number Z(G). The zero forcing number of any graph G gives an upper
bound for the maximum nullity of the family of symmetric matrices with off-diagonal
nonzero pattern described by the edges of G [1]. Zero forcing has also been applied
to quantum systems control [4, 11] and graph searching [12]. For any set S of blue
vertices, the number of rounds for the whole graph G to be colored blue is denoted
pt(G;S), the propagation time of S. We use the convention of letting pt(G;S) =∞
when S is not a zero forcing set. The propagation time of G, pt(G), is the minimum
value of pt(G;S) over all minimum zero forcing sets S [8].

Several other variants of zero forcing have been studied, including positive semi-
definite (PSD) zero forcing and skew zero forcing. In PSD zero forcing, each blue
vertex colors any vertex that is its only white neighbor in a connected component
obtained by removing all of the blue vertices. The PSD zero forcing number Z+(G)
[2] and PSD propagation times pt+(G;S) and pt+(G) [13] are defined analogously to
Z(G), pt(G;S), and pt(G). Like Z(G), Z+(G) gives an upper bound for the maximum
nullity of the family of positive semidefinite matrices corresponding to G [2]. The
PSD zero forcing number has also been applied to study the cop versus robber game
on trees [3]. In skew zero forcing, every vertex with only one white neighbor colors
that neighbor blue in each round. This differs from standard zero forcing in that a
white vertex is allowed to color its neighbor. The skew zero forcing number Z−(G)
[9] and skew propagation times pt−(G;S) and pt−(G) [10] are defined in analogy
with Z(G), pt(G;S), and pt(G). As in the case of Z(G) and Z+(G), Z−(G) gives an
upper bound for the maximum nullity of the family of skew-symmetric matrices cor-
responding to G [9] and for the maximum nullity of zero-diagonal symmetric matrices
corresponding to G (the maximum nullity of weighted adjacency matrices) [7].

For each variant of zero forcing, the propagation time of a graph G is defined using
only minimum zero forcing sets, but it is natural to investigate the propagation time
for larger sets and to minimize the sum of the number of initially blue vertices and
the propagation time of that set. This is called throttling. Throttling minimizes the
sum of the resources and the time needed to accomplish the task. For a graph G and
set S ⊆ V (G), define th(G;S) = |S| + pt(G;S) and th(G) = minS⊆V (G) th(G;S).
The zero forcing throttling number th(G) was introduced in [5], where a tight lower
bound was presented. Throttling numbers th+(G) and thc(G) have also been defined
analogously for PSD zero forcing in [6] and the cop versus robber game in [3], where
it was proved that th+(T ) = thc(T ) for trees T (but not for all graphs).

In this paper, we introduce the study of throttling for skew zero forcing. For a
graph G and set S ⊆ V (G), define th−(G;S) = |S|+pt−(G;S) and the skew throttling
number th−(G) = minS⊆V (G) th−(G;S). For k ≥ Z−(G), it is also convenient to
define th−(G, k) = min|S|=k th−(G;S); with this notation, th−(G) = mink th−(G, k).
In Section 2, we characterize the graphs of order n with skew throttling numbers of
1, 2, n − 1 and n. In Section 3, we determine skew throttling numbers for several
families of graphs including paths, cycles, and some spiders. We also prove a lower
bound th−(G) = Ω(

√
d) for graphs G of diameter d and minimum degree at least

two, and exhibit a family of graphs that achieve this bound.
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We define some graph terminology that is used in our results. A cograph is
a graph that can be generated from K1 using only complementation and disjoint
union. Equivalently, a cograph is a graph that does not contain P4 (a path on four
vertices) as an induced subgraph. The corona G1 ◦G2 of G1 with G2 is obtained by
making one copy of G1, |V (G1)| copies of G2, and connecting every vertex in the ith

copy of G2 to the ith vertex of G1. A spider is a tree with a single vertex of degree
at least 3, which is called the center. The graph obtained by removing this vertex is
a disjoint union of paths. Each of these paths is a leg of the spider, and the length of
the leg is the number of vertices in the path. The spider is called balanced if all legs
have the same length. A universal vertex of G is a vertex adjacent to every other
vertex in G.

2 Extreme skew throttling numbers

In this section we characterize graphs with very low or very high skew throttling
numbers. Butler and Young [5] show that d2

√
n− 1e ≤ th(G) for all graphs G of

order n. However, there are in general no useful bounds on the skew throttling
number in terms of the order of the graph, since we exhibit graphs G of order n with
th−(G) = 1 and th−(G) = n and we show that there are connected graphs G of order
n ≥ 3 with th−(G) = 2 and th−(G) = n− 1.

