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Abstract

For any k ∈ N, the k-subdivision of a graph G is a simple graph G
1
k ,

which is constructed by replacing each edge of G with a path of length
k. In [M.N. Iradmusa, Discrete Math. 310 (10-11) (2010), 1551–1556],
the mth power of the n-subdivision of G was introduced as a fractional
power of G, denoted by G

m
n . F. Wang and X. Liu in [Discrete Math.

Algorithms Appl. 10 (3), (2018), 1850041] showed that χ(G
3
3 ) ≤ 7 for

any subcubic graph G. In this note, we prove that the 3
3
-power of every

subquartic graph admits a proper coloring with at most nine colors. We
conjecture that χ(G

3
3 ) ≤ 2∆(G) + 1 for any graph G with maximum

degree ∆(G) ≥ 2.

1 Introduction

All graphs we consider in this note are simple, finite and undirected. We men-
tion some of the definitions that are referred to throughout this note, and for other
necessary definitions and notation we refer the reader to a standard text-book [2].
Minimum degree, maximum degree and maximum size of cliques of a graph G are
denoted by δ(G), ∆(G) and ω(G), respectively. For each vertex v ∈ V (G), the neigh-
bors of v are the vertices adjacent to v in G. The neighborhood NG(v) of v is the
set of all neighbors of v in G. Any vertex of degree k is called a k-vertex and any
path of length k is called a k-path. Also, a path P : v1, . . . , vk is a simple path if the
degrees of all vertices v2, . . . , vk−1 are 2, and a cycle C is called a loop cycle if all of
its vertices are 2-vertices except one that is a 3-vertex.

Let G be a graph and k be a positive integer. The k-power of G, denoted by
Gk, is defined on the vertex set V (G) by adding edges joining any two distinct
vertices x and y with distance at most k. Also the k-subdivision of G, denoted by
G

1
k , is constructed by replacing each edge xy of G with a path of length k, say

Pxy. These k-paths are called superedges. We denote a vertex by (xy)l if it belongs
to Pxy and has distance l from the vertex x, where l ∈ {0, 1, 2, . . . , k}. Note that
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(xy)l = (yx)k−l, x = (xy)0 = (yx)k and y = (yx)0 = (xy)k. Any vertex (xy)0 of G
1
k

is called a terminal vertex (or briefly t-vertex) and any of the remaining vertices is
called an internal vertex (or briefly i-vertex). The fractional power of graphs was
first introduced in [5] as follows.

Definition 1.1 Let G be a graph and m,n ∈ N. The graph G
m
n is defined to be the

m-power of the n-subdivision of G. In other words G
m
n = (G

1
n )m.

We denote the set of terminal vertices of G
m
n by Vt(G

m
n ) and the set of internal

vertices by Vi(G
m
n ). It is worth noting that G

1
1 = G and G

2
2 = T (G), where T (G),

the total graph of G, is the the graph whose vertex set is V (G)∪E(G), in which two
vertices are adjacent if and only if they are adjacent or incident in G [1].

As usual, a proper k-coloring of G is a mapping from V (G) to {1, . . . , k}, where
any two adjacent vertices have distinct colors. The chromatic number of a graph
G is the minimum integer k for which G has a proper k-coloring, and is denoted
by χ(G). By the definition of a total graph, χ′′(G) := χ(T (G)) = χ(G

2
2 ). In 1965,

Behzad [1] conjectured that χ′′(G) never exceeds ∆(G) + 2. By virtue of Definition

1.1, one can show that ω(G
2
2 ) = ∆(G) + 1 and the Total Coloring Conjecture can be

reformulated as follows.

Conjecture 1.2 For any simple graph G, χ(G
2
2 ) ≤ ω(G

2
2 ) + 1.

There is a relation between an incidence coloring of a graph G and a vertex
coloring of G

3
3 , which is one of the motivations of this note. The concept of incidence

coloring was introduced by Brualdi and Massey in 1993.

Definition 1.3 [3] Let G = (V,E) be a multigraph. An incidence of G is a pair (v, e)
where v ∈ V (G), e ∈ E(G) and e is incident with v. Let I be the set of incidences
of G. An incidence graph of G, denoted by I(G), has its vertex set V (I(G)) = I
such that two incidences (v, e) and (w, f) are adjacent in I(G) if one of the following
holds:

(1) v = w,

(2) e = f ,

(3) the end-vertices of e or f are v and w.

