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Abstract

In 1992, Stembridge introduced marked tableaux and showed that the
number of admissible marked tableaux of shape λ � n is equal to the
multiplicity of the irreducible Specht module Sλ in a certain representa-
tion of Sn. Through their seemingly unrelated work with chromatic qua-
sisymmetric functions, Shareshian and Wachs established in 2012 that
this multiplicity of Sλ is also equal to the number of Pn,2-tableaux of
shape λ. Shareshian and Wachs went on to observe indirectly that the
number of marked tableaux of shape λ and index j equals the number of
Pn,2-tableaux of shape λ and index j, while suggesting it might be inter-
esting to find a bijective proof of this fact. In this paper, we present such
a bijection. In particular, we develop an index-preserving bijection from
the set of all marked tableaux of shape λ to the set of all Pn,2-tableaux
of shape λ.
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1 Definitions and Introduction

In [11], Stembridge investigates a representation of the cohomology of the toric variety
Xn associated with the Coxeter complex of the symmetric group, Sn. In particular,
Stembridge establishes that the multiplicity of the irreducible Specht module Sλ

for the 2i-th component of the cohomology is the number of marked tableaux on
shape λ � n with index i. Through their seemingly unrelated work with chromatic
quasisymmetric functions, Shareshian andWachs establish in [5] that this multiplicity
of Sλ is also equal to the number of Pn,2-tableaux of shape λ′ and index i, where λ′

is the transpose of λ. We point out that the product of the sign character with the
inverse Frobenius characteristic applied to the chromatic quasi-symmetric function
of Shareshian and Wachs gives the same character as that of the Sn-representation
on the cohomology of Xn. Consequently, on account of the sign character, to count
the multiplicty of the irreducible associated to λ, we count Pn,2-tableaux of shape λ′.
To eliminate the need to transpose and thereby ease the description of our algorithm,
we shall take as our definition of marked tableau the transpose of what is found in
[11]. This equality established by Shareshian and Wachs is indirect and relies on
q-Eulerian polynomials, chromatic quasisymmetric functions, and Smirnov words.
Therefore, they ask for a direct index-preserving combinatorial bijection between
marked tableaux and Pn,2-tableaux. The algorithm we present has some elements in
common with the well-known Robinson-Schensted algorithm ([2] and [4]) as well as
Stembridge’s cryptomorphism found in [11]. For background and notation, we refer
the reader to Sagan ([3]), Stanley ([9] and [8]), and Stembridge ([11]).

Given λ � n and the Young diagram corresponding to λ, we define a tableau T
to be a filling of the Young diagram with integers. Given a tableau T , we denote the
positive content of T by

S+(T ) = {T (i, j) | T (i, j) > 0}.

We say that T is k-admissible if S+(T ) = [k] = {1, 2, . . . , k} for some k > 0. For
example, the following are tableau of shape (4, 2, 1):

T1 =
0 1 2 3

1 3

2

and T2 =
0 1 3 4

1 3

3

where T1 is 3-admissible and T2 is not admissible. Let T be an admissible tableau
with increasing rows and nondecreasing columns. A marked tableau is a pair (T, f)
where f is a function f : S+(T ) → N such that

1 ≤ f(i) < mi(T ) for all i ∈ S+(T )

where mi(T ) is the number of i′s occurring in T . Note that the definition implies
that each i ∈ S+(T ) occurs at least twice in T . To visually indicate the values of
f(i) for all i ∈ S+(T ), we will replace one occurrence of i in T by î such that there
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are f(i) occurrences of i above î in T . For example, if

(T, f) = 0 1 2 3

1̂ 3

2̂ 3̂

2

then it follows that f(1) = 1, f(2) = 1, and f(3) = 2.

We define the index of a k-admissible marked tableau (T, f), denoted ind(T, f),
to be:

ind(T, f) =

k∑
i=1

f(i).

So for the marked tableau above, we have ind(T, f)=f(1)+f(2)+f(3)=1+1+2 = 4.

A Young tableau T of shape λ � n is a tableau filled bijectively with the integers
in [n]. To define Pn,2-tableaux, we first define the following partial order on [n]. Let
i, j ∈ [n], then i <2 j if j − i ≥ 2. With this partial order in hand, we define a
Pn,2-tableau to be a Young tableau P such that

(i) if j appears immediately to the right of i in the same row of P , then i <2 j,
and

(ii) if j appears immediately below i in the same column of P , then i �>2 j.

