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Abstract

In this paper, we prove the existence of a 4p-cycle decomposition of the
graph K,, x K,, and a directed 4p-cycle decomposition of the symmetric
digraph (K,,0K,)*, where o and x denote the wreath product and tensor
product of graphs, respectively, and p is an odd prime. It is proved that,
for integers m > 3 and n > 3, the obvious necessary conditions for the
existence of a 4p-cycle decomposition of K, x K, are sufficient, where p
is an odd prime. Also, it is shown that the necessary conditions for the
existence of a directed 4p-cycle decomposition of the symmetric digraph
(K,, o K,)* are sufficient, where p is an odd prime. Recently, the same
type of results are obtained for 2p; see [S. Ganesamurthy and P. Paulraja,
Discrete Math. 341 (2018), 2197-2210).
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1 Introduction

All graphs (respectively, digraphs) considered here are loopless and finite. Let C

(respectively, ak) and P (respectively, Fk) denote a cycle (respectively, directed
cycle) and a path (respectively, directed path) on k vertices. For a graph G, G()\)
denotes the multigraph obtained from G by replacing each edge of G by A\ edges.
The complete graph on n vertices is denoted by K, and its complement is denoted
by K,. For an integer k > 2, kH denotes k vertex disjoint copies of H. For a graph
G, G* denotes the symmetric digraph of G and it is obtained from G by replacing
every edge by a symmetric pair of arcs. If Hy, Ho, ..., H; are edge-disjoint subgraphs
of a graph G such that E(G) = E(H,) U E(Hy) U --- U E(Hy), then we say that
H,, Hy, ..., Hy decompose G and we write this as G = H, @& Hy @ --- @ Hy, where
@ denotes the edge disjoint union of graphs. If each H; ~ H, 1 < i < {, then we
say that H decomposes G and we denote this by H | G. Similarly, if ﬁl, ﬁg, o Hy
are arc-disjoint subdigraphs of a digraph D such that A(B) = A(H,) U A(ﬁg) U
-+~ UA(Hy), then we say that Hy, Ho,..., Hy decompose and we write this as
B = ﬁl@ﬁg@' . '@ﬁg. If each ﬁl ~ ﬁ, 1 <1 </, then we say that F[) decomposes
B and we denote this by ﬁ | B If H; ~ Cj (respectively, ﬁl zak), 1 <</
and k > 3, then we write Cy | G (respectively, Bk | B) and in this case we say that

G (respectively, B) has a Cj-decomposition (respectively, E’k—decomposition) or a k-
cycle decomposition (respectively, directed k-cycle decomposition). A Cy-factor of a
graph G is a spanning subgraph H of GG such that each component of H is a k-cycle.
A partition of the edge set of G into Cy-factors is called a Cy-factorization of G, that
is, a 2-factorization in which each of its factors contains only cycles of length k as its
components. A k-regular graph G is said to be Hamilton cycle decomposable if its
edge set can be partitioned into Hamilton cycles or Hamilton cycles plus a perfect
matching if £ is even or odd, respectively.

For two graphs (respectively, digraphs) G and H, their tensor product, denoted
by G x H, is the graph with vertex set V(G) x V(H) in which (g1, h1)(g2, ho) is
an edge (respectively, arc) whenever gigo is an edge (respectively, arc) in G and
hihy is an edge (respectively, arc) in H. Similarly, the wreath product of graphs
(respectively, digraphs) G and H, denoted by G o H, is the graph with vertex set
V(G) x V(H) in which (g1, h1)(g2, ho) is an edge (respectively, arc) whenever g;gs is
an edge (respectively, arc) in G or, g; = g and hyhy is an edge (respectively, arc) in
H: see Figure 1. It can be easily seen that K,, o K, is the complete m-partite graph
in which each partite set has n vertices. Moreover, K,, 0 K,, — E(nK,,) = K,, x K,,.
The complete multipartite graph with partite sets having sizes mq, mo, ..., my is
denoted by K\ ms,...m,- It is well-known that the tensor product is commutative
and distributive over edge-disjoint union of graphs, that is, if G = Hi S Hy®- - - B Hy,
then G x H=(H,  xH)® (Hyx H) @& ---® (H, x H). If G and H are two graphs
with vertex sets {zg, x1,...,2.} and {yo, 41, .., Yys}, respectively, then V(G x H) =
V(G) x V(H) = {(z;,y;)|0 <i <rand 0 < j < s}t Foraz € V(G) we define
X; =z x V(H) = {(xi,90), (xi,y1),- .., (xi,ys)} and we call this set of vertices
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the i row of G x H. Similarly, for y; € V(H) we define Y; = V(G) x y; =
{(z0,v5), (x1,9;), - - -, (2, y;) } and we call this set of vertices the j™ column of G x H.
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The graph Cy x Kj. The graph Cy o K.

Xi={a;} x V(H) and Y; = V(G) x {y;}

Figure 1: The graphs C; x K4 and Cy 0 K 4.

Let G be a bipartite graph with bipartition (X,Y"), where X = {xo, z1,..., 2,1},
Y = {vo,y1,---,yr—1}. For some i, 1 < i < r —1,if G contains the set of edges
F,(X,Y) ={xyi+; |0 < j <r—1}, where addition in the subscript is taken modulo
r, then we say that G has the I-factor of jump i from X to Y and each edge of
F;(X,Y) is called an edge of jump i from X to Y. Note that F;(Y, X) = F,_;(X,Y),
0 <i<r—1 Clearly, if G = K,,, then E(G) = J_, Fi(X,Y). Definitions which
are not given here can be found in [6].

