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Abstract

Let ¢ be an integer satisfying ¢t > 5. We show that if G is a [(t — 1)/3]-
connected K -free graph of even order with minimum degree at least
[(4t — 1)/3], then G has a 3-factor, and if G is a [(4t — 4)/3]-connected
K ;~free graph of even order, then G has a 3-factor. We also show that
it G is a 2-edge-connected K 4-free graph of even order with minimum
degree at least 6, then G has a 3-factor.

1 Introduction

In this paper, we consider only finite, simple, undirected graphs with no loops and
no multiple edges.

Let G = (V(G), E(G)) be a graph. For z € V(G), dege(z) denotes the degree
of z in G. We let §(G) denote the minimum of degg(z) as x ranges over V(G). For
an integer r > 1, a subgraph F' of G such that V(F) = V(G) and degpr(z) = r
for all x € V(F) is called an r-factor of G. The complete bipartite graph K, with
partite sets of cardinalities 1 and ¢ is called the ¢-star. We say that G is K -free or
t-star-free if G does not contain K, as an induced subgraph.
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The following theorem was proved by Tokuda and Ota in [4].

Theorem A. Let t, r be integers with t > 3 and r > 2. Let G be a connected
K 4-free graph, and suppose that

002 (1+3) [y | - o | 0

In the case where 1 is odd, suppose further thatt <r +1 and |V(G)| is even. Then
G has an r-factor.

In the case where r = 3, the minimum degree condition in Theorem A takes the
following simple form.

Corollary B. Let t be 3 or 4. Let G be a connected K, -free graph with |V (G)|
even, and suppose that 6(G) > 5 or §(G) > 7 according ast =3 ort =4. Then G
has a 3-factor.

The minimum degree condition in Theorem A is best possible, and hence so
are those in Corollary B. On the other hand, if we add the assumption that G is
2-connected, then we can relax the minimum degree condition as is shown in the
following two results which were proved in [3].

Theorem C. Let t be 3 or 4. Let G be a 2-connected K -free graph with |V (G)|
even and suppose that 6(G) >t + 1. Then G has a 3-factor.

Theorem D. Let t be an integer with 5 <t < 7. Let G be a 2-connected K ,-free
graph with |V (G)| even and suppose that §(G) >t + 2. Then G has a 3-factor.

In Theorems C and D, the conditions on §(G) are best possible. However, it is
natural to expect that we can weaken the condition on §(G) and the condition on ¢
if we replace the assumption that G is 2-connected by a stronger assumption. Along
this line, we show the following results.

Theorem 1. Let t be an integer with t > 5. Let G be a [(t — 1)/3]-connected K ;-
free graph with |V (G)| even and suppose that 6(G) > [(4t — 1)/3]. Then G has a
3-factor.

Theorem 2. Let t be an integer with t > 5. Let G be a [(4t — 4)/3]-connected
K t-free graph with |V (G)| even. Then G has a 3-factor.

Note that, since [(t —1)/3] =2 and t+2 = [(t —1)/3] for each 5 <t < 7, Theorem
1 implies Theorem D.

The minimum degree conditions are best possible in Theorems 1 and 2 in the
sense that, for each ¢ > 5, there exist infinitely many [(4¢ — 7)/3]-connected K ;-
free graphs G of even order with §(G) > [(4t—4)/3] such that G has no 3-factor (see
Example 6.1). In Theorem 1, the connectivity condition is best possible in the sense
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that, for ¢ > 8, and for any positive integer 0, there exists a [(t — 4)/3]-connected
K -free graph G of even order with 0(G) > § such that G has no 3-factor (see
Example 6.2). Further, for K s-free graphs and for K 4-free graphs, results like
Theorems 1 and 2 do not hold because there exist infinitely many 3-connected K 3-
free graphs of even order with no 3-factor (see Example 6.3) and there exist infinitely
many 4-connected K 4-free graphs of even order with no 3-factor (see Example 6.4).

The following result concerning 2-factors with edge-connectivity conditions was
proved [1].

Theorem E. Let t and k be integers with t > 3 and k > 2. Let G be a k-edge-
connected K ;-free graph such that 6(G) >t —2+(t—1)/(k—1). In the case where
t =3 and k = 2, suppose further that 6(G) > 4. Then G has a 2-factor.

We also show the result on 3-factors which correspond to Theorem E concerning
K 4-free graphs.

Theorem 3. Let G be a 2-edge-connected K 4-free graph with |V(G)| even, and
suppose that 6(G) > 6. Then G has a 3-factor.

In Theorem 3, the minimum degree condition is best possible in the sense that,
there exist infinitely many 2-edge-connected K 4-free graphs G of even order with
0(G) > 5 such that G has no 3-factor (see Example 6.5).

