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Abstract

Given a connected and bridgeless graph G, let D(G) be the family of
strong orientations of G. The orientation number of G is defined to
be d̄(G) := min{d(D) | D ∈ D(G)}, where d(D) is the diameter of
the digraph D. In this paper, we focus on the orientation number of
complete tripartite graphs. We prove a conjecture raised by Rajasekaran
and Sampathkumar. Specifically, for q ≥ p ≥ 3, if d̄(K(2, p, q)) = 2, then
q ≤ (

p
�p/2�

)
. We also present some sufficient conditions on p and q for

d̄(K(p, p, q)) = 2.

1 Introduction

Let G be a graph with vertex set V (G) and edge set E(G). In this paper, we consider
only graphs G having no loops or parallel edges. For any vertices v, x ∈ V (G), the
distance from v to x, dG(v, x), is defined as the length of a shortest path from v to x.
For v ∈ V (G), its eccentricity eG(v) is defined as eG(v) := max{dG(v, x) | x ∈ V (G)}.
The diameter of G, denoted by d(G), is defined as d(G) := max{eG(v) | v ∈ V (G)}.
The above notions are defined similarly for a digraph D with vertex set V (D) and
arc set A(D). Furthermore, a vertex x is said to be reachable from another vertex
v if dD(v, x) < ∞. For u, v ∈ V (D), we write u → v if (u, v) ∈ A(D). For
V ⊆ V (D)− {u}, u → V (respectively, V → u) means u → v (respectively, v → u)
for every v ∈ V . The outset and inset of a vertex v ∈ V (D) are defined to be
OD(v) := {x ∈ V (D)| v → x} and ID(v) := {y ∈ V (D)| y → v} respectively. If
there is no ambiguity, we shall omit the subscript for the above notation.

An orientation D of a graph G is a digraph obtained from G by assigning a
direction to every edge e ∈ E(G). An orientation D of G is said to be strong if every
two vertices in V (D) are mutually reachable. An edge e ∈ E(G) is a bridge if G− e
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is disconnected. Robbins’ One-way Street Theorem [14] states that for a connected
graph G, G has a strong orientation if and only if G is bridgeless. Given a connected
and bridgeless graph G, let D(G) be the family of strong orientations of G. The
orientation number of G is defined as

d̄(G) := min{d(D) | D ∈ D(G)}.

The general problem of finding the orientation number of a connected and bridge-
less graph is very difficult. Moreover, Chvátal and Thomassen [3] proved that it is
NP-hard to determine whether a graph admits an orientation of diameter 2. Hence
it is natural to focus on special classes of graphs. The orientation number was eval-
uated for various classes of graphs, such as complete graphs [1, 9, 11] and complete
bipartite graphs [4, 16]. For general results on orientations of graphs and digraphs,
we refer the reader to a survey by Koh and Tay [8].

In this paper, we focus on the orientation number of some complete tripartite
graphs. To put our results in context, let us introduce some notation and recall
some closely related classical results.

Given any positive integers, n, p1, p2, . . . , pn, let Kn denote the complete graph of
order n and K(p1, p2, . . . , pn) denote the complete n-partite graph having pi vertices
in the ith partite set for i = 1, 2, . . . , n, where p1 ≤ p2 ≤ . . . ≤ pn. The n partite
sets are denoted by Vi, i = 1, 2, . . . , n, i.e., |Vi| = pi for i = 1, 2, . . . , n. Furthermore,
ij denotes the jth vertex in Vi for i = 1, 2, . . . , n, and j = 1, 2, . . . , pi. Thus, Kn

∼=
K(p1, p2, . . . , pn), where p1 = p2 = . . . = pn = 1. For any real number x, 
x� denotes
the greatest integer less than or equal to x while �x
 denotes the smallest integer
greater than or equal to x.

The orientation number for a complete bipartite graph was determined indepen-
dently by Šoltés [16] and Gutin [4].

Theorem 1.1. (Soltés [16] and Gutin [4])
For q ≥ p ≥ 2,

d̄(K(p, q)) =

{
3, if q ≤ (

p
�p/2�

)
,

4, if q >
(

p
�p/2�

)
.

Of interest, Gutin ingeniously made use of a celebrated result in combinatorics,
Sperner’s Lemma, in his proof. Two sets T and S are independent if T �⊆ S and
S �⊆ T . If T and S are independent, we may say that S is independent of T or T is
independent of S.

Lemma 1.2. (Sperner [15])
Let n be a positive integer and let C be a collection of subsets of Nn = {1, 2, . . . , n}
such that S and T are independent for any two distinct sets S and T in C . Then
|C | ≤ (

n
�n/2�

)
with equality holding if and only if all members in C have the same

size, 
n
2
� or �n

2

.

Plesnik [12], Gutin [5], and Koh and Tan [6] independently proved that the ori-
entation number of a complete multipartite graph is 2 or 3. Some sufficient and
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necessary conditions were also established in the same papers. However, a complete
characterisation remains elusive.

Theorem 1.3. (Plesnik [12], Gutin [5] and Koh and Tan [6])
For all positive integers n ≥ 3 and p1, p2, . . . , pn, 2 ≤ d̄(K(p1, p2, . . . , pn)) ≤ 3.

Theorem 1.4. (Gutin [5] and Koh and Tan [6])

For all integers n ≥ 3 and p ≥ 2, d̄(K(

n︷ ︸︸ ︷
p, p, . . . , p)) = 2.

Theorem 1.5. (Koh and Tan [6])

Let n ≥ 3 and p1, p2, . . . , pn be positive integers. Denote h =
n∑

k=1

pi. If

pi >

(
h− pi


(h− pi)/2�
)

for some i = 1, 2, . . . , n, then d̄(K(p1, p2, . . . , pn)) = 3.

Next, we state some existing results on complete tripartite graphs, most of which
were established by Rajasekaran and Sampathkumar.