The problem of decomposing regular graphs into cycles is not new. The obvious
necessary conditions for the existence of an m-cycle decomposition of K, (respec-
tively, K,, — I, where I is a perfect matching) when n is odd (respectively, even) are
proved to be sufficient; see [2, 14, 28]. In 2003, Buratti [10] obtained a short proof
for the existence of an odd cycle decomposition of K,. Recently, Bryant et al. have
proved that the complete graph K, (respectively, K, — I, where [ is a perfect match-

ing) can be decomposed into cycles of lengths my, ma, ..., my, where Zle m; = (Z)

(respectively, Zle m; = (3) — %) and n is odd (respectively, even); see [9].

Necessary and sufficient conditions for the existence of a k-cycle decomposition
of KoKy, k€ {mn,p,2p,3p,p*}, are given in [7, 17, 20, 21, 23, 29, 30, 31], where
pis a prime. The existence of an even cycle decomposition of (K, o K, )()) has been
proved by Muthusamy and Shanmuga Vadivu; see [26]. Very recently, regardless
of the parity of k, the authors of [11] actually solved the existence problem for a
Cy-decomposition of (K, o K,)()\) whose cycle-set can be partitioned into 2-regular
graphs containing all the vertices except those belonging to one part.



S. GANESAMURTHY ET AL./ AUSTRALAS. J. COMBIN. 79 (2) (2021), 215-233 218

The graph K,, x K, is a proper spanning regular subgraph of K,, o K,, (in fact,
Knx K, = (K,,oK,)—E(nK,)); the existence of a k-cycle decomposition of K, x
K, is not a straightforward consequence of the existence of a k-cycle decomposition of
K, 0K ,. Assaf [4] proved that Cs | (K,, x K,,)(\) whenever the necessary conditions
are sufficient. Manikandan and Paulraja proved that the necessary conditions for
the existence of a C),-decomposition of K,, x K, are also sufficient whenever p > 5
is prime; see [20, 21, 23]. Further, in [13], Ganesamurthy and Paulraja proved that
the necessary conditions are sufficient for the existence of a C%-decomposition of
K, x K, where k € {2°,2p}, £ > 2 and p > 3 is a prime. Recently, Manikandan et
al. [24] proved the existence of a p?-cycle decomposition of K, x K, whenever the
necessary conditions are satisfied. Balakrishnan et al. [5] obtained a Hamilton cycle
decomposition of K,, x K,.

Directed k-cycle decompositions of (K,(A))* are studied in [3, 32]. Furthermore,
directed p-cycle and 2p-cycle decompositions of (K, o K,)* are obtained in [13, 22].

Besides other results, we prove the following theorems.

Theorem 1.1. If the integers m and n are at least 3 and p > 3 is prime, then
Cap | Ky X Ky if and only if either m or n is odd, 4p < mn and (Tg) (g) =0 (mod
2p).

Theorem 1.2. If the integers m and n are at least 3 and p > 3 is prime, then
— _
Cap | (Ko K,,)* if and only if 4p < mn and m(m — 1)n? =0 (mod 4p).

2 Some known theorems and lemmas

We quote the following theorems for our future reference.

Theorem 2.1. [2| For odd integers 3 < k < m, Cy| K, if and only if m(m —1) =
0 (mod 2k).

Theorem 2.2. [34] For positive integers k, m and A, Pyi1 | Kpn(N) if and only if
2<k+1<mand Am(m—1) =0 (mod 2k).

Theorem 2.3. [33] For positive integers m, n and k, Cy | Ky, if and only if m, n
and k are all even with % <m, g <n and k|mn.

Theorem 2.4. [19] Let m > 3 be an odd integer and let k > 4 be an even integer.
Then Cy | (Kmm — I) if and only if k < 2m and k| m(m — 1), where I is a perfect
matching of K m.

Theorem 2.5. [25] If n|m, then Cy X K,,, admits a Cy,-factorization except possibly
when k is an odd integer and m = 2 (mod 4).

Theorem 2.6. [5] Form, n > 3, the graph K,, x K,, is Hamilton cycle decomposable.

Theorem 2.7. [15] Let m > 3 be an odd integer and let n > 3 be an integer. Then
Cp x Cp, 1s Hamilton cycle decomposable.
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Theorem 2.8. [16] For k > 3 and n > 2, the graph C) o K, is Hamilton cycle
decomposable.

Theorem 2.9. [3] For positive integers k and n, with 2 < k < n, 8’k | K if and
only if n(n—1) =0 (mod k) and (k,n) # (3,6), (4,4), (6,6).

Theorem 2.10. [27] For positive integers m > 2 and n, (K, o K,)* is directed
Hamilton cycle decomposable except when (m,n) = (4,1) or (6,1).

Theorem 2.11. [12] Let A\, m, n be positive integers with m, n > 3, and p > 2
prime. Then Cyp | Kp(X) o Ky, if and only if (1) mn > 4p, (2) A(m — 1)n is even,
and (3) 4p | A(7)n?.