2.1 Low skew throttling

In this section, we determine graphs having skew throttling number at most two.
We use rK2 to denote the graph consisting of r disjoint copies of K2.

Proposition 2.1. For a graph G, th−(G) = 1 if and only if G = K1 or G = rK2

for r ≥ 1.

Proof. If th−(G) = 1, then th−(G, 1) = 1 or th−(G, 0) = 1, which imply G = K1 or
G = rK2, respectively. The converse is clear.

Lemma 2.2. A graph G has th−(G) = th−(G, 0) = 2 if and only if G =
(
Ĝ ◦

K1

)
∪̇ rK2 where Ĝ is a graph of order at least two in which each component of Ĝ

has an edge and r is a nonnegative integer. In this case, the order of G is even.

Proof. Suppose G =
(
Ĝ ◦K1

)
∪̇ rK2,

∣∣V (Ĝ)∣∣ ≥ 2, and each component of Ĝ has an
edge. Each leaf (vertex of degree one) forces its neighbor in the first round. Then

each vertex in Ĝ forces its one leaf neighbor, so th−
((
Ĝ ◦K1

)
∪̇ rK2, 0

)
= 2. Since

the order of a component of Ĝ ◦ K1 is at least four, th−
((
Ĝ ◦ K1

)
∪̇ rK2

)
6= 1 by

Proposition 2.1. Thus th−
((
Ĝ ◦K1

)
∪̇ rK2

)
= th−

((
Ĝ ◦K1

)
∪̇ rK2, 0

)
= 2.

Now assume th−(G) = th−(G, 0) = 2. Let L be the set of leaves of G. With
S = ∅, the vertices in L are the only vertices that can force during the first round.
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Any K2 component of G is now all blue, but G is not. Define G′ to be the subgraph
of components of G that are not entirely blue, L′ to be the set of leaves of G′, and
U = {u : u ∈ N(`) for some ` ∈ L′}. No vertex in L′ is blue after the first round
because deg u ≥ 2 for every u ∈ U . In the next round all vertices in L′ must be
colored blue. This means that the neighbor u of ` must force ` in the second round,
so every other neighbor of u must be blue after the first round. Thus G′ = G[U ]◦K1

and G = G′ ∪̇ rK2.

For nonnegative integers s and t, define H(s, t) to be the graph with V (H(s, t)) =
{b} ∪̇ {xi, yi : i = 1, . . . , s} ∪̇ {zi, wi : i = 1, . . . , t} and E(H(s, t)) = {bxi, xiyi : i =
1, . . . , s} ∪ {bzi, bwi, ziwi : i = 1, . . . , t}. The graph H(2, 3) is shown in Figure 2.1.

Figure 2.1: The graph H(2, 3)

Lemma 2.3. A graph G has th−(G) = th−(G, 1) = 2 if and only if G = H(s, t) ∪̇ rK2

for some r, s, t ≥ 0 with r + s + t ≥ 1. In this case, the order of G is odd.

Proof. It is straightforward to verify that th−(H(s, t) ∪̇ rK2, {b}) = 2 for r+s+t ≥ 1.
By Proposition 2.1, th−(H(s, t) ∪̇ rK2) ≥ 2 when r + s + t ≥ 1.

Assume that th−(G) = 2 and that G can be skew-throttled in one round with

one initial blue vertex b. Let G̃ be the connected component containing b. Since K2

is the only connected graph that can force itself in one round with no blue vertices,
G = G̃ ∪̇ rK2 for some r ≥ 0. If |V (G̃)| = 1, then th−(G) = 2 implies r ≥ 1

and G = H(0, 0) ∪̇ rK2. It is not possible to have |V (G̃)| = 2, because this would

imply G = (r + 1)K2 and th−(G) = 1. If |V (G̃)| = 3, then G̃ = P3 = H(1, 0) or

G̃ = K3 = H(0, 1).