Theorem 1.6. (Rajasekaran and Sampathkumar [13])
For q ≥ p ≥ 2, d̄(K(1, p, q)) = 3.

Theorem 1.7. (Koh and Tan [7])
For q ≥ p ≥ 2, if q ≤ (

p
�p/2�

)
, then d̄(K(2, p, q)) = 2.

Theorem 1.8. (Rajasekaran and Sampathkumar [13])
For q ≥ 3, d̄(K(2, 2, q)) = 3.

Theorem 1.9. (Rajasekaran and Sampathkumar [13])
For q ≥ 4, d̄(K(2, 3, q)) = 3.

Theorem 1.10. (Rajasekaran and Sampathkumar [13])
For p ≥ 4, 4 ≤ q ≤ 2p, d̄(K(p, p, q)) = 2.

In this paper, we prove a conjecture raised by Rajasekaran and Sampathkumar
(see Section 2) and present some sufficient conditions on p and q for d̄(K(p, p, q)) = 2
(see Section 3).

2 A conjecture on K(2, p, q)

Based on Theorems 1.8 and 1.9 and an unpublished paper “The orientation num-
ber of the complete tripartite graph K(2, 4, p)”, Rajasekaran and Sampathkumar
conjectured that the converse of Theorem 1.7 holds for complete tripartite graphs
K(2, p, q), q ≥ p ≥ 5. Ng [10] showed for q ≥ p ≥ 2, d̄(K(1, 1, p, q)) = 2 implies
q ≤ (

p
�p/2�

)
. Since an orientation D of K(2, p, q), where d(D) = 2, is a spanning

subdigraph of an orientation of K(1, 1, p, q), the conjecture follows from Ng’s result.
In this section, we provide a different and shorter proof of the conjecture. We start
with some observations which will be used in our proof later.
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Lemma 2.1. Let G = K(p1, p2, . . . , pn), n ≥ 3, and D be an orientation of G.
Suppose there exist vertices is and jt for some i, j, s and t, where i �= j, 1 ≤ i, j ≤ n,
1 ≤ s ≤ pi and 1 ≤ t ≤ pj, such that O(is) ∩ (V (D) − Vj) = O(jt) ∩ (V (D) − Vi).
Then, d(D) ≥ 3.

Proof : Without loss of generality, we assume jt → is. It follows that dD(is, jt) > 2
and d(D) ≥ 3.

Lemma 2.2. Let D be an orientation of a graph G. Let D̃ be the orientation of G
such that (u, v) ∈ A(D̃) if and only if (v, u) ∈ A(D). Then, d(D̃) = d(D).

Proof : Suppose not. Then there exist some vertices u, v ∈ V (D̃) such that dD̃(u, v) >
d(D). Since dD(v, u) = dD̃(u, v), it follows that dD(v, u) > d(D), yielding a contra-
diction.

Theorem 2.3. For any integers q ≥ p ≥ 3, if d̄(K(2, p, q)) = 2, then q ≤ (
p

�p/2�
)
.

Proof : Since d̄(K(2, p, q)) = 2, there exists an orientation D of K(2, p, q) such that
d(D) = 2.

Case 1. V1 → V2.

It follows from dD(3i, 1j) ≤ 2, for every i = 1, 2, . . . , q, and j = 1, 2, that V3 → V1.
Also, since dD(2i, 3j) ≤ 2 for every i = 1, 2, . . . , p, and j = 1, 2, . . . , q, we have
V2 → V3. However, dD(3i, 3j) ≥ 3 for any 1 ≤ i, j ≤ q, i �= j, which contradicts
d(D) = 2.

Similarly, from Lemma 2.2, we cannot have V2 → V1.

Case 2. 1i → V2 → 13−i for exactly one of i = 1, 2.

Without loss of generality, we may assume that 11 → V2 → 12. It follows from
dD(12, 3i) ≤ 2 and dD(3i, 11) ≤ 2 for every i = 1, 2, . . . , q that 12 → V3 → 11. Now,
for any i �= j, 1 ≤ i, j ≤ q, dD(3i, 3j) ≤ 2 and thus, O(3i) ∩ V2 and O(3j) ∩ V2 are
independent. By Sperner’s Lemma, q ≤ (

p
�p/2�

)
.

Case 3. 1i → V2 for exactly one of i = 1, 2.

Without loss of generality, let i = 1. Furthermore, we assume that ∅ �= O(12) ∩
V2 ⊂ V2 in view of Cases 1 and 2. Hence, let |O(12) ∩ V2| = k, where 0 < k < p.
Since dD(u, 3j) ≤ 2 for every u ∈ O(12)∩ V2 and every j = 1, 2, . . . , q, it follows that
O(12) ∩ V2 → V3. It also follows from dD(3j , 11) ≤ 2 for every j = 1, 2, . . . , q, that
V3 → 11.

Partition V3 into L1 and L2 such that L1 := {v ∈ V3 | v → 12} and L2 := {v ∈ V3 |
12 → v}. Note that L1 → V1. Since dD(2j, v) ≤ 2 for all j = 1, 2, . . . , p, and v ∈ L1,
we have V2 → L1. Thus, |L1| ≤ 1, otherwise if u, v ∈ L1, then dD(u, v) ≥ 3. Also,
|L2| ≤

(
p−k

�(p−k)/2�
)
. Otherwise, by Sperner’s Lemma, there exist 3i, 3j ∈ L2 such that

O(3i)∩V2 ⊆ O(3j)∩V2 for some i �= j and 1 ≤ i, j ≤ q, which implies dD(3i, 3j) > 2.
Hence, q = |V3| = |L1|+ |L2| ≤ 1 +

(
p−k

�(p−k)/2�
) ≤ 1 +

(
p−1

�(p−1)/2�
) ≤ (

p
�p/2�

)
.
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Similarly, the case where V2 → 1i for exactly one of i = 1, 2, follows from
Lemma 2.2.