Note that, unlike the case of vertex-connectivity, even if we assume that the
edge-connectivity is sufficiently large, K s-free-ness does not imply the existence of
a 3-factor; that is to say, for each k > 2, there exists a k-edge-connected K s-free
graph of even order with no 3-factor (see Example 6.6).

It is natural to expect that we can weaken the condition on §(G) in Theorem 3 if
we replace the assumption that G is 2-edge-connected by a stronger edge-connectivity
condition. This problem is still open, and the result which correspond to Theorem
3 concerning K s-free graphs is also still open.

Our notation is standard, and is mostly taken from Diestel [2]. Possible exceptions
are as follows. Let G be a graph. For x € V(G), N(z) = Ng(x) denotes the set of
vertices adjacent to x in G; thus degg(x) = |Ng(x)|. For A C V(G), we let N(A)
denote the union of N(x) as x ranges over A. For A, B C V(G) with AN B = 0,
E(A, B) denotes the set of those edges of G which join a vertex in A and a vertex
in B. For A C V(G), the subgraph induced by A in G is denoted by G[A], and the
graph obtained from G by deleting all vertices in A together with the edges incident
with them is denoted by G — A; thus G — A = G[V(G) — A]. We often identify a
subgraph H of G with its vertex set; for example, we write N(H) for N(V(H)). Also
a vertex x of G is often identified with the set {z}; for example, if H is a subgraph
with = ¢ V(H), we write E(x, H) for E({z},V(H)).
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2 Preliminary results

In this section we state preliminary lemmas, which we use in the proof of Theorems
1, 2 and 3.

Let G be a graph. For S,T C V(G) with SNT = (, define 6(S,T) by

0(5,T) = 3[5| + 2 er(dege_s(y) —3) = h(S,T),

where h(S,T') denotes the number of those components C' of G — S — T such that
|E(T,C)| + |V(C)| is odd. The following lemma is a special case of the f-Factor
Theorem of Tutte [5].

Lemma 2.1. (i) The graph G has a 3-factor if and only if 6(S,T) > 0 for all
S, T CV(G) with SNT = 0.

(i) If [V(Q)| is even, then whether G has a 3-factor or not, 0(S,T) is even for all
S, TCV(G) with SNT = 0.

The following lemma is well-known, and appears as Lemma 2.2 in [3].

Lemma 2.2. Let S,T C V(G) be subsets of V(G) with SNT =0 for which 6(S,T)
becomes smallest. Then the following hold.

(i) Let C be a component of G—S —T such that |E(T,C)| < 1. Then |V(C)| > 2.

(ii) Suppose that S and T are chosen with |T| is as small as possible, subject to the
condition that 0(S,T) is smallest. Then deggir(y) < 1 for everyy € T.

3 Notation

Let t > 3,1 > 1 and 0 > 3 be integers, and G' be an [-connected K ;-free graph of
even order with §(G) > 4. In this section, we fix notation for the proof of Theorems
1,2 and 3.

Let S, T be subsets of V(G) with SNT = @ for which 0(S,T) becomes smallest.
We choose S, T C V(G) so that |T| is as small as possible, subject to the condition
that (S, T) is smallest. If SUT = (), then since G is connected and has even order,
we get h(S,T) = 0, and hence (S, T) = 0. Thus we may assume S UT # ().

Let C4,...,Cy be the components of G — S — T. We may assume that there
exists an integer a with 0 < a < k such that |E(T,C;)| = 0 for each 0 < i < a, and
|E(T,C;)| > 1 for each a + 1 < i < k. We may further assume that there exists an
integer b with 0 < b < k — a such that |E(T,C;)| = 1 for each a+1 < i < a + b,
and |E(T,C;)| > 2 for each a+ b+ 1 < i < k. Note that if S # 0 and |T| + &k < 1,
then > (3 — degg_g(y)) + (S, T) < 3, and hence 6(S,T) > 3|S| —3 > 0. Thus
we may assume that if S # (), then we have |T| + k > 2.
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Let a > 1, and let 1 <14 < a. By Lemma 2.2 (i), |V(C;)| > 2. Recall that we have
SUT # 0 by the assumption made in the second paragraph. Since G is connected,
04 NC)N(SUT) = N(C;) N S; in particular, S # (). By the assumption made
at the end of the third paragraph in this section, this implies |T|+ k > 2, and hence
G — S # C;. Since G is I-connected, |N(C, )ﬂS| > 1. Let x},x Z,...,xli be [ distinct
vertices in N(C;) NS and let e/ (1 < j < 1) be an edge joining 27 and a vertex u! in
V(C;). Then

Helll <i<a,1<j<I} =la. (3.1)
For each z € S, let L(z) = {u! |1 <i<a,1<j <l =z} Clearly

L(z) € N(z) and L(x) is independent. (3.2)

Also

> |L(x)| = la (3.3)

z€eS

by (3.1). If a =0, we let L(z) = ) for each x € S; thus (3.2) and (3.3) hold in this
case as well.