So assume |V (G̃)| ≥ 4. Let v be a vertex at maximum distance from b in G̃. If
dist(b, v) ≥ 3, then for any neighbor u of v, deg u ≥ 2 and b is not a neighbor of u.
Thus, dist(b, v) ≥ 3 implies v cannot be colored blue in the first round. So no vertex

in G̃ is at distance more than two from b. Since |V (G̃)| ≥ 4, this implies deg b ≥ 2
and b cannot perform a force in the first round. Indeed, if we had deg b = 1, then the
only neighbor u of b is a universal vertex in G̃. Since u has at least two neighbors
besides b, no neighbor of u other than b would ever get colored, so we conclude that
deg b 6= 1. Since b cannot force, forcing in G̃ is the same as forcing in G̃ − b. Thus
th−(G̃− b, 0) = 1, so G̃− b = qK2. For a K2 that has one edge between it and b, we
designate its vertices as xi, yi whereas a K2 that has two edges between it and b has
its vertices designated as zi, wi; with the vertices labeled this way we have identified
G̃ as some H(s, t) with s + t ≥ 2.
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Since th−(G) = 2 implies one of th−(G, 0) = 2, th−(G, 1) = 2, or th−(G, 2) = 2,
the next result follows from Lemmas 2.2 and 2.3 and the observation that th−(G, k) =
k implies |V (G)| = k.

Theorem 2.4. A graph G has th−(G)=2 if and only if G is one of 2K1,H(s, t) ∪̇ rK2

with r + s + t ≥ 1, or
(
Ĝ ◦K1

)
∪̇ rK2 where each component of Ĝ has an edge and

Ĝ has order at least two.

By considering G = Cm◦K1 we see that th−(G) = 2 can be achieved by a graph of
arbitrarily large order with maximum degree three, unlike the case of PSD throttling
[6]. Lemma 2.3 also implies that graphs in a well-known family have skew throttling
number equal to two: For n ≥ 1, the friendship graph Fn is the planar graph with
2n + 1 vertices and 3n edges constructed by joining a universal vertex to n disjoint
copies of K2. That is, Fn = H(0, n), so th−(Fn) = 2 by Lemma 2.3. The proof of
Lemma 2.3 also established that Z−(Fn) = 1 and pt−(Fn) = 1.

2.2 High skew throttling

We now turn to graphs with high skew throttling number. For graphs G with all
vertices isolated, it is clear that th−(G) = n. In the next result, we establish an
upper bound on the skew throttling number for graphs that have an edge.

Proposition 2.5. Let G be a graph of order n. If G has an edge, then th−(G) ≤ n−1.
Thus th−(G) = n if and only if G = nK1.

Proof. If G has an edge uv, then pt−(G;V (G) \ {u, v}) = 1, which implies th−(G) ≤
th−(G;V (G) \ {u, v}) = n− 1. Thus th−(G) = n if and only if G = nK1.

Remark 2.6. Let G be a graph of order n that has an edge, so th−(G) ≤ n − 1.
This implies pt−(G;S) ≥ 1 for any set S such that th−(G;S) = th−(G), which then
implies |S| ≤ n − 2 for any such S. Furthermore, it is straightforward to see that
pt−(G) ≤ 2 implies th−(G) = Z−(G) + pt−(G): This is immediate for pt−(G) = 1.
In the case pt−(G) = 2, it is not possible to improve throttling by adding one to the
skew zero forcing set.

Let G be a cograph. The ∪−∨ decomposition tree TG of G is a rooted binary tree
such that the vertices of G are the leaves of TG and each non-leaf vertex is labeled
either ∪ or ∨, where ∪ represents disjoint union and ∨ represents join. For a non-leaf
vertex x of TG, the branches at x are the two connected components of TG induced
by the descendants of x. If y is a vertex of G (and a leaf of TG), define Gy = G[{y}].
For x a non-leaf vertex of TG, define Gx to be the subgraph of G induced by the
leaves of TG that are descendants of x. Observe that Gx can be obtained by applying
the operation in the label of x to Gy and Gz, where y and z denote the immediate
descendants of x, and G = Gr where r is the root of TG.
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If G is a cograph with no induced 2K2, then every ∪ vertex in the ∪−∨ decom-
position of G has a branch with no ∨, since otherwise each of the disjoint subgraphs
of G induced by the descendants of the ∪ vertex would have a K2.

Theorem 2.7. For a graph G of order n, th−(G) = n − 1 if and only if G is a
cograph with no induced 2K2 and at least one edge.

