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Abstract

A subset of leaves of a rooted tree induces a new tree in a natural way.
The density of a tree D inside a larger tree T is the proportion of such
leaf-induced subtrees in T that are isomorphic to D among all those with
the same number of leaves as D. The inducibility of D measures how
large this density can be as the size of T tends to infinity. In this paper,
we explicitly determine the inducibility in some previously unknown cases
and find general upper and lower bounds, in particular in the case where
D is balanced, i.e., when its branches have at least almost the same size.
Moreover, we prove a result on the speed of convergence of the maximum
density of D in strictly d-ary trees T (trees where every internal vertex
has precisely d children) of a given size n to the inducibility as n → ∞,
which supports an open conjecture.

1 Introduction and statement of results

The inducibility of rooted trees is a recently introduced invariant that captures how
often a fixed rooted tree can occur “inside” a large rooted tree. By a d-ary tree, we
mean a rooted tree whose internal (non-leaf) vertices all have at least two and at
most d children. In the special cases d = 2 and d = 3, we speak of binary and ternary
trees, respectively. A rooted tree is called strictly d-ary if every internal vertex has
exactly d children. For our purposes, it is natural to measure the size of a rooted tree
T by the number of leaves, which we denote by ‖T‖. A subset S of leaves of a d-ary
tree induces another d-ary tree in a natural way: we first take the smallest subtree
of T that contains all the leaves in S, and then repeatedly suppress all vertices with
only one child by contracting the two adjacent edges to a single edge, until no vertex
with a single child remains. The procedure is illustrated in Figure 1. The resulting
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tree is called a leaf-induced subtree. Its root is precisely the most recent common
ancestor of the leaves in S.

`1 `2 `3 `4 `1 `2 `3 `4

Figure 1: A ternary tree (left) and the subtree induced by four leaves {`1, `2, `3, `4}
(right).

A copy of a fixed d-ary tree D is any leaf-induced subtree that is isomorphic to
D; we denote the number of distinct copies of D in T by c(D,T ). In other words,
c(D,T ) is the number of subsets of the leaf set of T that induce a tree isomorphic to
D. A normalised version of this quantity is the density γ(D,T ), which is defined as

γ(D,T ) =
c(D,T )(‖T‖
‖D‖

) .

This can be seen as the probability that a leaf subset of T , chosen uniformly at
random among all sets of ‖D‖ leaves, induces a subtree isomorphic to D. Thus it
always lies between 0 and 1. Now we finally define the d-ary inducibility of a fixed
d-ary tree D as the limit superior of the density as the size of T tends to infinity:

Id(D) = lim sup
‖T‖→∞

T d-ary tree

γ(D,T ) = lim sup
n→∞

max
‖T‖=n

T d-ary tree

γ(D,T ) . (1)

It is a nontrivial fact, proven in [4], that one can replace lim sup by an ordinary limit
in the second expression. Moreover, it is possible to restrict T to strictly d-ary trees
without changing the value of the limit (also proven in [4]):

Id(D) = lim
n→∞

max
‖T‖=n

T d-ary tree

γ(D,T ) = lim
n→∞

max
‖T‖=(d−1)n+1

T strictly d-ary tree

γ(D,T ) . (2)

Note here that ‖T‖ ≡ 1 mod (d − 1) for every strictly d-ary tree T (which is well-
known and easy to show), hence the restriction to values of the form (d− 1)n+ 1.

The definition described above parallels the notion of inducibility of graphs, which
is defined in an analogous way (“copies” being isomorphic embeddings). Its investi-
gation began with a paper by Pippenger and Golumbic [12], and there is a substantial
amount of literature on this parameter (see [1, 8, 10, 11] for some recent examples).

Bubeck and Linial defined a similar concept [2, Problem 4]: for two (unrooted)
trees S and T , let C(S, T ) be the number of copies (isomorphic embeddings) of S in
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T . Moreover, let Zk(T ) be the number of k-vertex subtrees of T . The inducibility

of S in the sense of Bubeck and Linial is the limit superior of the quotient C(S,T )
Z|S|(T )

(i.e., the proportion of subtrees of T that are isomorphic to S among all subtrees of
the same size as S) as the size of T tends to infinity, similar to (1). There are two
important differences: the trees in the setting of [2] are not rooted, and subtrees are
induced by arbitrary vertices rather than leaves. A consequence of the latter is that
the denominator Z|S|(T ) depends on the full structure of T rather than its size only,
which can complicate matters. Bubeck and Linial asked in particular whether there
are trees other than paths and stars whose inducibility can get arbitrarily close to
1, and whether there is a constant ε > 0 such that there are infinitely many trees of
inducibility ≥ ε. Both questions were settled recently by Chan, Král, Mohar, and
Wood [3]: the answer to the former is negative (there is a constant ε1 > 0 such that
every tree that is neither a path nor a star has inducibility at most 1− ε1), while the
answer to the latter is affirmative.

