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Abstract

We extend the notion of 2-decomposition to the class of half-edged ribbon
graphs and then to rank D-weakly colored graphs, generalizing thereby
the 2-sums and tensor products of these graphs. Using this extension
for the 2-decompositions, we provide new expansion formulas for the
Bollobás Riordan polynomial for half-edged ribbon graphs and also for
the polynomial invariant for weakly colored stranded graphs.

1 Introduction

A graph-theoretic invariant called separability was recently introduced by Cicalese
and Milanč [6]. In general, a graph is called k-separable if any two non-adjacent ver-
tices can be separated by the removal of at most k vertices. The k-separability turns
out to be an important property of a graph used to investigate the computational
complexity of several optimization problems for graphs of bounded separability [6].
One of the main results in [6] is a decomposition theorem for the 2-separable graphs.
This decomposition has been extended to ribbon graphs by taking into account the
cyclic order of the vertices [10].

Defined as a neighborhood of a graph embedded in a surface, a ribbon graph
[4, 7] can be decomposed into its 2-connected components according to the following

description: assume that a ribbon graph Ĝ is 2-separable and then regard it as arising
from a sequence of 2-sums of a collection of ribbon graphs {Ae}e∈E with a ribbon
graph G = (V , E). Along the edge e ∈ E , we “glue” the distinguished ribbon graph
Ae. Strictly speaking, a 2-sum of two graphs G and F with distinguished edges e
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and f respectively in G and F is defined by identifying e with f and deleting the
identified edge [10]. The structure (G, {He}e∈E), is called a 2-decomposition for Ĝ
with He = Ae − e, for all e ∈ E .

In [10], Huggett and Moffat find a connection between the Bollobás Riordan (BR)

polynomial of Ĝ and those of G and He. This result generalizes Brylawski’s result in
[5] which expresses the Tutte polynomial of the tensor product T (G ⊗ A) in terms
of those of its two factors G and A. The goal of the present work is to make one
step further and to extend these series of results to new classes of generalized graphs
appearing in quantum field theory and in theoretical physics [9, 3].

Graphs can be generalized as half-edged graphs (HEGs) [2]. A half-edge is de-
fined as any edge incident to a unique vertex without forming a loop and a HEG
is a graph together with an incidence relation which associates each half-edge with
a unique vertex. HEGs are the natural class of graphs of quantum field theory
[11], with half-edges representing field modes with much lower energy than inter-
nal processes represented by well-formed edges. Combining the definitions of HEGs
and ribbon graphs, half-edged ribbon graphs (HERGs) arose as a class of graphs
encompassing those. HERGs have both an underlying half-edged graph and ribbon
graph structures. Ribbon graphs are also surfaces with boundary and each boundary
component is called face of the ribbon. In the case of HERGs, the presence of the
half-edges induces two kinds of faces: internal and external faces. The internal faces
are components homeomorphic to the 2-dimensional disk D2 and the external are
the remaining ones which are homeomorphic to any open segment. Following the
external faces, we obtain connected components called connected components of the
boundary graph. As a new feature, the notion of 2-decomposition for HERGs that
we introduce in the present work distinguishes the treatment of the internal faces
and the connected components of the boundary graph during the 2-sum operation.

The Tutte and Bollobás Riordan polynomials have found an extension to HERGs
by including extra variables: one for keeping track of the number of connected com-
ponents of the boundary graph and another for the number of half-edges. This
extension satisfies a similar recurrence to the contraction and deletion of edges and
details have been given in [2]. Using the bijection between the states of Ĝ and those
of G and He, we find the expression for the number of internal faces, number of
connected components of the boundary graph and half-edges of a state of Ĝ in terms
of those of the states of G and He. This task remains complex because, first, the
definition by Hugget and Moffat must be modified to take into account the pres-
ence of the half-edges. Then, we must deal with the fact that the internal faces
or connected components of the boundary graph of a state in Ĝ may be generated
by different types of components in the states in G and the graphs He. To tackle
this issue, we identify a matrix ε which captures the subtlety of the 2-decomposition
of HERGs. This matrix called ε(f, xe) is labelled by rows indexed by the internal
faces of a state in G and columns indexed by the points xe that define the meeting
places of the graphs He on G in the construction of Ĝ. The important quantity to
master the decomposition of HERGs is the rank of ε. As a consequence, we relate
the multivariate polynomial invariant of Ĝ and of those of G and of He.
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The level of difficulty increases when we seek for such relations for the class of
graphs called rankD weakly-colored (w-colored) stranded graphs [1]. Such graphs are
called stranded graphs because they are made with stranded vertices which are chord
diagrams and stranded edges which are collections of segments. Gurau introduced in
[8] a coloring on them and proved that they are dual to simplicial pseudo-manifolds
in any dimension D. This duality was the stimuli for particular quantum gravity
models claiming that the geometry of spacetime at high energy is simplicial. In that
sense, stranded graphs represent quantum (discrete) spaces. In a colored graph, the
vertices are called 0-cells, lines or edges 1-cells and the faces 2-cells. A p-cell or p-
bubble is defined as a connected subgraph made only of lines of p chosen colors. Once
we impose upon the vertices a fixed coordination D, we obtain a specific stranded
graph called colored tensor graph 1. The coordination of the vertices in a colored
tensor graph gets modified if we perform a contraction of an edge. Allowing such a
contraction enlarges the class of graphs from the colored tensor graphs to what is
called weakly-colored (w-colored) graphs. The BR polynomial invariant has a natural
extension from ribbon graphs to rank D w-colored graphs [2, 1]. In the second part
of this work, we introduce the 2-decomposition for rank D w-colored graphs and
establish few properties of it. The expression of the generalized invariant on the
graph Ĝ in terms of the invariants of the corresponding graphs G and He is much
more involved.

In this paper, Section 2 reviews the ribbon graphs, half-edged ribbon graphs and
the BR polynomials on such graphs. We show in Section 3, how to compute the BR
polynomial of a graph Ĝ = (G, {He}e∈E), by introducing two matrices which capture
the details generated by that 2-decomposition. Two particular cases are studied: the
case where each graph He is embedded in the neighborhood of e in the embedded
graph G and the general case. Theorems 3.11 and 3.19 establish the main results
of this section. We investigate the 2-decomposition extended to the class of weakly
colored graphs in Section 4 and report already a preliminary result of an expansion
of the invariant of the weakly colored graphs. The complete expansion in terms of
the invariants of G and of He is solved for a particular class of weakly colored graphs.

2 Preliminaries

In this section, we briefly review some essential concepts on ribbon graphs, HERGs
and the Bollobás Riordan polynomial.

A ribbon graph G = (V , E) is a surface with boundary where the vertices are
represented by a set of disks and the edges are represented by ribbons (rectangular
disks) [4]. A spanning subgraph s = (V , E ′) of G, where E ′ ⊆ E , is called a state of G
and we denote by S(G) the set of states of G. Let v(s), e(s), k(s), r(s), n(s) and ∂(s)
be respectively the number of vertices, edges, connected components, rank, nullity
and boundary components of s. Besides the parameters of this graph, there is t(s),
which records the orientability of an embedded graph s. By definition t(s) = 0 if s

1Notice that this notion of tensor graph is technically different from the notion of tensor product
of graphs defined as a particular 2-decomposition.
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is orientable and t(s) = 1 otherwise.
There are three kinds of edges that we can identify in a ribbon graph G. An edge

e of G is called a bridge if its removal disconnects a component of G. If the two ends
of an edge e of G are incident to the same vertex v of G then e is a loop and e is a
regular edge of G if it is neither a bridge nor a loop. A ribbon edge can be twisted
as well (see Figure 1). A loop e at a vertex v of a ribbon graph G is twisted if v ∪ e
forms a Möbius band as opposed to an annulus (an untwisted loop). We say that a
loop e is trivial if there is no cycle in G which can be contracted to form a loop f
interlaced with e.

t

Figure 1: Untwisted (left) and twisted (right) edge notations

There are some graphs operations which we now describe

Definition 2.1 (Deletion and contraction [4]). Let G be a ribbon graph and e one
of its edges.
• We call G − e the ribbon graph obtained from G by deleting e and keeping the

end vertices as closed discs.
• If e is not a loop and is untwisted, consider its end vertices v1 and v2. The

graph G/e obtained by contracting e is defined from G by replacing e, v1 and v2 by
a single vertex disc e∪ v1 ∪ v2. If e is a twisted non-loop, then untwist it (by flipping
one of its incident vertex) and contract.
• If e is a trivial twisted loop, contraction is deletion: G − e = G/e. The contrac-

tion of a trivial untwisted loop e is the deletion of the loop and the addition of a new
connected component vertex v0 to the graph G − e. We write G/e = (G − e) t {v0}.

The Bollobás-Riordan polynomialR(G;x, y, z, w) ∈ Z[x, y, z, w]/w2−w for ribbon
graphs is defined as the state sum:

R(G;x, y, z, w) =
∑
s∈S(G)

(x− 1)r(G)−r(s)yn(s)zk(s)−∂(s)+n(s)wt(s). (1)

In the following we set w = 1 and use an abuse of notation e ∈ s rather than e ∈ E(s).
Under these assumptions, the multivariate Bollobás-Riordan polynomial [13] is

Z(G; a, b, c) =
∑
s∈S(G)

ak(s)
(∏
e∈s

be

)
c∂(s), (2)

where a and c are indeterminates, and b := {be/e ∈ E} is a set of indeterminates
indexed by E . If we set all the variables be = b in (2), then using equation (1), we
obtain

R(G;x, y, z) = (x− 1)−k(G)(yz)−v(G)Z(G; (x− 1)yz2, yz, z−1).

Let us now discuss a polynomial invariant for ribbon graphs with half-edges or
half-ribbons.
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Definition 2.2. A HERG G(V,E, f0) (or simply Gf0 is a ribbon graph G(V,E) (or
shortly G) with a set f 0 of HR together with a relation which associates each HR
with a unique vertex. The ribbon graph G is called the underlying ribbon graph of
the HERG Gf0 .