Proof. Let G be a graph of order n. We first establish that th−(G) 6= n− 1 if G has
no edges, or if G has an induced P4 or 2K2. If G has no edges, then th−(G) = n. If
G has an induced P4, then let S consist of all vertices except those in an induced P4,
so pt−(G;S) = 2 and th−(G) ≤ n− 2. If G has an induced 2K2, then let S ′ consist
of all vertices except those in an induced 2K2, so pt−(G;S ′) = 1 and th−(G) ≤ n−3.

Next, we prove by induction on the order of the graph that every cograph G
of order n with no induced 2K2 has skew throttling number n if G has no edges
and n − 1 if G has at least one edge. Clearly the statement is true for graphs of
order 1, since there are no edges and the skew throttling number is 1. The induction
hypothesis is that every cograph of order k < n with no induced 2K2 must have skew
throttling number k− 1 if it has an edge and k if it has no edge. Let G be a cograph
of order n > 1 with no induced 2K2.

Let x be the root of TG (so Gx = G), and denote the immediate descendants of
x by y and z. The induction hypothesis applies to Gy and Gz since each has order
less than n.

Suppose first that x is labeled with ∪. Then at least one of the branches of x,
say the one that contains y, has no ∨, so Gy consists of isolated vertices. If neither
branch has a ∨, then Gx consists of isolated vertices and th−(Gx) = |Gx|. Suppose
the branch at z has a ∨, so Gz has an edge. Any zero forcing set of Gx must consist
of a zero forcing set for Gz along with every vertex in Gy. Thus

th−(Gx) = th−(Gz) + |Gy| = |Gz| − 1 + |Gy| = |Gx| − 1.

Now suppose x is labeled with ∨. Let S be a set of vertices such that th−(Gx) =
th−(Gx, S). The number of white vertices (i.e., vertices not in S) is at least 2 by
Remark 2.6. No vertex in Gy can force any other vertex in Gy until every vertex in
Gz is blue, and vice versa. Moreover, no vertex in Gy can force any vertex in Gz until
all but one vertex in Gz is blue, and vice versa. For the zero forcing process to start,
Gy or Gz must initially have at most one white vertex. If each of Gy and Gz has
exactly one white vertex at the start, then pt−(Gx, S) = 1, and th−(Gx) = |Gx| − 1.

If initially Gy has one white vertex and Gz has more than one white vertex, then
no vertex in Gz can be colored blue in the first round: Every vertex in Gy has at
least two white neighbors in Gz and a vertex in Gz that has a white neighbor in Gz

has at least two white neighbors including one in Gy. So in the first round there is
exactly one force u → w where u ∈ Gz and w ∈ Gy, and all vertices of Gy are blue
after the first round. Thus the initial set S has the same skew throttling number as
S ′ = S ∪ {w}, since throttling with S ′ adds one to the size of the zero forcing set
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but subtracts one from the propagation time. Thus we replace S by S ′ for the rest
of the proof; observe that S ′ ∩ V (Gz) = S ∩ V (Gz).

If all of the vertices in Gz were isolated, then all but one vertex in Gz would
have to be in S ′, or else no vertex in Gy could color any vertex in Gz. However, we
assumed that S ′ omits more than one white vertex of Gz, so Gz must have an edge.
Since Gz has an edge, th−(Gz) = |Gz|−1 by the induction hypothesis. Suppose that
as S ′ colors all the vertices blue, a vertex v in Gy forces a vertex w′ of Gz. Necessarily
v → w′ is the last force, and this force is the only force in the last round. Thus S ′

has the same skew throttling number as S ′′ = S ′ ∪ {w′}, since throttling with S ′′

adds one to the size of the zero forcing set but subtracts one from the propagation
time. In this case, we replace S ′ by S ′′ for the rest of the proof (if this case does not
apply, then let S ′′ = S ′). Define Z = S ′′ \V (Gy). Using S ′′, no vertex of Gy performs
a force, so Z is a skew zero forcing set for Gz. Thus pt−(Gx;S ′′) = pt−(Gz, Z) and

th−(Gx) = th−(Gx;S ′′) = |Gy|+ |Z|+ pt−(Gz, Z) = |Gx| − 1.

It follows from Theorem 2.7 that the complete multipartite graph Kn1,n2,...,ns with
s ≥ 2 and n := n1+n2+· · ·+ns is an example of a graph with th−(Kn1,n2,...,ns) = n−1;
this also follows from results of Kingsley, who showed in [10] that Z−(Kn1,n2,...,ns) =
n− 2 and pt−(Kn1,n2,...,ns) = 1.