We now look at components of G[T|. Let Hy, ..., H, be the components of G[T].
Then

U V(H,) (disjoint union). (3.4)

1<pu<m

In the remainder of this section, we assign real numbers 6,,, 926, and 93 to each
H,, and show that 0(S,T) > >3, .04 0(S,T) > 3, <, 0., and 0(S,T) >
> <p<m 6’2. We first prove several claims concerning H,. Note that H, is a path of
order 1 or 2 by Lemma 2.2 (ii). For each 1 < u < m, set

I}={ila+1<i<a+bE(H,C)#0},
2={ila+b+1<i<k E(H,C;) #0},
L,=1,UTI,

I'=1'U{ie? |E(Hu,0i)| =1}, and

Z degg_s(y

yeV (Hy)

Claim 3.1. Let 1 < u < m.
(i) If|V(Hy)| =1, then q, > 2|I,| — |1,,| and |[N(H,)N S| > max{d — g,,0}.
(ii) If |V(H,)| = 2, then q, > 2|1,| — |I’|—|—2 and |N(H,)N S| > max{d — |q./2],0}.

Proof. This immediately follows from the definition of I,,, I}, and g,,. U
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Let a+1 <i < a+b. Then there exists p (1 < p < m) with |E(H,,C;)| = 1,
that is to say, there exists exactly one edge joining V(H,) and V(C;). Let y;w; be
such an edge (y; € V(H,), w; € V(C;)). Set

Ji={ila+1<i<a+b, there exists an edge joining S and V(C;) — {w;}},
Jy={ila+1<i<a+b,i¢gJ, there exists an edge joining S— N (y;) and {w;}}.

For each j € Ji, let zju; be an edge such that z; € S and u; € V(C;) — {w,}. For
each j € Ji, let x;u; be an edge such that x; € S — N(y;) and u; = w;. Set

Ji(x) ={uj|je S UJ,x; =x}.
Set

Jy={i]l a+b+1<i<k |V(C;)| > 2, there exists p with 1 < pu <m
such that N(C;)NT C V(H,) and [N(H,) NV (C;)| =1},
Jo = {i € J;| there exists an edge joining S and V(C;) — N(T)}.

For each j € Jy, let z;u; be an edge that z; € S and u; € V(C;) — N(T'). For each
x €S, set

JQ(JZ‘) = {Uj ‘j € JQ,.I']' = 33'}

Clearly Ji(z) U Jo(z) € N(z). Since u and v belong to distinct components of
G — S —T for any u,v € L(z) U Ji(z) U Jo(z) with u # v, this together with (3.2)
implies

L(z) U Ji(x) U Jo(x) € N(z) and L(z) U Jy(z) U Jy(x) is independent. (3.5)

Also
|y U Ji| =] U Ji(z)] (disjoint union) and (3.6)
z€S
|Jo] = | U Jo(x)| (disjoint union). (3.7)
z€S

Foreachz € S,let N(z) = {u| 1 < p<m,x € N(H,)}. Foreach pu (1 < pu <m), set
H,=G[V(H,)U (Uid&dlu% V(C;))]. Note that if I, —Jy U J] = 0, then H, = H,,.
For each x € S and for each p € N(zx), we let J(z, ) be a maximal independent
set of N(2) NV (H,). If p & N(x), let J(x,n) = 0. Set T(x) = Uycpern I (2, ). If
w1 # pa, then J(x, 1) N J(x, uz) = 0 by the definition of J(x, ). Thus

T@) = Y 1T p)l. (3.8)
Since |J (x, 1)| > 1 for each z € N(H,)N S,
IN(H,) N S| < 01T (2, m)l- (3.9)

T€S
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Claim 3.2. (i) For each x € S, J(x) is independent.

(i) Let x € S. Then E(u, J(x,u)) = 0 for any u € L(z) U Ji(z) U Jo(x) and for
any p € N(x). In particular, for each x € S, we have E(u,J(x)) = 0 for any
u € L(x) U Ji(z) U Jy(x).

Proof. By the definition of J(z, u), for each z € S and for each p (1 < u < m),
J(z, 1) is independent. Since if p11 # po, then E(H,,,H,,) = 0. In particular, for
each x € S, we have E(J (x, 1), T (x, pu2)) = 0 for any py, po € N () with py # us.
Thus (i) holds. The statement (ii) immediately follows from the definitions of J(z),
L(z), Ji(z) and Ja(x). O

Claim 3.3. (= 1| 2 Yy Laes W (@ i) +1a+ |y U Ji| +14].

