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Abstract

An �-cycle decomposition of a graph G is said to be equitably c-colourable
if there is a c-vertex-colouring of G such that each colour is represented
(approximately) an equal number of times on each cycle. In this paper,
we consider the existence of equitably 2-colourable even �-cycle systems
of the cocktail party graph Kv − I. After establishing that the problem
of proving existence of equitably 2-colourable �-cycle decompositions of
Kv−I reduces to considering �-admissible values v ∈ [�, 2�), we determine
a complete existence result for equitably 2-colourable �-cycle decomposi-
tions of Kv − I in the cases that v ≡ 0, 2 (mod �), or � is a power of 2,
or � ∈ {2q, 4q} for q an odd prime power, or � ≤ 30.

1 Introduction

An �-cycle decomposition of a graph G is a partition of the edge set of G into cycles of
length �. The study of cycle decompositions, which are also called cycle systems, of
the complete graph has a long history, dating to the work of Kirkman and Walecki
in the 19th century. Obvious necessary conditions for the existence of an �-cycle
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decomposition of the complete graph Kv are that v is odd, 3 ≤ � ≤ v and � | (v
2

)
.

For an even number v of vertices, it is common to instead decompose Kv − I, the
complete graph on v vertices with the edges of a 1-factor I removed (also called the
cocktail party graph). For ease of notation in referring to various cycle decomposition
results, we thus use the notation K∗

v to denote Kv if v is odd and Kv − I if v is even.
The existence of �-cycle decompositions of K∗

v was completely solved in [3, 18]; see
also [5].

Theorem 1.1 ([3, 18]) There is an �-cycle decomposition of K∗
v if and only if

3 ≤ � ≤ v and � | v�v−1
2
�.

For a given �, we refer to an integer v satisfying the conditions of Theorem 1.1 as
�-admissible, or simply admissible if the value of � is understood.

Suppose D is a cycle decomposition of G. A c-colouring of D is a function
φ : V (G) → {1, . . . , c}; informally, this can be though of an assignment of c colours
to the vertices of G. In this paper, many of the colourings considered will have c = 2;
we will often refer to colour 1 as red and colour 2 as blue. Given a c-colouring φ and
a colour i ∈ {1, . . . , c}, we refer to the set of vertices of colour i (i.e. the pre-image
φ−1(i)) as colour class i.

When considering colourings of cycle decompositions and other designs, we gen-
erally require the function φ to have further properties with respect to the cycles of
D. For instance, among the most commonly studied colourings are so-called weak
colourings, in which each cycle of D must have at least two vertices coloured differ-
ently. The smallest number of colours for which the cycle decomposition D admits
a weak colouring is the chromatic number of D, denoted χ(D). A simple counting
argument shows that any 3-cycle decomposition D of Kv, where v > 3, has χ(D) ≥ 3;
see [10]. For chromatic numbers χ ≥ 3, de Brandes, Phelps and Rödl [9] established
the existence of an integer vχ for which any admissible order v > vχ admits a χ-
chromatic 3-cycle system of Kv. Burgess and Pike [7, 8] showed existence of even
cycle systems with arbitrary chromatic number; this result was extended by Horsley
and Pike [13], who showed asymptotic existence of χ-chromatic �-cycle systems for
any integers χ ≥ 2 and � ≥ 3 with (χ, �) 
= (2, 3).

In this paper, we consider a stricter type of colouring, requiring each colour to
be represented (approximately) an equal number of times on each cycle. Specifically,
in an equitable c-colouring of an �-cycle decomposition, we have that in each cycle
C of the decompositions, each colour appears on ��/c� or ��/c� of the vertices of C.
Clearly for c ≥ 2, every equitably c-colourable cycle system is weakly c-colourable;
however the converse is false. We note that the term equitable colouring also occurs
in the literature to mean colourings in which the cardinalities of the colour classes
differ by at most one (see, for instance [10]); here, we follow the terminology of [1, 2]
in using the term equitable to mean that there is even representation of colours on
each cycle. We also note that the terminology of equitable colouring has been used
in the context of block colourings, see for example [16].

Equitable colourings of cycle systems of the complete and cocktail party graphs
were considered in [1] and [2], while the papers [15] and [20] consider equitable
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colourings of complete multipartite graphs. The main results of these papers restrict
their attention to the case that the number of colours is 2 or 3, and the cycle length
is small (at most 6). In particular, in [1] and [2], the authors completely determine
the existence of equitably 2- or 3-colourable �-cycle systems of Kv and Kv − I when
the cycle length � is 4, 5 or 6. Specifically, the main results of these two papers are
as follows.

Theorem 1.2 ([1]) Let � ∈ {4, 5, 6} and let v be �-admissible.

1. If � is even and v is odd, there is no equitably 2-colourable �-cycle decomposition
of Kv.

2. If � = 5 and v is odd, there is an equitably 2-colourable 5-cycle decomposition of
Kv. Moreover, if v > 5, there also exists a 5-cycle decomposition of Kv which
is not equitably 2-colourable.