Definition 1.4 [3] An incidence coloring σ of G is a map from I to the color set C
such that adjacent incidence pairs are assigned different colors. If σ : I −→ C is an
incidence coloring with |C| = k, then we say that σ is a k-incidence coloring of G.
The incidence chromatic number of G, denoted χi(G), is the smallest k for which
there exists a k-incidence coloring of G.

In [3], it is proved that for a graph G with maximum degree ∆, χi(G) ≤ 2∆.
Also, by definition of the fractional power of a graph, the incidence graph I(G) is
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the subgraph of G
3
3 induced by the set of internal vertices. So we have χi(G) =

χ(G
3
3 [Vi(G

3
3 )]) ≤ χ(G

3
3 ). In addition, the partition {Vt(G

3
3 ), Vi(G

3
3 )} of the vertices

of G
3
3 implies that

χ(G
3
3 ) ≤ χ(G

3
3 [Vt(G

3
3 )]) + χ(G

3
3 [Vi(G

3
3 )]) = χ(G) + χi(G).

Also, in [6] it was proved that if ∆(G) ≥ 3, then χ(G
3
3 ) ≤ χ(G) + χi(G)− 1.

In this note, we are investigating the chromatic number of G
3
3 . When ∆(G) = 1,

one can easily show that χ(G
3
3 ) = 4, and by applying the following theorem, which

was proved in [5], we can prove that χ(G
3
3 ) ≤ 5 for any graph G with ∆(G) = 2.

Theorem 1.5 If m,n, k ∈ N and k ≥ 3, then

(i) χ(C
m
n
k ) =

{
nk m ≥ nk

2

d nk
b nk
m+1

ce m < nk
2
,

(ii) χ(P
m
n
k ) = min{m+ 1, (k − 1)n+ 1}.

In [8], Wang and Liu proved that χ(G
3
3 ) ≤ 7 for any subcubic graph G. Recall

that a graph G is subcubic if ∆(G) ≤ 3. Recently, a simple proof of this result was
given in [6] by using the following theorem about the 5-colorability of the incidences
of any subcubic graph.

Theorem 1.6 [7] For any subcubic graph G, we have χi(G) ≤ 5.

The graph G is called subquartic if ∆(G) ≤ 4. Also any 4-regular graph is known
as a quartic graph. The main theorem of this note is stated as follows.

Theorem 1.7 Let G be a subquartic graph. Then χ(G
3
3 ) ≤ 9.

Remark 1.8 In [3], it was conjectured that χi(G) ≤ ∆(G) + 2 for every graph G.
This was disproved by Guiduli in [4] who showed that Paley graphs with sufficiently
large maximum degree have incidence chromatic number at least ∆+Ω(log ∆). How-
ever, this conjecture seems to hold for graphs with small maximum degree. Theorem
1.6 shows that the conjecture is true for cubic graphs. It remains an open problem
whether the conjecture is true for quartic graphs. But if the conjecture holds for
all quartic graphs, then easily we can prove Theorem 1.7 by use of the inequality
χ(G

3
3 ) ≤ χ(G) + χi(G) − 1. So Theorem 1.7 provides evidence that the conjecture

may be true for all quartic graphs.

Considering the results for cycles, paths, subcubic and subquartic graphs, we
conjecture that 2∆(G) + 1 colors suffice for the proper coloring of G

3
3 when G is a

graph with maximum degree at least two.

Conjecture 1.9 Let G be a graph with ∆(G) ≥ 2. Then χ(G
3
3 ) ≤ 2∆(G) + 1.
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The clique number of the fractional power of a graph was obtained in [5] for powers

less than one. As mentioned in [8], one can easily show that ω(G
3
3 ) = ∆(G)+2 when

∆(G) ≥ 2, and ω(G
3
3 ) = 4 when ∆(G) = 1. Therefore, if Conjecture 1.2 holds, we

conclude that χ′′(G) = χ(G
2
2 ) ≤ χ(G

3
3 ). So, the following conjecture seems strongly

true.

Conjecture 1.10 For any graph G, χ(G
2
2 ) ≤ χ(G

3
3 ).

2 Proof of Theorem 1.7

For convenience, we need some notation and preliminaries.

Let G be a graph and consider G
3
3 . On each superedge Puv there are two internal

vertices (uv)1 and (uv)2 which correspond to the incidences of the edge uv. We
denote (uv)1 and (uv)2 by (u, v) and (v, u), respectively.

We need to establish the following lemmas before the proof of Theorem 1.7.

Lemma 2.1 Let Pn : v1, v2, . . . , vn be a path of order n ≥ 5, n 6= 6, 7 and the vertices
v1, v2, vn−1 and vn are respectively colored with the colors a, b, c and d from the set
C = {1, 2, . . . , 5} that are all distinct except possibly a and d. Then we can extend
this partial coloring to a proper coloring of P 3

n with colors from C.

