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Abstract

We consider the n × n Hankel matrix H whose entries are defined by
Hij = 1/si+j where sk = (k − 1)! and prove that H is invertible for all
n ∈ N by providing an explicit formula for its inverse matrix.

1 Introduction

Fix n ∈ N and let H be the n× n matrix given by, for i, j ∈ {1, . . . , n},

Hij =
1

(i+ j − 1)!
.

This defines a Hankel matrix because the entry Hij depends only on the sum i+ j.
The factorial Hankel matrix H is used as a test matrix in numerical analysis and
features as gallery(‘ipjfact’) in the Matrix Computation Toolbox [5] by Nicholas
Higham; also see [4] and [6]. Our interest in studying the matrix H is due to it arising
in determining the covariance structure of an iterated Kolmogorov diffusion, that is,
a Brownian motion together with a finite number of its iterated time integrals, see
[2, Sec. 4.4] and [3, Sec. 3]. To find an explicit expression for a diffusion bridge
associated with an iterated Kolmogorov diffusion, we need to invert its covariance
matrix, which particularly requires us to invert the matrix H . It is therefore of
interest, both from our point of view and for using H as a test matrix, to show that
the matrix H is invertible and to obtain an explicit formula for its inverse. We use
general binomial coefficients, which are discussed in more detail in Section 2.
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Theorem 1.1 For all n ∈ N, the inverse M of the Hankel matrix H exists and it is
given by

Mij = (−1)n+i+j+1(i− 1)! j!

(
n− 1

i− 1

)(
n + j − 1

j

) i−1∑
k=0

(
n− i+ k

j − 1

)(
n+ k − 1

k

)
.

In particular, it immediately follows that all the entries of the inverse matrix M are
integer-valued. An unpublished manuscript by Gover [1] already contains an explicit
formula for the inverse of the factorial Hankel matrix H . However, our formula differs
from the formula derived by Gover, and we employ a different proof technique. While
Gover first determines expressions for the first row and last column of the inverse of
H to then use a recursive procedure by Trench, see [9], to compute the remaining
entries of the inverse matrix, we prove Theorem 1.1 directly by manipulating general
binomial coefficients, and in particular without relying on any recursive procedures.
For completeness, we add that the explicit formula [1, (3.17)] leads to

Mij = n(−1)n−i−j−1

i−1∑
k=max(0,i+j−1−n)

(n+ i+ j − k − 2)! (n+ k − 1)! (i+ j − 2k− 1)

(i+ j − k − 1)! k! (n+ k − i− j + 1)! (n− k)!
,

which, for m = i+ j − 1 and with binomial coefficients, Gover rewrites as

Mij = (−1)n−mn(m−1)!
i−1∑

k=max(0,m−n)

(
n+m−k−1

n− k

)(
n+k−1

n+k−m

)((
m−1

k

)
−
(
m−1

k−1

))
.

We review two combinatorial identities in Section 2 which we frequently use in our
manipulation of general binomial coefficients, before we give the proof of Theorem 1.1
in Section 3. Throughout, we use the convention that N denotes the positive integers
and N0 the non-negative integers.

2 Combinatorial identities

We use the notion of a general binomial coefficient which, for t ∈ R and m ∈ N0, is
defined as (

t

m

)
=

m∏
i=1

t + 1− i

i
=

t(t− 1) · · · (t−m+ 1)

m!
,

where it is understood that
(
t
0

)
= 1. Note that if t ∈ N0 and t < m then

(
t

m

)
=

(
t∏

i=1

t+ 1− i

i

)
t+ 1− (t+ 1)

t + 1

(
m∏

i=t+2

t+ 1− i

i

)
= 0 .

The first identity we frequently use in the proof of Theorem 1.1 is the reflection
identity for general binomial coefficients; see Stanley [8, p. 26].
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Proposition 2.1 (Reflection identity) For all t ∈ R and m ∈ N0, we have(
t

m

)
= (−1)m

(
m− t− 1

m

)
.

Secondly, we make use of the Chu-Vandermonde identity; e.g. see [7, Ch. 3] or
[8, p. 22].

Proposition 2.2 (Chu-Vandermonde identity) For all s, t ∈ R and m ∈ N0,
we have (

s+ t

m

)
=

m∑
k=0

(
s

k

)(
t

m− k

)
.

3 Inverse of a factorial Hankel matrix

To simplify the presentation of the proof of Theorem 1.1, we split up the analysis
into two parts.

Lemma 3.1 For all n ∈ N, we have, for i, l ∈ N and k ∈ N0 with 1 ≤ i, l ≤ n and
0 ≤ k ≤ i− 1,

n∑
j=1

(−1)j
j!

(l+j−1)!

(
n+j−1

j

)(
n−i+k

j − 1

)
= (−1)n+i+k+1 (n−l)!

(n−1)!

(
n

n+l−i+k

)
.

Proof: We observe that, for j ∈ {1, . . . , n},
j!

(l + j − 1)!

(
n+ j − 1

j

)
=

j!

(l + j − 1)!

(n+ j − 1)!

j! (n− 1)!
=

(n− l)!

(n− 1)!