Proof. Since G is K 4-free, it follows from (3.5) and Claim 3.2 that | J (x)|+ |L(z)| +
|J1(x)| + |J2(z)] <t —1 for every x € S. It follows from (3.3), (3.6), (3.7) and (3.8)
that

(t=1)ISI=) ( Y T w)l + L)+ [ L(@)] + |J2(93)|>

zeS \1<us<m
=D 1T @ w D L@+ D @)+ 1 a(x)
zeS 1<usm zeS zeS z€eSs
> 1T @)l +la+ Ui + | al,
1<u<m z€S
as desired. O

Claim 3.4. Suppose that t <3l + 1. If T =), then 6(S,T) >0

Proof. By Claim 3.3, |S| > la/(t — 1) > a/3. If T = (), we have a = k, and hence
h(S,T) <k =a. Hence (S,T) >3-a/3 —a > 0. O

In the rest of this section, we suppose that ¢ < 3l + 1. In view of Claim 3.4, we
may assume T # (). For each p (1 < pu < m) and for each i (a +1 <1i < k), we set

0 (N(C)NV(H,) =0)
w(Hy, C;) = 9 1/2 (N(C) NV (H,) # 0, N(C:) N'T  V(H,))
L (N(C)NV(H,) #0,N(C)NT C V(H,)).
Then for each i (a + 1 < i < k), we have
> w(H,,C)>1, (3.10)

and for each 1 (1 < p < m), we have

> w(H,,C;) < |1 (3.11)

i€,
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We now estimate 6(S,7T") from below. For each 1 < u < m, set

3
0u=—;|mu|+qu—3|w D A G U]+ 0
=) w(H,, Cy),
i€l
3
Qi:t—W( w) NS+ g, = 3]V ( u)|+;|fum(J1UJ2)|—Zw(HmCi),and
icl,
=Y 1T (@) + g = 3|V (H)| + 1L (S U] =Y w(H,, C).
xcS i€l

Claim 3.5. Suppose thatt <30+ 1. Then (i) and (ii) hold.

6) 0ST) > ey O 2
(i) In the case where t =4, 0(S,T) > >, <, 0;-

Proof. Note that

k—a< Z Z w(H,,C;) = Z Z w(H,,C;) = Z ZwH

a+1<i<k 1<u<m 1<p<m a+1<i<k 1<pu<miiel,

by (3.10). Hence h(S,T) <k < a+ 32 < cm 2ier, W(H,, C;). By (3.4),

Z(degg,s(y)—?)): Z Z dege_s(y) — 3|V (H,)|

yeT Isps<m \yeV(Hu)

Therefore it follows from Claim 3.3 that
0(S.T) = 3|S| + > (degg_g(y) — 3) — h(S.T)

yeT
3
= t—l( Z Z|\7($au)|+la+|J1UJ{|+|J2|)
1<pu<m zeS
+ Z Z degG S _3|V( a,—|— Z Z HM,C
1<p<m \yeV(H,) \<pem icl,
3
> ) —1<le(x,u)l+|Iﬁﬂ(J1UJ;)|+|fjmJ2|>
1<usm zES
3
+ Y degas(y) —3IV(H) — S w(H,, C) b+ o —a
yeEV(Hy) i€l
> > b
1<pu<m

It follows from (3.9), [I;N(J1UJ))| > [I}NJi] and [I}NJy [+ |20 ,| = [I,N(J1U )]
that 6, > 6, for each p (1 < pu < m), and hence (i) holds In the case that t = 4, we
1mmed1ately have 6, > 6 for each p (1 < p < m), and hence (ii) holds. O
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4 Proofs of Theorems 1 and 2

Let G be an [-connected Kj;-free graph with §(G) > 6. We continue with the
notation of the proceeding section with ¢t > 5 and [ > 2. Thus, in this section, we
suppose that the connectivity of GG is at least 2. First we prove the following technical
claim.

Claim 4.1. Suppose thatl > 2, and let 1 < p < m.
() It > 7, then Yyep, w(Hy C) = 31,0 (K UL/t = 1) < |L] = 31,1/t = 1).
(ii) Ift <6, then ZEIH w(H,, C;) =3|L,N(J1UL)|/(t—1) <|[,|— |]L|/2

Proof. Let i € I,. First assume that i € I. Then, since |V/(C;)| > 2 by Lemma
2.2(i) and G is 2- connected there exists an edge joining S and V(C’Z) N(H,), and
hence 7 € J; by the definition of J;, which implies

3 , 3

Next assume that i € {j € I ||E(H,, C;)| = 1}. Then N(C;)NT € V(H,), and
hence w(H,, C;) = 1/2. Therefore

3
> w(H,, C) - N (iU )

=
3
< Y w(H,C)+ Y w(H,, C) - 1|I’ﬂJ1|
i€l I, icl!,
3 .
:Z HM,C —f-Z( HM,C —mHZ}mJﬂ)
iel,—1I, iel!,

IN

3 1
) 3
~ - min {2 i

which immediately implies (i) and (ii). O

In order to complete the proofs of Theorems 1 and 2, we prove the following three
propositions.