The definition of inducibility in (1) in terms of leaf-induced subtrees first appears
in an article by Czabarka, Székely and the second author of this paper [5], originally
only in the binary case. The maximum value of Id(D) is equal to 1, and it is attained
precisely when D is a binary caterpillar, i.e., a binary tree whose internal vertices
form a path rooted at one of its ends (see [4]). Note that this is trivial if ‖D‖ = 1
or ‖D‖ = 2, since there are no other trees of the same size in these cases. On the
other hand, the following lower bound was shown in [4] to hold for all d-ary trees
with k > 1 leaves:

Id(D) ≥ (k − 1)!

kk−1 − 1
,

with equality for the star when k = d. In particular, we have Id(D) > 0 for all d-ary
trees D. The minimum min‖D‖=k Id(D) is not known in general, though. In this
context, it is worth mentioning that the quantity

lim inf
‖T‖→∞

T d-ary tree

γ(D,T ) = lim inf
n→∞

min
‖T‖=n

T d-ary tree

γ(D,T ) ,

which is the minimum analogue of the inducibility, is much better understood. Specif-
ically, it was shown in [6] that this quantity is always equal to 0 unless D is a binary
caterpillar, in which case an explicit formula can be given.

While the limit in (2) is difficult to evaluate, it can be used to approximate
Id(D); this method was applied in [7] to two concrete examples. For this purpose,
information on the speed of convergence is crucial. Define Id(D;n) and id(D;n) as

Id(D;n) = max
‖T‖=n

T d-ary tree

γ(D,T ) and id(D;n) = max
‖T‖=(d−1)n+1

T strictly d-ary tree

γ(D,T ) , (3)

so that Id(D) = limn→∞ Id(D;n) = limn→∞ id(D;n). It was shown in [4] that

Id(D) ≤ Id(D;n) ≤ Id(D) +
‖D‖(‖D‖ − 1)

n
, (4)



A.A.V. DOSSOU-OLORY ET AL. /AUSTRALAS. J. COMBIN. 81 (1) (2021), 1–24 4

so the sequence of maximum densities converges to the limit with an error term of
order at most O(n−1). There are concrete examples (see [5]) showing that the order
of magnitude of this error term cannot be improved in general. In the case where
only strictly d-ary trees are considered, it was shown in [4] that

id(D;n) = Id(D) +O(n−1/2) . (5)

Here and in the following, O-constants may depend on d and D, but nothing else.
It is an open question whether the order of the error term in (5) can be improved.

This paper contributes to all the aforementioned questions. In particular, we
determine the precise value of Id(D) in some new cases. Among the trees to which
our method applies are what we call even d-ary trees (based on the property that the
leaves in these trees are “evenly distributed”). This extends previous results in the
binary case [5]. The even d-ary tree with k leaves, denoted Ed

k , is defined recursively
as follows:

• For k ≤ d, Ed
k is a star, consisting only of the root and k leaves.

• If k > d, we express it as k = ds + b, with b ∈ {0, 1, . . . , d − 1}. Take d − b
copies of Ed

s and b copies of Ed
s+1, and connect a new common root to each of

their roots by an edge to obtain Ed
k .

Figure 2 shows the even ternary trees with up to nine leaves.

E3
1 E3

2 E3
3 E3

4 E3
5

E3
6 E3

7 E3
8

E3
9

Figure 2: All even ternary trees with at most nine leaves.

While in general, the trees T that attain the maximum in (3) seem to be difficult
to determine, we find evidence (looking at small instances) that there is an explicit
answer for even trees, namely that the even d-ary tree Ed

n always has the greatest
number of copies of the tree Ed

k over all n-leaf d-ary trees:
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Conjecture 1.1 Let d ≥ 2 and k ≥ 1 be two fixed integers. Then we have

Id(E
d
k ;n) = γ(Ed

k , E
d
n)

for every n ≥ 1.

We verify that this holds in the limit as n→∞. The following theorem gives an
explicit formula for Id(E

d
k).