Starting with a HERG Gf0 we can find its underlying ribbon graph by deleting the
half-ribbons or closing (pinching) the external points of each HR in f0. The ribbon
graph G is also denoted G̃.

Note that the HERGs was originally studied in [11] where a half-ribbon edge (or
simply half-ribbon, denoted henceforth HR) is a ribbon incident to a unique vertex
by a unique segment and without forming loops. Half-ribbons allowed another graph
operation called the cutting of an edge. Cutting an edge e in a ribbon graph G,
means that we remove e, and we let two HRs attached at the end vertices of e. If e
is a loop, the two HRs are on the same vertex.
• A ribbon graph G with HRs or a HERG is defined as a ribbon graph G(V , E)

with a set f = f1 ∪ f0, where f1 is the set of HRs obtained from the cut of all edges
of G, and f0 is the set of additional HRs together with a relation which associates
with each additional HR a unique vertex. A ribbon graph G(V , E) with the set f0

of additional HRs is denoted Gf0(V , E). An illustration is given in Figure 2. The
subgraphs of Gf0(V , E) are obtained by using the “cutting” operation to replace the
usual operation of deletion.
• A c-subgraph Af0A

of Gf0(V , E) is defined as a HERG Af0A
(VA, EA) satisfying

VA ⊆ V and EA ⊆ E such that the incidence relation between edges and vertices is
respected. We now denote by E ′A the set of edges incident to the vertices of A and
not contained in EA. The set of HRs of Af0A

is f0A = f0;0
A ∪ f0;1

A (EA) with f0;0
A ⊆ f0 and

f0;1
A (EA) ⊆ f1, where f0;1

A (EA) is the set of HRs obtained by cutting all edges in E ′A and
incident to the vertices of Af0A

. We denote Af0A
⊆ Gf0 . See an example of c-subgraph

Af0A
in Figure 2.
• A spanning c-subgraph sf0s or a state of Gf0(V , E) is defined as a c-subgraph

sf0s(Vs, Es) of Gf0 with all vertices and all additional HRs of Gf0 . Then Es ⊆ E and
Vs = V , f0s = f0 ∪ f0;1

s (Es). We use the notation sf0s b Gf0 and denote by S(Gf0) the set
of states of Gf0 . (See sf0 in Figure 2.)

t

Figure 2: A ribbon graph with HRs Gf0 together with a c-subgraph

Af0A
and a spanning c-subgraph sf0s

Gf0 Af0A
sf0s

The states or spanning c-subgraphs have crucial importance in this framework
since they are involved in the state sum of the BR polynomial defined on HERGs.

There are two kinds of boundary on a HERG which deserve to be analyzed: the
boundary faces following the contour of the HRs and the initial ones which follow
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the boundary of well-formed edges. More precisely let us consider a ribbon graph
with HRs Gf0(V , E).
• A closed or internal face is defined as a boundary component of a ribbon graph

which never passes through any free segment of the additional HRs. We denote by
Fint(Gf0(V , E)) the set of closed faces of Gf0(V , E).
• A boundary component obtained by leaving an external point of some HR

rejoining another external point is called an open or external face. We denote by
Fext(Gf0(V , E)), the set of open faces of Gf0(V , E).
• The set of faces F(Gf0(V , E)) of Gf0(V , E) is defined by

Fint(Gf0(V , E)) ∪ Fext(Gf0(V , E)).

If Fext(Gf0(V , E)) 6= ∅, i.e. f0 6= ∅, then Gf0(V , E) is said to be open. Otherwise it is
closed.

An illustration for closed and open faces is given in Figure 3.

f1

f2

f3

f0

Figure 3: A HERG Gf0 with Fint(Gf0) = {f0}, and Fext(Gf0) =

{f1, f2, f3}

The boundary ∂Gf0 of a ribbon graph Gf0(V , E) is a simple graph ∂Gf0(V∂, E∂)
such that V∂ is one-to-one with f0 and E∂ is one-to-one with Fext(Gf0(V , E)). Then
the boundary graph of a closed ribbon graph is empty. By construction, the boundary
graph ∂Gf0 , is obtained by inserting a vertex of valence or degree two at each HR,
the edges of ∂Gf0 are nothing but the external faces of Gf0 . An illustration is given
in Figure 4. The operations of edge contraction and deletion for HERGs keep their
meaning as in Definition 2.1.

f1

f2

f3

Figure 4: The boundary graph associated to the HERG in Figure 3

Definition 2.3 (BR polynomial for HERGs). Let Gf0(V , E) be a HERG. We define
the ribbon graph polynomial of Gf0 to be

RGf0 (x, y, z, w, t) =
∑

s∈S(Gf0 )

(x− 1)r (Gf0 )−r (s)(y − 1)n(s)zk(s)−Fint(s)+n(s) wC∂(s) tf(s), (3)

where C∂(s) = |C∂(s)| is the number of connected components of the boundary of s,
f(s), the number of half-edges and Fint(s) = |Fint(s)|.
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This definition gives a polynomial R (3) which is a generalization of the BR
polynomial R (1) from ribbon graphs to HERGs. The multivariate Bollobás-Riordan
polynomial for HERGs is

ZGf0 (a, b, c, d, l) =
∑

s∈S(Gf0 )

ak(s)
(∏
e∈s

be

)
cFint(s)d∂(s)lf(s), (4)

where a, c and d are indeterminates, and b := {be/e ∈ E} is a set of indeterminates
indexed by E . If we set all the variables be = b in (4), then using equation (3), we
obtain

RGf0 (x, y, z, w, t) = (x− 1)−k(Gf0 )(yz)−v(Gf0 )ZGf0 ((x− 1)yz2, yz, z−1, w, t). (5)

3 Expansion for the Bollobás-Riordan polynomial on half-
edged ribbon graphs

The formation of the HERG Ĝf′0 from its 2-decomposition (Gf0 , {He}e∈E) is ob-
tained by replacing each ribbon edge e by He. In fact from the 2-decomposition
(Gf0 , {He}e∈E) locally at e = (ue, we) of the template Gf0 , the graph Ĝf′0 is con-
structed by identifying the arcs me and ne of the vertices ue and we of He with the
corresponding arcs me and ne on the vertices ue and we on the template Gf0 − e. We
use the same notations ne and me according to the identification of the arcs. An
illustration is given in Figure 5, where the arcs me and ne are shown in red.

m

n

e

e

He Hee

Figure 5: Replace the edge e by He to obtain Ĝf′0

3.1 The 2-decomposition of HERGs

We give in this subsection a natural extension of the 2-decomposition of graphs,
from ribbon graphs to HERGs. Given a HERG Gf0 = (V , E), we may wonder how to
evaluate the number of its internal faces or connected components of the boundary
graph using its 2-decomposition.

Definition 3.1. Let Gf0 = (V , E) be a HERG and {Ae}e∈E be a set of half-edged
ribbon graphs each of which has a specific non-loop edge distinguished. For each
e ∈ E take the 2-sum Gf0 ⊕2 Ae, along the edge e and the distinguished edge in Ae,

to obtain the half-edged ribbon graph Ĝf′0 ; f′0 = f0 ∪e f 0(Ae) and f 0(Ae) the set
of half-ribbons of Ae. For each e ∈ E we define He = Ae − {e}. We will call the

structure (Gf′0 , {He}e∈E) a 2-decomposition for Ĝf′0 .



R.C. AVOHOU / AUSTRALAS. J. COMBIN. 79 (3) (2021), 340–370 347

We can construct the graphs Ae by performing the reverse operation. That is
we look Ĝf′0 as a 2-decomposition (Gf0 , {He}e∈E) where we identify two distinguished
vertices ue and we of each He with the corresponding end vertices of e in Gf0 . From
each He we can define a graph Ae = He ∪ {e}.

The set of states S(He) of each He is partitioned into two subsets: S1(He) consists
of all states in S(He) in which ue and we lie in the same connected component, and
S2(He) consists of all states in S(He) in which ue and we lie in different connected

component. A state ŝ ∈ Ĝf0 is obtained by replacing the edges e in a state s ∈ S(Gf0)
with elements of S1(He), and the edges f which are not in s by elements of S2(Hf ).

Lemma 3.2. If a state ŝ of the embedded graph Ĝf′0 is decomposed into states s ∈
S(Gf0), se ∈ S1(He) ∪ S2(He), e ∈ E in the decomposition above, then

k(ŝ) =
∑
e∈E

k(se)− |{se ∈ S1(He)}| − 2|{se ∈ S2(He)}|+ k(s),

Fint(ŝ) + C∂(ŝ) =
∑
e∈E

Fint(se)− |{se ∈ S1(He)}| − 2|{se ∈ S2(He)}|+ Fint(s)

+
∑
e∈E

C∂(se) + C∂(s), (6)

where |{se ∈ Si(He)}|; i = 1, 2 is the number of states in Si(He), at fixed e.

Proof. The proof of this lemma will follow the one of Lemma 3 in [10] by considering
the underling ribbon graphs ˜̂s and s̃e associated respectively to the half edged ribbon
graphs ŝ and se and using the equalities

∂(˜̂s) = Fint(ŝ) + C∂(ŝ), ∂(s̃e) = Fint(se) + C∂(se).

�
We are now interested in a separate formula relating Fint(ŝ), Fint(se) and Fint(s)

and a formula relating C∂(ŝ), C∂(se) and C∂(s). This leads us to consider different
cases. The case where a connected component of the boundary of s corresponds to
a connected component of the boundary of ŝ and the case where a closed face of s
corresponds to a connected component of the boundary of ŝ. We take He = Ae∨{e}
in the following subsection in order to overcome this issue.

3.2 The BR polynomial for HERGs embedding in a neighbourhood

In this subsection we assume that the graph Ĝf0 = (Gf0 , {He}e∈E) is embedded graph
where G is embedded and each graph He is embedded in the neighborhood of e.