Lemma 2.12. [13] If Pyy1| K, then Cy. | Ky, X K,, when k > 3 and for all odd
integers m > 3.

Lemma 2.13. [13] Let k > 2, m > 5 and m = 1 (mod 4). If Pei1| K., then
C4k | Km X Kn.

Lemma 2.14. [13] ]fk’ > 2, then O4k | Pk+1 X K474.

3 Building blocks

In this section we prove some lemmas which are used in the proof of the main
Theorem 1.1.

Lemma 3.1. If m > 2 is an integer and n, k > 3 are odd integers with n = 1 (mod
4]€), then C4k ‘ Km X Kn

Proof. Clearly, K, x K, = (KoxK,)®- - -®(KyxK,). The graph Kox K,, = K, ,—I,
where [ is a perfect matching of K, ,,. Since n = 1 (mod 4k), 4k | n(n—1) and hence
Cai | K n — I, by Theorem 2.4. Thus Cyy | K, X K. O

Lemma 3.2. If k > 3 is an odd integer, then Cy | K5 X C.

Proof. Let V(K35) = {v,w,x,y, z} and Cy = (aq, a9, ...,a;). Then V(G) = {(v,a1),
(v,a2), ..., (v,ar)} U {(w,a1), (w,as),...,(w,ar)} U {(z,a1), (z,a2),...,(x,a)} U
{ly,a1), (y,a2),...,(y,ar)} U {(z,a1), (2,a2),...,(2,ax)}. For our convenience, we
denote (v, a;), (w, a;), (x,a;), (y,a;) and (z,a;) by v;, w;, x;, y; and z;, respectively.
Now we construct a base cycle C' of length 4k in K5 x C}, as follows; see Figure 2.
Let C' = (v, W, V3, Wy, Vs, ..., W1, Uk, T1, 22, L3y -« y Zk—15 Ty W1, Vo, W3, -+« Vg1,
Wy 215 T2,y 23y« +y Th1, 2k )-

Consider the permutation p = Z1 Zs ... Zy, where Z; = (v; w; x; y; z;), 1 < i <k,
on the set V(K5 x Cy). Then {C, p(C), p*(C), p*(C), p*(C)} is a Cy-decomposition
of K5 x (. This completes the proof.

O
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K5XC7

Figure 2: A base cycle C of K5 x C for a Cag-decomposition of K5 x C7 is shown above.

Lemma 3.3. Let k and m be odd integers with 3 < k < m. If Cy| K, then
C4k | K474 X Km

PT‘OOf. As Ck | Km7 K474 X Km = K474 X Ck@ . '@K474 X Ck = 04 X Ck@ . @04 X Ck,
since Cy | K44, by Theorem 2.3. The graph C, x C}, admits a Cy,-decomposition, by
Theorem 2.7. Thus Cyy, | K44 X K. O

Lemma 3.4. Let k > 3 be an odd integer, n be an integer with k < n and k | (;‘) If
m >5 and m =1 (mod 4), then Cy, | K., X K,,.

Proof. Let m=4t+1, t > 1.

Case 1. n is odd.

Since n is odd and k | (;‘), K, = Cy®---®Cy, by Theorem 2.1. Ift = 1, Cy | K5 x K,
by Lemma 3.2, because K5 X K,, = K5 x Cy @ ---® K5 x Cy. For all t > 2, the edges
of K441 can be decomposed into ¢ copies of K5 which each share a common vertex
and (;)—copies of K, 4; see Figure 3.

K4t+1

Figure 3: Kyyj1=K; & Ks® - @ Ks ® Ky a® Ky a® -+ & Ky 4. A copy of K4 and oo induce
a K5 and the edges between any two Ky’s yield a K4 4.
Thus, for all £ > 2, we have

KnxK, = (Ks® - K DKy, ®Kyy) x K,
= (KsxK,® - - ®Ksx K;,) ® (Kyu x Ky @---® Kyy X Kp).
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The graphs K5 x K, and Ky4 x K, admit Cy-decompositions, by the above
argument and Lemma 3.3, respectively. This completes the proof of this case.
Case 2. n is even.
Since k| (5), 2k | n(n—1). Asnis even and k is odd with k < n, it easily follows that
k+1 <mn. Thus Py, | K,, by Theorem 2.2. Hence, by Lemma 2.13, Cy | K, X K,,.
This completes the proof of the lemma. O

Lemma 3.5. If p is prime and p =1 (mod 4), then Cy, | K¢ X K.

Proof. Let G = K¢ x K, and let {xo,z1,...,25} and {0,1,...,p — 1} be the vertex
sets of K and K, respectively. Then V(G) = V(Kg) x V(K,) = U?:o X, where
X; = x; x V(K,) = {(:,0), (zi, 1), ..., (z;,p — 1)}. Foreach i, 1 <i < 21 we
obtain three Cy,-cycles in the graph G as follows; see Figure 4.

4

Figure 4: Three base cycles C}, C{ and C}’ of K¢ x K35 for a Cag-decomposition of K¢ x K5 are

shown above.