Proposition 4.1. Suppose that t > 5, 1 > 2, § > [(4t —4)/3] and |V(H,)| = 1.
Then Hi > 0.

Proof. First we assume t > 7. It follows from Claims 3.1(i) and 4.1(i) and [1,,[ > [},]
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that

3 4t — 4 3
1
HMZt—l({ 3 —‘_QM)+QM_3_|IM|+Q|]L|

t—4 3
> 1+ m(QUu\ —|0) = [l + m”ﬂ

t—17
=1+ t_—l(\m —|L]) > 0.

Next we assume ¢ = 5 or 6. It follows from Claims 3.1(i) and 4.1(ii) that

3 1
0, > —(5—q)+qu—3—|f|+§|f,i\

- t—-1
1
> ]5_—15 3+ (2\” |[M)_|[u|+§|[;|
3 7 t 7T—t
= —§—3— I —|I'].
t—1 1|”|+2(t—1)|“|

Assume for the moment ¢ = 6. Then 6 > 7. Moreover, since G is K g-free, |1,| < 5.
Hense 6, > (3/5)-7—3—(1/5)-5=1/5> 0. Assume now ¢t = 5. Then § > 6. Since
G is Ky s-free, |1,| < 4. If |, < 3, then 6, > (3/4)-6 —3—(2/4)-3=0. If |[,] = 4
and |I},| > 2, then 6, > (3/4)-6 —3 —(2/4) -4+ (2/8) -4 = 0. Thus we may assume
that |] |—4and |I’| <1 Since |N( u) NS>0,

3
O = qu—3+ LN (LU L) =Y w(H,,C)
i€l

1
> 2| =11 =3 L]+ 511 > 0,

which completes the proof of Proposition 4.1. O

Proposition 4.2. Suppose thatt > 5,1 > 2, 6 > [(4t —4)/3], |V(H,)| = 2 and
[1,] #0. Then 6, > 0.

Proof. First we assume that ¢t > 7. Assume for the moment that |,| > 2. Then, it
follows from Claims 3.1(ii) and 4.1(i), and |/,| < |I,| that

3 At — 4 q 3
—— VJ 6 — L] + ——|I'
“_t—l( 3 9 +q. — |M|+t_1|,u|

2t—5
> — 1, ul =2

2t —5
> 2|11, — I +2 I -2
_2<t_1><u| |u\+> 1+ 21T

3 3
>__2 4 1] > 0.

t—1 " 2(t-1)
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Assume now |[,| = 1. Then g, > 3. In the case where |I,| =1 and ¢, > 4,

3 At — 4 q 3
[ —— - | %] — 6 — |+ ——|I'
“_t—l( 3 9 +q.—6 |M|+t_1|,u|

2 — 5
> 00
=2t —1)

-4—-32>0.

In the case where [[,| = 1 and g, = 3, since |[,| =1,

3 (4t—4 |q 3
1 - | 2K - o
bu=3 1( 3 {2J>+”“ 6=+ =71l

At — 4
—i—( . —1>+3—6—1+—i—20

v

v

t—1 t—1

Next we assume t = 5 or 6. Note that, if ¢ = 5, then § > 6, and if ¢ = 6, then
d > 7; that is, 6 > ¢ 4+ 1. Assume for the moment that |I,| > 2. Then, it follows
from Claims 3.1(ii) and 4.1(ii), and |I}| < [[,| that

3 q 1
QiZij(t+1—Léﬁ)+qu—6—HA+§Uu

3(t+1)  2—5 , 1,
> 211, — |1 2)—6—|1 =/
S t—4+ t—4 1] >0
- ot—1 2t-1)""=7

Assume now |I,| = 1. Then ¢, > 3. In the case where |I,| = 1 and ¢, > 4, it follows
from Claim 4.1(ii) that 6}, > 3(t+1)/(t—1)+ (2t =5)q,/ (2t —2) =6 —|1,|+|I},|/2 > 0.
In the case where |I,| = 1 and g, = 3, since |I| =1, 0, > (7—1t)/(2t —2) > 0, which
completes the proof of Proposition 4.2. O

Proposition 4.3. Suppose that t > 5,1 > 2, 6 > [(4t — 1)/3] and |V (H,)| = 2.
Then 9}1 > 0.

Proof. Keeping Proposition 4.2 in mind, we may assume |I,,| = 0, and hence ¢, = 2.
It follows from Claim 3.1(ii) that 6}, > (3/(t — 1)) - ((4t —1)/3 — qu/2) + ¢, — 6 > 0,
which completes the proof of Proposition 4.3. O

We are now in a position to complete the proofs of Theorems 1 and 2.

