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Abstract

For positive integers d and t, a Langford sequence of order t and defect
d is a sequence Lt

d = (s1, . . . , s2t) of length 2t that satisfies (i) for every
k ∈ {d, d + 1, . . . , t + d − 1}, there are exactly two elements si, sj ∈ Lt

d

such that si = sj = k and (ii) if si = sj = k with i < j, then j − i = k.
Note that (ii) could be written as j − i− k = 0 or i+ k − j = 0. Hence,
one extension of a Langford sequence is as follows. For positive integers
d and t, a signed Langford sequence of order t and defect d is a sequence
±Lt

d = (s−2t, s−2t+1, . . . , s−1, ∗, s1, . . . , s2t) of length 4t + 1 that satisfies
(i) for every k ∈ {±d,±(d + 1), . . .± (t + d − 1)}, there are exactly two
elements si, sj ∈ ±Lt

d such that si = sj = k and (ii) if si = sj = k with
i < 0 < j, then i + j + k = 0. Here we give necessary and sufficient
conditions for the existence of a signed Langford sequence of order t and
defect d for d ∈ {1, 2, 3}. We also use these sequences to find cyclic
decompositions of circulant digraphs into directed m-cycles for m ≥ 3.
In particular, we find a cyclic m-cycle decomposition of the complete
symmetric digraph K∗

2m+1.
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1 Introduction

For integers a and b, the notation [a, b] denotes the set {a, a + 1, . . . , b} and ±[a, b]
denotes the set {±a,±(a + 1), . . . ,±b}.

A Langford sequence of order t and defect d is a sequence Lt
d = (�1, �2, . . . , �2t) of

2t integers that satisfies

(L1) for every k ∈ [d, d+ t− 1] there are exactly two elements �i, �j ∈ Lt
d such that

�i = �j = k; and

(L2) if �i = �j = k with i < j, then j − i = k.

A Langford sequence with defect d = 1 is called a Skolem sequence, and necessary
and sufficient conditions for the existence of Skolem sequences are well known.

Theorem 1.1 (Skolem [18]) For a positive integer t, a Skolem sequence of order t
exists if and only if t ≡ 0, 1 (mod 4).

Necessary and sufficient conditions for the existence of Langford sequences are
also known. In [9], Davies handled the case in which d = 2 while Bermond, Brouwer
and Germa handled the cases in which d = 3 and d = 4 in [2]. For any d ≥ 5, the
case in which t is odd was also handled in [2] while the case in which t is even was
handled by Simpson in [17].

Theorem 1.2 (Davies [9], Bermond, Brouwer, Germa [2], Simpson [17]) There exists
a Langford sequence of order t and defect d if and only if

1. t ≥ 2d− 1, and

2. t ≡ 0, 1 (mod 4) and d is odd, or t ≡ 0, 3 (mod 4) and d is even.

Skolem sequences and their generalizations have been used widely in the construc-
tion of combinatorial designs and a survey on Skolem sequences by Francetić and
Mendelsohn can be found in [11]. Note that in (L2) above, we may write j−i−k = 0
or i + k − j = 0. In this paper, we are interested in a generalization of Langford
sequences, called signed Langford sequences, in which both positive and negative
integers appear. In Section 3, we give necessary and sufficient conditions for the
existence of signed Langford sequences for some small values of d.

In combinatorial design theory, a well-studied problem is decomposing graphs into
cycles (see the survey [8] by Bryant and Rodger), and in particular, decompositions
that behave nicely from an algebraic point-of-view, the so-called cyclic decomposi-
tion (see, for example, [3, 4, 5, 6, 7, 10, 12, 14, 15, 16, 19, 20]). In fact, an application
of Skolem sequences gives cyclic 3-cycle systems of complete graphs. Here we are
interested in using signed Langford sequences to find directed cyclic cycle decom-
positions. Necessary and sufficient conditions for a directed m-cycle system of the
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complete symmetric digraph were given by Alspach, Šajna, Verrall and the second
author in [1]; however, very little is known about directed cyclic cycle decomposi-
tions. In fact the only directed cyclic m-cycle systems known to exist are the ones in
which m is as large as possible, i.e., directed cyclic hamiltonian cycle systems. Nec-
essary and sufficient conditions for directed cyclic hamiltonian cycle systems were
given by Morris and the second author in [13].

In Section 4, we extend the results of Section 3 to construct difference sets of m-
tuples for m ≥ 3 for use in Section 5 where cyclic m-cycle decompositions of circulant
digraphs, including cyclic m-cycle decompositions of complete symmetric digraphs,
are given.

2 Definitions and Preliminaries

In a Langford sequence Lt
d = (�1, �2, . . . , �2t), we know that whenever �i = �j = k,

then j − i = k where necessarily i, j, and k are all positive integers. Note that this
equation could be written as j − i − k = 0 (or i + k − j = 0) so that one might
consider introducing negative integers in such a sequence.

Definition 2.1 A signed Langford sequence of order t and defect d is a sequence

±Lt
d = (�−2t, �−2t+1, . . . , �−1, ∗, �1, �2, . . . , �2t) of length 4t+ 1 that satisfies

(S1) for every k ∈ ±[d, t + d − 1] there are exactly two elements �i, �j ∈ ±Lt
d such

that �i = �j = k, and

(S2) if �i = �j = k with i < 0 < j, then i+ j + k = 0.