Proof To extend this partial coloring to a proper coloring of P 3
n , we consider 8

cases:

(1) a = d, n ≡ 1 (mod 4): Starting from v1, we color the vertices of P 3
n sequentially

by colors (abec)(abec)(abec) · · · where e ∈ C \ {a, b, c}.

(2) a = d, n ≡ 2 (mod 4): Starting from v1, we color the vertices of P 3
n sequentially

by colors (abefc)(abec)(abec) · · · where e, f ∈ C \ {a, b, c} and e 6= f .

(3) a = d, n ≡ 3 (mod 4): Starting from v1, we color the vertices of P 3
n sequentially

by colors (abefc)(abefc)(abec)(abec) · · · where e, f ∈ C \ {a, b, c} and e 6= f .

(4) a = d, n ≡ 0 (mod 4): Starting from v1, we color the vertices of P 3
n sequentially

by colors (abce)(abce) · · · (abce)(fbca) where e, f ∈ C \ {a, b, c} and e 6= f .

(5) a 6= d, n ≡ 1 (mod 4): Starting from v1, we color the vertices of P 3
n sequentially

by colors (abecd)(abcd)(abcd) · · · where e ∈ C \ {a, b, c, d}.

(6) a 6= d, n ≡ 2 (mod 4): Starting from v1, we color the vertices of P 3
n sequentially

by colors (abecd)(abecd)(abcd)(abcd) · · · where e ∈ C \ {a, b, c, d}.

(7) a 6= d, n ≡ 3 (mod 4): Starting from v1, we color the vertices of P 3
n sequentially

by colors (abde)(abde) · · · (abde)(acd) where e ∈ C \ {a, b, c, d}.

(8) a 6= d, n ≡ 0 (mod 4): Starting from v1, we color the vertices of P 3
n sequentially

by colors (abcd)(abcd)(abcd) · · · .
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Each of these colorings preserves the colors of v1, v2, vn−1 and vn and it can be easily
seen that the given coloring is a proper coloring of P 3

n with color set C. �

Lemma 2.2 Let G be a subcubic graph with δ(G) ≥ 2 and

V3 = {v ∈ V (G) | dG(v) = 3}.

Then χ(G
3
3 \ V3) ≤ 5.

Proof Each connected component of G is a cycle or a subcubic graph in which any
2-vertex belongs to a simple path or a loop cycle. Let H be a connected component
of G. If H is a cycle, then by Theorem 1.5, we can color the vertices of H

3
3 \V3 = H

3
3

with the colors C = {1, 2, 3, 4, 5}. Now let H be a component of the second type

in G. To find a proper coloring for H
3
3 \ V3, at first we identify all 2-vertices lying

in simple paths and remove all 2-vertices of the loop cycles in H. Let H1 be the

resulting graph. By Theorem 1.6, χ(H
3
3
1 [Vi(H

3
3
1 )]) = χi(H1) ≤ 5. Suppose that

c : Vi(H
3
3
1 ) −→ C is a proper coloring of H

3
3
1 [Vi(H

3
3
1 )]. Suppose the simple path

P : v1, v2, . . . , vn in H. The vertices v2, . . . , vn−1 of P contracted to a single vertex
v∗ in H1. The subgraph of H

3
3 \ V3 induced by

VP = {(v1, v2), (v2, v1), v2, (v2, v3), (v3, v2), v3, . . . , vn−1, (vn−1, vn), (vn, vn−1)}

is isomorphic to P 3
3n−4. Now we color the first two vertices and the last two vertices

of VP as follows:
c(v1, v2) = c(v1, v

∗), c(v2, v1) = c(v∗, v1),

c(vn, vn−1) = c(vn, v
∗), c(vn−1, vn) = c(v∗, vn).

Because 5 ≤ 3n−4 6= 6, 7, by Lemma 2.1 we can extend c to the other vertices of P
3
3

except v1 and vn and similarly, to all vertices of the other simple paths. We denote
by c′ this extension of c.