Proof of Theorem 1. Let ¢, G be as in Theorem 1; thus ¢t > 5 and G be a [(t —1)/3]-
connected K -free graph with 0(G) > [(4¢t —1)/3]. Let [ be the connectivity of G.
Then [ > [(t —1)/3], and hence t < 3l + 1. If T = (), then 6(S,T) > 0 by Claim
3.4. Thus we may assume T # (. By Claim 3.5(i), it suffices to show that 6}, > 0 for
each 1 < pu <m. If [V(H,)| =1, 8, > 0 by Proposition 4.1. If [V/(H,)| = 2, 6, > 0
by Proposition 4.3. This completes the proof of Theorem 1 by Lemma 2.2(ii).
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Proof of Theorem 2. Let ¢, G be as in Theorem 2; thus ¢t > 5 and G be a [(4t —4)/3]-
connected K ;-free graph. Thus 0(G) > [(4t —4)/3]. Let [ be the connectivity of G.
Then | > [(4t —4)/3], and hence ¢t < (3l 4+4)/4 <31+ 1. If T = (), then 6(S,T) > 0
by Claim 3.4. Thus we may assume T # (). By Claim 3.5(i), it suffices to show that
0, > 0foreach 1 <y <m. If [V(H,)| = 1,0}, > 0 by Proposition 4.1. If [V(H,)| = 2
and |I,] # 0, 8, > 0 by Proposition 4.2. Thus we may assume that |V (H,)| = 2 and
|I,] =0. If |V(G)] =141 > 7, then G is the complete graph, and hence G has a
3-factor. Thus, we may assume that [V(G)| > [+ 2. Suppose that |[N(H,)NS| < l.
Then |V(G)-V (H,)—(N(H,)NS)| > 1, and hence G— (N (H,)NS) is disconnected,
which contradicts G is [-connected. Hence we have |[N(H,) N S| > {. Then

0, =3|N(H,)NS|/t—1)+2-6>3l/(t—1)+2—6>0;

this together with Propositions 4.1 and 4.2, completes the proof of Theorem 2.

5 Proof of Theorem 3

Let G be as in Theorem 3; thus G is a 2-edge-connected K 4-free graph with §(G) >
6. We continue with the notation of Section 3 with t =4, =1, and § = 6.

Recall that 82 = 5, g 17 (2, )] +u—31V () | £ 1L N(A U = ey, w(Hy, Co)
In view of Claim 3.5(ii), it suffices to show that 62 > 0 for each 1 < p < m. We
divide the proof into the following two cases.

Case 1. |V(H,)| = 1.

Since G is K 4-free, |I,| < 3, this together with (3.9), (3.11) and Claim 3.1(i)
implies 67 > [N(H,) N S|+ ¢, =3 = I, >6 —qu+ ¢ —3—-3=0.
Case 2. |V(H,)| =2.

Having the definition of [ ; in mind, since G is K 4-free,

|1,] < 4. (5.1)
By the definition of ¢, Iﬁ, Ii, and I/’L, we have
qu > |+ 2|12 — |20 T + 2. (5.2)
By the definition of w(H,, C;), I/i, Ii, and I}, we also have
r»nr
> w(H,, C;) < |Ij| + |12 - |“27“| (5.3)

i€l
If [N(H,)NS| >4, it follows from (3.9), (5.2) and (5.3) that
0 > || = | IEN 1| /24 |1, 0 (JL U J7)] > 0.
Thus we may assume that

IN(H,)N S| < 3. (5.4)



K. KOTANI AND S. NISHIDA / AUSTRALAS. J. COMBIN. 79 (1) (2021), 106-122 118
It follows from Claim 3.1(ii), (5.2) and (5.3) that
|N(HM) NS|+qu — 3|V(Hu)| —w(Hy, Cy)

q LA
>0 | %] g - v - (12 + 1221 - PG

2
[T 42|12 — | I2N 1| +2 12N 1
> 6+ L = 5 Lt —6— |Iﬁ|+|]3|—%
[1
Z—%-‘rl. (5.5)

Suppose that Y7 ¢ |T(z,p)] > |[N(H,) N S|+ 1or [I;N(JyUJ))| > 1. Then it
follows from (5.1) and (5.5) that

62 > [N(H,) N S|+ 1+q, — 3|V(H,)| — w(H,,C;)
In

> ——422>0.
_2+_

Suppose that |I;| < 2. Then it follows from (3.9) and (5.5) that
62 > |N(H,) N S| + g, — 3|V (H,)| — w(H,, C;)
Il
> _|2_u| +1>0.

