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Abstract

Let G be a graph. A proper edge-coloring of G is called a strong edge-
coloring if any two edges on a path of length at most three receive distinct
colors. Given a list assignment L = {L(e) | e € E(G)} of G, if there ex-
ists a strong edge-coloring 7 of G such that w(e) € L(e) for all e € E(G),
then we say that G is strongly L-edge-colorable. If G is strongly L-edge-
colorable for any list assignment L with |L(e)| > k for all e € E(G),
then G is strongly k-edge-choosable. It is known that every planar sub-
cubic graph is strongly 10-edge-choosable. In this paper, by applying the
famous Combinatorial Nullstellensatz, we extend this result by showing
that every toroidal subcubic graph is strongly 10-edge-choosable.
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1 Introduction

All graphs considered in this paper are finite and simple unless otherwise stated. For
a graph G, we let V(G), E(G), and A(G), denote the vertex set, edge set, and the
maximum degree of GG, respectively. We say a graph G subcubic if A(G) < 3.

A proper k-edge-coloring of G is a mapping = : E(G) — {1,...,k} such that
for any adjacent edges e; and eq, mw(e1) # w(es). A strong k-edge-coloring of G is
a proper k-edge-coloring such that any two edges adjacent to a common edge have
distinct colors. The strong chromatic index of G, denoted by x%(G), is the smallest
integer k such that there is a strong k-edge-coloring in G.

Given a list assignment L = {L(e) | e € E(G)} of G, if G has a strong edge-
coloring 7 such that 7(e) € L(e) for all e € E(G), then we say that G is strongly
L-edge-colorable. Call such a strong edge coloring 7 a strong L-edge-coloring of
G. If G is strongly L-edge-colorable for all list assignments L of G satisfying that
|L(e)| > k for all e € E(G), then G is called strongly k-edge-choosable. The smallest
integer k for which G is strongly k-edge-choosable is the strong edge choosability of
G, denoted by ch’(G). Obviously, \,(G) < ch’(G) for any graph G.

The strong edge-coloring of graphs was first studied by Fouquet and Jolivet [11,
12] who investigated the case of 3-regular graphs. In 1989, Erdés and Nesettil [9, 10]
put forward the following challenging conjecture:

Conjecture 1.1 (9, 10| Let G be a graph with mazimum degree A. Then

(@) %AQ, when A is even;
Xs - i(5A2 —2A +1), when A is odd.

They also gave a construction to show that if the conjecture is true, then the
bound is tight. Let G,, denote the family of graphs with maximum degree m. Con-
jecture 1.1 is clearly true for both G; and G,. Andersen [2], and independently Horak,
Qing and Trotter [13] confirmed the conjecture for G3. Namely, every graph G € G3
satisfies x,(G) < 10. Later, Dai et al. [7] showed that ch/(G) < 11 if G € G3, and
further ch’(G) < 10if G € Gz and G is planar. For every graph G in G,, Cranston [6]
proved that x.(G) < 22. This was further strengthened by Zhang et al. in [18] who
showed ch’(G) < 22. Recently, Huang, Santana and Yu [14] successfully showed that
X.(G) < 21. Meanwhile, Wang et al. [17] showed that every planar graph G € G,
satisfies x.(G) < 19. This was recently improved to be chl(G) < 19 in [5|. Since
Conjecture 2.1 is still widely open, it is natural to ask if there exists a positive real
number k such that y’(G) < kA? when A is sufficiently large. Molloy and Reed [16]
proved that such a k exists and k£ = 1.998. This result was later improved to k = 1.93
by Bruhn and Joos [4], and to & = 1.835 by Bonamy, Perrett and Postle [3]. Re-
cently, this has been improved to k = 1.772 by Hurley, de Joannis de Verclos and
Kang in [8]. The reader may refer to [15, 19] for more results relating to strong (list)
edge-colorings of graphs.
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In this paper we study strong edge choosability of toroidal graphs, which are
graphs that can be drawn on the torus without crossing edges. The main theorem is
the following, which extends a result in [7]| that states every planar subcubic graph
is strongly 10-edge-choosable.

Theorem 1.1 [f G is a toroidal subcubic graph, then ch’(G) < 10.

2 Preliminaries

Before proving our main result, we need to introduce some necessary notation and
terminology. Suppose that G = (V, E, I) is a toroidal graph embedded on the torus
with the face set F. We use i™ to denote an integer at least ¢. Similarly define i~ to
be an integer at most i. A k-vertex (k*-vertex, k™ -vertex, respectively) is a vertex of
degree k (at least k, at most k, respectively). The same notation can be applied to
cycles and faces. Let m be a partial strong L-edge-coloring of G. Note that for each
proper subgraph of GG, even if two colored edges are adjacent to an uncolored edge,
the colors must be different under . For e, ¢’ € E(G), we say that e can see ¢’ (with
respect to m) if e and ¢’ are either adjacent to each other or adjacent to a common
edge. Furthermore, if e can see an edge ¢’ with a color ¢, then we say that e sees the
color c.