3. If v is even, there is an equitably 2-colourable �-cycle decomposition of Kv − I.

Theorem 1.3 ([2]) Let � ∈ {4, 5, 6} and let v be �-admissible.

1. If � = 4, then there is an equitably 3-colourable 4-cycle decomposition of Kv if
and only if v = 9, and an equitably 3-colourable 4-cycle decomposition of Kv−I
if and only if v ∈ {4, 6, 8, 10, 12, 18}.

2. If � = 5, then there is an equitably 3-colourable 5-cycle decomposition of K∗
v .

3. If � = 6, then there is an equitably 3-colourable 6-cycle decomposition of K∗
v if

and only if 3 | v.

It is notable that while asymptotic existence of both χ-chromatic cycle systems
and balanced incomplete block designs is known [13, 14], the problems of equitably
colouring cycle decompositions and BIBDs are quite different. In a 2016 paper,
Luther and Pike [17] determined that there exists an equitably c-colourable nontrivial
BIBD(v, k, λ) if and only if either c ≥ v (so that the design is trivially equitably
colourable) or else v = k + 1 and k ≡ c− 1 (mod c). However, subject to additional
necessary conditions when k | c or k ≤ c − 1, which will be discussed in Section 2,
Theorems 1.2 and 1.3 suggest that an equitably c-colourable �-cycle system may exist
for any �-admissible order.

In this paper, we consider the existence of equitably 2-colourable �-cycle decom-
positions of K∗

v . In Section 2, we discuss basic results on equitably colourable cycle
decompositions and methods for constructing cycle decompositions. In Section 3, we
construct equitably 2-colourable �-cycle decompositions of complete bipartite graphs,
which are subsequently employed in Section 4 to show that the problem of proving
existence of equitably 2-colourable �-cycle decompositions of Kv − I reduces to con-
sidering �-admissible values v ∈ [�, 2�). Finally, in Section 5, we determine a complete
existence result for equitably 2-colourable �-cycle decompositions of K∗

v in each of
the following cases:
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• v ≡ 0 or 2 (mod �)

• � is a power of 2,

• � ∈ {2q, 4q} for q an odd prime power, and

• � ≤ 30.

2 Preliminaries

2.1 Cycle decompositions and equitable colourings

In this section, we present some basic properties of equitably coloured cycle decom-
positions.

We begin by noting that any Hamiltonian cycle system can easily be equitably
coloured. While we state the result for decompositions of K∗

v , we note that the result
holds more generally for any graph G of order � which decomposes into Hamiltonian
cycles.

Lemma 2.1 Let � and c be positive integers with � ≥ 3. Any �-cycle decomposition
of K∗

� is equitably c-colourable.

Proof: Let � = qc + r, where 0 ≤ r < c. Partitioning V (K∗
� ) into r colour classes

of cardinality q+1, and c− r of cardinality q gives the required equitable colouring.
�

Clearly, if there is an equitably c-colourable �-cycle decomposition of K∗
v , then

v is �-admissible. We now describe further necessary conditions, first recalling the
following result from [2].

Lemma 2.2 ([2]) Let v be odd. If there is an equitably (� − 1)-colourable �-cycle
decomposition of Kv, then v ≤ (�− 1)2.

In the case of two colours, this result implies that there can be no equitably
2-colourable 3-cycle decomposition of Kv where v > 3. (This fact can also be de-
duced from the nonexistence of a weakly 2-colourable nontrivial Steiner triple system;
see [10].) While the result of Lemma 2.2 does not apply in general for even orders v,
we are able to determine the spectrum of equitably 2-colourable 3-cycle decomposi-
tions of Kv − I.

Theorem 2.3 There is an equitably 2-colourable 3-cycle decomposition of K∗
v if and

only if v ∈ {3, 6, 8}.
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Proof: If v is odd, the result follows from Lemma 2.2 for v > 3, with the existence
of an equitably 2-colourable 3-cycle decomposition of K3 being trivial.

Now, let v be even and suppose there exists an equitably 2-colourable 3-cycle decom-
position D of Kv − I. Adding a vertex ∞ and the 3-cycles (∞, x1, x2) for each edge
{x1, x2} ∈ I gives a 3-cycle decomposition D′ of Kv+1. Note that D′ is 3-chromatic,
and a weak 3-colouring is given by assigning ∞ a new colour. Proposition 1.2 of [12]
states that the two largest colour classes in a weak c-colouring of any 3-cycle de-
composition of Ku can contain at most 4

5
u + 1 vertices. Consequently, the size of

the smallest colour class in any weak 3-colouring of such a decomposition is at least
1
5
u − 1, and so if u > 10, there can be no colour class of size 1. Hence it must be

that v ≤ 10, leaving the 3-admissible values v = 6, 8.

For v = 6, the following 3-cycles decompose K6− I, and can be equitably 2-coloured
by colouring vertices 1, 3 and 5 blue, and vertices 2, 4 and 6 red:

(1, 2, 4), (1, 6, 5), (2, 3, 5), (3, 4, 6).