Let us remember the 2-decomposition in order to evaluate the BR polynomial on
HERGs. Consider two HERGs Gf0 and Ff′0 with distinguished edges e ∈ E(Gf0) and
f ∈ E(Ff′0). The 2-sum Gf0 ⊕2 Ff′0 is defined by identifying e with f and deleting
the identified edge. We introduced here another way to perform this sum which will
be generalized on tensor graphs. In the process of identification of e and f , assume
that a vertex ue ∈ V (Gf0) is identified with uf ∈ V (Ff′0). We introduce an edge
between ue and uf such that the end points of this edge coincide with the end points
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of the identified edges. We contract this edge and obtain that the cyclic order around
the new vertex will be {e1, · · · , en, f1, · · · , fm} if the cyclic order around ue and uf
are {e, e1, · · · , en} and {f, f1, · · · , fm} according to a choice of orientations on these
ribbon graphs. An illustration is given in Figure 6.

e
1

e
2e

3

e
n

f
1

f
2f

3

f
n

e
1

e
2e

3

e
n

f
1

f
2f

3

f
n

e
1

e
2e

3

e
n

f
1

f
2

f
3

f
n

ue e

uf f

Figure 6: The process of identification of e and f (on the left), through

the introduction of an edge between ue and uf (midle) and the 2-sum

obtained after contraction (on the right)

The definition 3.1, can be reformulated as follows:

Definition 3.3. Let Gf0 = (V , E) be a HERG and {Ae}e∈E be a set of half-edged
ribbon graphs each of which has a specific non-loop edge distinguished. For each
e ∈ E take the 2-sum Gf0 ⊕2Ae, along the edge e and the distinguished edge in Ae as

introduced above, to obtain the half-edge ribbon graph Ĝf′0 ; f′0 = f0 ∪e f 0(Ae) and
f 0(Ae) the set of half-ribbons of Ae. For each e ∈ E let us define He = Ae ∨ {e}. We

will call the structure (Gf′0 , {He}e∈E) a 2-decomposition for Ĝf′0 .

From Definition 3.3, each He has at least two half-edges attached to the points
me and ne. Definition 3.1 shows that Ĝf′0 is obtained by identifying the distinguished
vertices ue and we, for e = (ue, we), of each graph He with their correspondence in
Gf0 . Then we may not have some half-edges attached to me and ne.

Let ae and a′e be the two endpoints of the arcs me and be and b′e the endpoints of
the arcs ne. Some of these points may belong to the same internal face or connected
component of the boundary graph. These points ae, a

′
e, be and b′e induce points on

the boundary of Gf0 , Ĝf′0 and He, and then on the states s b Gf0 , ŝ b Ĝf0 and se b He.
Consider one of such points, say, x in an internal face f of a state s ∈ S(G). This

point has a correspondent point xe in each of the graphs se such that f will pass
by e in ŝ. We can define a matrix ε which columns are indexed by the points xe
and rows indexed by the internal faces of s. The elements of this matrix are given
by: ε(f, xe) = 1 if xe corresponds to a point x in f and belongs to a connected
component of the boundary graph in s∪ e and ε(f, xe) = 0 otherwise. To the matrix
ε we can associate a sub-matrix ε̃ obtained by removing from ε, all the zero and
collinear column vectors except one. It is clear that ε̃ is a square matrix. We denote
by {x̃e}e the set of the remaining points indexing the columns of ε̃ and τ the number
of internal faces in s which become open in ŝ. The following result is straightforward.

Lemma 3.4. Let us consider the 2-decomposition ŝ = (s, {s}e) where ŝ ∈ S(Ĝ),
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s ∈ S(G), se ∈ S(He) and Ĝ = (G, {H}e) and ε as defined above. We have

τ = rank(ε) = rank(ε̃).

We want to express τ as a sum over e in s. Consider another matrix σ whose
rows are indexed by the points {xe}e and columns indexed by the edges e. We say
that xg ∈ e if and only if xg has a correspondent point x ∈ e and x ∈ e = (me, ne)
means that x is one of the points ae, a

′
e, be and b′e. Each matrix element is given

by: σ(xg, e) = 1 if xg ∈ e and xg belongs to a connected component of the boundary
graph in s ∪ e and σ(xe, e) = 0 otherwise. We can deduce the matrix σ̃ indexed by
the elements {x̃e}e discussed above.

e f

g h

G

H

H

H

H

f

g

h

f1

f

f

2

3

e

xg

yg

y'h

xf

yf

xh

yh

x'g

y'g

x'f

y'f

x'h

e

xe x'e

ye y'

Ĝ

f
2

3f

1f

Figure 7: The 2-decomposition of Ĝ = (G, {He, Hf , Hg, Hh}) with the

meeting points colored according to the faces of G.

In Figure 7, we give the details of the 2-decomposition of Ĝ = (G, {He, Hf , Hg,
Hh}) in order to compute the matrices ε and σ. As discussed earlier, the set of the
points is

{xe, x′e, xf , x′f , xg, x′g, xh, x′h, ye, y′e, yf , y′f , yg, y′g, yh, y′h},

the set of faces, {f1, f2, f3} and the edges set {e, f, g, h}. The columns vectors in
ε indexed by xe, x

′
e, xf , x

′
f , xg, x

′
g, xh and x′h are respectively the same with the

columns vectors indexed by ye, y
′
e, yf , y

′
f , yg, y

′
g, yh and y′h. Without lost of generality

we can compute ε for the vectors indexed by xe, x
′
e, xf , x

′
f , xg, x

′
g, xh, x

′
h, say, in

that order. Hence

ε =

1 0 1 0 1 0 0 1
0 1 0 1 0 0 0 0
0 0 0 0 0 1 1 0

 .
We deduce the matrix ε̃

ε̃ =

1 0 0
0 1 0
0 0 1

 . (7)

From Figure 7 and equation (7), we have τ = 3 = rank(ε̃).
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The corresponding matrices σ and σ̃ are given by

σ =



1 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


,

and

σ̃ =

1 0 0 0
1 0 0 0
0 0 0 0

 .
Lemma 3.5. The number τ introduced above is

τ =
∑
e∈s

∑
f∈Fint(s)

∑
x̃g

ε̃(f, x̃g)σ̃(x̃g, e).

Lemma 3.6. Consider a state ŝ of the embedded graph Ĝf′0 decomposed into the
states s ∈ S(Gf0) and se ∈ S1(He) ∪ S2(He), e ∈ E with the matrices ε̃ and σ̃ as
introduced above. Then

C∂(ŝ) =
∑
e∈E

C∂(se) + C∂(s)− |{se ∈ S1(He)}| − 2|{se ∈ S2(He)}|+∑
e∈s

∑
f∈Fint(s)

∑
x̃g

ε̃(f, x̃g)σ̃(x̃g, e), (8)

Fint(ŝ) =
∑
e∈E

Fint(se) + Fint(s)−
∑
e∈s

∑
f∈Fint(s)

∑
x̃g

ε̃(f, x̃g)σ̃(x̃g, e), (9)

f(ŝ) =
∑
e∈E

f(se) + f(s)− 2|{se ∈ S1(He)}| − 4|{se ∈ S2(He)}|, (10)

where |{se ∈ Si(He)}|; i = 1, 2 is the number of states in Si(He), at fixed e.

Proof. From the proof of (8) we can deduce (9) by using the relation (6) in Lemma
3.2. Let e = (me, ne), ae and a′e be the end points of the arc me and be and b′e those
of ne.

- If a connected component of the boundary graph of the graph s ∈ S(Gf0) is such
that it does not contain any of the points ae, a

′
e, be and b′e, then there is a natural

corresponding component in ŝ.
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- If a connected component of the boundary graph of the graph of s ∈ S(Gf0)
contains some of the points ae, a

′
e, be and b′e, then there is a correspondence connected

component of the boundary of the graph ŝ ∈ S(Ĝf0) containing the same set of points.
- Assume that an internal face of s ∈ S(Gf0) contains some of the points ae, a

′
e,

be, b
′
e. This face can correspond to a connected component of the boundary graph

of the graph ŝ ∈ S(Ĝf0) containing the same set of points. The total number of
the components for which some of the points ae, a

′
e, be and b′e belong to connected

component of the boundary graph in ŝ is
∑

e∈s
∑

f∈Fint(s)

∑
x̃g
ε̃(f, x̃g)σ̃(x̃g, e).

However, ŝ has two kind of extra connected components: the unmarked compo-
nents in the graphs se which do not contain any of the points ae, a

′
e, be and b′e and

the one containing some of these points belonging to connected components of the
boundary graphs. The number of the unmarked components for each e for which
se ∈ S1(He) or se ∈ S1(He) is C∂(se) − 1 and C∂(se) − 2 respectively. The number
of connected components of the boundary graph of ŝ is

C∂(ŝ) = C∂(s) +
∑

se∈S1(He)

(
C∂(se)− 1

)
+

∑
se∈S2(He)

(
C∂(se)− 2

)
+∑

e∈s

∑
f∈Fint(s)

∑
x̃g

ε̃(f, x̃g)σ̃(x̃g, e).

The proof of (10) is direct since by inserting se ∈ S1(He) in s, we keep all the
half edges of s but two half edges of se are lost. Inserting se ∈ S2(He) in s we lose
two half edges of s and two half-edges of se. This ends the proof. �

In order to evaluate the connection between the BR polynomial of Ĝf′0 and those
of Gf0 and He let us come back to the relations in Lemma 3.6. It appears that
the evaluation of the number of connected components of the boundary graph and
internal faces of ŝ in term of those in se and s becomes more complicated.

We consider the following state sums:

η(1)
e (a, b, c, d, l) :=

∑
se∈S1(He)

ak(se)−1be(se)cFint(se)dC∂(se)−1lf(se)−2,

η(2)
e (a, b, c, d, l) :=

∑
se∈S2(He)

ak(se)−2be(se)cFint(se)dC∂(se)−2lf(se)−4.