Cl = Fy(Xo, X1) & Foi1( X1, Xo) & Fi(Xo, Xy) & Foi1(X4, Xo),
Cl'= Fy1(Xo, Xa) ® Foi( Xy, Xo) ® Foi1(Xa, X1) & Foi( Xy, Xo) and

Cl" = Fp (X1, X5) & Fo1(X5, X3) @ Foi (X3, Xy) B Foi1(Xy, X1),
where Fj,(X;, X;) stands for the 1-factor of jump k from X; to Xj.
The sum of jumps of the 1-factors between the partite sets, that appear in C!, of
K¢ x K, is 20 + (20 — 1) + 2i + (20 — 1) = 4i — 2. Clearly, ged(4i — 2,p) = 1, since
1 < 1%1 implies 4i — 2 < p. Hence, C! is a cycle of length 4p; similarly, C! and C!’
are cycles of length 4p. Consider the permutation p = (Xo) (X1 X2 X35 X4 X5) on the
set {X(), Xl, XQ, X3, )(47 X5}, then

{CLp(C)),. . p(C)), O p(C), . M (CT). O p(C]), o pH (O}, 1 < i < B

is a Cy,-decomposition of G, where

p(Ch) = Fau(p(Xo), p(X1)) & Fai1(p(X1), p(X2)) @ Fai(p(X2), p(X4)) ©

FQifl(p(Xél)a P(XO))
Fyi(Xo, Xa) ® Foi_1(Xo, X3) @ Foi( X5, X5) @ Foi1(X5, Xo).
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Similarly,

P(C)) = FQz(p](XO>7pj(Xl)) ® Foi1(p/(X1), 07 (X2)) ® Fos(p (X2), P/ (Xy)) @
Foi 1 (07 (X4), 97 (X0)),

P(CY) = Faia(p(Xo), (X)) ® Foi (07 (Xa), p7(X2)) © Foia (0 (X), 7 (X)) ®
Fyi(p?(X41), 07 (Xo)) and

P(C]") = Fai(p’ (X1), 7 (X5)) ® Foia (P (X5), P (X3)) © Fai(p/ (X3), /' (Xu)) @
Fyi 1 (07 (Xa), P (X1)). =

Lemma 3.6. If m =1 (mod 4) and m > 5, then Cy, | K,y X K.

Proof. Let V(K,,) = {%e,T0,T1,...,Tm—2} and V(K7) = {1,2,...,7}. Then
V(Kn X K7) = Xoo UXoU X[ U -+ U X, o, where Xop = 25 X V(K7) = {(20, 1),
(00,2)y oy (Too, )} and X; = a; x V(K7) = {(x;,1), (24,2),...,(x;,7)}, for
0 < i <m — 2. For our convenience, we denote (z,7) by x’_ and (z;,j) by /.

Let m = 2t + 1, for an even integer t > 2. Since m is odd, by Walecki’s Hamilton
cycle decomposmon (see [1]), Km = DI, 5 H;, where

H;, = (ZUoo, Ly Tid1y i1y Tit2y Li—2y « + 5 Vit —2y Li—t425 Litt—15 Ti—t+1; $i+t)

is the Hamilton cycle and addition in the subscripts is taken modulo m — 1. Let
H = Hy® H,, where Hy and H; are the Hamilton cycles of K, obtained above. Let
0 = (Too)(®o2my ... Tpy—3)(T123T5. .. Ty—o) be a permutation on V(K,,). Then
H,o(H),...,c"(H), k= £ —1, decompose K, into isomorphic copies of H. Clearly,
Kp,xK; =HXxK;®&HXK;®---® H x K;. Hence it is enough to obtain a
Cym-decomposition of H x K.

Consider the permutation p = (1234567) on V(K7). Then F, p(F), p*(F),
.., p8(F) is a mnear 1-factorization of K7, where F = {12, 37, 46} and p (F) =
{p"(1) p(2), p°(3) *(7), p"(4) p*(6)}, so for example p(F) = {23, 41, 57}. Let Ay (re-
spectively, A;) denote the path Hy \ {z;z} (respectively, Hy \ {xt+1xoo}) obtained
by deleting the edge . z; (respectively, xo x4 1) from Hy (respectively, Hy), see Fig-
ure 5(a) (respectively, 5(c)). Observe that Ay and A; are Hamilton paths of K,,.
For each edge ij € FE(K7), Ao X ij (2 Ag x Ks) is a pair of disjoint paths A0(1 and
Agj(z), each of length m — 1 with initial vertices 2, and 27 and terminal vertices z
and zJ, respectively, see Figure 5(b); similarly A; x ij = All P A1(2 where the end
vertices of Alj(l) (respectively, Alj(Q)) are x’ (respectively, zZ.) and z},, (respectively,
].,), see Figure 5(d). Note that V(K,, x K;) = V(H x K;). We construct three
base cycles C’, C"” and C", each of length 4m, in H x K7 as follows; see Figure 6.

Let ey =12, e5 = 37 and e3 = 46 be the edges of F' in K7 and let

C' = {(Hy \ {xt%o} xer} @ {(Hi\{z170}) X €2)} © alal, @ 2l 7, @
w3, wy @ al i = Aghy Bayad, @AY Dy, 25, @ Agly) Sl © ATl daf 7l
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Figure 5: Broken edge in (a) (respectively, (c)) denotes the edge wooz; (respectively, Too®si1)

which is removed from Hj (respectively, Hy).
" \@
\ ‘

x} x$
t+1 i+1 T Ti

Base cycle ¢’ Base cycle C” Base cycle C"

Figure 6: Base cycle C’ of length 4m in H x K7 is constructed using the paths described in
Figures 5(b) and 5(d). Similarly, the cycles C” and C"" are shown using appropriate paths.