For v = 8, the following 3-cycles decompose K8− I, and can be equitably 2-coloured
by colouring vertices 1, 2, 4, 8 blue, and vertices 3, 5, 6, 7 red:

(1, 3, 8), (1, 4, 7), (1, 5, 6), (2, 3, 7), (2, 4, 6), (2, 5, 8), (3, 4, 5), (6, 7, 8).

�

We now consider the case where the number of colours is a divisor of the cycle
length. The following result is used in [1, 2] in the case c ∈ {2, 3}; however, we prove
it here more generally for the sake of completeness.

Lemma 2.4 Suppose there is an equitably c-colourable �-cycle system of K∗
v , where

c | �. Then c | v, and each colour class has size v/c.

Proof: Let the colour classes be X1, X2, . . . , Xc. Note that each vertex appears in
r = �(v−1)/2� cycles, and hence for i ∈ {1, 2, . . . , c}, the total number of appearances
of colour i in all cycles is r|Xi|. But each colour appears equally often in every cycle,
so must have the same number of total appearances. �

Our main focus in this paper is the existence of equitably 2-colourable �-cycle
systems for even �. One immediate consequence of Lemma 2.4 is the following.

Lemma 2.5 ([1]) If � is even, then there is no equitably 2-colourable �-cycle decom-
position of Kv.

In this paper, we will thus consider equitably 2-colourable cycle decompositions
of Kv − I. Among the tools we use to construct such decompositions are auxiliary
decompositions of the complete bipartite graph. We recall the following result of
Sotteau [19], which gives necessary and sufficient conditions for �-cycle decomposition
of Ka,b.
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Theorem 2.6 ([19]) There is an �-cycle decomposition of Ka,b if and only if a, b
and � are all even, � ≤ min{2a, 2b} and � | ab.

Note that any �-cycle decomposition of Ka,b can be equitably 2-coloured: colour
the vertices in one part with one colour, and the vertices in the other part with
another. However, we will require colourings which satisfy a stronger property.

Definition 2.7 Let D be an �-cycle decomposition of Ka,b. A c-colouring φ of D is
called doubly equitable if

1. φ is an equitable c-colouring, i.e. each cycle of D contains ��/c� or ��/c� vertices
of each colour, and

2. φ equitably colours the parts of Ka,b, i.e. for each colour i, there are �a/c� or
�a/c� vertices of colour i in the part of size a, and �b/c� or �b/c� vertices of
colour i in the part of size b.

Example 2.8 We identify V (K4,4) with Z4 × {0, 1}, and write for brevity xi rather
than (x, i). Now consider the 4-cycle decomposition

C = {(00, 01, 10, 11), (00, 21, 10, 31), (20, 01, 30, 11), (20, 21, 30, 31)}.

Colouring vertex xi red if x is even and blue otherwise yields a doubly equitable
2-colouring.

2.2 Cyclic and 2-pyramidal cycle systems: difference methods

In what follows, we will construct and colour cycle systems exhibiting some regularity
properties, namely cyclic and 2-pyramidal cycle systems. To build these systems, we
shall use difference methods.

We briefly recall here some definitions and results useful in these constructions.

First, a cycle system regular under the action of the cyclic group is said to be
cyclic. Cyclic cycle systems have been well studied, and can be constructed using
the method of partial differences, see for instance [6].

Definition 2.9 Let C = (x0, x1, . . . , x�−1) be an �-cycle with vertices in Zv and
let d be the order of the stabilizer of C under the natural action of Zv, that is,
d = |{g ∈ Zv : C + g = C}|. The multisets

ΔC = {±(xh+1 − xh) | 0 ≤ h < �},
∂C = {±(xh+1 − xh) | 0 ≤ h < �/d},

where the subscripts are taken modulo �, are called, respectively, the list of differences
from C and the list of partial differences from C.
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If C is a set of �-cycles with vertices in Zv, by ΔC and ∂C we mean the union
(counting multiplicities) of all multisets ΔC and ∂C respectively, where C ∈ C .

We will use the following notation: let x0, x1, . . . , xr−1, x be elements of Zv, with
x of order d. The closed trail represented by the concatenation of the sequences

[x0, x1, . . . , xr−1],
[x0 + x, x1 + x, . . . , xr−1 + x],

[x0 + 2x, x1 + 2x, . . . , xr−1 + 2x],
...

[x0 + (d− 1)x, x1 + (d− 1)x, . . . , xr−1 + (d− 1)x]

will be denoted by
[x0, x1, . . . , xr−1]x. (2.1)

Example 2.10 In K20 − I, with [0, 1, 19]15, we mean the closed trail (a 12-cycle
in this case) C = (0, 1, 19, 15, 16, 14, 10, 11, 9, 5, 6, 4); its list of partial differences is
∂C = ±{1, 2, 4}.

A cyclic cycle system of Kv − I is completely determined by a set of base cycles,
that is a system of representatives for the orbits of its cycles under the action of
Zv. The next result (see for instance Theorem 3.3 in [6]) shows how to use partial
differences to build a set of base cycles.