In other words, the rows of P are increasing and the columns of P are nondecreasing
with respect to <2. For example, the following are valid Pn,2-tableaux of shape
(4, 3, 3, 1):

P1 =
1 4 8 10

3 5 7

2 6 9

11

and P2 =
3 5 9 11

2 6 8

1 7 10

4

As with marked tableaux, Pn,2-tableaux carry a notion of index. Let Ri denote
the row containing i in P . The index of a Pn,2-tableau P is

ind(P ) = |{i | Ri > Ri+1}|

i.e., the number of i ∈ P that appear south of i+1 in P . In the examples above, we
have that ind(P1) = 5 and ind(P2) = 6. It is worth noting that discussion of Pn,2-
tableaux and the corresponding partial order can take place in the broader context
of (3 + 1)-free posets and incomparability graphs. Analogues of Pn,2-tableaux are
first defined by Gasharov in [1] for a larger class of partial orders called natural unit-
interval orders. He uses them to prove the Schur-positivity of the Stanley chromatic



S. FULTON ET AL. /AUSTRALAS. J. COMBIN. 78 (2) (2020), 314–328 317

symmetric function associated with the natural unit-interval orders. For more on
this, see [1], [6], [7], or [10].

Before we present our index-preserving bijection between k-admissible marked
tableaux and Pn,2-tableaux of shape λ, we introduce the notion of [i, k]-admissible
skew marked tableaux which will play a crucial role in the algorithm which defines
our bijection. Given a partition λ � n and μ ⊆ λ as Young diagrams, then the skew
shape λ/μ is the set of cells

λ/μ = {c | c ∈ λ and c �∈ μ}.
A skew tableau is therefore a filling of a skew shape and an [i, k]-admissible skew
tableau T of shape λ/μ satisfies the condition S+(T ) = [i, k] where 0 < i ≤ k for
integers i, k. If λ = (5, 3, 2, 1) and μ = (2, 2, 1) then the following is an example of a
[2, 4]-admissible skew tableau of shape λ/μ:

2 3 4

3

2

4

A skew marked tableau is a pair (T, f) where T is an [i, k]-admissible skew tableau
in which the following hold:

(i) if j appears to the right of i in the same row of T , then j > i,

(ii) if j appears below i in the same column of T , then j ≥ i, and

(iii) f is a function f : S+(T ) → N such that 1 ≤ f(j) < mj(T ) for all j ∈
S+(T ).

We indicate the value of f(j) using the same system as with marked tableaux above.
The index of a skew marked tableau (T, f) is defined as expected:

ind(T, f) =
k∑

j=i

f(j).

For example, the following is a skew marked tableau of index 4 and shape λ/μ where
λ = (4, 4, 3, 3, 1) and μ = (2, 2, 2, 1):

3 5

4 5

4̂

3̂ 4

5̂

We are now able to describe our algorithm which establishes a direct, index-preser-
ving bijective correspondence between marked tableaux of shape λ and Pn,2-tableaux
of shape λ.
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2 The bijection between marked tableaux and Pn,2-tableaux
of shape λ

The main result of this paper is the following.

Theorem. There is a one-to-one correspondence (T, f)
ϕ	→ P between marked

tableaux (T, f) of shape λ � n and Pn,2-tableaux of shape λ. Furthermore, we have
ind(T, f) = ind(ϕ(T, f)).

We define the map ϕ by iterating a chain deletion step. Given a skew marked
tableau (T, f) of shape λ/μ which is [i, k]-admissible, and a PN,2-tableau P of shape
μ, the chain deletion step returns an [i+1, k]-admissible skew marked tableau (T ′, f ′)
and a PN+s,2-tableau P ′ which contains P .

Chain Deletion

Let Rl denote the row of P containing the integer l, and let m = f(i). To begin the
step, we let C = {(x1, y1), . . . , (xs, ys)} be the set of positions in T occupied by i’s
such that x1 < x2 < · · · < xs. Delete the cells in C from T to produce T ′ and let f ′

be the restriction of f to [i+ 1, k]. We now add cells to P in order to construct P ′.