Let P(x1,y,...,7,) be a polynomial in n variables, where n > 1. Let ¢, (2} 25>
.. xFn) denote the coefficient of the monomial ¥ a5 ... 2k in Py, xy,... ),

where for 1 < ¢ < n, k; is a nonnegative integer. To derive our result, we need the
following elegant formulation of the Combinatorial Nullstellensatz.

Lemma 2.1 (|1], Combinatorial Nullstellensatz) Let F be an arbitrary field, and let

P = P(x1,29,...,2,) be a polynomial in Flxy, 2o, ..., x,]. Suppose that the degree

of P, denoted by deg(P), equals > k;, where each k; is a nonnegative integer, and
i=1

suppose c,(xh ak? - akn) £ 0. If Sy, S,, ..., S, are subsets of F with |S;| > k;, then

there are sy € Sy,89 € So,..., 8, € Sy so that P(s1,S2,...,8,) # 0.

3 Proof of Theorem 1.1

Suppose Theorem 1.1 is false. Let G = (V, E) be a toroidal graph which is not
strongly 10-edge-choosable but every proper subgraph of G is. Clearly, G is con-
nected. Embedding G into the torus, we get a toroidal graph G = (V, E, F'), where
F' is the face set of G. First, we state the following Lemma 3.1, whose proof was
provided in [7].

Lemma 3.1 [7| G is a 3-reqular graph without any 5~ -cycles.

In what follows, let L be a list assignment of G with |L(e)| > 10 for all e € E(G).
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Lemma 3.2 G has no 6-cycles.

Proof. Suppose to the contrary that G contains a 6-cycle C' = vjv9v304050601. By
Lemma 3.1, C' is an induced 6-cycle. Namely, for each i € {1,...,6}, the third
neighbor of v;, denoted by v}, cannot be on the boundary of C'. Let z; and y; denote
the two neighbors of v] other than v;, as depicted in Figure 1. Also let 2} and z!
(respectively y! and y!') denote the two neighborhoods of z; (respectively y;) other
than v). Again, by Lemma 3.1, we see that neither x; nor y; can be located on C.

Figure 1: The configuration of the 6-cycle C' = vyvov3v4050601 .

Let H=G —{v; : i € {1,...,5}}. By the minimality of G, H admits a strong
L-edge-coloring 7. For our convenience, we denote e; = v;v;11, where i € {1,...,6}
and 7 is taken modulo 6; and e; = v; v} 4, where j € {7,8,...,11}. For each
er, where k € {1,...,11}, let C,(ex) denote the set of colors seen by ey, while let
Sk = L(ex) \ Cx(eg) for any e, € E(G). Clearly, as there are no 5~ -cycles in G, we
note that the edge vjv, does not exist for any i € {2,3,5,6}. Similarly, the edge
vyv); does not exist for any j € {3,4,6}. Associate with ej a variable z;. Next, by
symmetry, we shall discuss three cases based on the existence of the edges vjv) and
(X

Case 1: v\v) ¢ E(G) and vjvl ¢ E(G).

In what follows, if e; and e; are distinct edges in G, with ,j € {1,...,11}, so
that e; and e; see each other, then we represent this by using the binomial (z; — z;).
Thus we obtain the following polynomial @);:

Ql(zl, 29y ey 211) =

(21 — 22)(21 — 23) (21 — 25) (21 — 26) (21 — 27) (21 — 28) (21 — 20)(22 — 23)(22 — 24)

(22 - ZG)(Zz - 27)(22 - 28)(22 - 29)(22 - 210)(23 - 24)(23 - 25)(23 - 28)(23 - 29)
(23 - 210)( Z3 — 211)( 24 — 25)(24 - 26)(24 - 2’9)(2’4 - 210)(24 - 211)(25 - ZG)(Z5 - 27)
(2’5 - 210)(25 - 211)(26 - 27)(2’6 - 28)(26 - 2’11)(2’7 - 2’8)(28 - 29)(29—210)(210—2’11)-

Notice that deg(Q)1) = 36. We observe the following:
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Since |L(e;)| > 10, we deduce that |S;| > 3 for i € {7,11}, |S;| > 4 for i €
(8,9,10}, [Si| > 5 for i € {1,4,5,6}, and |S;| > 6 for i € {2,3}. By Python (the

o - 4,55 4.4 4,22 .2 2 2
code is in the Appendix), we calculate that cq, (vjx3232 0550505050701, )

"

)a 7(9595
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and ) k; = 36. Since k; < |9y for each i € {1,2,..