Theorem 2.11 A set C of �-cycles is a set of base cycles of a cyclic cycle system
of Kv − I if and only if ∂C = Zv − {0, v/2}.

Remark 2.12 Note that [x0, x1, . . . , xr−1]x is a (dr)-cycle if and only if the elements
xi, for i = 0, . . . , r − 1, belong to pairwise distinct cosets of the subgroup 〈x〉 in Zv.
Also, if C = [x0, x1, . . . , xr−1]x is a (dr)-cycle then

∂C = {±(xi − xi−1) | i = 1, . . . , r − 1} ∪ {±(x0 + x− xr−1)}.
We point out that in the case of cyclic �-cycle system of Kv − I, we have that dr = �
and the order of Stab(C) is d; the length of the Zv-orbit of C is v/d.

Example 2.13 In K20 − I, a set C of base cycles for a cyclic cycle system of the
graph K20 − I is given by the two cycles

C1 = [0, 1, 19]15 = (0, 1, 19, 15, 16, 14, 10, 11, 9, 5, 6, 4)

and
C2 = [0, 3,−3, 4,−4, 5]10 = (0, 3, 17, 4, 16, 5, 10, 13, 7, 14, 6, 15),

since ∂C1 = ±{1, 2, 4} and ∂C2 = ±{3, 5, 6, 7, 8, 9}.

We will also consider 2-pyramidal cycle systems for the graph Kv − I (see for
instance [4, 11]).
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Definition 2.14 An �-cycle system D of the graph Kv − I is 2-pyramidal under the
action of Zv−2 if the set of vertices of Kv − I is identified with Zv−2 ∪ {∞1,∞2}, the
removed 1-factor I is formed by the edges {(0, (v−2)/2)+g, g ∈ Zv−2}∪{(∞1,∞2)},
and we have C + g ∈ D for all g ∈ Zv−2, with the assumption that ∞i + g = ∞i,
i = 1, 2.

Also in this case, if C = (x0, x1, . . . , x�−1) is an �-cycle with vertices in Zv−2, and
if d is the order of the stabilizer of C under the natural action of Zv−2, then the list
of differences (resp. partial differences) is ΔC = {±(xh+1 − xh) | 0 ≤ h < �} (resp.
∂C = {±(xh+1 − xh) | 0 ≤ h < �/d}).

Let v − 2 = 2n; if P = x0, x1, . . . , xp, with xi ∈ Z2n, is a path in Kv − I, we
denote with σ(P ) the path x0 + n, x1 + n, . . . , xp + n. Let CP be the cycle formed
from the edges of P and σ(P ) together with the edges x0∞1, ∞1(x0 +n), xp∞2 and
∞2(xp + n). For a cycle CP , set ∂CP = {±(xh+1 − xh) | 0 ≤ h < p}.

We say that a set C = {A1, A2, . . . , As, B} of �-cycles is a set of base cycles of
type σ for a 2-pyramidal cycle system of K2n+2 − I if B = CP for some path P of
length (�− 4)/2, V (Ai) ⊆ Z2n, and ∂C = Z2n −{0, n}. We remark that 2-pyramidal
cycle systems of type σ are extensively used in [3], but are not referred to explicitly
using this terminology.

The proof of the following lemma is a straightforward application of standard
difference methods.

Lemma 2.15 If C = {A1, A2, . . . , As, B} of �-cycles is a set of base cycles of type
σ, then C = ∪C∈COrb(C) is a 2-pyramidal cycle system of K2n+2 − I.

Example 2.16 Let � = 8 and v = 10; a set of base cycles of type σ is given by the
pair A = (0, 1, 2, 3, 4, 5, 6, 7) = [0]1, with ∂A = ±{1}, and B = CP with P = 0, 2, 7,
so that B = (∞1, 0, 2, 7,∞2, 3, 6, 4) and ∂B = ±{2, 3}.

3 Equitably colourable decompositions of the complete
bipartite graph

In the proof of the reduction step in Section 4, we will use doubly equitable 2-
colourable cycle systems for the graphs K�,�+r, with � and r even and r < �; in this
section we prove the existence of these decompositions.

First, let us denote by Π0 the part of size � and by Π1 that of size �+ r; we will
identify Π0 with Z� × {0} and Π1 with Z�+r × {1}, and write for brevity xi rather
than (x, i). In the discussion that follows, by the parity of vertex xi, we mean the
parity of x; this is well defined since � and r are both even.

Theorem 3.1 Let � be even and let r be an even integer with 0 ≤ r < �. Then there
exists an �-cycle system of K�,�+r which admits a doubly equitable 2-colouring.
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Proof: We will first prove the result for � ≡ 0 (mod 4), and then for � ≡ 2 (mod 4).

Case 1. � ≡ 0 (mod 4)

Let � = 4s, and note that K4s,4s+r decomposes into two subgraphs, each isomorphic
to K2s,4s+r, which share no vertices in the part of size 4s; thus it suffices to prove the
result for K2s,4s+r, where r is even and 0 ≤ r ≤ 4s− 2.