"= {( Ho\{l’tffoo} X 62} S { Hl\{$t+1 xoo}) X 63)} @ $t+1 ® 1571 O
To 1} @ 1, ] = A ©xas, © ALY B2l © Afly Dr{ad © Ay @, w0l

and

o — {(Ho \ {ft%o} X 63} D { H1 {$t+190oo}) X 61)} ® 25, Ti B 18 Th B
rl ztex? b = AO(l @Au @xtHx @AO(Q zéx? @Aié) B To
If p=(1234567) acts on the superscrlpts of the vertices of H x K7, then {C", p(C"),
L p8(C), C" p(C", ... ,p s(cmy, e, p(C’”) . ,p 6(C"™)}is a Cp- decomposition of
H x K7, where p(C") = Ag(l P2 M g @AP(3 ) pr ff’l 22 @Ap(l 2 @20 180 gy

A’fg Do tfl)xgol) A231)69:E x? @Al%l)eéxtﬂxoo@Ag?Z)@xtxéo@Al%Z)@xtono. O
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Lemma 3.7. If n >3 and n =2 or 3(mod 4), m =1 (mod 4) and m = 0 (mod p),
then Cyy, | Ky, X K, where p > 3 is prime.

Proof. Let m = ps; then s > 1 is odd as m is odd.
Case 1: n =2 (mod 4).
Let n=4t+2,t > 1.
First we complete the proof for the case s = 1. If t = 1, the result follows by
Lemma 3.5. For all ¢ > 2, the graph
K, x K,, = K, X Ky
= Ky x (K ® (Ke —¢) @+ ® (Ko — ¢) ®(K, 0 Ky))

v~

(t—1) times

=K, XK @K, x (K;,8C,0Cy) BB Ky, x (Ky40Cy®Cly)

(t—1) times

DK, X (Kya® - @ Kyq)

. J

(;) copies
:(KpXKG)EB((KPXK4>€B(KPX04)@(prc4)>@”'@

(K x Ky) & (Kp x Cy) @ (K x C)) & (K X Ky g) @+ - @ (K X Ky g)).
The graphs K, x K¢ and K, x K4 are Cy,-decomposable, by Lemma 3.5 and The-
orem 2.6, respectively. Since C,|K,, Cy,| K, X K44, by Lemma 3.3. Further,
Ky, xCy =Cpy,xCy@- - C, x Cq and C, x Cy admits a Cy,-decomposition,
by Theorem 2.7.
Next we consider the case s > 3.
Clearly, K,, x K, = K,, x Ko ® ---® K,, X K5. Since s > 3, 2m > 4p; also
4p|m(m — 1) and hence the graph K,, x Ky = K,,, ., — I, where I denotes a perfect
matching, admits a Cy,-decomposition, by Theorem 2.4.

Case 2: n =3 (mod 4).
Recall that s is odd. If s > 3, then m > 2p + 1; also 2p | (’;) and hence Py,.q | Ky,
by Theorem 2.2. So Cy, | K, x K,, by Lemma 2.12. Next we assume that s = 1.
Let n=4t+3,t>1. If t =1, Cyy | K, x K7, by Lemma 3.6. For ¢ > 2,
Ky x Kyis=K,x (K ®Ks®---® K5 ®Kgq4. 4); see Figure 7
(t—1)times
= (KpXK7)@((KpXK5)@"'@(KPXK5))@
(f(px Kes® - @ K, x K674J)ea(\Kp XKigs®-- @K, ><K4%)

-~ -~

(t—1) times (tgl) times

The graphs K, x K7 and K, x K5 admit Cy,-decompositions, by Lemmas 3.6 and 3.4,
respectively. Since C), | K, Cyp | K, X Ky 4, by Lemma 3.3. By Theorem 2.3, Cy | K¢ 4
and hence K, x Kg4 = C, x Cy @& --- & C, x Cy. Now Cyy, | C, x Cy, by Theorem 2.7.
This completes the proof of the lemma. O

Lemma 3.8. If k=3 (mod 4), then Cy | K11 X K.

Proof. Let V(K7) = {1,2,3,4,5,6,7} and V(Kyi1) = {zo,x1,...,2}. Label the
vertices of Ky, x K7 as in Lemma 3.6. First we complete the proof for the case
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Figure 7: Kyy3 = K; ® Ks® -+ ® K5 ® Kg a4, 4. A copy of Kg (respectively, K1) together
with oo induce a K7 (respectively, Kj).

k = 3. Since K3| K7, by Theorem 2.1, K; X Ky = Ky X K3 ® -+ ® K4 x K3. The
graph K4 x K3 admits a Cjp-decomposition, by Theorem 2.6. Thus, C1s | Ky X K.

Now we complete the proof for the case k > 7.