Case 4. ∅ �= O(1i) ∩ V2 ⊂ V2 for i = 1, 2.

Partition V2 into the sets KA := {v ∈ V2 | A → v → (V1 − A)}, where A ⊆ V1.
Similarly, partition V3 into the sets LA := {v ∈ V3 | A → v → (V1 − A)}, where
A ⊆ V1.

Since dD(u, 2j) ≤ 2 for any u ∈ V3 and j = 1, 2, . . . , p, it follows that L∅ → K∅,
L{11} → K{11}∪K∅, L{12} → K{12}∪K∅ and LV1 → V2. Similarly, since dD(u, 3j) ≤ 2
for any u ∈ V2 and j = 1, 2, . . . , q, it follows that K∅ → L∅, K{11} → L{11} ∪ L∅,
K{12} → L{12} ∪ L∅ and KV1 → V3.

Invoking Sperner’s Lemma on each LA, A ⊆ V1, we have |L∅| ≤ 1, |L{11}| ≤( |K{12}|
�|K{12}|/2�

)
, |L{12}| ≤

( |K{11}|
�|K{11}|/2�

)
and |LV1 | ≤ 1. Otherwise, there would exist 3i, 3j ∈

LA such that O(3i) ∩ V2 ⊆ O(3j) ∩ V2 for some i �= j and 1 ≤ i, j ≤ q, implying
dD(3i, 3j) > 2.

Subcase 4.1. |KV1 | = 0.

For i = 1, 2, K{1i} �= ∅, since O(1i) ∩ V2 �= ∅ by assumption. From Lemma 2.1 it
follows that L{11} = L{12} = ∅. So, q = |V3| = |L∅|+ |LV1| ≤ 1 + 1 <

(
p

�p/2�
)
.

Subcase 4.2. |KV1 | > 0.

Then LV1 = ∅ by Lemma 2.1. Recall that |K∅| + |K{11}| + |K{12}| + |KV1| = p.
By Lemma 2.1, for each i = 1, 2, if K{1i} �= ∅, then L{1i} = ∅. Hence, if K{11} �= ∅
and K{12} �= ∅, then q = |V3| = |L∅| ≤ 1. If K{11} = ∅ and K{12} �= ∅ , then

q = |L∅| + |L{11}| ≤ 1 +
( |K{12}|
�|K{12}|/2�

) ≤ 1 +
(

p−1
�(p−1)/2�

)
. By symmetry, if K{11} �= ∅

and K{12} = ∅, it also follows that q ≤ 1 +
(

p−1
�(p−1)/2�

)
. Lastly, if K{11} = K{12} = ∅,

it follows that q = |L∅| + |L{11}| + |L{12}| ≤ 1 + 1 + 1. Therefore, q ≤ max
{
1 +(

p−1
�(p−1)/2�

)
, 3
} ≤ (

p
�p/2�

)
.

Corollary 2.4. For any integers p ≥ 4 and 1 +
(

p−1
�(p−1)/2�

)
< q ≤ (

p
�p/2�

)
, let D be an

optimal orientation of K(2, p, q), where d(D) = 2. Then,
(i) 1i → V2 → 13−i → V3 → 1i for exactly one of i = 1, 2;
(ii) {O(3i) ∩ V2 | i = 1, 2, . . . , q} is a family of independent subsets of V2.
In particular, there are at most two optimal orientations D (up to isomorphism) in
the case where q =

(
p

�p/2�
)
.

Proof : Case 1 of the proof of Theorem 2.3 shows that it is impossible for V1 → V2

or V2 → V1. Since q > 1 +
(

p−1
�(p−1)/2�

)
and p ≥ 4, Cases 3 and 4 are also impossible.

This leaves us with the result of Case 2, i.e., 1i → V2 → 13−i → V3 → 1i for exactly
one of i = 1, 2.

Now, for any i, j where i �= j and 1 ≤ i, j ≤ q, 3i, 3j ∈ V3, d(3i, 3j) = 2 if and
only if O(3i) ∩ V2 �⊆ O(3j) ∩ V2. Thus, (ii) follows.

Furthermore, if q =
(

p
�p/2�

)
, then |O(3i) ∩ V2| = 
p

2
� or �p

2

 by Sperner’s Lemma.

Thus, there are at most two optimal orientations (up to isomorphism) D.
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Theorem 2.3 completes the characterizaion of complete tripartite graphsK(2, p, q)
with d̄(K(2, p, q)) = 2. Together with Theorems 1.7 and 1.8, we have the following
theorem. Interestingly, this characterisation has the same bounds for q as the general
bipartite graph K(p, q). (See Theorem 1.1.)

Theorem 2.5. For any integers q ≥ p ≥ 2, d̄(K(2, p, q)) = 2 if and only if q ≤(
p

�p/2�
)
.

3 Sufficient conditions for d̄(K(p, p, q)) = 2

In this section, we provide some sufficient conditions on p and q so that d̄(K(p, p, q))
= 2. Our result (see Theorem 3.11) improves significantly the upper bound 2p
of q given in Theorem 1.10, especially when p increases. We begin by solving a
combinatorics problem, which will be of assistance later.

Definition 3.1. Suppose p ≥ 4 is an integer such that p = kd for some non-
trivial divisors k, d ∈ Z

+, i.e., 1 < k, d < p. Denote a solution (x1, x2, . . . , x2d)
∗ if

(x1, x2, . . . , x2d) satisfies

x1 + x2 + . . .+ x2d = p, and
1 ≤ xi ≤ k − 1, for i = 1, 2, . . . , 2d.

}
(1)

Define Φ∗(p, d) :=
∑

(x1,x2,...,x2d)∗

(
k
x1

)(
k
x2

)
. . .

(
k

x2d

)
.