Thus we may assume that

D T (@ pw) = IN(H) NS, (5.6)
T€S

11} N (JLUJ))] =0, and (5.7)
\[lﬂ =3 or 4. (5.8)

Let i € I;. By the definition of I}, we may write E(H,,C;) = {yz} (y € V(H,),
z € V(C;)). Since G is 2-edge-connected and |I; N (J, U J)| = 0, there exists
x € N(H,) NS such that x € N(y) N N(z), say ;. Since i € I is arbitrary,
1] < > venns I (@, 1) =32, [T (z, )| Hence it follows from (5.4), (5.6) and
(5.8) that |I| = 3. If x; = xy for i,i" € I (i #7') then

DoNT@ = Y 1T )| + 1T (i, p)

€S TES—x;
> [N(Hyu) N (S = 2)| + T (2, )
> |N(H,) NS —z)|+2=|NH,)NS|+1,

which contradicts (5.6). Thus for each 4,7’ € I, (i # '), x; # xy. Set I, = {i1, 42,3},
and V(H,) = {y1,y2}. Then N(H,) NS = {w;,,z,, 2, }. Since G is K 4-free, we
may assurne that ‘E(y17011>| = ‘E(y17012>| =1 |E(y17013)‘ = 0, ‘E(y27cl1>| =
|E(y2,Ci,)| = 0 and [E(y2, Ciy)| = 1. Let y121, y120, 4223 € E(G) (21 € V(Cyy),
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29 € V(Cy,), z3 € V(Cy,)), and let z3 € N(y2) N N(z3). Since |E(y1,Ci,)| = 0,
Y123 € E(G). Since N(y1) — S = {y2, 21, 20} and deg(y1) > 0 =6, [N(y1) N S| > 3;
this together with |N(H,)NS| = 3 implies z3 € N(y1). Hence | T (z3, 1)| > {1, 23}

Conseqently 3 ,es |7 (2 1) = ¥yes,, 17w p)] + | (w5, )] = [N(H,) OS]+ 1,
which contradicts (5.6).

6 Examples

In this section, we construct examples which show that the conditions in Theorems
1, 2 and 3 are best possible.

Example 6.1. Let ¢ > 5 be an integer. There exist infinitely many [(4¢ — 7)/3]-
connected K ;-free graphs G of even order with 6(G) > [(4¢ — 4)/3] such that G
has no 3-factor. Let m > t be an arbitrary integer relatively prime to t — 1. Set
[ =1[(4t—"7)/3]. Let Iy, I, ..., Is, be disjoint copies of the complete graph of order
[1/2], and let Jy, Ja, ..., Jom, be disjoint copies of the complete graph of order |1/2],
and let Hy, Hy, ..., Hay—1) be disjoint copies of the complete graph of order 2. For
each 1 < k < 2m, set

o= | VHe-ve1+),

1<j<t—1

T= U Vg

1<j<t—1

Now define a graph G by

v<a>:< U <V(Ik>uV<Jk>>>u U v |,

1<k<2m 1<i<2m(t—1)

EG) = < U (E(Ix) UE(J))U{zylz e V(I}),y € Tp} U{zylx € V(Ji),y € T,;})

U U B

1<i<2m(t—1)

Then G is [(4t — 7)/3]-connected and K ;-free, and satisfies 6(G) =1+ 1 = [(4t —
4)/3]. However, we easily see that G does not have a 3-factor (for example, if we
apply Lemma 2.1 with S = <<, (V(Le) UV (Ji)) and T' = U, <jcom1y V(Hi),
then we get 6(S,T) < —2m).

Example 6.2. Let ¢ > 8 be an integer. For any positive integer d, there exists a
[(t —4)/3]-connected K ;-free graph G of even order with 6(G) > § such that G
has no 3-factor. Let m >t be an arbitrary integer relatively prime to ¢ — 1, and set
l=1[(t—4)/3]. Let I, I, ..., I, be disjoint copies of the complete graph of order
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[1/2], and let Ji, Ja, ..., Jom, be disjoint copies of the complete graph of order [I/2].
Let p be an odd integer with p > § —{+1, and let C1, ..., Cyp—1) be disjoint copies
of the complete graph of order p. For each 1 < k < 2m, set

T, = U V(Ck—1)t—1)+)

1<j<t—1

.= |J V(Ci-vemn)

1<j<t—1

Now define a graph G by

V(G>=< U <V<Ik>UV<Jk>>>u U v,

1<k<2m 1<i<2m(t—1)

E(G) = ( U E@)UEWL) Ufzyle € V(I),y € T} U{aylz € V(i) y € Tﬁ)

U U E@)

1<i<2m(t—1)

Then G is [-connected and K 4-free, and satisfies §(G) = p— 141 > 6. However, we
easily see that G does not have a 3-factor (for example, if we apply Lemma 2.1 in

Section 2 with S = ;<90 (V(Ix) UV (Ji)) and T' = (), then we get 6(S,T) < —2m).