Let the parts of K2s,4s+r be Π′
0 = Z2s × {0} and Π1 = Z4s+r × {1}. Form a starter

cycle as follows
C0 = (00, 01, 10, 11, . . . , (2s− 1)0, (2s− 1)1).

Note that in C0 every vertex x0 with x 
= 0 is adjacent to x1 and (x− 1)1, while 00
is adjacent to 01 and (2s− 1)1. In particular, every vertex in Π′

0 is adjacent to two
vertices in Π1 with different parities.

For i = 1, 2, . . . , 2s + r/2 − 1, form Ci by adding 2i to the first coordinate of every
vertex in Π1. It is easy to see that the cycles C0, C1, . . . , C2s+r/2−1 decomposeK2s,4s+r.

It remains to show that this decomposition has a doubly equitable 2-colouring. We
colour a vertex xi (where i ∈ {0, 1}) red if x is even and blue otherwise. Clearly
each part has an equal number of red and blue vertices. Since each cycle has 2s
consecutive vertices (an even number) in each part, the colouring is equitable.

Case 2. � ≡ 2 (mod 4)

This is a variation of Sotteau’s construction [19]. Let � = 4s+ 2, and once more set
Π0 = Z� × {0} and Π1 = Z�+r × {1}.
The cycle decomposition will consists of two sets of (�+r)/2 �-cycles, say A0, A1, . . . ,
A(�+r)/2−1 and B0, B1, . . . , B(�+r)/2−1 with

Ai = (2i1, 00, (2i+ 1)1, 10, (2i+ 2)1, 20, . . . , (2s− 1)0, (2i+ 2s)1, (ei)0)

and

Bi = ((2i+ 1)1, (2s)0, (2i+ 2)1, (2s+ 1)0, (2i+ 3)1, . . . ,

(�− 4)0, (2i+ 2s)1, (di)0, (2i+ 2s+ 1)1, (ei)0).

It remains to choose the values of (di)0 and (ei)0 in {(�− 3)0, (�− 2)0, (�− 1)0} for
i ∈ {0, . . . , (�+r)/2−1} in such a way as to obtain a cycle decomposition. We begin
by suitably choosing values for the (ei)0, ensuring that (ei)0 and (ei+s)0 are distinct.
(Note that we compute the subscript of i + s modulo (� + r)/2.) We then take as
(di)0 the third element of {(�− 3)0, (�− 2)0, (�− 1)0}, distinct from (ei)0 and (ei+s)0.

It is not difficult to see that such a choice is always possible: one possibility is as
follows. Note that 2s+1 ≤ (�+r)/2 ≤ 4s+1. If (�, r) 
= (6, 4), consider the euclidean
division (�+ r)/2 = qs+ ρ; we have 2 ≤ q ≤ 4. Let us take (we omit the subscript 0
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for readability)

ei =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�− 3 if 0 ≤ i ≤ s− 1,

�− 2 if s ≤ i ≤ 2s− 1,

�− 1 if 2s ≤ i ≤ 3s− 1, or 2s ≤ i < 2s+ ρ when q = 2,

�− 2 if 3s ≤ i ≤ 4s− 1, or 3s ≤ i < 3s+ ρ when q = 3,

�− 1 if i = 4s.

If (�, r) = (6, 4), then we have s = 1 and (�+ r)/2 = 4s+ 1. In this case, we take

(e0, e1, e2, e3, e4) = (3, 4, 5, 4, 5).

This decomposition has a doubly equitable 2-colouring: in the part Π0 colour the
vertices (�− 3)0, (�− 2)0, (�− 1)0, 00, 10, . . . (s− 2)0 and (2s)0, (2s+ 1)0, . . . (3s− 2)0
blue. In Π1, colour the vertices 01, 21, 41, . . . , (�+r−2)1 blue. Colour the remaining
vertices red. �

Example 3.2 A 6-cycle system for K6,10 is the following.

A0 = (01, 00, 11, 10, 21, 30), B0 = (11, 20, 21, 50, 31, 30),

A1 = (21, 00, 31, 10, 41, 40), B1 = (31, 20, 41, 30, 51, 40),

A2 = (41, 00, 51, 10, 61, 50), B2 = (51, 20, 61, 30, 71, 50),

A3 = (61, 00, 71, 10, 81, 40), B3 = (71, 20, 81, 30, 91, 40),

A4 = (81, 00, 91, 10, 01, 50), B4 = (91, 20, 01, 40, 11, 50).

Colouring the vertices 30, 40, 50, 01, 21, 41, 61, 81 blue, and the remaining vertices red
gives a doubly equitable 2-colouring.

Example 3.3 The following cycles form a 10-cycle decomposition of K10,12.