3 Skew throttling numbers of families of graphs

In this section we determine the skew throttling numbers of hypercube graphs, paths,
cycles, and balanced spiders with short legs. We also find the maximum and mini-
mum skew throttling numbers of trees of order n, and we bound the skew throttling
numbers of all balanced spiders.

Just as connected graphs of order n have skew throttling numbers ranging between
2 and n− 1 for n ≥ 3, the same is true of trees of order n. The maximum is at most
n−1 by Proposition 2.5, and T achieves th−(T ) = n−1 if T is a star. The minimum
is at least 2 by Proposition 2.1, and T achieves th−(T ) = 2 if T = T ′ ◦K1 for some
tree T ′ of order at least two. Even if we restrict the tree to have maximum degree
d, there are still trees with Ω(n) skew throttling numbers, e.g., when T is obtained
from a tree of maximum degree d−2 by adding two leaves to every vertex. Although
the skew throttling number of the star of order n is close to the (standard) throttling
number, which is n, the skew throttling numbers of paths and cycles behave more
like the PSD throttling numbers of those graphs. We begin with cycles and paths.

Proposition 3.1. For all n ≥ 3, th−(Cn) =
⌈√

2n− 1
2

⌉
.

Proof. The proof for the lower bound is the same as the proof of Proposition 2.5
in [6].

For the upper bound, we can start with the same construction as in the proof of
Theorem 3.3 of [6]. We initially color blue every (k + 1)st vertex around the cycle,
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where k is the largest even integer such that n ≥ k2

2
. Let r be the remainder when

n is divided by k + 1. The initial blue coloring splits the white vertices into paths
of size k when r = 0 and one short path containing r− 1 white vertices when r ≥ 1.
Since k is even, the white paths of size k turn blue in k

2
rounds. If r = 0 we are done

and th−(Cn) ≤
⌈√

2n− 1
2

⌉
. When r ≥ 1 is odd, the number of white vertices in the

short path is even, so the short path will also turn blue in at most k
2

rounds. We
have used the same number of blue vertices as in the proof of [6, Theorem 3.3], so
again th−(Cn) ≤

⌈√
2n− 1

2

⌉
.

If r ≥ 1 is even and r < k, then we can modify the initial coloring by increasing
the lengths of r

2
of the white paths of length k to k + 2 and decreasing the length

of the short path to 0. Note that in this case, there are at least k
2
− 1 white paths

of length k before the modification because n ≥ k2

2
. Moreover, we removed a blue

vertex. Thus again we have th−(Cn) ≤
⌈√

2n− 1
2

⌉
.

If r = k, then there are two possible values of n, namely n =
(
k
2
− 1
)

(k + 1) + k
and n = k

2
(k+ 1) + k, since any other integer m of the form q(k+ 1) + k with integer

q has m ≥ (k+2)2

2
for q > k

2
and m < k2

2
for q < k

2
− 1. For n = k

2
(k + 1) + k, we can

again modify the initial coloring by increasing the lengths of the r
2

= k
2

white paths
of length k on the cycle to k+2, thereby decreasing the length of the short path to 0.
In this process we also removed a blue vertex, so we have th−(Cn) ≤

⌈√
2n− 1

2

⌉
. For

n =
(
k
2
− 1
)

(k + 1) + k, we can modify the initial coloring by decreasing the lengths
of the white paths of length k on the cycle to k− 2, which decreases the propagation
time by one. The number of white paths increases from k

2
(consisting of k

2
− 1 paths

with k white vertices and one short path with k−1 white vertices) to k
2

+1 (with each

path having k − 2 white vertices). Thus again we have th−(Cn) ≤
⌈√

2n− 1
2

⌉
.

Proposition 3.2. For all n ≥ 3, th−(Pn) =
⌈√

2(n + 1)− 3
2

⌉
.

Proof. The proof for the lower bound is almost the same as the proof of Proposition
2.5 in [6], except we use the inequality s(2p + 1) + 2p ≥ n instead of s(2p + 1) ≥ n
since the leaves can color their neighbors, where s denotes the number of initial blue
vertices and p denotes the propagation time.

For the upper bound, choose a set S of blue vertices for the cycle on n+1 vertices

with th−(Cn+1;S) = th−(Cn+1) =
⌈√

2(n + 1)− 1
2

⌉
that has an initial blue vertex v

with no initial blue neighbor. Delete v from the graph and the set S. This results
in the graph Pn and set of blue vertices S ′ = S \ {v} such that

th−(Pn;S ′) =

⌈√
2(n + 1)− 1

2

⌉
− 1 =

⌈√
2(n + 1)− 3

2

⌉
.