., 11}, by Lemma 2.1, we get a

i=1

desired strong L-edge-coloring of GG, a contradiction.

Case 2: vjv) ¢ E(G) and vyl € E(G).

Then eg and e;; are at distance exactly 2, as shown in Figure 2. We have the

following polynomial )s:

)
)
22 — Ze)\Z2 — 27)(2’2 - Zs)(22 - 29)(2’2 - 210)(2’3 - 24)(23 - 2’5)(23 - 28)(2’3 - 2’9)

11

z
21 — 23

ey

)(
)
)
(
)

Q2(z17 z

(21— 25)(21 — 26) (21 — 27) (21 — 28) (21 — 29) (22 — 23) (22 — 24)

(2’3 - 2’11)(24 - 25)(24 - ZG)(Z4 - 29)(2’4 - 2’10)(24 - 2’11)(25 - 26)
5 — 210)(25 - le)(ZG - Z?)(Z(s - 28)(26 - 211)(27 - 28)(28 - 29)

0
)
28 — 211 (29 - 210)(210 - 211)-

Observe that deg(Q2) = 37. We have the following:

(21— 2
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Figure 2: The configuration of Case 2.

Cr(ero) = {m(viza), m(viya), m(2azxy), m(wa’d), 7 (yayh), w(yays) };
Cr(en) = {m(vhws), m(vgvs), m(wses), m(ws25), w(var2), w(vevg) -
Since |L(e;)| > 10, we deduce that |S;| > 3, |S;| > 4 fori € {9,10,11},|S;| > 5 for

i€{1,4,5,6,8}, and |S;| > 6 fori € {2,3}. By Python (the code is in the Appendix),
11

we calculate that cq,(zizdriajrizgria? v22223) = 2 and Z k; = 37. Therefore,
=1
by Lemma 2.1, we obtain a desired strong L-edge-coloring of (G, a contradiction.

Case 3: vjv) € E(G) and vjvl € E(G).

Then e; and ey are at distance exactly 2, and also eg and eq; are at distance
exactly 2; this is depicted in Figure 3. We have the following polynomial Qs3:

Figure 3: The configuration of Case 3.
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Q3(Z1, 22y - 11)

(21— 22)(21 —23)(21 — 25)(21 — 26) (21 — 27) (21 — 28) (21 — 29) (22 — 23)(22 — 24)
(Zz - 26)(22 - 27)(22 - 28)(22 - 29)(22 - 210)(23 - 24)(23 - 25)(23 - 28)(23 - 29)
(Z:s - 210)(23 - 211)(24 - 25)(24 - 26)(24 - 29)(24 - 210)(24 - 211)(25 - ZG)

(25 - Z?)(Z5 - 210)(25 - 211)(26 - Z?)(ZG - 28)(2’6 - 2’11)(2’7 - 2’8)(27 - 2’10)

(28 - 2’9)(2’8 - 211)(29 - 210)(210 - 211)'

Note that deg(Q)3) = 38. It is easy to observe the following:

Cr(e1) = {m(viz1), m(v1vy), T(vaa), m(v5v5), T(vevg) b

Cr(e2) = {m(vyw2), (vyvg), m(v32s), m(v5ys) }s

Cr(e3) = {m(vyx3), m(v3ys), w(viza), m(vi0) }3

Cr(eq) = {m(viwa), w(vjv), w(vss), m(v50s), T(v6vg) }3

Cr(es) = {m(vsxs), m(v5v3), T(vevs), T(ves), m(v6ys) }s

Cr(es) = {m(viz1), m(vvy), m(vevg), T(ves), m(v6Ys) }s

Cr(er) = {m(vi21), w(vyv)), w(@12)), m(z12y), w(vjza), w(vevg) };
Cr(es) = {m(vy22), w(vv5), m(@2h), m(2a3), w(v525) };

Cr(eg) = {W(Ué%) m(v3ys), m(z3xs), m(2323), T(Ysys ) W(yayg)}
Cr(e10) = 1

), (@az)), m(zay), w(viw

Cr(en) = 05905) m(vgvy), m(ws2s), 7 (wsws), w(var2), w(vevs) -
Since |L(e;)| > 10, we have that |S;| > 4 for i € {7,9,11}, |S;| > 5 for i €

{1,4,5,6,8,10}, and |S;| > 6 for i € {2,3}. By Python (the code is in the Appendix),

T5Th

we calculate that cq, (zizdziririziadadnsda? zl) = —2. As Z k; =38 and k; < |S;]

for each 7 € {1,2,...,11}, by Lemma 2.1, one may reach a strong L-edge-coloring of
GG, a contradiction. O

We now prove Theorem 1.1:

Euler’s formula can be rewritten in the following identity:
> (2d(v)=6)+ > (d(f)—6)=0.
VeV (G) feF (@)