A0 = (01, 00, 11, 10, 21, 20, 31, 30, 41, 70), B0 = (11, 40, 21, 50, 31, 60, 41, 90, 51, 70),

A1 = (21, 00, 31, 10, 41, 20, 51, 30, 61, 70), B1 = (31, 40, 41, 50, 51, 60, 61, 90, 71, 70),

A2 = (41, 00, 51, 10, 61, 20, 71, 30, 81, 80), B2 = (51, 40, 61, 50, 71, 60, 81, 70, 91, 80),

A3 = (61, 00, 71, 10, 81, 20, 91, 30, 101, 80), B3 = (71, 40, 81, 50, 91, 60, 101, 70, 111, 80),

A4 = (81, 00, 91, 10, 101, 20, 111, 30, 01, 90), B4 = (91, 40, 101, 50, 111, 60, 01, 80, 11, 90),

A5 = (101, 00, 111, 10, 01, 20, 11, 30, 21, 90), B5 = (111, 40, 01, 50, 11, 60, 21, 80, 31, 90).

Colouring the vertices 00, 40, 70, 80, 90 and 01, 21, 41, 61, 81, 101 blue and the remaining
vertices red gives a doubly equitable 2-colouring.
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4 Reduction step

A key step in the proof given in [3] of existence of �-cycle systems of Kv − I was
to reduce the problem to orders v in the interval [�, 2�). In this section, we give an
analogous reduction step for equitably 2-colourable cycle decompositions, which will
allow us to obtain in Section 5 a complete solution for the existence of an equitably
2-colourable �-cycle system when � is a power of 2, � ∈ {2q, 4q} for q an odd prime
power, or � ≤ 30.

Theorem 4.1 Let � ≥ 4 be even and r an even integer with 0 ≤ r < �. If
K�+r − I admits an equitably 2-colourable �-cycle decomposition, then Kv − I ad-
mits an equitably 2-colourable �-cycle decomposition for any v ≡ r (mod �) with
v ≥ �.

Proof: Let v = q�+ r, where q ≥ 1. Let the vertex set of Kv − I be ∪q−1
i=0Πi, where

Π0 = Z�+r × {0} and Πi = Z� × {i} if i ≥ 1. For each i ∈ {0, . . . , q − 1} colour half
of the vertices of Πi red and the other half blue.

We decompose Kv − I into (q − 1) subgraphs isomorphic to K� − I (on vertex
sets of the form Πi, i ∈ {1, . . . , q − 1}), one subgraph isomorphic to K�+r − I (on
vertex set Π0), and subgraphs isomorphic to K�,� (on vertex sets of the form Πi∪Πj,
i, j ∈ {1, . . . , q−1}) and K�,�+r (on vertex sets of the form Πi∪Π0, i ∈ {1, . . . , q−1}).
By Lemmas 2.1 and 3.1 we can place equitably 2-colourable �-cycle decompositions
of K� − I, K�,� and K�,�+r which respect the given colouring. The existence of an
equitably 2-colourable �-cycle decomposition of K�+r − I (by hypothesis) completes
the decomposition. �

Corollary 4.2 Let � ≥ 4 be even. If Kv − I admits an equitably 2-colourable �-cycle
decomposition for any �-admissible even v satisfying � ≤ v < 2�, then Kv − I admits
an equitably 2-colourable �-cycle decomposition for any �-admissible even v.

Proof: Let v be even and �-admissible, and write v = q� + r, where q ≥ 0 and
� ≤ r < 2�. There is an equitably 2-colourable �-cycle decomposition of Kr − I
by hypothesis. The existence of such a decomposition of Kv − I now follows by
Theorem 4.1. �

5 Equitably 2-colourable even cycle systems

In this section, we show existence of equitably 2-colourable �-cycle systems of Kv− I
for any v ≡ 0 or 2 (mod �), and provide a complete solution for the existence of an
equitably 2-colourable �-cycle system when � is a power of 2, � ∈ {2q, 4q} for q an
odd prime power, or � ≤ 30.

We begin with a construction in the case v = �+ 2.
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Lemma 5.1 Let � ≥ 4. There is an equitably 2-colourable �-cycle decomposition of
K�+2 − I.

Proof: Let V (K�+2−I) = Z�∪{∞1,∞2}. Colour the elements in {0, 1, . . . , �/2−1}
and ∞1 blue and the ones in {�/2, . . . , �− 1} and ∞2 red.

First, take the �-cycle A = (0, 1, . . . �− 1); we clearly have that A is fixed under the
action of Z�, is equitably coloured, and ∂A = {1,−1}.
The remaining cycles arise from a starter cycle B formed as follows. Let P be a path
containing edges having differences 2, 3, . . . , (�/2 − 1). In particular, if � ≡ 0 (mod
4), we let P be the path

P = 0, 2, (−1), 3, (−2), . . . , (�/4),−(�/4− 1)

and if � ≡ 2 (mod 4), the path P is defined as

P = 0, 2, (−1), 3, (−2), . . . ,−(�− 6)/4, (�+ 2)/4.

Now let B be the cycle CP , as defined in Section 2.2.