For t = 5 and defect d = 2, one such sequence is:

(5, 6, 4,−2,−4, 3,−3, 2,−6,−5, ∗, 2, 3, 6, 4, 5,−5,−3,−6,−2,−4). (1)

A signed Langford sequence of order t and defect d = 1 will be called a signed
Skolem sequence of order t. For example, a signed Skolem sequence of order 3 is

(3,−1, 2,−2, 1,−3, ∗, 1, 2, 3,−3,−2,−1). (2)

Signed Langford sequences also have the very nice property that if

(�−2t, �−2t+1, . . . , �−1, ∗, �1, �2, . . . , �2t)
is a signed Langford sequence of order t and defect d, then

(−�2t,−�2t−1, . . . ,−�1, ∗,−�−1,−�−2, . . . ,−�−2t)

is also a signed Langford sequence. So,

(1, 2, 3,−3,−2,−1, ∗, 3,−1, 2,−2, 1,−3)
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is also a signed Skolem sequence of order 3.

A signed Langford sequence of order t and defect d provides a partition of the
set ±[d, 3t + d − 1] into 2t triples (ai, bi, ci) such that ai + bi + ci = 0; for example,
if ±Lt

d = (�−2t, . . . , �2t), then {(k, i − (t + d − 1), j + t + d − 1) | 1 ≤ k ≤ t or
−t ≤ k ≤ −1, �i = �j = k with i < j} is a partition of ±[d, 3t + d − 1] into 2t such
triples. The 10 such triples from the signed Langford sequence of order t = 5 and
defect d = 2 in (1) are

{(−2,−13, 15), (2,−9, 7), (−3,−10, 13), (3,−11, 8), (−4,−12, 16), (3)

(4,−14, 10), (−5,−7, 12), (5,−16, 11), (−6,−8, 14), (6,−15, 9)}.

We will use such a partition to show that for a signed Langford sequence of order t
and defect d to exist, as in the case of Langford sequences, it must be the case that
t ≥ 2d− 1.

Lemma 2.2 If a signed Langford sequence of order t and defect d exists, then t ≥
2d− 1.

Proof. Suppose a ±Lt
d of order t and defect d exists. Then, we have a partition of

±[d, d+3t−1] into 2t 3-tuples ai+bi+ci = 0 with |ai| < |bi| < |ci| for i = 1, 2, . . . , 2t.
Note that we may write each 3-tuple as |ai| + |bi| = |ci| for i = 1, 2, . . . , 2t and that
every integer in the set [d, d+ 3t− 1] appears twice. Hence,

2t∑
i=1

(|ai|+ |bi|+ |ci|) = 2(d+ (d+ 1) + · · ·+ (d+ 3t− 1)) = 9t2 − 3t+ 6td.

Next, since |ai|+ |bi| = |ci| for i = 1, 2, . . . , 2t,

2t∑
i=1

(|ai|+ |bi|) =
2t∑
i=1

|ci| = 9t2 − 3t+ 6td

2

and

2t∑
i=1

|ci| ≤ 2[(d+ 2t) + (d+ 2t+ 1) + · · ·+ (d+ 3t− 1)] = 5t2 − t+ 2td

so that (9t2 − 3t+ 6td)/2 ≤ 5t2 − t+ 2td and hence 2d− 1 ≤ t. �

Next we obtain signed Langford sequences of order t and defect d from Langford
sequences of order t and defect d.

Lemma 2.3 If a Langford sequence Lt
d of order t and defect d exists, then a signed

Langford sequence ±Lt
d of order t and defect d also exists.
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Proof. Let Lt
d = (�1, �2, . . . , �2t) be a Langford sequence of order t and defect d.

Then, a signed Langford sequence

±Lt
d = (s−2t, s−2t+1, . . . , s−1, ∗, s1, s2, . . . , s2t)

of order t and defect d can be found by defining sj = s−i = −k and s−j = si = k if
�i = �j = k with i < 0 < j, for each k = d, d+ 1, . . . , d+ t− 1. �

Yet another way to obtain a signed Langford sequence is to compose two of them
in the following fashion.

Definition 2.4 Let d, t and s be positive integers. The composition of two signed
Langford sequences

±Lt
d = (�−2t, �−2t+1, . . . , �−1, ∗, �1, �2, . . . , �2t)

and
±Ls

d+t = (a−2s, a−2s+1, . . . , a−1, ∗, a1, a2, . . . , a2s)
is the signed Langford sequence

±Lt+s
d = (b−2(t+s), b−2(t+s)+1, . . . , b−1, ∗, b1, b2, . . . , b2(t+s))

whose entries are given by

bk =

⎧⎨
⎩

�k if 1 ≤ |k| ≤ 2t
ak−2t if 2t < k ≤ 2(t + s)
ak+2t if − 2(t+ s) ≤ k < −2t

.

3 Signed Langford Sequences for Small Values of d

In this section, we give necessary and sufficient conditions for the existence of signed
Langford sequences of order t and defect d for d ∈ {1, 2, 3}. We begin by showing
that, for every positive integer t, there exists a signed Skolem sequence of order t, in
contrast to Skolem sequences which only exist for t ≡ 0, 1 (mod 4).