Definition 3.2. Suppose p ≥ 4 is an integer such that p = kd for some non-trivial
divisors k, d ∈ Z

+. For any non-negative integers i, j, define [i, j] to be the set of
solutions (x1, x2, . . . , x2d) satisfying

x1 + x2 + . . .+ x2d = p,

xsm = 0, for m = 1, 2, . . . , i, where {s1, s2, . . . , si} ⊆ {1, 2, . . . , 2d},
xtn = k, for n = 1, 2, . . . , j, where {t1, t2, . . . , tj} ⊆ {1, 2, . . . , 2d}, and

1 ≤ xr ≤ k − 1, for r ∈ {1, 2, . . . , 2d} − ({s1, s2, . . . , si} ∪ {t1, t2, . . . , tj}).

Furthermore, we denote Φ(p, d, [i, j]) :=
∑

(x1,x2,...,x2d)∈[i,j]

(
k
x1

)(
k
x2

)
. . .

(
k

x2d

)
.

Remark 3.3. The following may be verified easily.
(a) If p is even, then Φ∗(p, p

2
) = 2p.

(b) For each [i, j] defined above, 0 ≤ i, j ≤ d.
(c) Φ(p, d, [i, j]) ≥ 0 for 0 ≤ i, j ≤ d.
(d) Φ(p, d, [d, d]) =

(
2d
d

)
.

(e) Φ(p, d, [i, d]) = Φ(p, d, [d, i]) = 0 for 0 ≤ i ≤ d− 1.

In the proof of Lemma 3.5, we will make use of the following combinatorial
identities which we quote without proof. (See [2] for details.)
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Lemma 3.4. For non-negative integers xi, ni, n, k, r, n ≥ 1, r ≤ k ≤ n and xi ≤ ni

for i = 1, 2 . . . , r,

(a)
(
n
k

)(
k
r

)
=

(
n
r

)(
n−r
k−r

)
;

(b)
(
n
0

)− (
n
1

)
+
(
n
2

)− . . .+ (−1)n
(
n
n

)
= 0;

(c)
∑

x1+x2+...+xr=p

(
n1

x1

)(
n2

x2

)
. . .

(
nr

xr

)
=

(
n1+n2+...+nr

p

)
. (Generalised Vandermonde’s iden-

tity)

Lemma 3.5. Suppose p ≥ 4 is an integer such that p = kd for some non-trivial
divisors k, d ∈ Z

+. Then

Φ(p, d, [i, j])=
d∑

s=i

d∑
t=j

[
(−1)(s−i)+(t−j)

(
2d

s, t, 2d−(s+t)

)(
(2d−(s+t))k

(d− t)k

)(
s

i

)(
t

j

)]
.

Proof : Let μ, λ be any two integers such that i ≤ μ ≤ d and j ≤ λ ≤ d. We
proceed using a double counting method. Suppose α =

(
k
x̄1

)(
k
x̄2

)
. . .

(
k

x̄2d

)
, where

(x̄1, x̄2, . . . , x̄2d) is an element of [μ, λ]. We shall show that each α contributes the
same count to both sides of the equality.

Case 1. μ = i and λ = j.

On the left side, α is counted exactly once. The expression(
2d

s, t, 2d− (s+ t)

)(
k

0

)s(
k

k

)t(
(2d− (s+ t))k

(d− t)k

)
represents choosing s and t groups from all 2d groups of k elements to select 0 and
k elements, respectively, from each group, after which (d− t)k elements are selected
from the remaining (2d − (s + t))k elements to form a total of p = dk selected
elements.

It follows that, on the right, α is counted exactly once in the first term

(−1)(i−i)+(j−j)

(
2d

i, j, 2d− (i+ j)

)(
(2d− (i+ j))k

(d− j)k

)(
i

i

)(
j

j

)

=

(
2d

i, j, 2d− (i+ j)

)(
k

0

)i(
k

k

)j(
(2d− (i+ j))k

(d− j)k

)
and contributes a zero count in the subsequent terms(

2d

s, t, 2d−(s+t)

)(
(2d−(s+t))k

(d− t)k

)
=

(
2d

s, t, 2d−(s+t)

)(
k

0

)s(k
k

)t((2d−(s+t))k

(d− t)k

)

if s > i or t > j. Thus, α is counted once on each side.

By definition of α, α is counted by the term, Φ(p, d, [i, j]), on the left if and only
if [μ, λ] = [i, j]. Therefore, α has a zero count on the left side for the following three
cases. It suffices to show that α contributes to a count of zero on the right in each
of the following cases as well.
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Case 2. μ = i and λ > j.

Similar to above, on the right, α is counted(
λ

j

)
times in

(
2d

i, j, 2d− (i+ j)

)(
(2d− (i+ j))k

(d− j)k

)
,(

λ

j + 1

)
times in

(
2d

i, j + 1, 2d− (i+ j + 1)

)(
(2d− (i+ j + 1))k

(d− (j + 1))k

)
,

...(
λ

λ

)
times in

(
2d

i, λ, 2d− (i + λ)

)(
(2d− (i+ λ))k

(d− λ)k

)

and none in the subsequent terms
(

2d
s,t,2d−(s+t)

)(
(2d−(s+t))k

(d−t)k

)
if s > i or t > λ. So, α has

a total count of
i∑

s=i

λ∑
t=j

[(−1)(s−i)+(t−j)
(
λ
t

)(
s
i

)(
t
j

)
] = (−1)(i−i)

(
i
i

) λ∑
t=j

(−1)(t−j)
(
λ
t

)(
t
j

)
=

λ∑
t=j

(−1)(t−j)
(
λ
j

)(
λ−j
t−j

)
=

(
λ
j

) λ∑
t=j

(−1)(t−j)
(
λ−j
t−j

)
=

(
λ
j

)
(0) = 0, where Lemma 3.4(a)

and (b) were invoked in the second and fourth equalities respectively. Thus, α has a
zero count on each side.

Case 3. μ > i and λ = j.

This case is similar to Case 2.

Case 4. μ > i and λ > j.