Furthermore let F be a map defined for s ∈ S(Gf0), by

F
(
s, η(1)

e (a, b, c, d, l)
)

=
∑

se∈S1(He)

ak(se)−1be(se)cFint(se)−
∑

f∈Fint(s)

∑
x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)×

dC∂(se)−1+
∑

f∈Fint(s)

∑
x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)lf(se)−2, (11)

where ε(.) and ε̃(.) are defined above.
We remark that if the graph s does not have any internal face i.e Fint(s) = ∅ or

if the product ε̃(.)ε(.), is always vanishing then the relation (11) becomes

F
(
s, η(1)

e (a, b, c, d, l)
)

= η(1)
e (a, b, c, d, l) ∀s ∈ S(Gf0).
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As consequence, the relation (11) for η
(2)
e (.) gives

F
(
s, η(2)

e (a, b, c, d, l)
)

= η(2)
e (a, b, c, d, l) ∀s ∈ S(Gf0).

Sometimes we will use the following notations:

F
(
s, η(1)

e (a, b, c, d, l)
)

= Fse, η
(1)
e (a, b, c, d, l) = η(1)

e and η(2)
e (a, b, c, d, l) = η(2)

e .

Lemma 3.7. Let (Gf0 , {He}e∈E) be a 2-decomposition of Ĝf′0 and Fse, η
(2)
e two func-

tions as introduced above. Then

Z(Ĝf0 ; a, b, c, d, l) =
∑

s∈S(Gf0 )

ak(s)cFint(s)dC∂(s)lf(s)×(∏
e∈s

Fse

)(∏
e/∈s

η2
e

)
.

Proof. We recall that any state ŝ is decomposed into states s ∈ S(Gf0), se∈S1(He)
and th ∈ S2(Hh). By Lemma 3.6, we have

ak(s)cFint(s)dC∂(s)lf(s)
∏
e∈s

ak(se)−1be(se)cFint(se)−
∑

f∈Fint(s)

∑
x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)×

d∂(se)−1+
∑

f∈Fint(s)

∑
x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)lf(se)−2 ×

∏
h/∈s

ak(th)−1be(th)cFint(th)d∂(th)−2lf(th)−4

= ak(s)+
∑

(k(se)−1)+
∑

(k(th)−2)c
∑
Fint(se)+

∑
Fint(sh)−

∑
e∈s

∑
f∈Fint(s)

∑
x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)×

d
∑

(C∂(se)−1)+
∑

(C∂(th)−2)+
∑

e∈s
∑

f∈Fint(s)

∑
x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)l

∑
(f(se)−2)+

∑
(f(th)−4)×

b
∑
e(se)+

∑
e(th)

= ak(ŝ)be(ŝ)cFint(ŝ)dC∂(ŝ)lf(ŝ).

�

Example 3.8. Let us compute Z(.) for the 2-decomposition (G, {Hf , Hg}) of the

graph Ĝ shown in Figure 8.

G =^ G =

= H

= H

f

g

f

g

Figure 8: A HERG Ĝ on the left and its 2-decomposition (G, {Hf , Hg})
on the right

In this example, Fint(G) = ∅ and

Z(Ĝ; a, b, c, d, l) = adlη1
fη

1
g + a2d2l3η1

fη
2
g + a2d2l3η2

fη
1
g + a3d3l5η2

fη
2
g ,
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η1
f (a, b, c, d, l) = b2c+ 2bl2, η2

f (a, b, c, d, l) = l2

η1
g(a, b, c, d, l) = b2, η2

g(a, b, c, d) = 2b+ adl2.

Hence

Z(Ĝ; a, b, c, d, l) = adl(b2c+ 2bl2)b2 + a2d2l3(b2c+ 2bl2)(2b+ adl2) + a2b2d2l2

+a3d3l5(2b+ adl2)
= ab4cdl + 2ab3dl3 + 2a2b3cd2l3 + a3b2cd3l5 + 4a2b2d2l5

+2a3bd3l7 + a2b2d2l2 + 2a3bd3l5 + a4d4l7.

Lemma 3.9. Let (Gf0 , {He}e∈E) be a two decomposition of Ĝf′0. We have

Z(Ĝf0 ; a, b, c, d, l) =
(∏
e∈E

(
η(2)
e

))
Z(Gf0 ; a, {Fse/η(2)

e }e∈E , c, d, l). (12)

Consider a graph Ae as introduced above with He = Ae∨e and Ĝf0 = (Gf0 , {He}).
Let us study the effect of the insertion of the edge e in a state s of He. If s ∈ S2(He),
then the insertion of e in s decreases the number of connected components and
connected components of the boundary graph of s by one and the number of half
edges by two. In other words, if the contribution of s is the term akbecFintdC∂ lf in the
expression of Z(.), then the state s∪ e contributes the term ak−1(bexe)c

FintdC∂−1lf−2.
Assume that s ∈ S1(He). Three possibilities occur. In all these possibilities, inserting
e in s ∈ S1(He) will decrease by two the number of half edges.
• Inserting e in s ∈ S1(He) increases the number of internal faces by two and

decreases by one the number of connected components of the boundary graph. If s
contributes the term akbecFintdC∂ lf to the HERGs BR polynomial then the state s∪e
obtained by inserting e contributes ak(bexe)c

Fint+2dC∂−1lf−2.
• Inserting e in s ∈ S1(He) increases the number of internal faces by one such

that if s contributes the term akbecFintdC∂ lf to the HERGs BR polynomial then the
state s ∪ e obtained by inserting e contributes ak(bexe)c

Fint+1dC∂ lf−2.
• Inserting e in s ∈ S1(He) increases the number of connected components of

the boundary graph by one such that if s contributes the term akbecFintdC∂ lf to
the HERGs BR polynomial then the state s ∪ e obtained by inserting e contributes
ak(bexe)c

FintdC∂+1lf−2.
We can summarized all these possibilities by saying that if s ∈ S1(He) and s

contributes the term akbecFintdC∂ lf to the HERGs BR polynomial then the state s∪e
obtained by inserting e contributes ak(bexe)c

Fint+θ(s)dC∂+1−θ(s)lf−2; θ(s) ∈ {0, 1, 2}.
Based on this we can write F

(
s, η

(1)
e

)
as

F
(
s, η(1)

e

)
= F0

(
s, η(1)

e

)
+ F1

(
s, η(1)

e

)
+ F2

(
s, η(1)

e

)
, (13)

with

F0
(
s, η(1)

e

)
=

∑
s∈S1(He)|θ(s)=0

ak(s)−1be(s)cFint(s)−
∑

f∈Fint(s)

∑
x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)×
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dC∂(s)−1+
∑

f∈Fint(s)

∑
x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)lf(s)−2,

F1
(
s, η(1)

e

)
=

∑
s∈S1(He)|θ(s)=1

ak(s)−1be(s)cFint(s)−
∑

f∈Fint(s)

∑
x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)×

dC∂(s)−1+
∑

f∈Fint(s)

∑
x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)lf(s)−2,

F2
(
s, η(1)

e

)
=

∑
s∈S1(He)|θ(s)=2

ak(s)−1be(s)cFint(s)−
∑

f∈Fint(s)

∑
x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)×

dC∂(s)−1+
∑

f∈Fint(s)

∑
x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)lf(s)−2.

The map F applied on ZAe(a, b, c, d, l) and s ∈ S(Gf0), gives

F
(
s, ZAe(a, b, c, d, l)

)
=

∑
se∈S(Ae)

ak(se)be(se)cFint(se)−
∑

f∈Fint(s)

∑
x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)×

dC∂(se)+
∑

f∈Fint(s)

∑
x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)lf(se).

Then we can write the following decomposition

F
(
s, ZAe(a, b, c, d, l)

)
=

∑
s∈S1(He)

ak(se)be(se)×

cFint(se)−
∑

f∈Fint(s)

∑
x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)×

dC∂(se)+
∑

f∈Fint(s)

∑
x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)lf(se)

+ xe
∑

s∈S1(He)|θ(se)=0,1,2

ak(se)be(se)×

cFint(se)−
∑

f∈Fint(s)

∑
x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)×

dC∂(se)+
∑

f∈Fint(s)

∑
x̃g
ε̃(f,x̃g)σ̃(x̃g ,e) +1−θ(se)lf(se)

+ (1 + a−1xed
−1l−2)

∑
s∈S2(He)

ak(se)be(se)×

cFint(se)−
∑

f∈Fint(s)

∑
x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)×

dC∂(se)+
∑

f∈Fint(s)

∑
x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)lf(se),

or

F
(
s, ZAe(a, b, c, d, l)

)
= adl2F

(
s, η(1)

e

)
+ xel

2
(
ad2F0

(
s, η(1)

e

)
+

acdF1
(
s, η(1)

e

)
+ F2

(
s, η(1)

e

))
+

(1 + a−1xed
−1l−2)a2d2l4η(2)

e ,

= adl2
(
F
(
s, η(1)

e

)
+ adl2η(2)

e

)
+ axel

2
(
d2F0

(
s, η(1)

e

)
+cdF1

(
s, η(1)

e

)
+ F2

(
s, η(1)

e

)
+ dη(2)

e

)
. (14)

Furthermore

ZAe(a, b, c, d, l) = ZHe(a, b, c, d, l) + xeZAe/e(a, b, c, d, l).
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There is a one-to-one correspondence between each state s′ ∈ S(Ae) such that
e ∈ s′, and a state s̄′ := s′/e ∈ S(Ae/e). Let us consider the map

F′
(
s, ZAe/e(a, b, c, d, l)

)
=

∑
s′/e∈S(Ae/e)

ak(s′/e)be(s
′/e)×

cFint(s
′/e)−

∑
f∈Fint(s

′)
∑

x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)dC∂(s′/e)+

∑
f∈Fint(s

′)
∑

x̃g
ε̃(f,x̃g)σ̃(x̃g ,e)lf(s′/e), (15)

where ε̃ and σ̃ are defined for s′.
The following lemma is direct

Lemma 3.10. Given a state s ∈ S(Gf0), we have

F(s, ZAe(a, b, c, d, l) = F(s, ZHe(a, b, c, d, l)) + xeF
′(s, ZAe/e(a, b, c, d, l)). (16)

where F′(s, ZAe/e(a, b, c, d, l)) is defined as in (15).