Theorem 3.1 For every positive integer t, there exists a signed Skolem sequence of
order t.

Proof. Let t ≥ 1 be an integer. Then

(t,−1, t− 1,−2, . . . , 1,−t, ∗, 1, 2, . . . , t,−t,−(t− 1), . . . ,−1)

is a signed Skolem sequence of order t. �
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An example with t = 3 of the signed Skolem sequence given in the above proof
can be found in (2).

We now consider signed Langford sequences of order t and defect d = 2. By
Lemma 2.2, we may assume t ≥ 3. In order to show that signed Langford sequences
exists for all t ≥ 3 with defect d = 2, we need to construct such sequences for
some small values of t. For a signed Langford sequence ±Lt

d, let
+Lt

d denote the
part of ±Lt

d with positive subscripts while −Lt
d will denote the part of ±Lt

d with
negative subscripts. Hence in what follows, we need give only +Lt

d = (s1, s2, . . . , s2t)
as determining −Lt

d can be done as follows: if sj = k for 1 ≤ j ≤ 2t, then s−(j+k) = k.

Lemma 3.2 For every t ∈ {6, 9, 10, 13, 14, 17}, there exists a signed Langford se-
quence of order t and defect d = 2.

Proof. For each value of t ∈ {6, 9, 10, 13, 14, 17}, the sequence +Lt
2 is given below:

+L6
2 = (3, 4, 2, 7, 5, 6,−5,−7,−6,−3,−2,−4),

+L9
2 = (2, 5, 3, 4, 6, 7, 9, 10, 8,−8,−10,−7,−9,−4,−6,−2,−5,−3),

+L10
2 = (3, 4, 2, 6, 8, 5, 7, 11, 9, 10,−9,−11,−10,−6,−8,−7,−5,−3,−2,−4),

+L13
2 = (2, 5, 3, 4, 6, 9, 7, 8, 10, 11, 13, 14, 12,−12,−14,−11,−13,−8,−10,−7,−9,

− 4,−6,−2,−5,−3),
+L14

2 = (2, 5, 3, 4, 6, 8, 10, 7, 9, 11, 12, 14, 15, 13,−13,−15,−12,−14,−9,−11,−8,

− 10,−7,−4,−6,−2,−5,−3), and
+L17

2 = (2, 5, 3, 4, 6, 9, 7, 8, 10, 13, 11, 12, 14, 15, 17, 18, 16,−16,−18,−15,−17,

− 12,−14,−11,−13,−8,−10,−7,−9,−4,−6,−2,−5,−3).

�

We now show that a signed Langford sequence exists for every t ≥ 3 and defect
d = 2.

Theorem 3.3 For every positive integer t ≥ 3, there exists a signed Langford se-
quence of order t and defect d = 2.

Proof. Let t ≥ 3 be an integer. By Theorem 1.2, for defect d = 2, an Lt
2 exists if and

only if t ≡ 0, 3 (mod 4) and hence by Lemma 2.3, a ±Lt
2 exists for t ≡ 0, 3 (mod 4).

Hence, we need only consider values of t with t ≡ 1, 2 (mod 4). Also, by Theorem
1.2, there exists an Ls

7 for any s ≡ 0, 1 (mod 4) with s ≥ 13. Hence, by Lemma 2.3,
there exists a ±Ls

7 for any s ≡ 0, 1 (mod 4) with s ≥ 13. Now, a ±L5
2 was given

in (1). Thus, from Definition 2.4, composing a ±L5
2 with a ±Ls

7 for s ≥ 13 with
s ≡ 0, 1 (mod 4) gives a ±Lt

2 for all t ≡ 1, 2 (mod 4) with t ≥ 18. Hence, it remains
to construct a ±Lt

2 for t ∈ {6, 9, 10, 13, 14, 17}. These exist by Lemma 3.2. �

We now consider signed Langford sequences with defect d = 3. By Lemma 2.2, we
may assume t ≥ 5. Again, we begin by constructing such sequences for some small
values of t.
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Lemma 3.4 For every t ∈ {6, 7, 10, 11, 14, 15, 18, 19, 22}, there exists a signed Lang-
ford sequence of order t and defect d = 2.

Proof. For each value of t ∈ {6, 7, 10, 11, 14, 15, 18, 19, 22}, the sequence +Lt
2 is given

below:

+L6
3 = (3, 7, 5, 8, 6, 4,−6,−5,−3,−8,−4,−7)

+L7
3 = (3, 7, 5, 8, 9, 4, 6,−6,−4,−9,−8,−5,−7,−3),

+L10
3 = (5, 3, 4, 8, 9, 12, 6, 11, 7, 10,−7,−11,−10,−12,−6,−5,−9,−8,−4,−3),

+L11
3 = (4, 10, 6, 3, 5, 9, 7, 12, 13, 11, 8,−7,−12,−11,−13,−10,−9,−7,−6,−4,

− 3,−5),
+L14

3 = (3, 5, 8, 4, 11, 7, 10, 6, 9, 15, 13, 16, 14, 12,−10,−14,−16,−15,−13,−11,

− 9,−12,−8,−3,−6,−4,−7,−5),
+L15

3 = (3, 8, 6, 4, 9, 10, 5, 7, 11, 15, 13, 16, 17, 12, 14,−14,−12,−17,−16,−13,−15,