By Lemmas 3.1 and 3.2, we confirm that there is no 6™ -face in GG, and therefore

Y (2d(v) =6)+ Y (d(f)~6)>0,

veV(G) JEF(Q)

which leads to a contradiction and thus we complete the proof of Theorem 1.1. O
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Appendix

% Case 1 of Lemma 3.2:
from sympy import Symbol, expand
z1 = Symbol(’21")

22 = Symbol(’22")
23 = Symbol(’23")
z4 = Symbol(’z4")
25 = Symbol(’25")
26 = Symbol(’26")
27 = Symbol(’27")
28 = Symbol(’28")
29 = Symbol(’29’)
210 = Symbol(’210")
211 = Symbol(’z11")
pl = (21 — 22) % (21 — 23) * (21 — 25) * (21 — 26) * (21 — 27) * (21 — 28) * (21 — 29)
P2 = (29 — 23) * (20 — 2z4) * (22 — 26) * (22 — 27) * (22 — 2g) * (20 — 29) * (22 — 210)
p3 = (23 — 24) % (23 — 25) * (23 — 28) * (23 — 29) * (23 — 210) * (23 — 211)
pd = (24 — 25) * (24 — 26) * (24 — 29) * (24 — 210) * (24 — 211)
p5 = (25 — 26) * (25 — 27) * (25 — 210) * (25 — 211)
p6 = (26 — 27) * (26 — 28) * (26 — 211
p7 = (27 — z)
p8 = (28 — 29)
P9 = (29 — z10)

pl0 = (210 - 211)

print((expand((expand((expand((expand((expand((expand((expand((expand
((expand((expand((expand(pl).

291

coeff(zl,4))*p2).coeff(zQ,S))) p3).coeff(23,5))*pd).coeff(z4,4))*p5).coeff(25,4) ) *p6).

coeff(26,4))*pT). coeff(27,2))*p8).coeff(28,2))*p9).coeff(29,2))*p10).
coeff(210,2))).coeff(211,2)))

% Case 2 of Lemma 3.2:
from sympy import Symbol, expand

21 = Symbol(’21")
22 = Symbol(’22’)
23 = Symbol(’23’)
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24 = Symbol(’24")

25 = Symbol(’25’)

26 = Symbol(’267)

27 = Symbol(’277)

28 = Symbol(’28’)

29 = Symbol(’297)

210 = Symbol(’210")

211 = Symbol(’z11")

pl = (21 — 22) % (21 — 23) * (21 — 25) * (21 — 26) * (21 — 27) * (21 — 28) * (21 — 29)

29 — 27) % (29 — 28) * (22 — 29) * (20 — 210)
23 — 29) * (23 — 210) * (23 — 211)

24 — 210) * (2’4 - 211)

plO = (210 — 211)

print((expand((expand((expand((expand((expand((expand((expand((expand
((expand((expand((expand(pl).
coeff(21,4))*p2).coeff(22,5))*p3).coeff(23,5))*p4).coeff(24,4) ) *p5).coeff(25,4) ) *p6).
coef(26,4))*pT).coeff(27,2))*p8).coeff(28,2) ) *p9).coeff(29,2) ) *p10).
coeff(210,2))).coeff(211,3)))

% Case 3 of Lemma 3.2:
from sympy import Symbol, expand
z1 = Symbol(’z1’)

22 = Symbol(’22’)
23 = Symbol(’23’)
z4 = Symbol(’z4")
25 = Symbol(’25’)
26 = Symbol(’26")
27 = Symbol(’277)
28 = Symbol(’28’)
29 = Symbol(’297)
210 = Symbol(’2107)
211 = Symbol(’z11")
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pl = (21 — 229) % (21 — 23) * (21 — 25) * (21 — 26) * (21 — 27) * (21 — 28) * (21 — 29)
P2 = (29 — 23) % (22 — 24) * (20 — 26) * (22 — 27) * (20 — 28) * (22 — 29) * (22 — 210)
p3 = (23 — 24) * (23 — 25) * (23 — 28) * (23 — 29) * (23 — 210) * (23 — 211)
pd = (24 — 25) % (24 — 26) * (24 — 29) * (24 — 210) * (24 — 211)
p5 = (25 — 26) * (25 — 27) * (25 — 210) * (25 — 211)
p6 = (26 — 27) * (26 — 28) * (26 — 211)
= ( ) *(
( (
(

print((expand((expand((expand((expand((expand((expand((expand((expand
((expand((expand((expand(pl).

coeff(21,4))*p2).coeff(22,5))*p3).coeff(23,5))*pd).coeff(24,4)) *p5).coeff(25,4))*p6).
coeff(26,4))*p7).
))*

coeff(27,3))*p8).coeff(28,3))*p9).coeff(29,2))*p10).coeff(210,2) ) ) .coeff(211,2)))
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