Remark 3.3. For a cycle Cn with n ≥ 4,

• [6] th(Cn) =

{
d2
√
n− 1e unless n = (2k + 1)2

2
√
n if n = (2k + 1)2

.
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• [6] th+(Cn) =
⌈√

2n− 1
2

⌉
.

• th−(Cn) =
⌈√

2n− 1
2

⌉
.

For a path Pn with n ≥ 3,

• [5] th(Pn) = d2
√
n− 1e .

• [6] th+(Pn) =
⌈√

2n− 1
2

⌉
.

• th−(Pn) =
⌈√

2(n + 1)− 3
2

⌉
.

We use Tp,` to denote the balanced spider with p legs, each of length `; T4,3

is shown in Figure 3.1. Observe that the order of Tp,` is n = p` + 1. Note that
Tp,1 = K1,p and th−(K1,p) = p by Theorem 2.7, so the discussion here focuses on
` ≥ 2.

Figure 3.1: The graph T4,3

Theorem 3.4. Let ` ≥ 2 be fixed and let p > `
2

+ 1. Then

th−(Tp,`) =


1 + `

2
if ` is even

1 + p + `−1
4

if ` = 4q + 1 for some integer q

1 + p + `+1
4

if ` = 4q + 3 for some integer q.

Proof. If ` is even, consider the skew zero forcing set consisting of one vertex, specifi-
cally the center. This partitions the graph into p disjoint copies of P`. Therefore, the
graph will be colored in `

2
rounds. For the lower bound, note first that Z−(Tp,`) = 1.

If there is a leg with no initial blue vertex, then the propagation time is at least `
2

and th−(Tp,`) ≥ `
2

+ 1. If every leg has an initial blue vertex, then this would not be
an optimal skew throttling set because p > `

2
+ 1. Thus th−(Tp,`) = `

2
+ 1 when ` is

even.

Now suppose ` is odd and let S denote the set of vertices that are blue initially.
First note that if Tp,` has two or more legs that contain no vertex from S, then S is
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not a skew zero forcing set. Thus |S| ≥ p− 1. We consider two cases, based on the
parity of ` mod 4.

First, suppose that ` = 4q+1 for some positive integer q. Consider the skew zero
forcing set S consisting of the center c and each vertex at distance d from c where
d = `+1

2
. Thus, G − S has been partitioned into 2p disjoint copies of P `−1

2
and the

graph will be colored in `−1
4

rounds. For the lower bound, if there is a leg that does
not contain any vertex in S, then pt−(Tp,`;S) ≥ `+1

2
, which implies that

th−(Tp,`;S) ≥ p− 1 +
` + 1

2
≥ 1 + p +

`− 1

4
(1)

since ` ≥ 5. Thus there must exist an optimal initial blue set S of size at least p
with a blue vertex in every leg, and we assume we have chosen such a S. If there is
a leg that has only one vertex in S, then the propagation time is at least `−1

4
, and

this is achieved only when the center vertex is also blue. If every leg has at least two
vertices in S, then S would not be an optimal skew throttling set because

p >
`

2
+ 1 > 1 +

`− 1

4
. (2)

Thus th−(Tp,`) = 1 + p + `−1
4

when ` = 4q + 1 for some positive integer q.

Now suppose that ` = 4q + 3 for some integer q ≥ 0. It is straightforward to
verify that th−(Tp,3) = p + 2 = 1 + p + 3+1

4
, so we assume ` ≥ 7. The argument is

similar to the case ` = 4q + 1. For the upper bound, the blue vertices in the legs are
placed at distance `−1

2
from the center and G−S is partitioned into p disjoint copies

of P `−3
2

and p disjoint copies of P `+1
2

. The lower bound argument is the same until

(1), where `−1
4

is replaced by `+1
4

, but the equation remains true because now ` ≥ 7.
The statement (2) also remains valid with `−1

4
replaced by `+1

4
. So we assume an

optimal S in which each leg has at least one vertex in S and there is a leg with only
one vertex in S. In G−S, a leg with exactly one vertex in S is best partitioned into
one P `−3

2
and one P `+1

2
and the best possible propagation time is `+1

4
. This can be

achieved in two ways: When the center is in S, or when the P `−3
2

is next to the center

and there is a blue vertex at distance two from the center. In the latter case, there
must be another vertex in S in the leg with the blue vertex at distance two from the
center. Thus |S| ≥ p+1 and pt−(Tp,`;S) ≥ `+1

4
, or |S| ≥ p and pt−(Tp,`;S) ≥ `+1

4
+1.