− 11,−10,−6,−8,−5,−4,−9,−7,−3),
+L18

3 = (3, 5, 8, 4, 11, 7, 10, 6, 9, 15, 13, 19, 14, 12, 17, 20, 18, 16,−14,−18,−20,−19,

− 17,−15,−13,−16,−12,−7,−9,−11,−8,−10,−4,−6,−5,−3),
+L19

3 = (4, 10, 6, 3, 5, 9, 7, 12, 13, 11, 8, 16, 17, 21, 14, 15, 20, 18, 19,−16,−19,−21,

− 20,−18,−17,−15,−14,−12,−11,−13,−7,−6,−10,−9,−8,−4,−3,−5),

and
+L22

3 = (3, 5, 8, 4, 11, 7, 10, 6, 9, 12, 13, 17, 15, 18, 19, 14, 16, 23, 21, 24, 22, 20,−18,−22,

− 24,−23,−21,−19,−17,−20,−16,−11,−14,−9,−15,−13,−10,−12,−8,

− 3,−6,−4,−7,−5).

�

We now show that a signed Langford sequence exists for every t ≥ 3 and defect
d = 3.

Theorem 3.5 For every positive integer t ≥ 5, there exists a signed Langford se-
quence of order t and defect d = 3.

Proof. Let t ≥ 5 be an integer. By Theorem 1.2, for defect d = 3, an Lt
3 exists

if and only if t ≡ 0, 1 (mod 4) and hence by Lemma 2.3, there exists a ±Lt
3 for

t ≡ 0, 1 (mod 4). Hence, we need only consider values of t with t ≡ 2, 3 (mod 4).
Also, by Theorem 1.2, there exists an Ls

9 for any s ≡ 0, 1 (mod 4) with s ≥ 17.
Hence, by Lemma 2.3, there exists a ±Ls

9 for any s ≡ 0, 1 (mod 4) with s ≥ 17.
Now, a ±L6

3 of order 6 and defect 3 exists by Lemma 3.4. Thus, from Definition
2.4, composing a ±L6

3 with a ±Ls
9 for s ≥ 17 with s ≡ 0, 1 (mod 4) gives a ±Lt

3

for all t ≡ 2, 3 (mod 4) with t ≥ 23. Hence, it remains to construct a ±Lt
3 for

t ∈ {7, 10, 11, 14, 15, 18, 19, 22}. These exist by Lemma 3.4. �
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4 Signed Langford m-tuple Difference Sets

As we are interested in m-cycle decompositions, our interest is in the triples, or m-
tuples, obtained from a (signed) Langford sequence and hence we need the following
definitions from [7], modified here to include both positive and negative integers.

Definition 4.1 Anm-tuple (d1, d2, . . . , dm) is of Skolem-type if d1+d2+· · ·+dm = 0.
A set {(di,1, di,2, . . . , di,m) | i = 1, 2, . . . , 2t} of 2t Skolem-type m-tuples such that
{di,j | 1 ≤ i ≤ 2t, 1 ≤ j ≤ m} = ±[d,mt+ d− 1] is called a signed Langford m-tuple
difference set of order t and defect d.

The results of Section 3 give signed Langford 3-tuple difference sets of order t and
defect d ∈ {1, 2, 3} and hence signed Langford 3-tuple difference sets. For example,
in Section 2, the 3-tuple difference set given in (3) is a signed Langford 3-tuple
difference set of order t = 5 and defect d = 2. We now wish to find signed Langford
m-tuple difference sets for m > 3. The following array Y (r, n, t) will play a crucial
role in finding these difference sets, given in [7].

Definition 4.2 Let Y ′(r, n, t) be the t× 4r matrix
⎡
⎢⎢⎢⎢⎢⎣

1 2 2t+ 1 2t+ 2 (4r − 2)t+ 1 (4r − 2)t+ 2
3 4 2t+ 3 2t+ 4 (4r − 2)t+ 3 (4r − 2)t+ 4
...

...
...

... · · · ...
...

2t− 3 2t− 2 4t− 3 4t− 2 4rt− 3 4rt− 2
2t− 1 2t 4t− 1 4t 4rt− 1 4rt

⎤
⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎣

n · · · n

...
. . .

...

n · · · n

⎤
⎥⎥⎥⎥⎥⎦

and let Y (r, n, t) = [yi,j] be the t×4r matrix obtained from Y ′(r, n, t) by multiplying
each entry in column j by −1 for all j ≡ 2, 3 (mod 4). Note that {|yi,j| | 1 ≤ i ≤
t, 1 ≤ j ≤ 4r} = [n + 1, n + 4rt], the sum of the entries in each row of Y (r, n, t) is
zero, and |yi,1| < |yi,2| < . . . < |yi,4r| for i = 1, 2, . . . , t.

As a signed Langford 4r-tuple difference set of order t and defect d can be con-
structed from the 2t rows of the t × 4r array Y (r, d, t) followed by the t × 4r array
−Y (r, d, t), we have the following result.

Lemma 4.3 For positive integers d, r and t, there exists a signed Langford 4r-tuple
difference set of order t and defect d.