Case I: xm+1 > RN

To construct P ′, add cells (xm+1, ym+1), (xm, ym), . . . , (x1, y1) to P and fill them
with N + 1, . . . , N + m + 1, respectively. We call this an up fill. To complete
the step, add cells (xm+2, ym+2), (xm+3, ym+3), . . . , (xs, ys) to P ′ and fill them with
N +m+ 2, . . . , N + s, we call this a down fill.

Case II: xm+1 ≤ RN

As in Case I, we begin with an up fill: to construct P ′, add cells (xm, ym),
(xm−1, ym−1), . . . , (x1, y1) to P and fill them with N +1, . . . , N +m, respectively. We
now complete the step with a down fill by adding cells (xm+1, ym+1), (xm+2, ym+2),
. . . , (xs, ys) to P ′ and filling them with N +m+ 1, . . . , N + s.

In all examples that follow, we include empty gray cells of shape μ with each
skew marked tableau (T, f) to emphasize that (T, f) is of shape λ/μ. These gray
cells are not actually part of the skew marked tableau (T, f) and are only included to
aid visualization. We point out that the gray cells are necessarily of the same shape
as the Pn,2-tableaux with which (T, f) is paired in our algorithm.

For example, if λ = (4, 4, 3) and

(T, f) = 2 3

2̂ 3̂ 4

2 4̂

and P = 1 4

3

2
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then μ = (2, 1, 1) so C = {(1, 3), (2, 2), (3, 2)} where i = 2 and N = 4. Notice that

x2 > R4 so that Case I applies here. In this case, chain deletion returns the following:

(T ′, f ′) = 3

3̂ 4

4̂

and P ′ = 1 4 6

3 5

2 7

where the bold integers in P ′ were filled in as part of the up fill and the italicized
integer was filled in as part of the down fill.

We now apply chain deletion to (T ′, f ′) and P ′ to exhibit an example in which
Case II applies. In this situation, μ = (3, 2, 2) so C = {(1, 4), (2, 3)} where i = 3 and
N = 7. Notice that here x2 < R7 so that Case II does indeed apply. In this case,
chain deletion returns the following:

(T ′′, f ′′) =
4

4̂

and P ′′ = 1 4 6 8

3 5 9

2 7

where the bold integer in P ′′ was filled in as part of the up fill and the italicized
integer was filled in as part of the down fill. Note that in Case I it can happen that
no down fill occurs if m+ 1 = s (though an up fill always occurs).

A key property of the chain deletion step is that given a PN,2-tableau P , it does
indeed return a valid PN+s,2-tableau P ′ of appropriate index. To show this, we
maintain the notation used in the definition of chain deletion. That P ′ is an actual
tableau at all follows directly from the defining conditions of marked tableaux, and
we omit the details here. We shall show that P ′ satisfies the necessary conditions on
rows and columns, and is of appropriate index.

Since each iteration of the chain deletion step places integers in distinct rows, to
show that i <2 j whenever j appears immediately to the right of i in the same row
of P ′, we only need to show that N +1 is not placed in the same row as N . If Case I
occurs, then N + 1 is placed below N . If Case II occurs, then N + 1 is placed above
N which establishes that the row condition holds. To check the column condition,
we assume that j appears immediately below i in the same column of P ′. Suppose
on the contrary that i >2 j. If j and i were both contained in P , then P would
not be a valid PN,2-tableau. If P contains j but not i, then P again would not be
a valid tableau (as it would have a “hole” above j). So we conclude that i and j
were both added to P in the chain deletion step that produces P ′. Since i ≥ j + 2
by assumption, it follows that i and j were not placed as part of the same up fill or
down fill as these fills place integers sequentially. Since i > j, we conclude that i was
placed in the down fill and j was placed in the up fill. We arrive at a contradiction
as j is below i in P ′, but all integers placed in an up fill are placed in rows above
all integers placed in a down fill. Therefore it follows that i �>2 j. Finally, we must
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check that
ind(T, f) + ind(P ) = ind(T ′, f ′) + ind(P ′).