So th−(Tp,`) = 1 + p + `+1
4

when ` = 4q + 3 for some positive integer q.

Theorem 3.5. For all `, p ≥ 2, 1
2
f(p, `) ≤ th−(Tp,`) ≤ 3f(p, `), where

f(p, `) =

{
min(`,

√
p`) if ` is even

max(p,
√
p`) if ` is odd.

Proof. We split the proof into cases depending on whether p >
√
p` or p ≤

√
p`. In

the case that p >
√
p`, then p > ` ≥ 1 + `

2
, so Theorem 3.4 applies. When ` is even,

f(p, `) = ` ≥ th−(Tp,`) = 1 +
`

2
>

`

2
=

1

2
f(p, `).
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When ` is odd,

2f(p, `) = 2p ≥ 1 + p +
` + 1

4
≥ th−(Tp,`) ≥ 1 + p +

`− 1

4
>

1

2
p =

1

2
f(p, `).

Now suppose p ≤
√
p`, so

√
p` ≤ ` and f(p, `) =

√
p`. For the lower bound,

define b to be the least number of initial blue vertices on any leg of the spider. If
b = 0, then some leg has no initial blue vertices, so the propagation time is at least
`
2
≥ 1

2
f(p, `). So assume b > 0. Then there is a leg which has an interval of white

vertices between blue vertices of length at least `−b
b+1

by the pigeonhole principle, so

the propagation time is at least `−b
4(b+1)

. Since in this case there are at least pb initial

blue vertices and b ≥ 1, we have th−(Tp,`) ≥ pb + `
4(b+1)

− 1
4
≥
√

p`
2
− 1

4
≥
√
p`
2

.

For the upper bound, use 2p

⌈
`+1

2b√p`c+2

⌉
≤ 2p

⌈
`

2
√
p`

⌉
≤ 2`p√

p`
≤ 2
√
p` initial blue

vertices arranged in adjacent pairs such that every white vertex is within distance√
p` of a blue vertex, for a propagation time of at most

√
p`.

Remark 3.6. Note that the method of the last proof can be used to obtain similar
bounds for balanced spiders under other variants of throttling. In particular, the
bound for the odd ` case in the last theorem has the same bound up to a constant
factor as standard zero forcing throttling, while the even ` case has the same bound up
to a constant factor as PSD zero forcing throttling. Specifically, we have th+(Tp,`) =
Θ(min(`,

√
p`)) for all positive ` and p, while th(Tp,`) = Θ(max(p,

√
p`)).

Our next result on hypercube graphs is an immediate corollary of the results of
Kingsley [10].

Proposition 3.7. [10] For n ≥ 2, the nth hypercube Qn has Z−(Qn) = 2n−1 and
pt−(Qn) = 1.

Corollary 3.8. For n ≥ 2, the nth hypercube Qn has th−(Qn) = 2n−1 + 1.

Proposition 3.9. [10] For a connected graph G 6= K1, the skew zero forcing number
of the corona G ◦K1 is Z−(G ◦K1) = 0 and pt−(G ◦K1) = 2.

Corollary 3.10. For a connected graph G 6= K1, the skew throttling number of the
corona G ◦K1 is th−(G ◦K1) = 2.

Proposition 3.11. For any graph G, th−(G ◦K2) ≤ |G|+ 1.

Proof. Consider the skew zero forcing set consisting of all vertices in G. Then the
remaining vertices, which are copies of K2 attached to each vertex in G, are forced
in one round.

In general, |G|+ 1 does not serve as a lower bound for th−(G◦K2). For example,
suppose a connected graph G contains ` ≥ 3 leaves and no two leaves of G share
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a neighbor. The set of all vertices of graph G except for the leaves serves as a
skew zero forcing set with the copies of K2 attached to each initially blue vertex
being forced in the first round, the leaves being forced in the second round, and
finally the ` copies of K2 are forced no later than the third and final round. Thus,
th−(G ◦K2) ≤ |G| − ` + 3 ≤ |G| − 3 + 3 = |G|.