Thus, for all positive integers d and t, there exists a signed Langford m-tuple
difference set of order t and defect d with m ≥ 4 and m ≡ 0 (mod 4). We now handle
the case in which m ≡ 2 (mod 4).

Lemma 4.4 For positive integers d, m and t with m ≥ 6 and m ≡ 2 (mod 4), there
exists a signed Langford m-tuple difference set of order t and defect d.
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Proof. Let d, m and t be positive integers such that m ≥ 6 and m ≡ 2 (mod 4). Let

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 3 −4 −5 7
6 −8 10 −9 −11 12
13 −14 15 −16 −17 19
18 −20 22 −21 −23 24
...

...
...

...
...

... Y (m−6
4 , 6t, t)

6t− 11 −(6t− 10) 6t− 9 −(6t− 8) −(6t− 7) 6t− 5
6t− 6 −(6t− 4) 6t− 2 −(6t− 3) −(6t− 1) 6t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Y (m−6
4

, 6t, t) is the t× m−6
4

matrix given in Definition 4.2. Then, the 2t rows
of Z followed by −Z give a signed Langford m-tuple difference set of order t and
defect 1. To construct a signed Langford m-tuple difference set of order t and defect
d, create the t×m array Z ′ by adding d− 1 to every positive entry and subtracting
d − 1 from every negative entry of Z. Then, since each row of Z has m/2 positive
entries and m/2 negative entries, the sum of each row is still 0. Hence, the 2t rows
of Z ′ followed by −Z ′ give a signed Langford m-tuple difference set of order t and
defect d. �

Hence, signed Langford m-tuple difference sets of order t and defect d exist for
all positive integers t and d and positive even integers m ≥ 4. We now consider the
case when m is odd and begin with the case in which m ≡ 3 (mod 4).

Lemma 4.5 For all positive integers d and t and for every positive integer m ≡
3 (mod 4), if there exists a signed Langford 3-tuple difference set of order t and
defect d, then there exists a signed Langford m-tuple difference set of order t and
defect d.

Proof. Let d and t be positive integers, and let m be a positive integer such that
m ≡ 3 (mod 4). Assume there exists signed Langford 3-tuple difference set of order t
and defect d. These 2t difference 3-tuples will form the rows of a 2t×3 array X ′ such
that entries in each row sum to zero and are from the set ±[d, 3t+ d− 1]. Augment
the columns of X ′ with the 2t× (m− 3) array[

Y (m−3
4

, 3t+ d− 1, t)
−Y (m−3

4
, 3t+ d− 1, t)

]

where Y (m−3
4

, 3t + d − 1, t) is the t × m−3
4

array given in Definition 4.2 to obtain a
2t×m array X. Note again that every integer in the set ±[d,mt+ d− 1] appears in
X and that for each i = 1, 2, . . . , 2t, we have xi,1 + xi,2 + · · ·+ xi,m = 0. Thus, the 2t
rows of X give a signed Langford m-tuple difference set of order t and defect d. �

Therefore, by Theorems 1.2, 3.1, 3.3, and 3.5, signed Langford m-tuple difference
sets of order t and defect d = 1, d = 2 with t ≥ 3, and d = 3 with t ≥ 5 exist for all
positive integers m ≡ 3 (mod 4). We now consider the case in which m ≡ 1 (mod 4)
and find signed Langfordm-tuple difference sets of order t and defect d for all positive
integers m ≡ 1 (mod 4) for which there exists a signed Langford 3-tuple difference
set of order t and defect d.
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Lemma 4.6 For all positive integers d and t and for every positive integer m ≥ 5
with m ≡ 1 (mod 4), if there exists a signed Langford 3-tuple difference set of order
t and defect d such that no two elements of the set [t + d, 3t + d − 1] belong to the
same 3-tuple, then there exists a signed Langford m-tuple difference set of order t
and defect d.

Proof. Let t ≥ 1 be an integer, and let m ≥ 5 be a positive integer such that
m ≡ 1 (mod 4). Assume there exists a signed Langford 3-tuple difference set of
order t and defect d such that no two elements of the set [t + d, 3t + d − 1]
belong to the same 3-tuple. These 2t difference 3-tuples will form the rows of a
2t × 3 array X ′ = [xi,j ] such that entries in each row sum to zero and are from the
set ±[d, 3t + d − 1]. Furthermore, interchanging rows as necessary, we may assume

that the first column of X ′ is
[
3t+ d− 1 3t+ d− 2 · · · t+ d

]T
. Let X be the

2t×m array whose first 5 columns are defined as follows:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2,1 x1,2 x1,3 −(3t+ d) 3t+ d+ 1
x1,1 x2,2 x2,3 3t+ d −(3t+ d+ 1)
x4,1 x3,2 x3,3 −(3t+ d+ 2) 3t+ d+ 3
x3,1 x4,2 x4,3 3t+ d+ 2 −(3t+ d+ 3)
...

...
...