Let kK + 1 = 2t, for some even ¢t > 4. A Hamilton path decomposition of Ky, is
Py = [, %1, Tim1, Tigo, Timay -+ oy Ticgt—2y Titg2y Tiet—1, Ligg1, Tige), 0 < 4 <t — 1,
where the addition in the subscripts is taken modulo k + 1. Let H; = Py; @ Paji1,
0 <j < t—1, where Py; and Py;yq are two consecutive Hamilton paths of the

2
above decomposition of Ky 1. As Kyy,1 = Hy® Hi @ -+ @ Héfl, Kiiy X K7 =

Hy x K7 © ---@Héfl x K;. Since H; = p/(Hp), 1 < j < %— 1, where p =
(xomg ... xp_1)(z1 23 ... xx) is the permutation on the set V(K4 1), to complete the

proof of this lemma, it is enough to obtain a Cy,-decomposition of Hy x K.

First we describe three base cycles C, C{f and C{’, each of length 4k, in Hy x K7 as
follows:

Note that Fy and P; have the same vertex set, but for our convenience we will
view Py and P, to be on disjoint sets of vertices except for one particular vertex,
xy_1. Figure 8 shows this for £ = 11, where Py, and P; are Hamilton paths in Kjs.
In particular, Figure 8(c) shows the way in which we will view Hy = Py ® Py, so that
each vertex of Hy, except the one vertex x; 1, appears exactly twice. Each vertex z;
of Hy gives rise to X; = x; x K7 = {(x;,1), (%;,2),..., (24, 7)} having seven vertices
of Hy x K;. This X; also appears in both Py x K; and P; x K5, except for X;_;
(see Figure 9). If we superimpose X; of Py x K; with X; of P, x K7, i # t — 1,
we get Hy x K7. If x; and z; are adjacent in Hy, then (X; U X;) is isomorphic to
K77 — Fo(X;, X;) and hence this subgraph (X; U X;) of Hy x K7 has six 1-factors
Fi(X;, X;), Fo(Xi, Xj), ..., Fs(X;, Xj). We construct three base cycles Cf, C{ and
C{" of Hy x K7, each of them having some of their sections in the graphs Fy x K7
and P; x K7, in such a way that if C{) (or Cj or C{’) has a vertex of X; in Py x K7,
then the cycle does not have the vertex of X; in P; x K7 (see Figure 9). So, when
we superimpose X; of Py x K7 with X; of P; x K7, vertices of C}, (or C{ or C{") are
all distinct in Hy X K7. The base cycles of Hy x K7 are given below; see Figure 9.



S. GANESAMURTHY ET AL./ AUSTRALAS. J. COMBIN. 79 (2) (2021), 215-233 226

To L1 Ty T2 Tio T3 Tg Ty Tg T5 Xy 6 _ P,

Ty T2 Xo T3 Ty1 X4 Lo Ts T9  Te T8 X7_ P
r——0— 00— 06— 00— 00— 00— 00— 00— 00— 0 —

(a)
o
To ¢
Ty
Z1
L11 T
T2 We view the graph Hj like this. T2
_—
10
10
L3
T3 If we superimpose the vertices of (c)
with the same label, we get the graph X9
Hy, as shown in (b).
X9 Ly
Ly Ts
€Ts
x
Is 7
e
L7
Tg Bold edges represent Py

Normal edges represent P;

The graph Hy = Py @ P;. The path Py (resp. Pp) is shown in bold (resp. normal) edges.

(b) (©)

Figure 8: Hy = Py ® Py is shown in (b), where Py and P; are the Hamilton paths of Kio as
described in the text. In (b) Py and P; have the common vertex set whereas in (c¢) except for one
vertex all other vertices are shown to be distinct.

(/) = (1’8, IE?, %37 IES, %pr M) x?—% :Et7+2, 1’?_1, xZ—i—l’ x:tsv x?—i—lv 1’%_1, ’rt1+3’ xtzv
xtl-i-27 $?+1, xt2+27 xt17 xt2+37 xtl—la xt2+47 xtl—Qa sty xéa x(Q)a x%a .T?, .T%, xéa .T?),, ccty
7, x%ﬂ, x4, x?JrQ? ]y, x?+37 xlga R 952, 1),

(/)/ = (1,(2)’ IE%, $z> IE%, $i71> ) xtl—2’ x?—i—% 1’?_1, xtg—i—l’ xtzv xrfl-i-lv xZ—l’ x?—i—?ﬂ $Z>
$?+2, x?—i—l’ $Z+2, x?? $Z+3, x?—la $Z+4, x?—Qa ceey xga .1'(7), xga .T?, l‘;, 9587 xga vevy
Tf 9y Tpas Ty1s Tiyos Tpos Tisg, Tpg, -, Tf, T7) and
C(/)// = (ZL‘S, l’?, xzv l’g, "L‘zfl’ cr 1'5_2, l’%+2, xf—l’ :L‘752+1’ :L‘Z’ xf"'l’ :L‘?_l’ ZL‘?+3, xtg’
$?+2, xtl-i-h $?+2, xt67 x?—i—fﬂ’ x?—la $?+4, xt6—27 ceey xga x%a xga .T%, .%'2, x07 x%a vevy
7, x?+47 Ty, x?JrQ? 7, x?+3a xt2737 R QUZ, 1),

where the subscripts are taken modulo £ + 1.
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i Yo Y3 Vi Vs Yo Yy
2 23 .4 5 6

[

: - o7
Ty x5 Ty xy o wy oal g

)