On the right, α is counted
(
μ
s

)(
λ
t

)
times in the term

(
2d

s,t,2d−(s+t)

)(
(2d−(s+t))k

(d−t)k

)
, i ≤

s ≤ μ and j ≤ t ≤ λ and 0 times if μ < s ≤ d or λ < t ≤ d. In other words, on the
right, α is counted

μ∑
s=i

λ∑
t=j

[(−1)(s−i)+(t−j)

(
μ

s

)(
λ

t

)(
s

i

)(
t

j

)

=

μ∑
s=i

{
(−1)(s−i)

(
μ

s

)(
s

i

) λ∑
t=j

[(−1)(t−j)

(
λ

t

)(
t

j

)
]
}

=

μ∑
s=i

{
(−1)(s−i)

(
μ

s

)(
s

i

) λ∑
t=j

[(−1)(t−j)

(
λ

j

)(
λ− j

t− j

)
]
}

=

μ∑
s=i

{
(−1)(s−i)

(
μ

s

)(
s

i

)(
λ

j

) λ∑
t=j

[(−1)(t−j)

(
λ− j

t− j

)
]
}

=

μ∑
s=i

{
(−1)(s−i)

(
μ

s

)(
s

i

)(
λ

j

)
(0)

}
= 0

times, where Lemma 3.4(a) and (b) were invoked in the second and fourth equalities
above respectively. Thus, α contributes a count of zero on each side.
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Corollary 3.6. Suppose p ≥ 4 is an integer such that p = kd for some non-trivial
divisors k, d ∈ Z

+. Then

(i) Φ∗(p, d) =
d∑

s=0

d∑
t=0

[(−1)(s+t)
(

2d
s,t,2d−(s+t)

)(
(2d−(s+t))k

(d−t)k

)
];

(ii)
(
2p
p

)
=

d∑
i=0

d∑
j=0

d∑
s=i

d∑
t=j

[(−1)(s−i)+(t−j)
(

2d
s,t,2d−(s+t)

)(
(2d−(s+t))k

(d−t)k

)(
s
i

)(
t
j

)
];

(iii) Φ(p, d, [i, j]) = Φ(p, d, [j, i]) for 0 ≤ i, j ≤ d.

Proof :
(i) This follows from the fact that Φ∗(p, d) = Φ(p, d, [0, 0]).

(ii) By generalised Vandermonde’s identity,
(
2p
p

)
=

d∑
i=0

d∑
j=0

Φ(p, d, [i, j]).

(iii) Since
(

2d
s,t,2d−(s+t)

)
=

(
2d

t,s,2d−(s+t)

)
and

(
(2d−(s+t))k

(d−t)k

)
=

(
(2d−(s+t))k

(d−s)k

)
, it follows that

Φ(p, d, [j, i]) =
d∑

s=j

d∑
t=i

[(−1)(s−j)+(t−i)
(

2d
s,t,2d−(s+t)

)(
(2d−(s+t))k

(d−t)k

)(
s
j

)(
t
i

)
]

=
d∑

t=i

d∑
s=j

[(−1)(t−i)+(s−j)
(

2d
t,s,2d−(s+t)

)(
(2d−(s+t))k

(d−s)k

)(
t
i

)(
s
j

)
] = Φ(p, d, [i, j]).

Now, we shall construct an orientation F of K(p, p, q), which resembles the defi-
nition of Φ∗(p, d) (see (1)). We divide each of V1 and V2 into d groups of size k. Then
orientate F such that for all 1 ≤ i ≤ q, |O(3i)| = p and O(3i) contains some but not
all vertices of each group. This distinctive property will aid in ensuring d(F ) = 2.

Proposition 3.7. Suppose p ≥ 4 is an integer such that p = kd for some non-trivial
divisors k, d ∈ Z

+. Then d̄(K(p, p, q)) = 2 if 2k+ 2 ≤ q ≤ max
d

{Φ∗(p, d)}+ 2, where

the maximum is taken over all positive divisors d of p satisfying 1 < d < p.

Proof : Partition V1 ∪ V2 into X1, X2, . . . , X2d where

Xs = {1j | j ≡ s (mod d)} and

Xd+s = {2(s−1)k+1, 2(s−1)k+2, . . . , 2(s−1)k+k}
for s = 1, 2, . . . , d. Observe that |Xr| = k for all r = 1, 2, . . . , 2d. First, we define an
orientation F for K(p, p, 2k + 2) as follows.
(I) (V2 −Xd+s) → Xs → Xd+s → (V1 −Xs) for s = 1, 2, . . . , d.
(II) V1 → 32k+1 → V2 → 32k+2 → V1.
(III) For t = 1, 2, . . . , k,

(a) {2k, 22k, . . . , 2dk} ∪ (V1 − {1(t−1)d+1, 1(t−1)d+2, . . . , 1(t−1)d+d}) → 3t →
{1(t−1)d+1, 1(t−1)d+2, . . . , 1(t−1)d+d} ∪ (V2 − {2k, 22k, . . . , 2dk}), and

(b) {11, 12, . . . , 1d} ∪ (V2 − {2t, 2t+k, . . . , 2t+(d−1)k}) → 3t+k →
{2t, 2t+k, . . . , 2t+(d−1)k} ∪ (V1 − {11, 12, . . . , 1d}).

Now, consider the case where q > 2k + 2. Let xi = |O(3j) ∩ Xi| for some j,
where 2k + 2 < j ≤ q, and i = 1, 2, . . . , 2d. So, for each solution (x1, x2, . . . , x2d)

∗
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of (1), there are
(
k
x1

)(
k
x2

)
. . .

(
k

x2d

)
ways to choose p vertices (as the outset of a vertex

3j), where xi vertices are selected from the set Xi, satisfying 1 ≤ xi ≤ k − 1, for
i = 1, 2, . . . , 2d and x1 + x2 + . . . + x2d = p. Summing over all possible solutions
(x1, x2, . . . , x2d)

∗, there is a total of Φ∗(p, d) :=
∑

(x1,x2,...,x2d)∗

(
k
x1

)(
k
x2

)
. . .