...
...

x2t,1 x2t−1,2 x2t−1,3 −(5t+ d− 2) 5t+ d− 1
x2t−1,1 x2t,2 x2t,3 5t+ d− 2 −(5t+ d− 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Although we could augment X in a similar fashion as in Lemma 4.5, for use in
the next section, we will augment the odd rows of X with the t × (m − 5) array
Y (m−5

4
, 5t + d − 1, t) and the even rows of X with −Y (m−5

4
, 5t + d − 1, t) where

Y (m−5
4

, 5t + d − 1, t) is the t × m−5
4

array given in Definition 4.2. Note again that
every integer in the set ±[d,mt+ d− 1] appears exactly once in X and that for each
i = 1, 2, . . . , 2t, we have xi,1 + xi,2 + · · · + xi,m = 0. Thus, the 2t rows of X give a
signed Langford m-tuple difference set of order t and defect d. �

For m = 9, t = 5 and d = 2, the 10 × 9 array X in the proof of Lemma 4.6 is
given below using the 3-tuple difference set given in (3):

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

15 −12 −4 −17 18 27 −28 −37 38
16 −13 −2 17 −18 −27 28 37 −38
13 −8 −6 −19 20 29 −30 −39 40
14 −10 −3 19 −20 −29 30 39 −40
11 −7 −5 −21 22 31 −32 −41 42
12 −16 5 21 −22 −31 32 41 −42
9 −14 4 −23 24 33 −34 −43 44
10 −15 6 23 −24 −33 34 43 −44
7 −11 3 −25 26 35 −36 −45 46
8 −9 2 25 −26 −35 36 45 −46

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Hence, the 10 rows of X give a signed Langford 9-tuple difference set of order t = 5
and defect d = 2.
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Therefore, by Theorems 1.2, 3.1, 3.3, and 3.5, since a signed Langford 3-tuple
difference set of order t and defect d = 1, d = 2 with t ≥ 3, or d = 3 with t ≥ 5
exists such that no two elements of the set [t + d, 3t + d − 1] belong to the same
3-tuple, we have that signed Langford m-tuple difference sets of order t and defect
d = 1, d = 2 with t ≥ 3 or d = 3 with t ≥ 5 exist for all positive integers m ≥ 5 with
m ≡ 1 (mod 4).

5 Directed Cyclic m-Cycle Systems of Circulant Digraphs

An m-cycle system of a graph G is a decomposition of G into m-cycles. Let ρ denote
the permutation (0 1 . . . n− 1), so 〈ρ〉 = Zn, the additive group of integers modulo
n. An m-cycle system C of a graph G with vertex set Zn is cyclic if, for every m-cycle
C = (v1, v2, . . . , vm) in C, the m-cycle ρ(C) = (ρ(v1), ρ(v2), . . . , ρ(vm)) is also in C.
Cyclic m-cycle systems of graphs have been investigated (see [3, 4, 5, 6, 7, 10, 12,
14, 15, 16, 19, 20]) but very little is known about directed cyclic m-cycle systems.
However, necessary and sufficient conditions for directed m-cycle systems are known
to exist. In [1], it was shown that for positive integers m and n with 2 ≤ m ≤ n, the
complete symmetric digraph K∗

n can be decomposed into directed cycles of length m
if and only if m divides the number of arcs in K∗

n and (n,m) 	= (4, 4), (6, 3), (6, 6).
However, these constructions are not cyclic. The only directed cyclic m-cycle systems
known to exist are the ones in which m is as large as possible, that is, directed cyclic
hamiltonian cycle systems. In [13], it was shown that, for n odd, there exists a
directed cyclic n-cycle system of K∗

n if and only if n 	= 15 and n 	= pα where p is an
odd prime and α ≥ 2, and for n even, there exists a directed cyclic n-cycle system
of K∗

n if and only if n ≡ 2 (mod 4) and n 	= 2pα where p is an odd prime and α ≥ 1.

We are interested in directed cyclic cycle decompositions of digraphs for other
values of m. Notice that in order for a digraph D to admit a directed cyclic m-cycle
system, D must be a circulant digraph, so circulant digraphs provide a natural setting
in which to construct directed cyclic m-cycle systems. Let n ≥ 2 be an integer and let
S ⊆ [1, n−1]. We will often use −1 for n−1 and thus we may assume S ⊆ ±[1, �n/2�].
The circulant digraph

−→
X (n;S) is defined to be that digraph whose vertices are the

elements of Zn, with an arc from vertex g to vertex h if and only if h = g+� for some
� ∈ S; the length of the arc (g, h) is � in this case. The digraph K∗

n is a circulant

digraph since K∗
n =

−→
X (n;±[1, �n/2�]).

In this section, we will use the signed Langford m-tuple difference sets constructed
in Section 4 to find directed cyclic m-cycle systems of circulant digraphs. However,
it is not necessarily the case that each m-tuple will give rise to an m-cycle without
reordering its elements. For example, the 9-tuple (15,−12,−4,−17, 18, 27,−28,−37,
38) corresponding to the first row of the 10 × 9 array X given in (4) gives rise to

a subdigraph of
−→
X (n; {−37,−28,−17,−12,−4, 15, 18, 27, 38}), n ≥ 77, consisting

of a 5-cycle and a 4-cycle with one vertex in common when the arcs are added in
the order given in the 9-tuple, starting from vertex 0. Hence, we have the following
definitions.
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Definition 5.1 Let n > 0 be an integer and suppose there exists an ordered m-tuple
(d1, d2, . . . , dm) satisfying each of the following:

(i) di ∈ ±[1, �n/2�] i = 1, 2, . . . , m;

(ii) di 	= dj for 1 ≤ i < j ≤ m;

(iii) d1 + d2 + · · ·+ dm = 0 (modn); and

(iv) d1 + d2 + · · ·+ dr 	≡ d1 + d2 + · · ·+ ds (modn) for 1 ≤ r < s ≤ m.