8
O,
-
-
[ 2
/ /
/ /
/e
| /
\
\
I
©~
s

= -~ ~
Xg ® ) ° [ T Tg
1 2 3 405 6 7
Tg Tg LT Tg Tg Tg Tg

i B %Y Ys Y vioo g \\Xg

H
o
A\
/
\
/.\
\/
\ /

°
Normal edges represent C})
e "o o o o X7
- 1" 3 .
Bold edges represent C 1,% x% xs Jf% l’? 1(7, x;
Broken edges represent C{’ i Y2 Y3 Y Y Y Vs

Figure 9: Three base cycles Cf, C§ and C{’ of Hy x K7 are given for a Cys-decomposition of
Hy x K7, where Hy = Py & P, and Py and P; are two Hamilton paths of K15 as obtained in the
text. If we superimpose the X;, except X;_ 1, of Py x K7 with X; of P; x K7, on the respective
vertices, for all ¢ we get three base cycles C), C{/ and C{" of Hy x K7. Y/s represent the columns of
Hy x K7. Note that X/s are not consecutive in the figure, but it appears as in the order of vertices
of the Hamilton path of K.

If p =(1234567) is the permutation acting on the superscripts of the vertices
of V(Hy x K7), then {C}, p(Ch),...,p0%(Ch),Cq, p(CY), ..., p%(CY), CY, p(CY, ...,
p®(CYN} is a Cy-decomposition of Hy x K. O

Lemma 3.9. If p > 3 is prime, m = 3 (mod 4), n = 1 (mod p) and n = 0 (mod 4),
then Cyp | K, X K.

Proof. Asn =0 (mod 4) and n =1 (mod p), n =ps+1, s > 1is odd.



S. GANESAMURTHY ET AL./ AUSTRALAS. J. COMBIN. 79 (2) (2021), 215-233 228

First we deal with the case for s > 3 is odd.
By hypothesis, 2p | (g), also n > 2p + 1; then Py, | K,,, by Theorem 2.2 and so
Cyp | K X Ky, by Lemma 2.12.

Now we consider the case for s = 1.
Clearly, n = p+1 and m = 4t + 3 for some ¢t > 1. If t = 1, then Cy, | K7 x K,11, by
Lemma 3.8. So we assume that ¢t > 2,
Kyisx Kpp1 = (K @ Ks® - @ K5 ® K a.4,..4) X Kpia
=(K; X Kpi1)® (K5 X Kpi1 @@ K5 X Kpq) @
(Keax Kp1 @ @ Keax Kpi1) B (Kyu X Kpp1 @ B Kyu X Kpiq).
Cyp | K7 X Kpt1, by Lemma 3.8. Since P,y | K41, the graphs K5 x K11 and Ky 4 X
K,41 are Cyy-decomposable, by Lemmas 2.13 and 2.14, respectively. Clearly, K¢ 4 X
K1 =Cyx Kpi1®---@Cy x Kpp1. A Cyy-decomposition of Cy x K41 (isomorphic
to Kp41 x Cy) is described below:
Let V(K,41) = {zo,21,...,2,} and Cy = (1,2,3,4). Then V (K, x Cy) =
o Xi, where X; = x; x V(Cy) = {(2:,1), (x3,2), (z4,3), (x:,4)}. The symmetric
digraph K, admits a ap—decomposition, by Theorem 2.9, say C, where 8’13 denotes
the directed cycle of length p. Based on each of the directed cycles in C, we construct

a cycle of length 4p in K, 1 x Cy as follows. Let av be in C; corresponding to this av
we consider in K, X Cy the cycle C}, = Ua??-eA(Z* )Fl(XZ-,Xj), where Fy(X;, X;) is

the 1-factor of jump 1 from X; to X; in K41 x Cy and A((j*p) denotes the arc set of

8’p. Clearly, C}, is a cycle of length 4p, in K11 X Cj, as the sum of the jumps of the 1-

factors occurring in U_>e AC) F1(X;, X;) is p, which is relatively prime to 4. Thus
TiTj P

%
to each C,€ C we obtain a Cy, in K1 X Cy; as C is a directed p-cycle decomposition
of K., we obtain a 4p-cycle decomposition of K1 X Cy. This completes the proof
of the lemma. O

4 (Cy-decomposition of K,, x K,

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We assume that Cy, | K,, x K,. As the cycle length
cannot exceed the number of vertices of K,,, x K, 4p < mn. As Cy,| K,, X K,,
K,, x K, is an even regular graph, that is, (m — 1)(n — 1) is even and hence either
m or n is odd. Further, Cy, | K,, x K, implies 4p divides the number of edges of
K % Ky, that is, 4p | (3)n(n — 1).

Next we prove the sufficiency. Since the tensor product is commutative, we
assume that m is odd.

Case 1: p| ().

Subcase 1.1: 2| (7).
Since m is odd and 2 | (g"), m=1(mod4);asp| (;‘) and p is prime, p < n, we invoke
Lemma 3.4 to complete the proof.



S. GANESAMURTHY ET AL./ AUSTRALAS. J. COMBIN. 79 (2) (2021), 215-233 229

Subcase 1.2: 2 f (7).

In this case, m = 3 (mod 4). Clearly, from the hypothesis of the theorem 2| (})
and also from the hypothesis of the case 2p]| (Z) Now there are two possibilities,
according to the parity of n.

(1) If n is even, then either n =0 (mod 4p) or, n =0 (mod 4) and n = 1 (mod p).
If n =0 (mod 4p), then Py, | Ky, by Theorem 2.2; now apply Lemma 2.12.