An identification of (14) and (16) gives

adl2
(
F
(
s, η(1)

e

)
+ adl2η(2)

e

)
= F(s, ZHe(a, b, c, d, l))

al2
(
d2F0

(
s, η(1)

e

)
+ cdF1

(
s, η(1)

e

)
+ F2

(
s, η(1)

e

)
+ dη(2)

e

)
=

F′(s, ZAe/e(a, b, c, d, l)). (17)

A substitution of (17) in (12) together with (13) gives

Theorem 3.11. Let Ĝf′0 be a half edged embedded graph with 2-decomposition
(Gf0 , {He}e∈E), such that each graph He is embedded in a neighbourhood of the edge
e of the embedded graph Gf0. Let Ae be a HERG as introduced above. Then

ZĜf0
(a, b, c, d, l) = (adl2)−e(Gf0 )

(∏
e∈E

ge

)
ZGf0 (a, {fe/ge}, c, d, l),

where fe and ge are the solutions to

adl2ge + fe = F(s, ZHe(a, b, c, d, l))
adl2(d− c)F0(s, η1

e) + acl2(c− d)F2(s, η1
e) + cfe + ge =

F′(s, ZAe/e(a, b, c, d, l)).

This leads to

Corollary 3.12. Let Gf0 be a HERG, A be a planar HERG 2 and H = A ∨ e. Then

RGf0⊗A(x, y, z, w, t) = hn(Gf0 )h′r (Gf0 )RGf0 (Gf0 ;
RH(x, y, z, w, t)

h′
,
yh′

h
, z, w, t),

where h and h′ are the unique solution to

zwt2
(
zwt2(x− 1)h+ h′

)
= F(s,RH(x, y, z, w, t)),

(x− 1)−k(H)+1y−v(H)+2z−v(H)+3t2(w − z−1)×(
wF0(s, η1

e)− z−1F2(s, η1
e)
)

+ zwt2(yh′ + h) = F′(s,RA/e(x, y, z, w, t)).
2Planar here means that the underlying ribbon graph is planar.
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Proof. From (5), we have

RGf0⊗A(x, y, z, w, t) = (x− 1)−k(Gf0⊗A)(yz)−v(Gf0⊗A)×
ZGf0⊗A((x− 1)yz2, yz, z−1, w, t).

Applying Theorem 3.11, we obtain

RGf0⊗A(x, y, z, w, t) = (x− 1)−k(Gf0⊗A)(yz)−v(Gf0⊗A)ge(Gf0 )×

ZGf0 ((x− 1)yz2,
f

g
, z−1, w, t), (18)

where f and g are solutions to

(x− 1)yz2wt2
(
f + (x− 1)yz2wt2g

)
= F(s, ZH((x− 1)yz2, yz, z−1, w, t)),

(x− 1)yz2t2(w − z−1)
(
wF0(s, η1

e)− z−1F2(s, η1
e)
)

+ (x− 1)yz2wt2
(
z−1f + g

)
=

F′(s, ZA/e((x− 1)yz2, yz, z−1, w, t)). (19)

Applying (5) in (18), we obtain

RGf0⊗A(x, y, z, w, t) = (x− 1)−k(Gf0⊗A)(yz)−v(Gf0⊗A)ge(Gf0 )
((x− 1)yzg

f

)k(Gf0 )

×(f
g

)v(Gf0 )

RGf0
((x− 1)yzg + f

f
,
f

zg
, z, w, t

)
.

Now we set

h := (x− 1)−k(H)+1(yz)−v(H)+2g, h′ := (x− 1)−k(H)+1(yz)−v(H)+1f.

Using the relations

v(Gf0 ⊗ A) = (v(H)− 2)e(Gf0) + v(Gf0) and k(Gf0 ⊗ A) = (k(H)− 1)e(Gf0) + k(Gf0),

we have

RGf0⊗A(x, y, z, w, t) = hn(Gf0 )h′r (Gf0 )RGf0
(((x− 1)h+ h′

h′
,
yh′

h
, z, w, t

)
.

Again using (5) and the identities k(H) = k(A/e) and v(A/e) = v(H)−1, the system
(19) becomes

zwt2
(
zwt2(x− 1)h+ h′

)
= F(s,RH(x, y, z, w, t)),

(x− 1)−k(H)+1y−v(H)+2z−v(H)+3t2(w − z−1)×(
wF0(s, η1

e)− z−1F2(s, η1
e)
)

+ zwt2(yh′ + h) = F′(s,RA/e(x, y, z, w, t)).

�
The following corollary gives a way to construct many pairs of distinct HERGs

with the same BR polynomial.

Corollary 3.13. Let Gf0 ⊗H and G ′f0 ⊗H be two embedded HERGs with the prop-
erty that each copy of H is embedded in the neighborhood of an edge. Then if,
RGf0 (x, y, z, w, t) = RG′

f0
(x, y, z, w, t), RGf0⊗H(x, y, z, w, t) = RG′

f0
⊗H(x, y, z, w, t).
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Proof. The proof of this corollary is a direct consequence of Corollary 3.12. Let
z = 1, w = 1 and t = 1. Then T (Gf0) = T (G ′f0) where T denotes the Tutte polynomial
obtained by taking the summation over the spanning cutting subgraphs. Furthermore
the rank and nullity can be recovered from this polynomial and n(Gf0) = n(G ′f0),
r (Gf0) = r (G ′f0). �

Coming back to the definition of σ̃(.) and ε̃(.), from now, in order to simplify our
results we assume that the template has no internal face or the product σ̃(.)ε̃(.) is
always equal to zero.

3.3 The BR polynomial for HERGs: the general case

Consider the construction of Ĝf′0 from the 2-decomposition (Gf0 , {He}e∈E) at an edge

e = (ue, we) of the template Gf0 . As discussed earlier, the graph Ĝf′0 is obtained by
the identification of the arcs me and ne of the vertices ue and we in He with their
correspondence in Gf0 . It is important to compare again in this subsection the two
definitions of the 2-decomposition and discuss a partition of the set S(He) in each
case.

From Definition 3.1, the graph He is obtained from Ae by deleting the edge e, i.e
Ae = He − e. The partition of S(He) will be
• S̈2(He): the set of states of He in which me and ne lie in different connected

components and different internal faces or connected components of the boundary
graph. We may need to split the set S̈2(He), in two subsets. The first containing
the set of states of He in which me and ne lie in different connected components and
different internal faces. The second containing the set of states of He in which me

and ne lie in different connected components and different connected components of
the boundary graph.
• S̄1(He): the set of states of He in which me and ne lie in the same connected

component and the same internal face or the same connected component of the
boundary graph. We may split in the same way as above the set S̄1(He) in two
subsets.
• S̈1(He): the set of states of He in which me and ne lie in the same connected

component and different connected components of the boundary graph or internal
faces. In this case three different possibilities may occur. The points me and ne lie in
two different internal faces or two different connected components of the boundary
graph. Else one of the points me and ne lies in an internal face and the second in a
connected component of the boundary graph.

Finally, Definition 3.1 may give use a partition of S(He) in seven different subsets.
Now from Definition 3.3, the partition of S(He) will be
• S̈2(He): the set of states of He in which me and ne lie in different connected

components and different connected components of the boundary graph.
• S̄1(He): the set of states of He in which me and ne lie in the same connected

component and the same connected components of the boundary graph.
• S̈1(He): the set of states of He in which me and ne lie in the same connected

component and different connected components of the boundary graph.
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Then we obtain S(He) = S̈2(He)∪ S̄1(He)∪ S̈1(He). We adopt Definition 3.3 and
we have

Lemma 3.14. The sets S̈2(He), S̄1(He) and S̈1(He) partition the set S(He), e ∈ E.

Moreover every state of Ĝf′0 can be uniquely obtained by the replacement of an edge
in a state of Gf0 by an element of S̄1(He) and a replacement of a non-edge in that

state of Gf0 in an element of S̄1(He) ∪ S̈1(He).

g
e

e

fe

Figure 9: A particular graph in the construction of the set of states.

If we want to construct the set of states of S(Ĝf′0) by using the states of Gf0 , we

run into a problem. We then introduce a class of states G̃f0 = Gf0 ⊗ T where T is

given in Figure 9. We say that two states of G̃f0 are equivalent if for some choice of e,
one state contains neither of the edges ge or fe, the other state contains the edge fe
but not ge, and the remaining edges contained in the two states are the same. This
gives an equivalence relation ∼ and we say that two states are equivalent if they
contain both of fe and ge or they contain both ge but not fe or one contains neither
ge or fe and the second does not contain ge but may or may not contain fe.

Consider the set S(G̃f0)/ ∼ and [s] ∈ S(G̃f0)/ ∼ a class with s one of its represen-

tatives. A state of Ĝf′0 is obtained by the following
• if the state s contains both of fe and ge, we remove both of them and replace

in a state from S̈1(He).
• if the state s contains ge but not fe, we remove ge and replace in a state from

S̄1(He).
• if the state s contains fe but not ge, we remove fe and replace in a state from

S̈2(He), or if s contains neither of the edges ge or fe, then we replace in a state from
S̈2(He).

Lemma 3.15. The sets S̈2(He), S̄1(He) and S̈1(He) partition the set S(He), e ∈ E.

Moreover every state of Ĝf′0 can be uniquely obtained by replacing classes in S(G̃f0)/ ∼
by an element of S̈2(He), S̄1(He) and S̈1(He) in the manner described above.

Let us consider the following sums:

ΦG̃(a, {ge, fe}e∈E , c, d) :=
∑

[s]∈S(G̃f0 )/∼

ak(s)
(∏
e∈s

xe
)
cFint(s)dC∂(s),

η̈(1)
e (a, b, c, d) :=

∑
s∈S̈1(He)

ak(s)−1be(s)cFint(s)dC∂(s)−2,

η̈(2)
e (a, b, c, d) :=

∑
s∈S̈2(He)

ak(s)−2be(s)cFint(s)dC∂(s)−2,
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η̄(1)
e (a, b, c, d) :=

∑
s∈S̄1(He)

ak(s)−1be(s)cFint(s)dC∂(s)−1,

where the product in ΦG̃f0
(.) is over a representative s of [s]. For simplicity we

suppose that s has the fewest edges in its equivalence class and xe stand for (fe, ge).