Theorem 1.2 Let the constants ck be defined recursively by c0 = c1 = 1, and by

cds+b =

(
d

b

)
cd−bs · cbs+1

dds+b − d
for every s ≥ 0 and every b ∈ {0, 1, . . . , d− 1}. Then we have

Id(E
d
k) = k! · ck

for every k.

As an example, Table 1 indicates the value of I3 for the first few even ternary
trees.

Table 1: Some values of I3(E
3
k).

k 1 2 3 4 5 6 7 8 9 10 11 12

I3(E
3
k) 1 1 1

4
6
13

3
8

15
121

15
208

35
2186

7
5248

1575
255886

4725
453596

1247400
194594881

In addition, we show that the asymptotic formula

id(E
d
k ;n) = Id(E

d
k) +O(n−1)

as n → ∞ holds for all even trees Ed
k , lending support to the conjecture that the

error term in (5) can generally be improved to O(n−1).

Theorem 1.2 will be proven as part of a general approach in which a strictly
d-ary version of even trees plays a major role. For the inducibility of arbitrary d-ary
trees, our approach yields both a general lower bound (Theorem 2.3) and an upper
bound (Proposition 3.1). In both cases, the bounds are determined recursively by
decomposing a rooted tree into its branches, i.e., the smaller trees that result as
components when the root is removed. As it turns out, the inducibility of a tree can
often be bounded in terms of the product of the inducibilities of its branches, both
from above and below.

As a particularly simple example, we have

Id(D) ≤
d∏
i=1

Id(Di)

for every d-ary tree D with branches D1, D2, . . . , Dd with the property that no two
nonisomorphic branches Di, Dj have the same size (Corollary 3.3). We provide a
more general version of this inequality as well as further upper and lower bounds of
a similar nature. We also demonstrate in some examples how they are applied to
compute or approximate the inducibility in different cases.
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2 A special limit

The proof of Theorem 1.2 (as well as other results) relies on a general recursion
for the number of copies c(D,T ) of a tree D inside a larger tree T , based on the
decomposition of a rooted tree into its branches. It will be useful for notational
purposes to allow empty trees (in particular, as branches of a tree) with no leaf. If
D is empty, then we set c(D,T ) = 1; accordingly, we will also set Id(D) = 1 if D is
empty. If T is empty, but D is not, then c(D,T ) = 0.

For a d-ary tree D with branches D1, D2, . . . , Dd (some of which are allowed to
be empty), we define the equivalence relation ∼D on the set of all permutations of
[d] = {1, 2, . . . , d} as follows: for two permutations π and π′ of [d],(

π(1), π(2), . . . , π(d)
)
∼D

(
π′(1), π′(2), . . . , π′(d)

)
if for every j ∈ [d], the tree Dπ(j) is isomorphic to Dπ′(j) as a rooted tree (i.e., there
is a root-preserving isomorphism between the two; two empty trees are of course
considered isomorphic). Moreover, let M(D) be a complete set of representatives of
all equivalence classes of ∼D. One verifies easily that all these equivalence classes
have the same cardinality.

With all this notation in mind, we can state and prove the following lemma,
which will be used repeatedly in various places of this paper.

Lemma 2.1 Let T be a d-ary tree with branches T1, T2, . . . , Td (some of which might
be empty). Then for every d-ary tree D with branches D1, D2, . . . , Dd (some of which
might also be empty), we have

c(D,T ) =
d∑
i=1

c(D,Ti) +
∑

π∈M(D)

d∏
j=1

c
(
Dπ(j), Tj

)
.

Proof. Recall that c(D,T ) denotes the number of subsets of leaves of T that induce a
copy of D. A subset of leaves of T belongs to either a single branch of T or different
branches of T .

The number of subsets of leaves that belong to a single branch of T and induce a copy
of D is given by

∑d
i=1 c(D,Ti). On the other hand, the number of copies of D in which

its branches Dπ(1), Dπ(2), . . . , Dπ(d) are induced by subsets of leaves of T1, T2, . . . , Td,

respectively, is given by
∏d

j=1 c
(
Dπ(j), Tj

)
. This term needs to be summed over all

distinct (non-isomorphic, to be precise) permutations of the branches D1, D2, . . . , Dd,
for which M(D) provides a set of representatives. Hence, the formula follows. 2

For our next step, we introduce the natural analogue of even d-ary trees in the class
of strictly d-ary trees:

• The tree Hd
0 consists only of a single leaf.
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• If n > 0, we write n−1 = ds+b, with b ∈ {0, 1, . . . , d−1}. Take d−b copies of
Hd
s and b copies of Hd

s+1, and connect a new common root to each of their roots
by an edge to obtain Hd

n. For future purposes, let us write s1(n) = s2(n) =
· · · = sd−b(n) = s and sd−b+1(n) = sd−b+2(n) = · · · = sd(n) = s + 1 to encode
the branches.