By the definition of chain deletion we have that ind(T ′, f ′) = ind(T, f) − m, so
we must show that ind(P ′) = ind(P ) + m. We note that since the positions of
1, . . . , N in P ′ are the same as in P , we only need to consider the relative positions
of N,N + 1, . . . , N + s. If Case I occurs we have

RN < RN+1 > RN+2 > RN+3 > · · · > RN+m+1 < RN+m+2 < RN+m+3 < · · · < RN+s

which shows that the index of P ′ is exactly m greater than that of P . If Case II
occurs we have

RN > RN+1 > · · · > RN+m < RN+m+1 < RN+m+2 < · · · < RN+2

which again shows that the index of P ′ is exactly m greater than that of P as desired.

The Map ϕ

Now we define the map ϕ that maps all admissible marked tableaux of shape λ � n
to Pn,2-tableaux of shape λ. Let (T, f) be a k-admissible marked tableau of shape
λ. If any 0′s occupy T , their positions must be (1, 1), (2, 1), . . . , (l, 1) for some l > 0
and we remove those from T to produce T0 and we define P0 to be the Pl,2 tableau
of shape (1l) with cell (x, 1) occupied by x. For example if

T = 0 1 2

0

1̂

2̂

then

T0 =
1 2

1̂

2̂

and P0 =
1

2
.

If no 0’s occupy T , then set T0 = T and P0 = ∅. We now proceed by iteratively
applying chain deletion to (T0, f) and P0 (where N = 0 if P0 = ∅) which yields
a sequence of pairs (Ti, fi) and Pi for i = 1, 2, . . . , k. Observe that this process
terminates in k steps, at which point Tk = ∅, fk = ∅, and Pk is a valid Pn,2 tableaux.
We have seen that chain deletion ensures that ind(Ti, fi)+ind(Pi) = ind(Ti+1, fi+1)+
ind(Pi+1) and since the initialization step does not impact index, it follows that
ind(T, f) = ind(ϕ(T, f)). We therefore define ϕ(T, f) = Pk. For example, ϕ maps
the 4-admissible marked tableau
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(T, f) = 0 1 2 3

1 2̂ 3̂ 4

1̂ 2 4̂

to the P11,2-tableau

P4 =
1 4 6 8

3 5 9 11

2 7 10

As an additional example, we apply ϕ to the set of all 8 marked tableaux of shape
λ = (3, 2, 1):

0 1 2

0 1̂

2̂

ϕ	−→ 1 3 6

2 4

5

0 1 2

0 2̂

1̂

ϕ	−→ 1 4 6

2 5

3

0 1 2

1 2̂

1̂

ϕ	−→ 1 4 6

3 5

2

0 1 2

1̂ 2̂

1

ϕ	−→ 1 3 5

2 6

4

0 1 2

1̂ 2

2̂

ϕ	−→ 1 3 6

2 5

4

0 1 2

1̂ 2̂

2

ϕ	−→ 1 3 5

2 4

6

1 2 3

1̂ 2̂

3̂

ϕ	−→ 2 4 6

1 3

5

1 2 3

1̂ 3̂

2̂

ϕ	−→ 2 4 6

1 5

3

.

3 The Inverse of ϕ

In this section we construct a map π which we claim is the inverse of ϕ, thereby
establishing that ϕ is indeed a one-to-one correspondence. We define the map π by
iterating a chain insertion step. Given a skew marked tableau (T, f) of shape λ/μ
which is [i, k]-admissible, and a Pn,2-tableau P of shape μ, the chain insertion step
returns an [i − 1, k]-admissible skew marked tableau (T ′, f ′) and Pn,2-tableaux P ′

which is a sub-tableau of P .
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Chain Insertion

As in the previous section, let N be the largest integer in P and let Rl denote the
row of P containing the integer l.

(Up-Phase) Determine the maximal sequence such that

RN > RN−1 > RN−2 > · · · > RM .

Now remove the cells containing N,N − 1, . . . ,M from P and fill the corresponding
cells in T with i− 1.

(Down-Phase)

Case A: N = M

Determine the maximal sequence such that

RN−1 < RN−2 < · · · < RK .

Remove the cells containing N,N − 1, . . . , K from P and fill the corresponding cells
in T with i− 1 and set f ′(j) = f(j) for j ∈ [i, k], and f ′(i− 1) = N −K.