Lemma 3.16. Suppose that a state ŝ of Ĝf′0 is obtained by the replacement from

the states [s] ∈ S(G̃f0), se ∈ S̈1(He), te ∈ S̈1(He), and ue ∈ S̄1(He) using the
decomposition above. Then

k(ŝ) =
∑

(k(se)− 1) +
∑

(k(te)− 1)
∑

(k(ue)− 1) + k(s),

C∂(ŝ) =
∑

(C∂(se)− 2) +
∑

(C∂(te)− 2) +
∑

(C∂(ue)− 1) + C∂(s),

Fint(ŝ) =
∑

Fint(se) +
∑

Fint(te) +
∑

Fint(ue) + Fint(s),

e(ŝ) =
∑

e(se) +
∑

e(te) +
∑

e(ue). (20)

where the representative s ∈ [s] has a fewest number of edges in its class.

Proof. The proof of this lemma will follow the one given in Lemma 3.7. Consider
a representative s ∈ [s] ∈ S(G̃f0)/ ∼ which has the fewest number of edges. A
connected component of s containing any of the points ae, a

′
e, be and b′e corresponds

to a connected component of the boundary of the graph ŝ containing the same set
of points. The extra connected components of the boundary graph of ŝ arise from
the states se ∈ S̈1(He), te ∈ S̈1(He), and ue ∈ S̄1(He). These components are
precisely the unmarked components. For each e they are (C∂(se) − 2), (C∂(te) − 2)
and (C∂(ue) − 1) extra components. This ends the proof of the second relation in
(20). The remaining follows. �

Let us consider the map F : Z[{fe, ge}e∈E ] → Z[{η̈(1)
e , η̈

(1)
e , η̄

(1)
e }e∈E ] as the linear

extension of

F :
∏
e∈E

fαe
e gβee 7→

∏
e∈E

(η̈(1)
e )αeβe(η̈(2)

e )1−βe(η̄(1)
e )βe−αeβe .

Lemma 3.17. The multivariate version of BR polynomial on HERGs, Z, of the
graph Ĝf′0 introduced above is given by

ZĜf′0
(a, b, c, d) = F(ΦG̃f0

).

Proof. Each state ŝ of Ĝf′0 is obtained in the following way: we consider a representa-

tive s ∈ [s] ∈ S(G̃f0)/ ∼ which has the fewest number of edges. We replace the three
edges configurations {fe, ge}, ge and ∅ of the pair of edges {fe, ge} (as introduced
above) by se ∈ S̈1(He), S̈

1(He), and S̄1(He) respectively. The contribution of ŝ in
ZĜf0

(.) is

ak(s)cFint(s)dC∂(s)
∏
e∈E

(
ak(se)−1be(se)cFint(se)dC∂(se)−2

)αeβe×
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(
ak(se)−2be(se)cFint(se)dC∂(se)−2

)1−βe(
ak(se)−1be(se)cFint(se)dC∂(se)−1

)βe−αeβe
=

F
(
ak(s)

(∏
e∈s

xe
)
cFint(s)dC∂(s)

)
, (21)

where αe =

{
1 if fe ∈ s,
0 otherwise,

and βe =

{
1 if ge ∈ s,
0 otherwise

. The expression (21) is also

equal to

ak(s)+
∑

(k(se)−1)+
∑

(k(te)−1)+
∑

(k(ue)−1)b
∑
e(se)+

∑
e(te)+

∑
e(ue)×

c
∑
Fint(se)+

∑
Fint(te)+

∑
Fint(ue)+Fint(s)d

∑
(C∂(se)−2)+

∑
(C∂(te)−2)+

∑
(C∂(ue)−1)+C∂(s), (22)

where se ∈ S̈1(He), te ∈ S̈1(He), and ue ∈ S̄1(He). Using Lemma 3.16, we deduce
that the relation in (22) is equal to ak(ŝ)be(ŝ)cFint(ŝ)dC∂(ŝ). Since the decomposition of
ŝ into s and se is unique, the result follows summing over the states. �

We remark that the proof of this lemma follows the proof of Lemma 8 in [10].
Following the proof of Lemma 9 in the same paper, we can prove the following result.

Lemma 3.18. Let (Gf0 , {He}e∈E) be a two decomposition of Ĝf′0, and H :Z[{fe, ge}e∈E ]
→ Z[{η̈(1)

e , η̈
(1)
e , η̄

(1)
e }e∈E ] be the linear extension of the map

H :
∏
e∈E

fαe
e gβee 7→

∏
e∈E

(η̈(1)
e )αeβe(η̈(2)

e )1−βe(η̄(1)
e )βe−αeβe .

Then

Z(Ĝf′0 ; a, b, c, d) = H(Z(G̃f0 ; a, x, c, d)).

Let us study the effect of the insertion of the edge e in a state of He: s ∈
S̈1(He) ∪ S̈2(He) ∪ S̄1(He). The effect of inserting s in S̄1(He) ∪ S̈2(He) is similar
to the one we discussed in the planar case. If s ∈ S̈2(He), then the insertion of
e in s decreases the number of connected components and connected components
of the boundary graph by one. This means, if s contributes the term akbecFintdC∂ ,
then the state s ∪ e contributes the term ak−1(bexe)c

FintdC∂−1. The case s ∈ S̄1(He)
is summarized in three possibilities: if s contributes the term akbecFintdC∂ to the
HERGs BR polynomial then the state s ∪ e obtained by inserting e contributes
ak(bexe)c

Fint+θ(s)dC∂+1−θ(s); θ(s) ∈ {0, 1, 2}. Assume that s ∈ S̈1(He). Two possibili-
ties occur.
• Inserting e in s ∈ S̈1(He) increases the number of internal faces by one and

decreases by two the number of connected components of the boundary graph. If s
contributes the term akbecFintdC∂ to the HERGs BR polynomial then the state s ∪ e
obtained by inserting e contributes ak(bexe)c

Fint+1dC∂+2.
• Inserting e in s ∈ S̈1(He) decreases the number of connected components of

the boundary graph by one such that if s contributes the term akbecFintdC∂ to the
HERGs BR polynomial then the state s ∪ e obtained by inserting e contributes
ak(bexe)c

FintdC∂−1.
We can summarized our discussion by saying that is s ∈ S̈1(He) contributes the

term akbecFintdC∂ to the HERGs BR polynomial, then the state s ∪ e obtained by
inserting e in s contributes ak(bexe)c

Fint+θ(s)dC∂−1−θ(s); θ(s) ∈ {0, 1}.
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Based on the previous discussions, we can write η̄
(1)
e (a, b, c, d) as

η̄(1)
e (a, b, c, d) = η̄(1,0)

e (a, b, c, d) + η̄(1,1)
e (a, b, c, d) + η̄(1,2)

e (a, b, c, d),
η̈(1)
e (a, b, c, d) = η̈(1,0)

e (a, b, c, d) + η̈(1,1)
e (a, b, c, d),

with

η̄(1,0)
e (a, b, c, d) =

∑
s∈S̄1(He)|θ(s)=0

ak(s)−1be(s)cFint(s)dC∂(s)−1,

η̄(1,1)
e (a, b, c, d) =

∑
s∈S̄1(He)|θ(s)=1

ak(s)−1be(s)cFint(s)dC∂(s)−1,

η̄(1,2)
e (a, b, c, d) =

∑
s∈S̄1(He)|θ(s)=2

ak(s)−1be(s)cFint(s)dC∂(s)−1,

η̈(1,0)
e (a, b, c, d) =

∑
s∈S̈1(He)|θ(s)=0

ak(s)−1be(s)cFint(s)dC∂(s)−2,

η̈(1,1)
e (a, b, c, d) =

∑
s∈S̄1(He)|θ(s)=1

ak(s)−1be(s)cFint(s)dC∂(s)−2.

We also have

ZAe(a, b, c, d) =
∑

s∈S̄1(He)

ak(s)be(s)cFint(s)dC∂(s)

+ xe
∑

s∈S̄1(He)|θ(s)=0,1,2

ak(s)be(s)cFint(s)+θ(s)dC∂(s)+1−θ(s)

+
∑

s∈S̈1(He)

ak(s)be(s)cFint(s)dC∂(s)

+ xe
∑

s∈S̈1(He)|θ(s)=0,1

ak(s)be(s)cFint(s)+θ(s)dC∂(s)−1−θ(s)

+ (1 + a−1xed
−1)

∑
s∈S̈2(He)

ak(s)be(s)cFint(s)dC∂(s).

ZAe(a, b, c, d) = adη̄(1)
e + xe

(
ad2η̄(1,0)

e + acdη̄(1,1)
e + ac2η̄(1,2)

e

)
+ ad2η̈(1)

e

+ xe
(
adη̈(1,0)

e + acd2η̈(1,1)
e

)
+ (1 + a−1xed

−1)a2d2η̈(2)
e

= ad(η̄(1)
e + dη̈(1)

e + adη̈(2)
e )

+ axe
(
d2η̄(1,0)

e + cdη̄(1,1)
e + c2η̄(1,2)

e + dη̈(1,0)
e + cd2η̈(1,1)

e + dη̈(2)
e

)
.

Furthermore

ZAe(a, b, c, d) = ZHe(a, b, c, d) + xeZAe/e(a, b, c, d).

Then

ad(η̄(1)
e + dη̈(1)

e + adη̈(2)
e ) = ZHe(a, b, c, d),
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a
(
d2η̄(1,0)

e + cdη̄(1,1)
e + c2η̄(1,2)

e + dη̈(1,0)
e + cd2η̈(1,1)

e + dη̈(2)
e

)
= ZAe/e(a, b, c, d). (23)

The second relation in (23) can also be written as

ad(d− c)η̄(1,0)
e + ac(c− d)η̄(1,2)

e + ad(1− cd)η̈(1,0)
e + ad(cη̄1

e + cdη̈1
e + η̈2

e) =
ZAe/e(a, b, c, d).