See Figure 3 for an example. One easily shows that Hd
n is a strictly d-ary tree with

(d− 1)n+ 1 leaves for every n. As in the sequence of even d-ary trees, the leaves are
as evenly distributed among the branches as possible. We first prove that γ(D,Hd

n)
converges to a positive limit for every fixed d-ary tree D, which immediately provides
a lower bound on the inducibility.

Figure 3: The tree H3
3 .

Definition 2.2 For every d-ary tree D, let ηd(D) be determined recursively as fol-
lows: it is equal to 1 when D is empty or only consists of a single vertex. Otherwise,
let D1, D2, . . . , Dd be the branches of D (some possibly empty), and define M(D) as
in Lemma 2.1. Now set

ηd(D) =

(
‖D‖

‖D1‖, ‖D2‖, . . . , ‖Dd‖

)
|M(D)|
d‖D‖ − d

d∏
i=1

ηd(Di) .

Theorem 2.3 For every d-ary tree D, we have

γ(D,Hd
n) = ηd(D) +O

(
n−1
)
,

where the constant implied by the O-term only depends on d and D.

Proof. Define φ(D) = (d−1)‖D‖ηd(D)
‖D‖! , which satisfies the recursion

φ(D) =
|M(D)|
d‖D‖ − d

d∏
i=1

φ(Di) . (6)

Let us set k = ‖D‖ and `i = ‖Di‖ for simplicity and use induction on k to prove
that there exists a nonnegative constant κ(D) such that∣∣c(D,Hd

n)− φ(D)nk
∣∣ ≤ κ(D)nk−1 (7)

holds for all n ≥ 1. This is straightforward for k = 0, where D is the empty tree,
c(D,Hd

n) = 1 and φ(D) = 1, so that we can take κ(D) = 0. Likewise, the cases
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k = 1 (where c(D,Hd
n) = ‖Hd

n‖ = (d− 1)n+ 1 and φ(D) = d− 1) and k = 2 (where

c(D,Hd
n) =

(‖Hd
n‖
2

)
=
(
(d−1)n+1

2

)
and φ(D) = (d−1)2

2
) are easy.

For the induction step, we apply the recursion of Lemma 2.1: for the tree T = Hd
n,

the branches Tj are of the form Hd
sj(n)

, where sj(n) = bn−1
d
c or sj(n) = bn−1

d
c + 1.

So for every j, we have

c
(
Dπ(j), Tj) = φ(Dπ(j))‖Tj‖`π(j) +O

(
‖Tj‖`π(j)−1

)
= φ(Dπ(j))

(n
d

)`π(j)
+O

(
n`π(j)−1

)
by the induction hypothesis, applied to Dπ(j). From this, it follows that the final
sum in Lemma 2.1 (with T = Hd

n) is equal to

∑
π∈M(D)

d∏
j=1

(
φ(Dπ(j))

(n
d

)`π(j)(
1+O

(
n−1
)))

= |M(D)|
d∏
i=1

φ(Di)
(n
d

)k(
1+O

(
n−1
))
.

Thus, we can conclude that

c(D,Hd
n) =

d∑
i=1

c(D,Hd
si(n)

) + |M(D)|
d∏
i=1

φ(Di)
(n
d

)k
+O(nk−1).

In particular, there exists a positive constant C(D) such that

∣∣∣c(D,Hd
n)−

d∑
i=1

c(D,Hd
si(n)

)− |M(D)|
d∏
i=1

φ(Di)
(n
d

)k∣∣∣ ≤ C(D)nk−1 (8)

for all n ≥ 1. We choose κ(D) in such a way that (7) holds for 1 ≤ n ≤ d, and

κ(D) ≥ sup
n≥1

φ(D)
∑d

i=1

∣∣si(n)k − (n
d
)k
∣∣+ C(D)nk−1

nk−1 −
∑d

i=1 si(n)k−1
.