(
n+ j − 1

l + j − 1

)
. (3.1)

Moreover, the reflection identity for general binomial coefficients yields(
n+ j − 1

l + j − 1

)
= (−1)l+j−1

(
l − n− 1

l + j − 1

)
. (3.2)

Using the equations (3.1) and (3.2), we obtain

n∑
j=1

(−1)j
j!

(l + j − 1)!

(
n+ j − 1

j

)(
n− i+ k

j − 1

)

=

n∑
j=1

(−1)j
(n− l)!

(n− 1)!

(
n+ j − 1

l + j − 1

)(
n− i+ k

j − 1

)

= (−1)l−1 (n− l)!

(n− 1)!

n∑
j=1

(
l − n− 1

l + j − 1

)(
n− i+ k

j − 1

)
.
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If j > n− i+ k + 1, that is, if n− i+ k < j − 1, we have(
n− i+ k

j − 1

)
= 0

since i ≤ n guarantees that n − i + k ≥ 0. From k ≤ i − 1, it also follows that
n − i + k + 1 ≤ n. The symmetry rule for binomial coefficients and reindexing the
sum then give

n∑
j=1

(
l − n− 1

l + j − 1

)(
n− i+ k

j − 1

)
=

n−i+k+1∑
j=1

(
l − n− 1

l + j − 1

)(
n− i+ k

n− i+ k − j + 1

)

=

n+l−i+k∑
a=l

(
l − n− 1

a

)(
n− i+ k

n+ l − i+ k − a

)
.

By noting that for a ∈ N0 with a < l, we have n − i + k < n + l − i + k − a and
therefore, (

n− i+ k

n+ l − i+ k − a

)
= 0 ,

and by applying the Chu-Vandermonde identity, we deduce that

n+l−i+k∑
a=l

(
l − n− 1

a

)(
n− i+ k

n+ l − i+ k − a

)
=

n+l−i+k∑
a=0

(
l − n− 1

a

)(
n− i+ k

n + l − i+ k − a

)

=

(
l − i+ k − 1

n + l − i+ k

)
.

Putting our conclusions together, and using the reflection identity for general bino-
mial coefficients a second time, we obtain

n∑
j=1

(−1)j
j!

(l+j−1)!

(
n+j−1

j

)(
n−i+k

j − 1

)
= (−1)l−1 (n− l)!

(n− 1)!

(
l − i+ k − 1

n+ l − i+ k

)

= (−1)n+i+k+1 (n− l)!

(n− 1)!

(
n

n + l − i+ k

)
,

as claimed. �

Let δil denote the Kronecker delta for i, l ∈ N.

Lemma 3.2 For all n ∈ N and all i, l ∈ N with 1 ≤ i, l ≤ n, we have

i−1∑
k=0

(−1)k
(

n

n + l − i+ k

)(
n+ k − 1

k

)
= δil .
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Proof: For k ∈ N0, if k > i− l then n < n + l − i+ k and therefore,(
n

n + l − i+ k

)
= 0 .

In particular, if l > i, that is, if 0 > i− l, we immediately obtain

i−1∑
k=0

(−1)k
(

n

n+ l − i+ k

)(
n + k − 1

k

)
= 0 .

Let us now suppose that l ≤ i. By the reflection identity for general binomial
coefficients, we know

(−1)k
(
n + k − 1

k

)
=

(−n

k

)
,

and, by reindexing the sum, it follows that

i−1∑
k=0

(−1)k
(

n

n+ l − i+ k

)(
n + k − 1

k

)
=

i−l∑
k=0

(
n

n+ l − i+ k

)(−n

k

)

=

i−l∑
b=0

(
n

n− b

)( −n

i− l − b

)
.

Using the symmetry rule for binomial coefficients and the Chu-Vandermonde identity,
we deduce

i−l∑
b=0

(
n

n− b

)( −n

i− l − b

)
=

i−l∑
b=0

(
n

b

)( −n

i− l − b

)
=

(
0

i− l

)
= δil .

Thus, we established the desired identity both for l > i and for l ≤ i. �

Combining both results gives the proof of Theorem 1.1.

Proof of Theorem 1.1: By first applying Lemma 3.1 and then Lemma 3.2, we conclude
that, for all n ∈ N and all i, l ∈ {1, . . . , n},

(MH)il =

n∑
j=1

MijHjl

=
n∑

j=1

(
(−1)n+i+j+1 (i− 1)! j!

(l + j − 1)!

(
n− 1

i− 1

)(
n + j − 1

j

) i−1∑
k=0

(
n− i+ k

j − 1

)(
n+ k − 1

k

))

= (−1)n+i+1(i− 1)!

(
n− 1

i− 1

) i−1∑
k=0

(−1)n+i+k+1 (n− l)!

(n− 1)!

(
n

n+ l − i+ k

)(
n + k − 1

k

)

= (i− 1)!

(
n− 1

i− 1

)
(n− l)!

(n− 1)!

i−1∑
k=0

(−1)k
(

n

n+ l − i+ k

)(
n + k − 1

k

)

=
(n− l)!

(n− i)!
δil = δil .

Hence, M is indeed the inverse matrix of the factorial Hankel matrix H . �
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