(
k

x2d

)
of such

combinations of p vertices of V1 ∪ V2. Denote this set of combinations as Ψ.

Note from (III) that the 2k outsets of 31, 32, . . . , 32k are elements of Ψ. That
leaves |Ψ| − 2k = Φ∗(p, d)− 2k combinations of p vertices of V1 ∪ V2. Note however
that O(32k+1) and O(33k+2) from (II) are not elements of Ψ. Hence, for 2k+2 < j ≤
q ≤ max

d
{Φ∗(p, d)}+2, we extend the definition of the above orientation so that the

outsets of vertices 32k+3, 32k+4, . . . , 3q are these remaining elements of Ψ. (See Figure
1 for F when d = 3 and k = 2.)

11

14

12

15

13

16

X1

X2

X3

V1

26

25

24

23

22

21

X4

X5

X6

V2 31

32

33

34

35

36

37

38

V3

Figure 1: Orientation F for d = 3, and k = 2.
For clarity, only the arcs from (1) V1 to V2 and (2) V3 to V1 and V2 are shown.
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Claim: For all u, v ∈ V (K(p, p, q)), dF (u, v) ≤ 2.

Case 1. u = 1a, v = 1b, a �= b.

Since 1 ≤ a, b ≤ p = kd, let a = (α1 − 1)d + α2 and b = (β1 − 1)d + β2 for
some αi, βi, i = 1, 2, satisfying 1 ≤ α1, β1 ≤ k and 1 ≤ α2, β2 ≤ d. If α2 = β2, then
α1 �= β1. Note that 1a and 1b are in the same Xi and by (III)(a), 1a → 3β1 → 1b. If
α2 �= β2, then 1a and 1b are in different Xi’s and by (I), 1a → Xd+α2 → 1b.

Case 2. u = 2a, v = 2b, a �= b.

Since 1 ≤ a, b ≤ p = kd, let a = (α1 − 1)k + α2 and b = (β1 − 1)k + β2 for
some αi, βi, i = 1, 2, satisfying 1 ≤ α1, β1 ≤ d and 1 ≤ α2, β2 ≤ k. If α1 = β1, then
α2 �= β2. Note that 2a and 2b are in the same Xi and by (III)(b), 2a → 3β2+k → 2b.
If α1 �= β1, then 2a and 2b are in different Xi’s and by (I), 2a → Xβ1 → 2b.

Case 3. u = 1a, v = 2b.

By (II), 1a → 32k+1 → 2b.

Case 4. u = 2a, v = 1b.

By (II), 2a → 32k+2 → 1b.

Case 5. u = 1a, v = 3b.

If b = 2k+1, then V1 → 32k+1 by (II). Suppose b �= 2k+1 and 1a ∈ Xi∗ for some
i∗ = 1, 2, . . . , d. Then 1a → Xd+i∗ by (I). Since for each 3b, I(3b)∩Xd+i �= ∅ for each
i = 1, 2, . . . , d, by (II) and (III), let w ∈ I(3b) ∩Xd+i∗ . It follows that 1a → w → 3b.

Case 6. u = 2a, v = 3b.

If b = 2k + 2, then V2 → 32k+2 by (II). Suppose b �= 2k + 2 and 2a ∈ Xd+i∗ for
some i∗ = 1, 2, . . . , d. Then 2a → V1 −Xi∗ by (I). Since for each 3b, I(3b) ∩Xi �= ∅
for each i = 1, 2, . . . , d, by (II) and (III), let w ∈ I(3b) ∩Xj for some j = 1, 2, . . . , d
and j �= i∗. It follows that 2a → w → 3b.

Case 7. u = 3a, v = 1b.

If a = 2k + 2, then 32k+2 → V1 by (II). Suppose a �= 2k + 2 and 1b ∈ Xi∗ for
some i∗ = 1, 2, . . . , d. Then Xd+j → 1b for all j = 1, 2, . . . , d and j �= i∗ by (I).
Since for each 3a, O(3a) ∩ Xd+i �= ∅ for each i = 1, 2, . . . , d, by (II) and (III), let
w ∈ O(3a) ∩Xd+j for some j = 1, 2, . . . , d, and j �= i∗. It follows that 3a → w → 1b.

Case 8. u = 3a, v = 2b.

If a = 2k+1, then 32k+1 → V2 by (II). Suppose a �= 2k+1 and 2b ∈ Xd+i∗ for some
i∗ = 1, 2, . . . , d. Then Xi∗ → 2b by (I). Since for each 3a, O(3a) ∩ Xi �= ∅ for each
i = 1, 2, . . . , d, by (II) and (III), let w ∈ O(3a) ∩Xi∗ . It follows that 3a → w → 2b.

Case 9. u = 3a, v = 3b.

Subcase 9a. a �= 2k + 1, 2k + 2 and b �= 2k + 1, 2k + 2.

Observe from (III) that |O(3x) ∩ (V1 ∪ V2)| = p for x = a, b. Furthermore,
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O(3a)∩ (V1∪V2) �⊆ O(3b)∩ (V1∪V2) if b �= a. Thus, there exists a vertex w ∈ V1∪V2

such that 3a → w → 3b.

Subcase 9b. a = 2k + 1 and b �= 2k + 1, 2k + 2.

Note that 32k+1 → V2 by (II), and I(3b)∩Xd+i �= ∅ for every i = 1, 2, . . . , d, imply
the existence of w ∈ I(3b) ∩ V2. Hence, 3a → w → 3b.

Subcase 9c. a = 2k + 2 and b �= 2k + 1, 2k + 2.

Note that 32k+2 → V1 by (II), and I(3b) ∩Xi �= ∅ for every i = 1, 2, . . . , d, imply
the existence of w ∈ I(3b) ∩ V1. Hence, 3a → w → 3b.