This choice will be justified later. To see why the supremum is positive and finite,
note first that the denominator is always positive, as

∑d
i=1 si(n)k−1 ≤ (

∑d
i=1 si(n))k−1

= (n− 1)k−1. The numerator is clearly positive, so the fraction is positive for every
n. Moreover, since si(n) = n

d
+ O(1) for each i, the numerator is O(nk−1), and the

denominator is nk−1(1− d2−k) +O(nk−2). The factor 1− d2−k is positive as we are
assuming k ≥ 3. Therefore, the quotient remains bounded as n→∞.

Now we prove by induction on n that (7) holds for all n ≥ 1 with this choice of κ(D).
For 1 ≤ n ≤ d, it holds by our choice of κ(D). For n > d, we can apply the induction
hypothesis to c(D,Hsi(n)) for all i in (8), which is possible since si(n) ≥ 1 for all i.
This yields

∣∣∣c(D,Hd
n)−

d∑
i=1

φ(D)si(n)k−|M(D)|
d∏
i=1

φ(Di)
(n
d

)k∣∣∣ ≤ κ(D)
d∑
i=1

si(n)k−1+C(D)nk−1
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by the triangle inequality. Applying the triangle inequality one more time gives us

∣∣∣c(D,Hd
n)− d · φ(D)

(n
d

)k
− |M(D)|

d∏
i=1

φ(Di)
(n
d

)k∣∣∣
≤ κ(D)

d∑
i=1

si(n)k−1 + φ(D)
d∑
i=1

∣∣∣si(n)k −
(n
d

)k∣∣∣+ C(D)nk−1.

By the recursion for φ(D), we have |M(D)|
∏d

i=1 φ(Di) = (dk − d)φ(D), and by our
choice of κ(D), we have

φ(D)
d∑
i=1

∣∣∣si(n)k −
(n
d

)k∣∣∣+ C(D)nk−1 ≤ κ(D)
(
nk−1 −

d∑
i=1

si(n)k−1
)
.

Thus∣∣∣c(D,Hd
n)− d · φ(D)

(n
d

)k
− (dk − d)φ(D)

(n
d

)k∣∣∣
≤ κ(D)

d∑
i=1

si(n)k−1 + κ(D)
(
nk−1 −

d∑
i=1

si(n)k−1
)
,

which finally reduces to ∣∣∣c(D,Hd
n)− φ(D)nk

∣∣∣ ≤ κ(D)nk−1,

completing the induction with respect to n and thus also the induction with respect
to k. 2

Note that
ηd(D) = lim

n→∞
γ
(
D,Hd

n

)
≤ Id(D)

holds by definition, so Theorem 2.3 provides a lower bound on the inducibility. We
now show that this lower bound is in fact sharp for (among others) even trees, thereby
proving Theorem 1.2. This is achieved by proving a matching upper bound, which
is derived in the following.

3 Upper bounds involving branches

We first need some notation. For a fixed d ≥ 2 and a given d-ary tree D with
branches D1, D2, . . . , Dd (some of them possibly empty), we define the d-dimensional
real function

ZD(x1, x2, . . . , xd) =
1

1−
∑d

i=1 x
‖D‖
i

∑
π∈M(D)

d∏
j=1

x
‖Dπ(j)‖
j .
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It follows from the definition that this function is always symmetric in its variables.
This is because π ∼D π′ implies that Dπ(j) and Dπ′(j) are isomorphic for all j, thus
‖Dπ(j)‖ = ‖Dπ′(j)‖ for all j. It follows that the final product is the same for all
members of an equivalence class of ∼D, and we can write ZD as

ZD(x1, x2, . . . , xd) =
1

1−
∑d

i=1 x
‖D‖
i

· |M(D)|
d!

∑
π∈Sd

d∏
j=1

x
‖Dπ(j)‖
j , (9)

the sum now being over the set Sd of all permutations. For example, when D is the
even ternary tree E3

7 with seven leaves, as shown in Figure 2, the function is given
by

ZE3
7
(x1, x2, x3) =

x31x
2
2x

2
3 + x21x

3
2x

2
3 + x21x

2
2x

3
3

1− x71 − x72 − x73
.

The following proposition bounds the inducibility of a tree D in terms of the
inducibilities of its branches and the function ZD.

Proposition 3.1 Let D be a d-ary tree with branches D1, D2, . . . , Dd (some of them
possibly empty). Then the following inequality holds:

Id(D) ≤
(

‖D‖
‖D1‖, ‖D2‖, . . . , ‖Dd‖

)( d∏
i=1

Id(Di)
)

sup
0≤x1,x2,...,xd<1
x1+x2+···+xd=1

ZD(x1, x2, . . . , xd) .