Case B: N > M

Determine the maximal sequence

RM−1 < RM−2 < · · · < RK and RK < RM+1.

Remove the cells containing M,M −1, . . . , K from P and fill the corresponding cells
in T with i− 1 and set f ′(j) = f(j) for j ∈ [i, k], and

f ′(i− 1) =

{
M −K RK > RK−1

M −K + 1 RK < RK−1.

For example, if λ = (5, 4, 3, 1, 1, 1) and

(T, f) = 5

4

5̂

4̂

and P = 1 3 6 10

2 5 9

4 7

8

11

then μ = (4, 3, 2, 1, 1) and (T, f) is [4, 5]-admissible. Applying chain insertion to this
pair yields the new pair
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(T ′, f ′) = 3 5

3 4

5̂

3̂

3

4̂

and P ′ = 1 3 6

2 5

4 7

where the bold integers in (T ′, f ′) were filled in as part of the up-phase and the
italicized integers as part of the down-phase. Notice that since R8 > R7, we have
that f ′(3) = 10− 8 = 2.

As another example, we apply chain insertion to (T ′, f ′) and P ′ which yields the
pair

(T ′′, f ′′) = 2 3 5

2 3 4

2̂ 5̂

3̂

3

4̂

and P ′′ = 1 3

2

4

where the bold integers in (T ′′, f ′′) were filled as part of the up-phase and the ital-
icized integer as part of the down-phase. Notice that since R5 < R4, we have that
f ′′(2) = 6− 5 + 1 = 2.

The Map π

Now we define the map π that maps all Pn,2-tableaux of shape λ � n to marked
tableaux of shape λ. Let be a Pn,2-tableau of shape λ. We proceed by iteratively
applying chain insertion beginning with the empty skew tableau (∅, ∅) and P which
yields a sequence of pairs (T (i), f (i)) and P (i) for i = 1, 2, 3 . . . This inverse process
carries with it a technical difficulty: to start the algorithm, we do not yet know the
largest integer that should occur in π(P ). To remedy this, we initially place the
indeterminate l into T (1) during the first chain insertion and adjust values in our
output when the algorithm terminates. We halt iteration after the kth step if either

(a) P (k) = ∅, or
(b) the remaining integers 1, . . . , N in P (k) are arranged such that RN > RN−1 >

· · · > R1.

If (a) occurs, then (T (k), f (k)) is a [l−k+1, l]-admissible marked tableaux of shape λ.
By replacing l by the integer k in T (k) we obtain T , a k-admissible marked tableaux.
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We then set f(j) = f (k)(l − k + j) for j ∈ [k] thereby producing a valid marked
tableau (T, f). We then define π(P ) = (T, f).

If (b) occurs, then it has to be the case that P (k) is of shape (1N) and the (i, 1)
cell of P (k) is occupied by i. Here we form a [l−k+1, l]-admissible marked tableaux
(T ′, f (k)) of shape λ by adding the cells (1, 1), (2, 1), . . . , (N, 1) to T (k) and filling
them with 0’s. By replacing l by the integer k in T ′ we obtain T , a k-admissible
marked tableaux. We then set f(j) = f (k)(l− k+ j) for j ∈ [k] thereby producing a
valid marked tableau (T, f). We then define π(P ) = (T, f).

For example, if P is the following Pn,2-tableau of shape λ = (5, 4, 3, 1, 1, 1):

P = 1 3 6 10 15

2 5 9 13

4 7 14

8

11

12

then the iterations of chain insertion in our algorithm terminate with

(T (5), f (5)) = l−4 l−3 l−2 l

ˆl−4 l−3 l−2 l−1

l−4 ˆl−3 l̂

ˆl−2

l−2

ˆl−1

and P (5) = 1

so that after applying case (b) above, the algorithm returns

π(P ) = 0 1 2 3 5

1̂ 2 3 4

1 2̂ 5̂

3̂

3

4̂

.