Subcase 9d. a �= 2k + 1, 2k + 2 and b = 2k + 1.

Note that V1 → 32k+1 by (II), and O(3a)∩Xi �= ∅ for every i = 1, 2, . . . , d, imply
the existence of w ∈ O(3a) ∩ V1. Hence, 3a → w → 3b.

Subcase 9e. a �= 2k + 1, 2k + 2 and b = 2k + 2.

Note that V2 → 32k+2 by (II), and O(3a) ∩ Xd+i �= ∅ for every i = 1, 2, . . . , d,
imply the existence of w ∈ O(3a) ∩ V2. Hence, 3a → w → 3b.

Subcase 9f. {a, b} = {2k + 1, 2k + 2}.
By (II), 32k+1 → V2 → 32k+2 → V1 → 32k+1.

Since pmay have different factorisations, the natural question to ask is which non-
trivial divisor(s) d of p gives the best bound. Verification, using Maple [17], for all
non-trivial divisors d of each composite integer p ≤ 100 shows that max

d
{Φ∗(p, d)} =

Φ∗(p, d0) with d0 being the smallest non-trivial divisor of each p. Therefore, if p is
even, we define

Φeven(p) := Φ∗(p, 2)

=
2∑

s=0

2∑
t=0

[
(−1)(s+t)

(
4

s, t, 4− (s+ t)

)(
(4− (s+ t))p

2

(2− t)p
2

)]

=

(
2p

p

)
− 8

(3p
2

p

)
+ 12

(
p
p
2

)
− 6.

Furthermore, we wish to extend Definition 3.1 and Proposition 3.7 for prime
numbers and d = 2 seems to be the best candidate. Hence, we have the following
analogue, Φodd(p), for odd integers p ≥ 5, which also provides a better bound than
Φ(p, d0) in cases where p is odd and composite.

Definition 3.8. Suppose p ≥ 5 is an odd integer. Denote a solution (x1, x2, x3, x4)
∗∗

if (x1, x2, x3, x4) satisfies

x1 + x2 + x3 + x4 = p,

1 ≤ xi ≤ 
p
2
�, for i = 1, 2, and

1 ≤ xi ≤ 
p
2
� − 1, for i = 3, 4.
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Define Φodd(p) :=
∑

(x1,x2,x3,x4)∗∗

(� p
2
�+1
x1

)(� p
2
�+1
x2

)(� p
2
�

x3

)(� p
2
�

x4

)
.

The following expression for Φodd(p) can be derived by exhausting all cases and
is provided without proof.

Lemma 3.9. If p ≥ 5 is an odd integer, then Φodd(p) =
(
2p
p

) − 4
(
3x+2
x+1

) − 4
(
3x+1
x

)
+

2
(
2x+2
x+1

)
+ 8

(
2x+1
x

)
+ 2

(
2x
x

)− 4, where x = 
p
2
�.

We shall now prove that Φeven(p) and Φodd(p) are both greater than max
3≤d<p

{Φ∗(p, d)}
for each p ≥ 4.

Proposition 3.10. Suppose p ≥ 4 is a composite integer and d is a divisor of p,
where 3 ≤ d < p.

max
3≤d<p

{Φ∗(p, d)} <

{
Φeven(p), if p is even,
Φodd(p), if p is odd.

Proof : Case 1. p is even.

For any even integer p ≥ 14 and any divisor 3 ≤ d < p of p, we have(
2p− p

d

p

)
− 8

(3p
2

p

)
+ 12

(
p
p
2

)
− 6 ≥

(
2p− p

d

p

)
− 8

(3p
2

p

)

≥
( 5p

3

p

)
− 8

(3p
2

p

)
> 0. (2)

The first inequality above is due to the fact that 12
(
p
p
2

) ≥ 6, while the second in-

equality follows as d ≥ 3 and f(z) :=
(
z
p

)
is an increasing function for z ≥ p. Since

f(z) is also strictly convex for z ≥ p and
( 5(13)

3
13

) − 8
( 3(13)

2
13

)
> 0, the last inequality

above follows for all p ≥ 13.

Now, for each even integer p ≤ 12, we have verified, using Maple, that Φ∗(p, d) <
Φeven(p) for all divisors 3 ≤ d < p of p. (See Table 1.) Let p ≥ 14 be an even integer.

Note that
d∑

i=1

d∑
j=0

Φ(p, d, [i, j]) ≥ (
k
0

)(
(2d−1)k

p

)
=

(
2p− p

d
p

)
as the expression

(
k
0

)(
(2d−1)k

p

)
counts the number of ways such that none is selected from a (fixed) group of k ele-
ments and p elements are selected from the remaining 2d − 1 groups of k elements.

Also, recall that
(
2p
p

)
=

d∑
i=0

d∑
j=0

Φ(p, d, [i, j]) = Φ(p, d, [0, 0]) +
d∑

i=1

d∑
j=0

Φ(p, d, [i, j]) +

d∑
j=1

Φ(p, d, [0, j]) by generalised Vandermonde’s identity. It follows for each even in-

teger p ≥ 14 and each divisor 3 ≤ d < p of p that

(
2p

p

)
− Φ∗(p, d) =

(
2p

p

)
− Φ(p, d, [0, 0])
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=
d∑

i=1

d∑
j=0

Φ(p, d, [i, j]) +
d∑

j=1

Φ(p, d, [0, j])

≥
(
2p− p

d

p

)

> 8

(3p
2

p

)
− 12

(
p
p
2

)
+ 6

=

(
2p

p

)
− Φeven(p),

where the last inequality is due to (2).

Case 2. p is odd and composite.