(10)

The benefit of this proposition is that the combinatorial problem is translated to
a purely analytic question. The supremum on the right side of the inequality can be
determined explicitly in many cases. In order to prove the proposition, we first need
a technical lemma on the supremum occurring in (10) that will also be useful at a
later point.

Lemma 3.2 Let D be a d-ary tree, and let D1, D2, . . . , Dd be its branches (some of
which might be empty). Moreover, let mj be the number of branches with j leaves for
every j ≥ 0. We have

sup
0≤x1,x2,...,xd<1
x1+x2+···+xd=1

ZD(x1, x2, . . . , xd) ≤
|M(D)|

∏
j≥0mj!

d!
·
(

‖D‖
‖D1‖, ‖D2‖, . . . , ‖Dd‖

)−1
.

In particular, if D has the property that no two nonisomorphic branches have the
same size, then

sup
0≤x1,x2,...,xd<1
x1+x2+···+xd=1

ZD(x1, x2, . . . , xd) ≤
(

‖D‖
‖D1‖, ‖D2‖, . . . , ‖Dd‖

)−1
.

Finally, if D has only two nonempty branches D1, D2 with ‖D1‖ = 1 and ‖D2‖ > 1,
then

sup
0≤x1,x2,...,xd<1
x1+x2+···+xd=1

ZD(x1, x2, . . . , xd) =
1

‖D‖
.
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Proof. Let us use the abbreviations k = ‖D‖ and `i = ‖Di‖. Recall that we can
write the function ZD as

ZD(x1, x2, . . . , xd) =
1

1−
∑d

i=1 x
k
i

· |M(D)|
d!

∑
π∈Sd

d∏
j=1

x
`π(j)
j .

We apply the multinomial theorem to (x1 + x2 + · · · + xd)
k and split the resulting

terms according to the exponents of x1, x2, . . . , xd into permutations of (k, 0, . . . , 0),
permutations of (`1, `2, . . . , `d), and the rest. The terms corresponding to permu-
tations of (k, 0, . . . , 0) are clearly

∑d
i=1 x

k
i . Monomials where the exponents form a

permutation of (`1, `2, . . . , `d) have a coefficient of
(

k
`1,`2,...,`d

)
, and the sum of all such

monomials can be expressed as

1∏
j≥0mj!

∑
π∈Sd

d∏
j=1

x
`π(j)
j ,

since each of them occurs precisely
∏

j≥0mj! times in the sum over all permutations

in Sd. So the contribution to the expansion of (x1 + x2 + · · ·+ xd)
k according to the

multinomial theorem can be expressed as

1∏
j≥0mj!

(
k

`1, `2, . . . , `d

)∑
π∈Sd

d∏
j=1

x
`π(j)
j .

The remaining terms corresponding to exponents that are not permutations of (k, 0,
. . . , 0) or (`1, `2, . . . , `d) are clearly nonnegative whenever the variables x1, x2, . . . , xd
are, so we obtain

(x1 + x2 + · · ·+ xd)
k ≥

d∑
i=1

xki +
1∏

j≥0mj!

(
k

`1, `2, . . . , `d

)∑
π∈Sd

d∏
j=1

x
`π(j)
j .

If additionally x1 + x2 + · · ·+ xd = 1, then we can easily manipulate this to get

ZD(x1, x2, . . . , xd) =
1

1−
∑d

i=1 x
k
i

· |M(D)|
d!

∑
π∈Sd

d∏
j=1

x
`π(j)
j

≤
|M(D)|

∏
j≥0mj!

d!

(
k

`1, `2, . . . , `d

)−1
,

which proves the first part.

If we assume that two branchesDi, Dj ofD are isomorphic if and only if ‖Di‖ = ‖Dj‖,
then the equivalence relation ∼D is given by

π ∼D π′ ⇐⇒ `π(j) = `π′(j) for all j.
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Accordingly, the elements of M(D) correspond to all distinct permutations of (`1, `2,
. . . , `d), and we have

|M(D)| = d!∏
j≥0mj!

,

giving us the second part of the lemma.