Observe that the two cases for the termination of the algorithm defining π corre-
spond to the two cases in the initialization of the algorithm defining ϕ. In particular,
ϕ begins with a down fill if and only if π ends with the up-phase. As above, we re-
mark that the defining conditions on skew marked and Pn,2 tableaux ensure that
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at every stage the algorithm returns a valid pair of skew marked and Pn,2-tableaux.
Finally, we note that by the definition of chain insertion, we have that

ind(T (i), f (i)) + ind(P (i)) = ind(T (i+1), f (i+1)) + ind(P (i+1))

and since the algorithm termination step does not impact index, we have that
ind(P ) = ind(π(P )).

4 Proof of Theorem

In this final section, we establish that π is indeed the inverse of ϕ, and that we
have therefore produced an index-preserving bijection between the sets of marked
tableaux and Pn,2-tableaux of a given shape λ. We shall show that application of
chain deletion followed by chain insertion, and vice versa, leave pairs of tableaux
(T, f), P unchanged.

To begin, let (T, f) be a skew marked tableau of shape λ/μ which is [i, k]-
admissible with f(i) = m, and P a Pn,2-tableau of shape μ with largest entry N . We
first establish that if we apply chain deletion and then chain insertion to (T, f), P ,
the result is (T, f), P .

Carrying all notation from the description of the chain deletion step, we apply
chain deletion to produce (T ′, f ′), P ′. In the instance of Case I, we have that xm+1 >
RN . We note that the product of chain deletion, (T ′, f ′), is [i+ 1, k]-admissible and
P ′ has largest entry N + s. We now apply chain insertion to produce (T ′′, f ′′), P ′′ by
first considering the maximal sequence such that

RN+s > RN+s−1 > RN+s−2 > · · · > RM .

From the definition of chain deletion, it follows that M = N +m + 1. Remove the
cells containing N + s,N + s − 1, . . . , N +m + 1 from P ′ and fill those cells in T ′′

with i. In the event that Case A of chain insertion occurs, i.e. N + s = N +m+ 1,
we have that s = m+ 1. We now consider the maximal sequence

RN+m < RN+m−1 < · · · < RK

and observe that K = N + 1 as RN < xm+1 and the integers N + m + 1, N +
m, . . . , N + 1 were placed in rows x1 < x2 < · · ·xm+1, respectively. We now remove
the cells containing N+m,N+m−1, . . . , N+1 from P ′ and fill those cells in T ′′ with
i and set f ′′(j) = f ′(j) for j ∈ [i+1, k] and f ′′(i) = N +m+1− (N +1) = m which
forces f ′′ = f . Since we have added the same cells to T ′ that were removed from T
and filled them with i′s to produce T ′′, it follows that (T ′′, f ′′) = (T, f). Similarly,
since the cells removed from P ′ are those that were added to P in producing P ′′, we
have that P ′′ = P , and therefore (T ′′, f ′′), P ′′ = (T, f), P as desired. In the event
that Case B of chain insertion occurs, we have that N + s > N + m + 1. We now
consider the maximal sequence

RN+m < RN+m−1 < · · · < RK and RK < RN+m+2
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and observe that K = N +1 as RN < xm+1 = RN+1 and the integers N +m+1, N +
m, . . . , N + 1 were placed in rows x1 < x2 < · · ·xm+1, respectively. We now remove
the cells containing N+m,N+m−1, . . . , N+1 from P ′ and fill those cells in T ′′ with
i and set f ′′(j) = f ′(j) for j ∈ [i+1, k] and f ′′(i) = N +m+1− (N +1) = m which
forces f ′′ = f . Since we have added the same cells to T ′ that were removed from T
and filled them with i′s to produce T ′′, it follows that (T ′′, f ′′) = (T, f). Similarly,
since the cells removed from P ′ are those that were added to P in producing P ′′, we
have that P ′′ = P , and therefore (T ′′, f ′′), P ′′ = (T, f), P as desired.

We now consider Case II of chain deletion and mention that Case A of chain
insertion cannot follow as a down fill must occur. In other words, in this situation
we have that

RN+1 > RN+2 > · · · > RN+m < Rn+m+1.