Our next bound for graphs of fixed diameter is sharp up to a constant factor, as
shown by paths and cycles. However, we also find a much larger family of graphs
that achieve this bound. The ball B(v, r) at vertex v of radius r in G is the set of all
vertices at distance at most r from v.

Lemma 3.12. Let G be a graph, let L = {y1, . . . , y`} denote the set of leaves of G,
let S = {x1, . . . , xk} ⊆ V (G), and let t = pt−(G;S). Then

V (G) = (∪`i=1B(yi, 2t))
⋃

(∪kj=1B(xj, 2t)).

Proof. A vertex can perform a force in the first round if and only if it has at most
one white neighbor. Thus in order to force, a vertex must be a leaf (so it has only
one neighbor) or it is a neighbor of a blue vertex. Thus any vertex colored blue in
the first round must be at distance at most two from a blue vertex or a leaf, i.e. in
some B(yi, 2) or B(xj, 2). This process is iterated through the t rounds.

Theorem 3.13. For a connected graph G of diameter d ≥ 4 with minimum degree
at least two, th−(G) ≥

√
d− 1

4
.

Proof. Suppose that G has diameter d and minimum degree at least two, S =
{x1, . . . , xk} ⊆ V (G) is a skew zero forcing set for G such that th−(G) = th−(G;S),
and t = pt−(G;S). By Lemma 3.12, V (G) =

⋃k
j=1 B(xj, 2t) since G has no leaves.

Let v1 and vd+1 be vertices that have distance d in G and let v1, . . . , vd+1 be a shortest
path between these vertices. We may assume that k ≤ d, or else th−(G) = k + t >
d >

√
d − 1

4
. Since there are only k balls B(xj, 2t) with j = 1, . . . , k, there exists

j such that B(xj, 2t) contains at least two of the k + 1 vertices of the form v1+ib dkc
with i = 0, . . . , k; denote two such vertices in B(xj, 2t) by va and vb with a 6= b. The
maximum distance between vertices in B(xj, 2t) is 4t, and this is at least as large as
the smallest possible distance

⌊
d
k

⌋
between the vertices va and vb. Since

⌊
d
k

⌋
> d

k
−1,

th−(G) = th−(G;S) = k + t ≥ k +
1

4

(
d

k
− 1

)
≥
√
d− 1

4
.

The bound in Theorem 3.13 is sharp up to a constant factor for Cn, Pn, Cn ◦K2,
and Pn ◦ K2. Using adjacent pairs of initial blue vertices on the cycle and path at
intervals of approximately

√
n, the graphs Cn ◦ K2 and Pn ◦ K2 can be colored in

Θ(
√
n) rounds using Θ(

√
n) initial blue vertices (this is established in Proposition

3.14). Figure 3.2 illustrates such a coloring for C4r(4r+2) ◦K2.

Let G be the family of graphs that can be constructed by starting with a base
graph that is a path or cycle and then for each vertex v of the base graph, connecting
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Figure 3.2: An initial coloring of C4r(4r+2) ◦K2 with r = 1 that shows th−(C4r(4r+2) ◦
K2) ≤ 12r+1 with 4r pairs of blue vertices and intervals of exactly 4r white vertices
between all consecutive pairs of blue vertices

any number of copies of K2 to v (with both vertices of the K2 adjacent to v) such
that the resulting graph has minimum degree at least two.

Proposition 3.14. For any graph G ∈ G of diameter d, th−(G) = Θ(
√
d).

Proof. Suppose G ∈ G. Since the minimum degree of G is at least two, the lower
bound follows from Theorem 3.13. For the upper bound, place adjacent pairs of

initial blue vertices on the base graph in G at intervals of length
⌊√

d
⌋
, with at most

one interval of lesser length. Also place one initial blue vertex at each of the ends of
the base graph if the base graph is a path. In the first round, all of the copies of K2

attached to the initial blue vertices turn blue. By the second round, the neighbors
of the initial blue vertices on the base graph turn blue. By the (2i + 1)st round,
copies of K2 will turn blue if they are attached to the vertices on the base graph that
turned blue in the (2i)th round. By the (2i + 2)nd round, vertices on the base graph
will turn blue if they are adjacent to vertices that turned blue in the (2i)th round.

Thus each interval of white vertices in the base graph takes at most 2

⌈
b√dc

2

⌉
rounds

to be colored entirely blue, so G is colored entirely blue in at most 2

⌈
b√dc

2

⌉
+ 1

rounds.
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