Theorem 3.19. Let Ĝf′0 be a ribbon graph with the 2-decomposition (Gf0 , {He}), and
let Ae be the ribbon graph He with an additional ribbon e joining the vertices ue and
we. Then

Z(Ĝf′0 ; a, x, c, d) = H(Z(G̃f0 ; a, x, c, d)),

where pe, qe and re are uniquely determine by the pair of equations

pe + adqe + dre = ZHe(a, b, c, d)
ad(d− c)η̄(1,0)

e + ac(c− d)η̄(1,2)
e + ad(1− cd)η̈(1,0)

e + cpe + qe + cdre =
ZAe/e(a, b, c, d),

where the η are introduced above and H is deduced by

H :
∏
e∈E

fαe
e gβee 7→

∏
e∈E

( re
ac

)αeβe( qe
2ac

)1−βe
cαeβe−αe

(pe
ac

)βe−αeβe .

4 The rank D-weakly colored stranded graph 2-decompos-
ition and polynomial invariant

4.1 Weakly colored stranded graph

In this subsection we assume that the reader is familiar with stranded graphs. We
briefly review here the weakly-colored stranded graphs introduced in [1].

A graph G(V , E) is stranded when its vertices and edges are stranded. A rank D
stranded vertex is a trivial disc or a chord diagram with a collection of 2n points on
the unit circle (called the vertex frontier) paired by n chords and drawn in a specific
way. A rank D stranded edge is a collection of segments called strands respecting
some conditions as introduced in [1].

A rank D stranded graph G is a graph G(V , E) which admits: rank D stranded
vertices, rank at most D stranded edges such that the intersections of vertices and
edges are pairwise distinct. The graph G is a rank D tensor graph if the vertices of
G have a fixed coordination D + 1 and their pre-edges have a fixed cardinal D. The
merged point graph is KD+1 and the edges of G are of rank D.

Collapsing the stranded vertices of G to points and edges to simple lines, the
resulting object is a graph. The graph G is said to be connected if its corresponding
collapsed graph is connected. From this point, stranded vertices and edges are always
connected. If we assign a color from the set {0, · · · , D} to each edge of G such that no
two adjacent edges share the same color, then the graph G is called a (D+1) colored
graph. It is a bipartite graph if the set V of vertices is split into two disjoint sets, i.e.
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V = V+ ∪V− with V+ ∩V− = ∅, such that each edge connects a vertex v+ ∈ V+ and
a vertex v− ∈ V−. The rank D ≥ 1 tensor graph G is a rank D ≥ 1-Colored tensor
graph if it is a (D + 1)-colored and bipartite graph.

The collapsed graph associated to a colored tensor graph is obtained by regarding
the tensor graph as a simple bipartite colored graph and is called compact in the
following. In such a colored graph, there are some informations that we address
now.

Definition 4.1 (p-bubbles [9]). Let G be a rank D colored tensor graph.
- A 0-bubble is a vertex of G.
- A 1-bubble is an edge of G.
- For all p ≥ 2, a p-bubble of G with colors i1 < i2 < · · · < ip, p ≤ D, and

ik ∈ {0, . . . , D} is a connected rank p − 1 colored tensor graph the compact form
of which is a connected subgraph of the compact form of G made of edges of colors
{i1, . . . , ip}.

The concept of half-edge finds a natural extension on colored tensor graphs and
allows one to recall the operation called “cut” of an edge.

In the following, a stranded graph having stranded half-edges is denoted by
Gf0(V , E) or simply Gf0 , where f0 is the set of the half-edges.

Definition 4.2 (Cut of an edge [12]). Let Gf0(V , E) be a rank D stranded graph and
e a rank d edge of Gf0 , 1 ≤ d ≤ D. The cut graph Gf0 ∨ e or the graph obtained from
Gf0 by cutting e is obtained by replacing the edge e by two rank d stranded half-edges
at the end vertices of e and respecting the strand structure of e. (See Figure 10.) If
e is a loop, the two stranded half-edges are on the same vertex.

Figure 10: The cut of a rank 3 stranded edge.

Using the operation of “cutting” of an edge, we obtain a c-subgraph Af0A
(VA, EA)

of a rank D stranded graph Gf0(V , E) by cutting a subset of edges of Gf0 . A spanning
c-subgraph called also state s of Gf0 is defined as a c-subgraph sf0s(Vs, Es) of Gf0
with all vertices and all additional half-edges of Gf0 . Then Es ⊆ E and Vs = V ,
f0s = f0 ∪ f0;1

s (Es), where f0;1
s (Es) is the set of half-edges obtained by cutting all edges

in E ′s (the set of edges incident to the vertices of s and not contained in Es) and
incident to the vertices of s. We write s b Gf0 to say that s is a spanning c-subgraph
of Gf0 .

The cutting of an edge modifies the strand structure of the graph. In fact as
discussed earlier, the presence of half-edges immediately introduce another type of
faces which pass through the external points of the half-edges. We then distinguish
two kind of faces: open faces which are passing through the external points of the
half-edges and the others called closed or internal faces. We denote by Fint, the
set of closed faces and Fext the set of open faces. The set of faces F for a rank D



R.C. AVOHOU / AUSTRALAS. J. COMBIN. 79 (3) (2021), 340–370 364

half-edged colored tensor graph is then the disjoint union Fint ∪ Fext. A bubble is
called open or external if it contains open faces otherwise it is closed or internal. We
denote respectively by Bint and Bext the sets of closed and open bubbles for a rank
D tensor graph.

Their is a graph directly associated to a color tensor graph called “boundary
graph” which is obtained by setting a vertex to each half-edge [9]. The boundary
graph ∂G(V∂, E∂) of a rank D half-edged colored tensor graph Gf0(V , E) is obtained
by inserting a vertex with degree D at each additional stranded half-edge of Gf0 and
taking the external faces of Gf0 as its edges. Thus, |V∂| = |f0| and E∂ = Fext. If the
rank D half-edged colored tensor graph is closed, then its boundary is empty.

Definition 4.3 (Equivalence class of half-edged stranded graph [1]). Let DGf0 be the
subgraph in a rank D half-edge stranded graph Gf0 defined by all of its trivial disc
vertices and Gf0 \DGf0 the rank D half-edges stranded graph obtained after removing
DGf0 from Gf0 .

Two rank D half-edged stranded graphs G1,f0(G1) and G2,f0(G2) are “equivalent up
to trivial discs” if and only if G1,f0(G1) \ DG1,f0(G1) = G2,f0(G2) \ DG2,f0(G2) . We note

G1,f0(G1) ∼ G2,f0(G2).

As a consequence of this definition, the contraction of all edges in arbitrary order
of a half-edged tensor graph Gf0 yields a half-edged stranded graph G0

f0 determined
by the boundary ∂(Gf0) up to additional discs. Noting that contracting an edge in a
rank D (colored) half-edged tensor graph does not change its boundary.

We can now address a precise definition of a rank D w-colored graph.

Definition 4.4 (Rank D w-colored graph [1]). A rank D weakly colored or w-colored
graph is the equivalence class (up to trivial discs) of a rank D half-edged stranded
graph obtained by successive edge contractions of some rank D half-edged colored
tensor graph. An illustration is given in Figure 11 .

Figure 11: Contraction of an edge in a rank 3 colored tensor graph

(left) giving a rank 3 w-colored tensor graph (right)

11

2

3

0

1 1

2
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4.2 Polynomial invariant expansion

Here again, some definitions and notations introduced in [1] deserve to be review as
well.

Consider a representative Gf0 of any rank D w-colored graph. A d-bubble (closed
or open) in Gf0 is denoted by bd, the set of d-bubbles by Bd, and its cardinal Bd.
The set of vertices and edges of bd are denoted by Vbd and Ebd of cardinal Vbd and
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Ebd respectively. We also denote by Fint;bd and Bp
bd , the sets of internal faces and

p-bubbles (p ≤ d) of bd of cardinal Fint;bd and Bp
bd respectively.

Definition 4.5 (Topological invariant for rank n w-colored graph [1]). Let G(V , E , f0)
be a rank n w-colored graph and α = {αk}k=3,··· ,n some positive rational numbers.
The generalized topological invariant associated with G is given by the following
function associated with any of its representatives Gf0 .

TG;α(x, y, z, s, w, q, t) = TGf0 ;α(x, y, z, s, w, q, t) = (24)∑
sbGf0

(x− 1)r (Gf0 )−r (s)yn(s)z
(n−1)(n+2)

2
k(s)−γn;α(s)sC∂(s) wF∂(s)qE∂(s)tf(s) ,

with

γn;α(s) =
n(n− 1)

2
(V (s)− E(s)) + (n− 1)Fint(s)− (2 + (n− 2)α3)B3(s)

+
n∑
k=4

[
(k − 1)αk−1 − (n− k + 1)αk

]
Bk(s)

a negative integer.

Expanding the definitions of r (s) and n(s) in (24) yields

TG;α(x, y, z, s, w, q, t) = TGf0 ;α(x, y, z, s, w, q, t) =

(x− 1)−k(G)
(
yz

n(n−1)
2

)−v(G) ∑
AbGf0

(
(x− 1)yz

(n−1)(n+2)
2

)k(s)(
yz

n(n−1)
2

)e(s)
z(1−n)Fint(s)

× z(2+(n−2)α3)B3(s)
( ∏
k=4,··· ,n

z((1−k)αk−1+(n−k+1)αk)Bk(s)
)
sC∂(s) wF∂(s)qE∂(s)tf(s).

Let us introduce the multivariate version of this polynomial

Definition 4.6 (Multivariate form). The multivariate form associated with (24) is
defined by:

T̃G;α(x, {βe}, {zi}i=1,2,3, s, w, q, t) = T̃Gf0 (x, {βe}, {zi}i=1,··· ,n, z, s, w, q, t)

=
∑
AbG

xr (s)
(∏
e∈s

βe

)( ∏
i=1,··· ,n

zB
i

i

)
zFint(s) sC∂(s) wF∂(s)qE∂(s)tf(s) ,

for {βe}e∈E labelling the edges of the graph G.

The operation of 2-sum introduced earlier can be generalized on the class of graph
called weakly colored stranded graph. The only issue is the colors of the edges we
want to identify. It is clear that for this operation to be possible, the edges must
have the same color. This is illustrated in Figure 12.