The arguments for Case B are similar to those above with a small difference: cells
containing N + s, . . . , N +m are first removed from P ′ and the corresponding cells
are added to T ′ and filled with i’s. Note that M = N+m so then the cells containing
N +m− 1, . . . , N + 1 are removed from P ′ because RN+1 < RM+1 but RN ≥ RM+1,
and the corresponding cells are added to T ′ and filled with i′s. Since RN+1 < RN

in this case, we have that f ′′(i) = N + m − (N + 1) + 1 = m and it follows that
(T ′′, f ′′), P ′′ = (T, f), P as above. This establishes that chain deletion followed by
chain insertion leaves (T, f), P unchanged. It remains to show that chain insertion
followed by chain deletion leaves (T, f), P unchanged.

Carrying all notation from the description of the chain insertion step, we apply
chain insertion to (T, f), P to produce (T ′, f ′), P ′. In the instance of Case A, we
have that N = M , and denote the set of cells containing N,N − 1, . . . , K by C =
{(x1, y1), (x2, y2), . . . , (xN−K+1, yN−K+1)} with x1 < x2 < · · · < xN−K+1. The cells
in C are removed from P with those same cells added to T and filled with i− 1 and
f ′(i − 1) = N −K. We note that RK > RK−1 in P , and now apply chain deletion
where it follows that Case I must apply as xN−K+1 > RK−1 where we point out that
K − 1 is the largest value in P ′. The chain deletion step removes all cells containing
i − 1 from T ′ to produce T ′′ and consequently f ′′ = f , i.e. (T ′′, f ′′) = (T, f). The
step also adds the cells (xN−K+1, yN−K+1), (xN−K , yN−K), . . . , (x1, y1) back to P ′ and
fills them with K, . . . , N , respectively (no down fill occurs in this case), thereby
producing P ′′ = P . We have therefore established that (T ′′, f ′′), P ′′ = (T, f), P .
To complete the proof, we must show that the same holds when Case B of chain
insertion occurs followed by chain deletion.

In the instance of Case B of chain insertion, we have that N > M . We denote
the cells containing N,N−1, . . . , K, by C = {(x1, y1), (x2, y2), . . . , (xN−K+1, yN−K+1}
with x1 < x2 < · · · < xN−K+1 so that M,M − 1, . . . , K occupy cells (x1, y1), (x2, y2),
. . . , (xM−K+1, yM−K+1), respectively and M + 1, M + 2, . . . , N occupy cells
(xM−K+2, yM−K+2), (xM−K+3, yM−K+3), . . . , (xN−K+1, yN−K+1), respectively. The
cells in C are removed from P with those same cells added to T and filled with i−1 to
produce (T ′, f ′), P ′ where f ′(i−1) = M−K or f ′(i−1) = M−K+1 as RK > RK−1

or RK < RK−1. When chain deletion is applied to (T ′, f ′), P ′ all cells in T ′ containing
i−1, i.e. the cells in C, are removed from T ′ to produce T ′′ and consequently f ′′ = f
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which forces (T, f) = (T ′′, f ′′). Those same cells in C are added back to P ′ to produce
P ′′, but how they are filled depends on the value of f ′(i− 1). If f ′(i− 1) = M −K,
then Case I of chain deletion is applied to (T ′, f ′), P ′ as xM−K+1 = RK > RK−1 (in
P ) where K−1 is the largest integer in P ′. In this situation, cells (xM−K+1, yM−K+1),
(xM−K , yM−K), . . . , (x1, y1) are filled with K,K + 1, . . . ,M in the up fill and then
cells

(xM−K+2, yM−K+2), (xM−K+3, yM−K+3), . . . , (xN−K+1, yN−K+1)

are filled with M + 1,M + 2, . . . , N in the down fill which gives us that P ′′ = P . If
f ′(i − 1) = M − K + 1, then Case II of chain deletion is applied to (T ′, f ′), P ′ as
xM−K+1 = RK < RK−1 (in P ). In this situation, cells

(xM−K+1, yM−K+1), (xM−K , yM−K), . . . , (x1, y1)

are filled with K,K + 1, . . . ,M in the up fill, and then cells

(xM−K+2, yM−K+2), (xM−K+3, yM−K+3), . . . , (xN−K+1, yN−K+1)

are filled with M+1,M+2, . . . , N in the downfill which again gives us that P ′′ = P .

The above, along with the fact that the initialization step in ϕ and the termination
step in π are inverse processes, establishes that π is indeed the inverse of ϕ, thereby
establishing the desired result.
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