Example 6.3. There exist infinitely many 3-connected K s-free graphs of even
order with no 3-factor. Let m > 2 be an even integer. Let Iy, Io, ..., I,, be disjoint
copies of the complete graph of order 1, and set V(I}) = {xx} (1 < k < m). Let
Hi, Hs, ..., Hy, disjoint copies of the complete graph of order 2, and set V(H;) =
{yi, v} (1 <i < 2m). Let L, L’ be disjoint copies of the complete graph of order
2m, and set V(L) = {z1, 22, ..., 20} and V(L") = {2}, 2}, ..., 25, }. Now define a
graph G of order 9m by

V(G) = ( U V(]k)> U( U V(Hk>> UV(L)uV(L),

1<k<m 1<i<2m

E(G) = ( U {zey |y € V(Hzp-1) UV(H%)})

1<k<m

U ( U {yiyé,yizi,yz’-zz’-}> U E(L)UE(L).

1<i<2m

Then G is a 3-connected K 3-free graph of even order. However, we easily see that
G does not have a 3-factor (for example, if we apply Lemma 2.1 in Section 2 with

S = Ulgkgm V(Ix) and T = U1§i§2m V(H;), then we get 6(S,T) = —m).
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Example 6.4. There exist infinitely many 4-connected K s-free graphs of even
order with no 3-factor. Let m > 2 be an arbitrary integer. Let Iy, 1>,...,I,, be
disjoint copies of the complete graph of order 2. Let Hy, Ho, ..., Hs,, disjoint copies
of the complete graph of order 2, and set V(H;) = {y;,vi} (1 < i < 2m). Let
L, L' be disjoint copies of the complete graph of order 3m + 1, and set V(L) =
{z1,20, ..., 23my1} and V(L) = {21, 25,..., 25,,.1}. Now define a graph G of order
14m + 2 by

V(G) = ( U V(Ik)> U ( U V(HJ) UV(L)UV(L)

1<k<m 1<i<3m

E(G) = ( U E(@)u{zy|ze V(L) y € V(Hspa) UV (Hs_1) U V(Hgk)}>

1<k<m

1<i<3m

Then G is a 4-connected K 4-free graph of even order. However, we easily see that
G does not have a 3-factor (for example, if we apply Lemma 2.1 in Section 2 with

S = Ulgkgm V(Ix) and T = U1§i§3m V(H;), then we get 6(S,T) = —2).

Example 6.5. There exist infinitely many 2-edge-connected K 4-free graphs of even
order satisfies §(G) > 5 with no 3-factor. Let p; > 7 be an odd integer, and let p, > 6
be an even integer. Let C4, Cs,...,Cs be disjoint copies of the complete graph of
order py, and let Dy, Ds, ..., D; be disjoint copies of the complete graph of order p,.
For each C; (1 <1 < 8), take two vertices ¢;, ¢ € V(C;). For each D; (1 <14 < 7),
take one vertex d; € V(D;). We define the graph of order 8p; + 7ps + 8 by

V(G) = {z1, 22} Udyn, v, 08,90, 95,06 U | VICHU | V(D))

1<i<8 1<:i<7
E(G) = {l’lyz‘, l’ldz‘ | Z = ]_, 2, 3} U {ZL‘QyZ‘, l’gdi | Z = 4, 5, 6}
U{yici, yici yidi | 1 < i < 6} U {y1ct, yac3, yacs, ysca } U {ysdr, yodr}

u |J E@Cyu | ED)).

1<i<8 1<i<7

Then G is a 2-edge-connected K 4-free graph, and satisfies §(G) = 5. However, we
easily see that G' does not have a 3-factor (for example, if we apply Lemma 2.1 in
Section 2 with S = {z1, 22} and T' = {y1, y2, Y3, Y4, U5, Y } , then we get 6(S,T) = —2).

Example 6.6. For each k£ > 2, there exists a k-edge-connected K s-free graph of
even order with no 3-factor. Let £ > 2 and s > % be integers. Let I and J be the
complete graphs of order k and 2, respectively. For each v € V(I), let C!,C? C3
be disjoint copies of complete graphs of order 2s + 1. For each C!, take k distinct
vertices 2% (1), 25(2),..., 2 (k) from V(C?). Let G be a graph of order (6s + 4)k + 2

v
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E(G)=E()UuEM)U | (UE(C;‘,))
U{zylz e V(J),y e V(I)}

U U (U{vzf)(l), v2}(2),...,vz(k)}).

veV(I) i=1

Then G is a k-edge-connected K s-free graph of even order. However, we easily see
that G does not have a 3-factor (for example, if we apply Lemma 2.1 with S = V(1)
and T =V (J), then we get 6(S,T) = —4).
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