Note that ∂(B) = Z� \ {0, 1,−1, �/2}. Thus, {A,B} is a set of base cycles of type
σ of a 2-pyramidal �-cycle system of K�+2. Since B and its translates each contain
every vertex of Z� ∪ {∞1,∞2} except for two of the form x and (x + �/2) (which
have opposite colours), it is easy to see that this cycle system is equitably coloured.

�

Theorem 5.2 Let � ≥ 4 be even and v ≡ 0 or 2 (mod �). There is an equitably
2-colourable �-cycle decomposition of Kv − I.

Proof: The result follows as a direct consequence of Theorem 4.1 together with the
existence of equitably 2-colourable �-cycle decompositions of K� − I and K�+2 − I
from Lemmas 2.1 and 5.1. �

For a prime power q, recalling that the 2q-admissible integers v satisfy v ≡ 0, 2
(mod 2q), we have the following.

Corollary 5.3 Let � = 2q, where q is a prime power. There is an equitably 2-
colourable �-cycle decomposition of Kv − I if and only if v is �-admissible.

Note that in Corollary 5.3, q may be an odd or even prime power. Thus this result
also includes the case that � is a power of 2. In the case that � = 4q for some odd
prime power, q, we can also find necessary and sufficient conditions for the existence
of an equitably 2-colourable �-cycle decomposition.

Theorem 5.4 Let � = 4q, where q is an odd prime power. There is an equitably
2-colourable �-cycle decomposition of Kv − I if and only if v is �-admissible.
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Proof: By Corollary 4.2, it suffices to consider the case v ∈ [4q, 8q); the only 4q-
admissible values in this range are v = 4q, 4q + 2, 6q, 6q + 2. The cases v = 4q and
v = 4q + 2 are covered by Theorem 5.2. In the remaining two cases, we construct a
cyclic 4q-cycle decomposition of Kv − I, and show that it is equitably 2-colourable.

Case 1. v = 6q + 2

Consider the following two 4q-cycles, A and B:

A = [0, 1,−1, 2,−2, . . . , (q − 1)/2,−(q − 1)/2]−(3q+1)/2, and
B = [0, q,−3, q + 1,−4, q + 2,−5, . . . ,−(q + 1), 2q − 1]3q+1.

Note that the lists of partial differences of these cycles are

∂A = ±{1, 2, . . . , q − 1, q + 1} and ∂B = ±{q, q + 2, . . . , 3q};
hence A and B form a set of base cycles for a cyclic 4q-cycle system for K6q+2 − I.
It is easy to check that this cycle system can be equitably 2-coloured by colouring
the vertices in [0, 3q] red and those in [3q + 1, 6q − 1] blue.

Case 2. v = 6q

We will build a set of base cycles using (q − 1)/2 cycles with orbit of length 3, and
one with orbit of length 3q.

Set (q − 1)/2 = 2s if q ≡ 1 (mod 4), and (q − 1)/2 = 2s + 1 if q ≡ 3 (mod 4).
Thus, we need to find a collection of cycles whose partial differences cover the set
±{1, 2, . . . , 12s+ 2} if q ≡ 1 (mod 4), and ±{1, 2, . . . , 12s+ 8} if q ≡ 3 (mod 4).

We first build 2s cycles Ai,1, Ai,2 for i = 0, . . . , s− 1 as follows:

Ai,1 = [0, 6i+ 1]−3, Ai,2 = [0, 6i+ 2]−3.

It is clear that

s−1⋃
i=0

(∂Ai,1 ∪ ∂Ai,2) = ±({1, 2, . . . , 6s− 1} \ {3, 6, 9, . . . , 6s− 3}).

Now, if q ≡ 1 (mod 4), take

B = [0, 3,−3, 6,−6, . . . , 3s,−3s, 3s+ 1,−(3s+ 2), 3s+ 2,−(3s+ 3),

3s+ 3, . . . ,−(6s+ 1), 6s+ 1]12s+3 .

It is easy to check that

∂B = ±{3, 6, 9, . . . , 6s− 3, 6s, 6s+ 1, 6s+ 2, . . . , 12s+ 2}.

If q ≡ 3 (mod 4), we also take the extra cycle A∗ = [0, 12s + 7]−3, with ∂A∗

= ±{12s+ 7, 12s+ 8}; then we choose the last cycle B as follows:

B = [0, 3,−3, 6,−6, . . . , 3s,−3s, 3s+ 1,−(3s+ 1), 3s+ 2,−(3s+ 2), 3s+ 3,

−(3s+ 4), (3s+ 4),−(3s+ 5) . . . ,−(6s+ 3), 6s+ 3]12s+9.
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We have that

∂B = ±{3, 6, 9, . . . , 6s− 3, 6s, 6s+ 1, 6s+ 2, . . . , 12s+ 6}.
(If q = 3, then note that B = [0, 1,−1, 2,−2, 3]9 and ∂B = ±{1, 2, 3, 4, 5, 6}.)
It is easily checked that these cycle systems can be equitably 2-coloured by colouring
the vertices with an even label red and those with odd label blue. Indeed, the cycle
B is made from the concatenation of two paths of length �/2, namely P1 and P2,
where V (P2) = V (P1) + 3q (with computations done modulo 6q). Since q is odd,
vertices i ∈ Z6q and i + 3q have opposite parity and are thus coloured differently;
it follows that B and its translates are equitably coloured. The other cycles in the
decomposition are all built by concatenating an even number of paths of length two.
In this concatenation, initial vertices of consecutive paths have opposite parity, as
do the internal vertices of consecutive paths; thus each cycle formed in this way has
an equal number of vertices of each colour. �

Example 5.5 Let q = 7; a set of base cycles for a cyclic 28-cycle system of K44 − I
is the following.