For the proof of the final part of the lemma, we merely need to show that the upper
bound can be reached in the limit for a suitable sequence of vectors (x1, x2, . . . , xd).
Note that under the given conditions, the function ZD is given by

ZD(x1, x2, . . . , xd) =

∑
{i,j}⊆[d]

(
xix

k−1
j + xk−1i xj

)
1−

∑d
i=1 x

k
i

=

(∑d
i=1 xi

)(∑d
i=1 x

k−1
i

)
−
(∑d

i=1 x
k
i

)
1−

∑d
i=1 x

k
i

.

If we set x1 = x2 = · · · = xd−1 = ε and xd = 1 − (d − 1)ε, the numerator is readily
seen to be (d − 1)ε + O(ε2), while the denominator is (d − 1)kε + O(ε2). Hence we
have

lim
ε→0+

ZD(ε, ε, . . . , ε, 1− (d− 1)ε) =
1

k
,

which completes the proof of the lemma. 2

Proof of Proposition 3.1. Let us first consider the case that D has only two leaves.
We can then assume that both D1 and D2 are single vertices, and all other branches
empty. Thus Id(D) = Id(D1) = Id(D2) = · · · = Id(Dd) = 1. Moreover,

ZD(x1, x2, . . . , xd) =

∑
{i,j}⊆[d] xixj

1−
∑d

i=1 x
2
i

=
(
∑d

i=1 xi)
2 −

∑d
i=1 x

2
i

2(1−
∑d

i=1 x
2
i )

.

If x1 + x2 + · · · + xd = 1, this actually simplifies to 1
2
, so the supremum in the

inequality is 1
2
, and the statement of the proposition holds.

For the rest of the proof, we can assume that D has more than two leaves. As
before, let us use the abbreviations k = ‖D‖ and `i = ‖Di‖. We know from the proof
of Theorem 3 in [4] that

0 ≤ Id(D;n)− Id(D) ≤ k(k − 1)

n
(11)

for all n ≥ k. Consider a sequence T1, T2, . . . of d-ary trees such that ‖Tn‖ → ∞
as n → ∞ and c(D,Tn) is the maximum of c(D,T ) over all trees T with the same
number of leaves as Tn. Denote the branches of Tn by Tn,1, Tn,2, . . . , Tn,d (some of
these branches are allowed to be empty). One can assume that Tn,1 is the branch of
Tn with the greatest number of leaves for every n. Set αn,i = ‖Tn,i‖/‖Tn‖ for every
i ∈ [d] and every n (the proportion of leaves belonging to Tn,i), and set βn = 1−αn,1.
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We distinguish two cases based on whether βn is “large” (bounded below by a positive
constant) or “small” (going to 0 along a subsequence) as n→∞.

Case 1: Suppose that βn is bounded below by a positive constant δ as n→∞.
We can assume that δ ≤ 1

d
. Note that βn is automatically bounded above by d−1

d
by

definition. It follows that

1−
d∑
i=1

αkn,i ≥ 1− αkn,1 −
( d∑
i=2

αn,i

)k
= 1− (1− βn)k − βkn ≥ 1− (1− δ)k − δk (12)

for all n, since the function x 7→ 1 − (1 − x)k − xk is increasing for x ∈ [0, 1
2
] and

decreasing for x ∈ [1
2
, 1]. Now we apply Lemma 2.1:

c(D,Tn) =
d∑
i=1

c(D,Tn,i) +
∑

π∈M(D)

d∏
j=1

c(Dπ(j), Tn,j) .

In view of (11), it gives us

Id(D)

(
‖Tn‖
k

)
≤ c(D,Tn) ≤

d∑
i=1

(
Id(D) +

k(k − 1)

‖Tn,i‖

)(‖Tn,i‖
k

)

+
∑

π∈M(D)

d∏
j=1

(
Id(Dπ(j)) +

`π(j)(`π(j) − 1)

‖Tn,j‖

)(‖Tn,j‖
`π(j)

)
,

which implies that

Id(D)

(
‖Tn‖
k

)
≤

d∑
i=1

(
Id(D)

‖Tn,i‖k

k!
+
‖Tn,i‖k−1

(k − 2)!

)
+

∑
π∈M(D)

d∏
j=1

(
Id(Dπ(j))

‖Tn,j‖`π(j)
`π(j)!

+N(Tn,j, Dπ(j))
)
,

where N(Tn,j, Dπ(j)) is equal to ‖Tn,j‖`π(j)−1/(`π(j)− 2)! if `π(j) ≥ 2, and 0 otherwise.
Consequently,

(
‖Tn‖k −

d∑
i=1

‖Tn,i‖k
)
Id(D) ≤ k!