If n =1 (mod p) with 4 |n, then the proof follows by Lemma 3.9.

(2) If n is odd, then either n =1 (mod 4p) or, n =1 (mod 4) and n = 0 (mod p).
If n =1 (mod 4p), then the proof follows by Lemma 3.1; if n = 1 (mod 4) and p|n,
then the proof follows by Lemma 3.7.

Case 2: p [ (3).

Subcase 2.1: 2 (3).

Asp| (T;), Cp | Kpm, by Theorem 2.1 and hence K,, x K,, = C, x K, ®--- & C,, x K,,.
Since 2| (}), either n = 0 (mod 4) or n = 1 (mod 4). If n = 0 (mod 4), then
Cyp | Cp x Ky, by Theorem 2.5; if n = 1 (mod 4), then Cy, | K, X K,,, by Lemma 3.4.

Subcase 2.2: 2 [ (3).

From the necessary conditions, 2p|(); then either m = 0(mod p) and m =
1 (mod 4) or, m = 1 (mod 4p); recall that m is odd by assumption. If m = 1 (mod
4p), then the proof follows by Lemma 3.1. Since 2 f(3), n = 2 or 3 (mod 4), and also
m = 1 (mod 4) with p|m. The proof of this subcase now follows by Lemma 3.7. [

5 84p-decomposition of (K,, 0 K,)*

We quote the following two theorems which are used in the proof of Theorem 1.2.

Theorem 5.1. [13] Let (_>} be a directed closed trail of length m with mazimum out
— — — —
degree AT and x(G) = s. Then for alln > AY, C, | G oK, whenever at least
—
(s — 2) mutually orthogonal latin squares of order n exist, where x(G) denotes the
H

chromatic number of G.
Theorem 5.2. [22] Ci | Ci oK for allk >3 andn > 1.
Corollary 5.3. If 8’k | (Ko K,)*, then 8k | (Km0 Kpp)*.

Proof. Since (K, 0 Kp)* = (Ko Kp)* o K, :(j*k oK ,® ak oK, @ - ® 8% oK.,
the proof is immediate from Theorem 5.2. U

Proof of Theorem 1.2. If K,, o K,, is an even regular graph, then the result is
immediate by Theorem 2.11. So we assume that K,, o K, is an odd regular graph
and hence m is even and n is odd.

Case 1: p|n?.
Clearly, n = 0 (mod p). Since m is even and n is odd, from the divisibility condition,
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m = 4t, for some t > 1. By Corollary 5.3, it is enough to prove the case for n = p.
Clearly,

(Ko = ((tKs® (K, 0 Ky)) 0 Ty
= t(K4oKp) @ (KyyoK,® - @ Kyq0K,)"

Note that 8’4;; | (K4 0 K,)*, by Theorem 2.10. Also, Cy | K44, by Theorem 2.3, and

Cyp| Cy0 K, by Theorem 2.8; hence 84p | (K440 K,)*. This completes the proof of
this case.

Case 2: p [n>.
From the necessary conditions, either m = 0 (mod 4p) or m = 0 (mod 4) and
m =1 (mod p).

Subcase 2.1: m = 0 (mod 4p).
Let m = 4pt, t > 1. Then

(Km o Kn)* - (K4pt o Fn)*
— nKZpt &) (K4pt X Kn)*a
where the n copies of K},
of the n columns of (K, o K,)* and the remaining subdigraph of (Kypt © K,)* is
isomorphic to (Ky, x K,)*. Since n is odd, (Ky x K,) is an even regular graph.

By Theorem 1.1, Cy, | (K4 x K,,) and hence 8’41; | (Kypt x K,,)*. By Theorem 2.9,
8*419 | K3,;- This completes the proof of this subcase.

Subcase 2.2: m =0 (mod 4) and m =1 (mod p).

Let m=pt+1,t>1 and odd.

First we consider the case t = 1. Clearly, (K,11 0 K,)* = K} o K,. Let
V(Kp1) = {a1,a9,...,a511}. For 1 < i < (Z1), we define the Hamilton path
P, = [ai,air1, i1, ... ,CLH(%)A,CLH(%)H,QH(%)] in K1, where the subscripts
are taken modulo p + 1 with residues 1,2,...,p+ 1. Let H; = Py 1 ® Py;, 1 <
i < (Z21); H; has 2p edges and A(H;) < 4; note that H; = Ky when p = 3. As
A(H;) <4, x(H;) < 4; see [8]. Since H; | Ky, Hf | Ky, ; each HY is a directed
closed trail of length 4p, A*(H;) < 4 and x(H;) < 4. Since n is odd and from the
necessary conditions, n > 5. Consequently, at least two mutually orthogonal latin

squares of order n exist (see [18]); then 84;) | HY o K,,, by Theorem 5.1.

, are precisely the subdigraphs induced by the vertices

Next we assume that ¢ > 3. Since pt +1 =0 (mod 4), 2p| (*'J!). Then P, | K},
as Popy1| Kpiy1 by Theorem 2.2, Clearly, each Pj, ., is a directed closed trail of
length 4p with A*(Py, ;) = 2 and x(Ps,,;) = 2 and hence 8*41? | P5q 0 Ky, by
Theorem 5.1. This completes the proof. O
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