Then (0, d1, d1+d2, . . . , d1+d2+ · · ·+dm−1) generates a cyclic m-cycle system of the

digraph
−→
X (n; {d1, d2, . . . , dm}). An m-tuple satisfying (i)-(iv) is called a difference

m-tuple, it corresponds to the starter m-cycle (0, d1, d1+d2, . . . , d1+d2+ · · ·+dm−1),
and it uses arcs of lengths d1, d2, . . . , dm.

An m-cycle difference set of size t, when the value of n is understood, is a set
consisting of t difference m-tuples that use arcs of distinct lengths �1, �2, . . . , �tm; the
m-cycles corresponding to the difference m-tuples generate a directed cyclic m-cycle

system C of
−→
X (n; {�1, �2, . . . , �tm}).

For 3 ≤ m ≤ 5, note that a signed Langford m-tuple difference set of order t and

defect d generates a directed cyclic m-cycle system of
−→
X (n;±[d,mt + d− 1]) for all

n ≥ 2(mt+d−1)+1 since each m-tuple is a difference m-tuple. However, for m ≥ 6,
some reordering of the elements in each m-tuple of the signed Langford m-tuple
difference set is necessary. For the 9-tuple (15,−12,−4,−17, 18, 27,−28,−37, 38)
given above, the reordering (−4,−12, 18,−28,−37, 27,−17, 15, 38) will produce a 9-
cycle in the appropriate circulant digraph. Hence, if each m-tuple has been reordered
in a signed Langford m-tuple difference set of order t and defect d so that it is now
a difference m-tuple, we will call the signed Langford m-tuple difference set a signed
Langford m-cycle difference set of order t and defect d. If d = 1, then such a difference
set will be called a signed Skolem m-cycle difference set of order t.

In [7], for positive integers m and t with m ≥ 3, Bryant, Ling and the second
author showed that there exists a cyclic m-cycle system of X(n; [1, mt]) for mt ≡
0, 3 (mod 4) and all n ≥ 2mt + 1 by constructing Skolem m-cycle difference sets of
order t. Here we use a similar, although necessarily different, approach.

Theorem 5.2 Let m ≥ 3 be an integer.

• For every integer t ≥ 1, there exists a signed Skolem m-cycle difference set of
size t.

• For every integer t ≥ 3, there exists a signed Langford m-cycle difference set
of size t and defect d = 2.

• For every integer t ≥ 5, there exists a signed Langford m-cycle difference set
of size t and defect d = 3.
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Proof. The proof splits into four cases depending on the congruence class of m
modulo 4. For each case we use a previously constructed 2t × m array X = [xi,j]
whose entries are ±[d,mt + d− 1] such that for each i = 1, 2, . . . , 2t, we have

m∑
j=1

xi,j = 0.

The entries in each row of our arrays will also satisfy various inequalities which will
allow us to arrange them so that for 1 ≤ r < s ≤ m and n ≥ 2mt + 1, we have
d1 + d2 + . . . , dr 	≡ d1 + d2 + . . . , ds (modn); hence a signed Skolem or Langford
m-cycle difference set of size t can be obtained.

In what follows, to find signed Skolem m-cycle difference set of size t, we let d = 1.

Case 1. Suppose that m ≡ 0 (mod 4). Let X = [xi,j ] be the 2t×m array constructed
from the t × m array Y (m

4
, d − 1, t) given by Definition 4.2 followed by the t × m

array −Y (m
4
, d − 1, t). For i = 1, 2, . . . , 2t, we have |xi,1| < |xi,2| < · · · < |xi,m| and

xi,j < 0 precisely when j ≡ 2, 3 (mod 4) in the first t rows and xi,j < 0 precisely when
j ≡ 0, 1 (mod 4) in the last t rows. Hence the required set of difference m-tuples can
be constructed from the rows of X by using the following reordering:

(xi,1, xi,3, xi,5, xi,7, . . . , xi,m−3, xi,m−1, xi,m−2, xi,m−4, xi,m−6, . . . , xi,6, xi,4, xi,2, xi,m)

for i = 1, 2, . . . , 2t.

Case 2. Suppose that m ≡ 2 (mod 4). Let X = [xi,j ] be the 2t×m array constructed
from the t×m array Z ′ given in the proof of Lemma 4.4 followed by the t×m array
−Z ′. For i = 1, 2, . . . , 2t, we have |xi,1| < |xi,2| < |xi,4| < |xi,5| < |xi,6| < · · · < |xi,m|,
|xi,2| < |xi,3| < |xi,5|, and xi,j < 0 precisely when j = 2 and when j ≡ 0, 1 (mod 4)
for j ≥ 4 in the first t rows of X and xi,j < 0 precisely when j = 1 and when
j ≡ 2, 3 (mod 4) for j ≥ 3 in the last t rows of X. Hence, the required set of
difference m-tuples can be constructed from the rows of X by using the following
reordering:

(xi,1, xi,2, xi,3, xi,5, xi,7 . . . , xi,m−3, xi,m−1, xi,m−2, xi,m−4, xi,m−6, . . . , xi,6, xi,4, xi,m)

for i = 1, 2, . . . , 2t.