Finally, we color the vertices of the loop cycles. Let L : v1, v2, . . . , vn, v1 be a
loop cycle of G such that dG(v1) = 3 and NG(v1) = {v0, v2, vn}. Suppose that

c′((v0, v1)) = a and c′((v1, v0)) = b. Because L
3
3 is isomorphic to C

3
3
n , by Theo-

rem 1.5, we have χ(L
3
3 ) ≤ 5. Let cL be a proper coloring of L

3
3 such that cL(v1) = b,

cL((v1, vn)) = c and cL((v1, v2)) = d such that {c, d} ⊂ C \ {a, b}. Therefore,
cL((v1, v2)) 6= a = c′((v0, v1)) 6= cL((v1, vn)). Because cL is a proper coloring,
cL((v2, v1)) 6= b = c′((v1, v0)) 6= cL((vn, v1)). Now we delete the color of v1 and
add this coloring of 3

3
-power of L to c′. By repeating this method for each loop cycle,

c′ gives rise to a proper coloring of G
3
3 \ V3. �

Proof of Theorem 1.7. Since each subquartic graph is a subgraph of a quartic
graph, we only prove the theorem for quartic graphs. Let G be a quartic graph. If G

is a complete graph, then G = K5. In Figure 1, a proper 7-coloring of K5

3
3 is shown.

Some edges of K5

3
3 were removed in the figure for simplicity. Now, suppose that G
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Figure 1: 7-proper coloring of K5

3
3 .

is not a complete graph and M1 = {e1, . . . , ek} is a maximum matching. Since M1

is a maximum matching of G, A = V (G) \ V (M1) is an independent set of G and so
NG(v) ⊆ V (M1) for each v ∈ A.

Consider the bipartite subgraph H with bipartition (A, V (M1)) that contains all
edges between A and V (M1). Since dH(v) = 4 > dH(u) for any vertex v ∈ A and any
vertex u ∈ V (M1), by Hall’s Theorem, H has a matching, named M2, which covers
all the vertices of A. Without loss of generality, suppose that M2 = {f1, . . . , fk′}.
Note that none of the edges in M1 is adjacent to two edges of M2; otherwise, M1 is
not a maximum matching of G.

Consider the subgraph F of G induced by M1 ∪ M2 and let B1 = V (F
3
3 ) \

(V (M1) ∩ V (M2)) and B2 = V (G
3
3 ) \ B1. Now consider the partition {B1, B2} of

V (G
3
3 ). We prove that χ(G

3
3 [B1]) ≤ 4 and χ(G

3
3 [B2]) ≤ 5 and then we conclude that

χ(G
3
3 ) ≤ χ(G

3
3 [B1]) + χ(G

3
3 [B2]) ≤ 9.

Since G is neither a complete graph nor an odd cycle, by Brooks’ Theorem,
χ(G) ≤ 4. In addition, the subgraph of G

3
3 induced by the t-vertices is isomorphic to

G. Therefore, there exists a proper coloring c of the t-vertices of G
3
3 [B1] with colors

in {1, 2, 3, 4}. Now, we color the i-vertices of G
3
3 [B1] with colors in {1, 2, 3, 4}. For

any edge e = uv ∈ M1 that is not adjacent with any edge of M2, color i-vertices
(u, v) and (v, u) with two different colors of {1, 2, 3, 4} \ {c(u), c(v)}. Now, suppose
that e = uv ∈M1 is adjacent with an edge f = vw ∈M2. If c(u) 6= c(w), then color
the i-vertices (u, v) and (w, v) with a same color from {1, 2, 3, 4}\{c(u), c(w)}. Also,
assign colors c(u) and c(w) to i-vertices (v, w) and (v, u), respectively. If c(u) = c(w),
color the i-vertices (u, v) and (w, v) with a same color from {1, 2, 3, 4} \ {c(u)} and
then assign two different colors in {1, 2, 3, 4}\{c(u), c((u, v))} to the i-vertices (v, w)

and (v, u). Therefore χ(G
3
3 [B1]) ≤ 4.

To find a proper 5-coloring of G
3
3 [B2], we apply Lemma 2.2. Let G1 be the

spanning subgraph of G with edge set E(G1) = E(G) \ (M1 ∪M2) and V3 be the
set of 3-vertices of G1. Because dG1(v) = 2 for any vertex v ∈ V (M1) ∩ V (M2) and
dG1(v) = 3 for any vertex v /∈ V (M1) ∩ V (M2), we have δ(G1) ≥ 2, ∆(G1) = 3 and

G
3
3
1 \ V3 = G

3
3 [B2]. Therefore, by Lemma 2.2, we have χ(G

3
3 [B2]) = χ(G

3
3
1 \ V3) ≤ 5,

which completes the proof. �
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Problem 1 We did not find a subquartic graph G with χ(G
3
3 ) = 9. Therefore, it

remains an open problem as to whether the upper bound in Theorem 1.7 can be
decreased to 8 colors.
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