The construction of a rank n weakly colored graph Ĝf′0 from the 2-decomposition
(Gf0 , {He}e∈E) at an edge e = (ue, we) of the template Gf0 will be a direct extension
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Figure 12: The 2-sum of G1 and G2 by their edges of color 4

of the one introduced earlier. We can say that the graph Ĝf′0 is obtained by the
identification of the n−1 ball (in topological point of view) me and ne of the vertices
ue and we in He with their correspondence in Gf0 ∨ e. From this, we can give a
partition of S(He): the set of states for a given He.

Let S2(He) be the set of states of He in which me and ne lie in different connected
components and different connected components of the boundary graph. We set
S1(He) as the set of states of He in which me and ne lie in the same connected
component and the same internal face or connected component of the boundary
graph. We work under the condition that me and ne lie in the same connected
component if and only if they are in the same internal face or connected component
of the boundary graph.

Lemma 4.7. Let ŝ be a state of the rank n weakly colored stranded graph Ĝf′0. se ∈
S1(He) ∪ S2(He), e ∈ E in the decomposition above. Then

k(ŝ) =
∑
e∈E

k(se) + k(s)− |{se ∈ S1(He)}| − 2|{se ∈ S2(He)}|, (25)

C∂(ŝ) =
∑
e∈E

C∂(se) + C∂(s)− |{se ∈ S1(He)}| − 2|{se ∈ S2(He)}|,

Fint(ŝ) =
∑
e∈E

Fint(se) + Fint(s), (26)

f(ŝ) =
∑
e∈E

f(se) + f(s)− 2|{se ∈ S1(He)}| − 4|{se ∈ S2(He)}|, (27)

E∂(ŝ) =
∑
e∈E

E∂(se) + E∂(s)− n|{se ∈ S1(He)}| − 2× n|{se ∈ S2(He)}|, (28)

F∂(ŝ) ≥
∑
e∈E

F∂(se) + F∂(s)− n|{se ∈ S1(He)}| − 2× n|{se ∈ S2(He)}|. (29)

Furthermore

Bp(ŝ) =
∑
e∈E

Bp(se) +Bp(s)− {p−1
n |{se ∈ S1(He)}| − 2{p−1

n |{se ∈ S2(He)}|. (30)

With |{se ∈ Si(He)}|; i = 1, 2 the number of states in Si(He), at fixed e.
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Proof. The proof of this lemma can be performed on colored tensor graphs since
the w-colored stranded graphs are obtained by a successive contraction of edges in
a colored tensor graph. Furthermore this contraction does not modify the boundary
or the number of bubbles in a colored tensor graph.

Equations (25), (26) and (27) are direct extension to the relations in Lemma 3.6.
Let us consider the graph ∂(s). Each edge of ∂(s) or open face of s corresponds

to an edge in ∂(ŝ). However, ∂(ŝ) has extra edges which are the edges of ∂(se);
se ∈ S1(He) ∪ S2(He), e ∈ E(G1). Since se is inserted in s by n strands then there
are E(∂(se)) − n such extra edges. This ends the proof of (28). The proof of (29)
is similar to (28). In this case se is inserted in s by at most 3 faces of the boundary
∂(se).

Let us assume that the graphs se are inserted in s by the edges of colors i. There
is a one to one correspondence between the p-bubbles of s and se not containing any
i and those of ŝ not containing the same colors i. Furthermore each se ∈ S1(He)
share {p−1

n number of p-bubbles with s (these bubbles contain the color of e). If
se ∈ S2(He), then the number is 2{p−1

n . Hence the number of extra bubbles in ŝ are
Bp(se)− {p−1

n . This ends the proof of (30).
�

We consider the following state sums:

η(1)
e (a, b, c, d, f, {gp}) :=

∑
s∈S1(He)

ak(s)−1be(s)cFint(s)dC∂(s)−1fE∂(s)−n
(p=n∏
p=3

gB
p(s)−{p−1

n
p

)
, (31)

η(2)
e (a, b, c, d, f, {gp}) :=

∑
s∈S2(He)

ak(s)−2be(s)cFint(s)dC∂(s)−2fE∂(s)−2n
(p=n∏
p=3

gB
p(s)−2{p−1

n
p

)
.

(32)

We can observe in the expressions of η
(1)
e and η

(2)
e given in (31) and (32) respectively

that there is no variable for the faces of the boundary graph. The reason of this
choice comes from the inequality given by (29).

Proposition 4.8. Let (Gf0 , {He}e∈E) be a 2-decomposition of Ĝf′0 and η
(1)
e , η

(2)
e two

functions as introduced above. Then

Z(Ĝf0 ; a, b, c, d, f, {gp}) =
∑
s∈S(G)

ak(s)cFint(s)dC∂(s)fE∂(s)
( p=n∏
p=3

gB
p(s)

p

)
×(∏

e∈s

η1
e

)(∏
e/∈s

η2
e

)
.

Once again we can make a partition of the set S(He) of states s of He where
e = (me, ne). We can set S(He) = S1(He) ∪ S2(He); where S1(He) is the set of
states having me and ne in the same connected component and the same compo-
nent of the boundary graph and S2(He) is the set of states having me and ne in
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different connected components and different components of the boundary graph.
It is clear that the insertion of e in s ∈ S2(He) decreases the number of con-
nected components of the boundary graph by one, the number of edges of the
boundary by n and the number of p-bubbles by {p−1

n . Then if s contributes with

the term ak(s)cFint(s)dC∂(s)fE∂(s)
(∏p=n

p=3 g
Bp(s)
p

)
, the state s ∪ e will contribute with

ak(s)−1cFint(s)dC∂(s)−1fE∂(s)−n
(∏p=n

p=3 g
Bp(s)−{p−1

n
p

)
.

The insertion of e in a state s ∈ S1(He) of He leads to different possible cases. For
example this insertion can increase the number of internal faces from 0 to n. We also
have multiple possibilities for the number of connected components of the boundary
graph, the number of edges of the boundary graphs and the number of p-bubbles. A
good analysis of the different possibilities may help to find a more explicit formula
than the one given in Proposition 4.8. For doing this let us make a restriction to
n = 3.

Consider s ∈ S1(He) and insert e in s. The number of 3-bubbles may decrease
from 0 to 3; but the number of internal faces may increase from 0 to 3. Depending
on the number of internal faces we add by the insertion of e, let us discuss the
different cases for the number of connected components of the boundary graph and
the number of edges of the boundary graph.
• Assume that the number of internal faces is stable after the insertion of e.

The number of connected components of the boundary graph is also stable after the
insertion of e or may increase by one. The number of edges of the boundary graph
will decrease by 3. Considering the previous discussions about the evolving of the
number of 3-bubbles under the insertion of e, if s contributes with the term

ak(s)cFint(s)dC∂(s)fE∂(s)
( p=n∏
p=3

gB
p(s)

p

)
,

in the polynomial, then the contribution to the polynomial of the state s ∪ e will be

ak(s)cFint(s)dC∂(s)+β(s)fE∂(s)−3g
B3(s)−γ(s)
3 for β(s) = 0, 1 and γ(s) = 0, 1, 2, 3.

• Assume that the number of internal faces increases by one or two after the
insertion of e. Then number of edges of the boundary graph will decrease by two
or one respectively. It is also clear that the number of connected components of
the boundary graph is stable or may increase by one after the insertion of e. If s

contributes with the term ak(s)cFint(s)dC∂(s)fE∂(s)
(∏p=n

p=3 g
Bp(s)
p

)
, in the polynomial,

then the state s ∪ e will contribute with

ak(s)cFint(s)+α(s)dC∂(s)+β(s)fE∂(s)−3+α(s)g
B3(s)−γ(s)
3 ,

for α(s) = 1, 2, β(s) = 0, 1 and γ(s) = 0, 1, 2, 3.
• Assume that the number of internal faces increases by three after the insertion of

e. The number of connected components of the boundary graph is stable after the in-
sertion of e or decreases by one. The number of edges of the boundary graphs is stable

after the insertion. If s contributes with the term ak(s)cFint(s)dC∂(s)fE∂(s)
(∏p=n

p=3 g
Bp(s)
p

)
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in the polynomial, then the state s ∪ e will contribute with ak(s)cFint(s)+3dC∂(s)+β(s)

fE∂(s)g
B3(s)−γ(s)
3 for β(s) = −1, 0 and γ(s) = 0, 1, 2, 3.

We can summarized all the different cases in this way: if s contributes with the
term

ak(s)cFint(s)dC∂(s)fE∂(s)
( p=n∏
p=3

gB
p(s)

p

)
,

in the polynomial, then the state s ∪ e will contribute with

ak(s)cFint(s)+α(s)dC∂(s)+β(s)fE∂(s)−3+α(s)g
B3(s)−γ(s)
3 ,

for α(s) = 0, 1, 2, 3, β(s) = −1, 0, 1 and γ(s) = 0, 1, 2, 3.
Consider the following sum

ZAe(a, b, c, d, f, g3) =
∑

s∈S(Ae)

ak(s)cFint(s)dC∂(s)fE∂(s)g
B3(s)
3 ,

which is also equal to

ZAe(a, b, c, d, f, g3) =
∑

s∈S1(He)

ak(s)cFint(s)dC∂(s)fE∂(s)g
B3(s)
3

+ xe
∑

s∈S1(He)
β(s)=−1,0,1

γ(s),α(s)=0,1,2,3

ak(s)cFint(s)+α(s)dC∂(s)+β(s)fE∂(s)−3+α(s)g
B3(s)−γ(s)
3

+ (1+a−1xed
−1f−3g−3

3 )
∑

s∈S2(He)

ak(s)cFint(s)dC∂(s)fE∂(s)g
B3(s)
3 . (33)

Furthermore

ZAe(a, b, c, d, l) = ZHe(a, b, c, d, l) + xeZAe/e(a, b, c, d, l). (34)

A reformulation of the equation (33) in a great number of terms together with an
identification with (34) will help us to find a theorem similar to Theorem 3.11. The
case where the points me and ne may belong to the same connected component
but different boundary components is not studied in this work and remains an open
question for future investigations.
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