Case 3. Suppose that m ≡ 3 (mod 4). Let X = [xi,j ] be the 2t×m array constructed
in the proof of Lemma 4.5 with t ≥ 3 if d = 2 or t ≥ 5 if d = 3. For i = 1, 2, . . . , 2t,
we have |xi,3| < |xi,2| < |xi,4| < |xi,5| < |xi,6| < · · · < |xi,m|, |xi,1| < |xi,4|, and
xi,j < 0 precisely when j = 2, j = 3 and j ≡ 1, 2 (mod 4) for j ≥ 4 in the first t rows
and xi,j < 0 precisely when j = 2 and j ≡ 0, 3 (mod 4) for j ≥ 4 in the last t rows of
X. Hence, the required set of difference m-tuples can be constructed from the rows
of X by using the following reordering:

(xi,3, xi,2, xi,4, xi,6, xi,8, . . . , xi,m−3, xi,m−1, xi,m−2, xi,m−4, xi,m−6, . . . , xi,5, xi,1, xi,m)
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for i = 1, 2, . . . , 2t.

Case 4. Suppose that m ≡ 1 (mod 4). Let X = [xi,j ] be the 2t×m array constructed
in the proof of Lemma 4.6 with t ≥ 3 if d = 2 or t ≥ 5 if d = 3. For i = 1, 2, . . . , 2t,
we have |xi,3| < |xi,2| < |xi,4| < |xi,6| < |xi,7| < · · · < |xi,m|, |xi,1| < |xi,5| < |xi,6|,
|xi,1|+|xi,3| < |xi,5| for t+1 ≤ i ≤ 2t, and |xi,2|+|xi,3| < |xi,5| for 1 ≤ i ≤ t. Note also
that xi,j < 0 precisely when j = 2, j = 3 and 1 ≤ i ≤ t, and j ≡ 0, 3 (mod 4) with
j ≥ 4 and i odd or j ≡ 1, 2 (mod 4) with j ≥ 5 and i even. Hence, the required set
of difference m-tuples can be constructed from the rows of X by using the following
reordering:

• (xi,3, xi,2, xi,5, xi,7, . . . , xi,m−2, xi,m−1, xi,m−3, . . . , xi,4, xi,1, xi,m) for i odd and
1 ≤ i ≤ t;

• (xi,3, xi,2, xi,4, xi,6, . . . , xi,m−1, xi,m−2, xi,m−4, . . . , xi,5, xi,1, xi,m) for i even and
1 ≤ i ≤ t;

• (xi,3, xi,1, xi,4, xi,6, . . . , xi,m−1, xi,m−2, xi,m−4, . . . , xi,5, xi,2, xi,m) for i odd and
t+ 1 ≤ i ≤ 2t; and

• (xi,3, xi,1, xi,5, xi,7, . . . , xi,m−2, xi,m−1, xi,m−3, . . . , xi,4, xi,2, xi,m) for i even and
t+ 1 ≤ i ≤ 2t.

�

Using the 10×9 arrayX given in (4) and constructed from the proof of Lemma 4.6,
the required set of difference 9-tuples found by reordering the entries in the rows of
X as prescribed in the proof of Theorem 5.2 are:

{(−4, −12, 18, −28, −37, 27, −17, 15, 38),
(−2, −13, 17, −27, 37, 28, −18, 16, −38),
(−6, −8, 20, −30, −39, 29, −19, 13, 40),
(−3, −10, 19, −29, 39, 30, −20, 14, −40),
(−5, −7, 22, −32, −41, 31, −21, 11, 42),
(5, 12, −22, 32, 41, −31, 21, −16, −42),
(4, 9, −23, 33, −43, −34, 24, −14, 44),
(6, 10, −24, 34, 43, −33, 23, −15, −44),
(3, 7, −25, 35, −45, −36, 26, −11, 46),
(2, 8, −26, 36, 45, −35, 25, −9, −46)}.

.

Hence this set of 10 difference 9-tuples gives a signed Langford 9-cycle difference set
of order t = 5 and defect d = 2.

Theorem 5.2 has the following immediate corollaries.
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Corollary 5.3 Let m ≥ 3 be an integer.

• For all t ≥ 1 and n ≥ 2mt + 1, there exists a cyclic m-cycle system of−→
X (n;±[1, mt]).

• For all t ≥ 3 and n ≥ 2mt + 3, there exists a cyclic m-cycle system of−→
X (n;±[2, mt + 1]).

• For all t ≥ 5 and n ≥ 2mt + 5, there exists a cyclic m-cycle system of−→
X (n;±[3, mt + 2]).

Corollary 5.4 For all integers m ≥ 3 and t ≥ 1, there exists a cyclic m-cycle system
of K∗

2mt+1.

A goal for future work is to find signed Langford sequences of order t and defect
d for all t ≥ 2d− 1. One might also consider generalizing signed Langford sequences
in many of the ways in which Langford sequences have been generalized (see [11] for
a survey).
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