A = [0, 1,−1, 2,−2, 3,−3]−11, and

B = [0, 7,−3, 8,−4, 9,−5, 10,−6, 11,−7, 12,−8, 13]22.

The resulting cycle system can be equitably coloured by colouring vertices in [0, 21]
red and those in [22, 43] blue.

Example 5.6 Let q = 7; a set of base cycles for a cyclic 28-cycle system of K42 − I
is as follows.

A0,1 = [0, 1]−3, A0,2 = [0, 2]−3,

A∗ = [0, 19]−3, and

B = [0, 3,−3, 4,−4, 5,−5, 6,−7, 7,−8, 8,−9, 9]21.

The cycle system can be equitably 2-coloured by colouring the even vertices red, and
the odd ones blue.

Our final result is to prove the existence of an equitably 2-colourable �-cycle
decomposition of Kv − I whenever 4 ≤ � ≤ 30 is even and v is �-admissible. Before
we prove this, we first present some small cases.

Lemma 5.7 There is an equitably 2-colourable cyclic �-cycle decomposition of Kv−I
for (�, v) ∈ {(24, 32), (30, 42), (30, 50)}.

Proof: For (�, v) = (24, 32), the following cycles form a set of base cycles of a cyclic
24-cycle system of K32 − I:

A = [0, 1, 31]−4 and B = [0, 4, 31, 5, 29, 6, 28, 7, 27, 8, 26, 9]16.
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Indeed, note that ∂A = ±{1, 2, 3} and ∂B = ±{4, 5, . . . , 15}. Colouring the vertices
in the interval [0, 15] blue and those in [16, 31] red gives an equitable 2-colouring.

For (�, v) = (30, 42), base cycles of a cyclic 30-cycle system of K42 − I are given by

A = [0, 1, 41, 2, 40]35

and
B = [0, 6, 41, 7, 40, 8, 39, 9, 38, 11, 37, 12, 36, 13, 35]21;

note that ∂A = ±{1, 2, 3, 4, 5} and ∂B = ±{6, 7, . . . , 20}. An equitable 2-colouring
is given by colouring the vertices in the interval [0, 20] red and those in [21, 39] blue.

For (�, v) = (30, 50), the following three cycles form a set of base cycles for a 30-cycle
decomposition of K50 − I:

A = [0, 6, 48]35,

B = [0, 1, 49, 2, 48, 3]10, and

C = [0, 9, 49, 10, 48, 12, 47, 13, 46, 15, 45, 16, 44, 17, 43]25.

Here, we have that

∂A = ±{6, 8, 13},
∂B = ±{1, 2, 3, 4, 5, 7}, and
∂C = ±{9, 10, 11, 12} ∪ {14, 15, . . . , 24}.

This decomposition may be equitably 2-coloured by colouring vertices with an even
label red and those with an odd label blue. �

Lemma 5.8 There is an equitably 2-colourable 2-pyramidal 24-cycle decomposition
of K42 − I.

Proof: We define a set of base cycles for a 2-pyramidal 24-cycle decomposition of
type σ on vertex set Z40 − I. In the cycles below, we will thus consider differences
in Z40.

First, define cycles

A1 = [0, 1, 39]5, A2 = [0, 3, 36]5, and A3 = [0, 4, 33]5.

We have that ∂A1 = ±{1, 2, 6}, ∂A2 = ±{3, 7, 9} and ∂A3 = ±{4, 11, 12}.
Now, define the path

P = 0, 5, 37, 7, 34, 8, 33, 9, 32, 10, 31.

Letting B = CP , we have that ∂B = ±{5, 8, 10} ∪ {13, 14, . . . , 19}.
It is now easy to see that A1, A2, A3 and B form the required set of base cycles.

The 24-cycle decomposition can be equitably coloured by colouring vertices in the
interval [0, 19] as well as ∞1 red, and vertices in [20, 39] along with ∞2 blue. �
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Theorem 5.9 Let 4 ≤ � ≤ 30 be even. There is an equitably 2-colourable �-cycle
decomposition of Kv − I if and only if v is �-admissible.

Proof: Corollary 5.3 and Theorem 5.4 cover all �-values except � ∈ {24, 30}. As
a consequence of Corollary 4.2 and Theorem 5.2, we need only consider values of
v ∈ [�, 2�) \ {�, �+2}. Existence of an equitably 2-colourable cycle decomposition in
each of these cases is shown in Lemmas 5.7 and 5.8. �
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