Denote x := 
p
2
�. For any composite and odd integer p ≥ 17 and any divisor

3 ≤ d < p of p, we have(
2p− p

d

p

)
− 4

(
3x+ 2

x+ 1

)
− 4

(
3x+ 1

x

)
=

(
2p− p

d

p

)
− 4

(
3x+ 2

2x+ 1

)
− 4

(
3x+ 1

2x+ 1

)

≥
(
2p− p

3

p

)
− 8

(
3x+ 2

2x+ 1

)

≥
(

10x+5
3

2x+ 1

)
− 8

(
3x+ 2

2x+ 1

)
> 0. (3)

The first inequality above is due to the assumption that d ≥ 3 and f(z) is an
increasing function for z ≥ p. Since f(z) is also strictly convex for z ≥ p and( 10(8)+5

3
2(8)+1

)− 8
(
3(8)+2
2(8)+1

)
> 0, the last inequality above follows for all x ≥ 8.

For each composite and odd integer p ≤ 15, we have verified, using Maple, that
Φ∗(p, d) < Φodd(p) for all divisors 3 ≤ d < p of p. (See Table 1.) Now, consider any

composite and odd integer p ≥ 17. As in Case 1,
d∑

i=1

d∑
j=0

Φ(p, d, [i, j]) ≥ (
2p− p

d
p

)
. It

follows for each composite and odd integer p ≥ 17 and each divisor 3 ≤ d < p of p
that (

2p

p

)
− Φ∗(p, d)

=

(
2p

p

)
− Φ(p, d, [0, 0])

=

d∑
i=1

d∑
j=0

Φ(p, d, [i, j]) +

d∑
j=1

Φ(p, d, [0, j])

≥
(
2p− p

d

p

)

> 4

(
3x+ 2

x+ 1

)
+ 4

(
3x+ 1

x

)
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≥ 4

(
3x+ 2

x+ 1

)
+ 4

(
3x+ 1

x

)
− 2

(
2x+ 2

x+ 1

)
− 8

(
2x+ 1

x

)
− 2

(
2x

x

)
+ 4

=

(
2p

p

)
− Φodd(p),

where the second last inequality follows from (3).

In a way similar to Proposition 3.7, we can derive a sufficient condition for
d̄(K(p, p, q)) = 2 using Φodd(p) when p is odd. For clarity, we summarise the re-
sults in the next theorem.

Theorem 3.11. Suppose p ≥ 4 is an integer. Then

d̄(K(p, p, q)) = 2 if

{
p+ 2 ≤ q ≤ Φeven(p) + 2 and p is even,
p+ 3 ≤ q ≤ Φodd(p) + 2 and p is odd,

where Φeven(p) =
(
2p
p

)− 8
( 3p

2
p

)
+ 12

(
p
p
2

)− 6 and Φodd(p) =
(
2p
p

)− 4
(
3x+2
x+1

)− 4
(
3x+1
x

)
+

2
(
2x+2
x+1

)
+ 8

(
2x+1
x

)
+ 2

(
2x
x

)− 4, x = 
p
2
�.

Corollary 3.12. Suppose n ≥ 2 and pi are positive integers for i = 1, 2, . . . , n such
that p1 + p2 + . . . + pr = pr+1 + pr+2 + . . . + pn = p ≥ 4 for some integers r and p.
Let G = K(p1, p2, . . . , pn, q). Then

d̄(G) = 2 if

{
p + 2 ≤ q ≤ Φeven(p) + 2 and p is even,
p + 3 ≤ q ≤ Φodd(p) + 2 and p is odd.

Proof : Note that G is a supergraph of K(p, p, q) and d̄(K(p, p, q)) = 2 by Theorem
3.11. So, there exists an orientation D for K(p, p, q), where d(D) = 2. Partition

V (G) into three parts
r⋃

i=1

Vi,
n⋃

i=r+1

Vi and Vn+1, and define an orientation F for G

such that D is a subdigraph of F and edges not in D are oriented arbitrarily. It
follows that d(F ) = 2.
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p d
{
Φeven(p)−Φ∗(p, d), if p is even,
Φodd(p)−Φ∗(p, d), if p is odd.

4 2 16-16=0

6 2 486-486=0
6 3 486-64=422

8 2 9,744-9,744=0
8 4 9,744-256=9,488

9 3 39,400-14,580=24,820

10 2 163,750-163,750=0
10 5 163,750-1,024=162,726

12 2 2,566,726-2,566,726=0
12 3 2,566,726-1,580,096=986,630
12 4 2,566,726-459,270=2,107,456
12 6 2,566,726-4,096=2,562,630

14 2 39,227,538-39,227,538=0
14 7 39,227,538-16,384=39,211,154

15 3 152,558,168-121,562,500=30,995,668
15 5 152,558,168-14,880,348=137,677,820

16 2 595,351,056-595,351,056=0
16 4 595,351,056-269,992,192=325,358,864
16 8 595,351,056-65,536=595,285,520

18 2 9,038,224,134-9,038,224,134=0
18 3 9,038,224,134-8,120,234,620=917,989,514
18 6 9,038,224,134-491,051,484=8,547,172,650
18 9 9,038,224,134-262,144=9,037,961,990

20 2 137,608,385,766-137,608,385,766=0
20 4 137,608,385,766-95,227,343,750=42,381,042,016
20 5 137,608,385,766-47,519,843,328=90,088,542,438
20 10 137,608,385,766-1,048,576=137,607,337,190

Table 1: Comparison of Φ∗(p, d) with Φeven(p) and Φodd(p) for 4 ≤ p ≤ 20.

As a concluding remark, let us mention that for r ≥ 3 and p ≥ 2, Koh and Tan [6]

defined the function f(r, p) to be the greatest integer such that d̄(K(

r︷ ︸︸ ︷
p, p, . . . , p, q)) =

2 for all q with 1 ≤ q ≤ f(r, p). They posed the problem of determining f(r, p),
which looks very difficult. By Theorems 1.10 and 3.11, it follows that

f(2, p) ≥
{
Φeven(p) + 2, if p is even,
Φodd(p) + 2, if p is odd,

for p ≥ 4.
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