∑
π∈M(D)

d∏
j=1

Id(Dπ(j))
‖Tn,j‖`π(j)
`π(j)!

+O(‖Tn‖k−1),

as ‖Tn,j‖ < ‖Tn‖ for all j ∈ [d] and all n. Dividing through by ‖Tn‖k, we get

(
1−

d∑
i=1

αkn,i

)
Id(D) ≤ k!

`1!`2! · · · `d!
∑

π∈M(D)

d∏
j=1

Id(Dπ(j))α
`π(j)
n,j +O(‖Tn‖−1) .
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Now using the fact that 1−
∑d

i=1 α
k
n,i is bounded below by a positive constant as

n→∞ by (12), we deduce that

Id(D) ≤
( d∏
i=1

Id(Di)
)( k

`1, `2, . . . , `d

)
ZD(αn,1, αn,2, . . . , αn,d) +O(‖Tn‖−1)

≤
( d∏
i=1

Id(Di)
)( k

`1, `2, . . . , `d

)
sup

0≤x1,x2,...,xd<1
x1+x2+···+xd=1

ZD(x1, x2, . . . , xd) +O(‖Tn‖−1) .

Finally, we take the limit as n→∞, giving us the desired result in the first case.

Case 2: If βn is not bounded below by a positive constant, then lim infn→∞ βn =
0 and we can assume (without loss of generality, by considering a subsequence if
necessary) that the limit of βn is actually 0 as n → ∞. Denote by Tn\Tn,1 the tree
that is obtained by removing the branch Tn,1 from Tn (and possibly the root of Tn if
there is only one other nonempty branch). We first prove two auxiliary claims.

Claim 1: We claim that the number of copies of D in Tn that involve more than
one leaf of Tn\Tn,1 is at most of order O(β2

n‖Tn‖k).
For the proof of this claim, note that by definition, the number of copies of D in

Tn that involve more than one leaf of Tn\Tn,1 is at most

k∑
j=2

(
‖Tn‖ − ‖Tn,1‖

j

)(
‖Tn,1‖
k − j

)
≤

k∑
j=2

(‖Tn‖ − ‖Tn,1‖)j‖Tn,1‖k−j

j!(k − j)!

= ‖Tn‖k(1− αn,1)2
k∑
j=2

(1− αn,1)j−2αk−jn,1

j!(k − j)!

≤ ‖Tn‖kβ2
n

k∑
j=2

1

j!(k − j)!
.

This completes the proof of Claim 1. It follows that the proportion of copies of D in
Tn that involve more than one leaf of Tn\Tn,1 is at most of order O(β2

n) among all
subsets of k leaves of Tn.

Claim 2: We further claim that D must have only two nonempty branches, one
of which is a single leaf.

Indeed, suppose that D does not have this shape. Then the subsets of leaves of
Tn that induce a copy of D come in two types: either the k leaves are all leaves of
Tn,1, or more than one of the k leaves is a leaf of Tn\Tn,1. So this gives us

c(D,Tn) = c(D,Tn,1) +O(β2
n‖Tn‖k) (13)

by Claim 1. It was established in the proof of (11) (see [4, Theorem 3]) that

0 ≤ Id(D; j)− Id(D; j + 1) ≤ k(k − 1)

j(j + 1)
.
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Summing all these inequalities for j = m,m+ 1, . . . , n− 1, we find that

0 ≤ Id(D;m)− Id(D;n) ≤ k(k − 1)
( 1

m
− 1

n

)
.

Thus we have

Id(D;m)− Id(D;n) = O
(n−m

mn

)
as m ≤ n and m→∞. In particular, since Tn was assumed to contain the maximum
number of copies of D among all trees of the same size,

γ(D,Tn,1)− γ(D,Tn) ≤ Id(D; ‖Tn,1‖)− γ(D,Tn) = O
(‖Tn‖ − ‖Tn,1‖
‖Tn‖ · ‖Tn,1‖

)
. (14)

Using (14), formula (13) implies that

c(D,Tn) ≤
(‖Tn,1‖

k

)(‖Tn‖
k

) c(D,Tn) +O
(
‖Tn,1‖k ·

‖Tn‖ − ‖Tn,1‖
‖Tn‖ · ‖Tn,1‖

+ β2
n‖Tn‖k

)
.

Thus (
1−

(‖Tn,1‖
k

)(‖Tn‖
k

) )c(D,Tn) ≤ O
(
βn‖Tn,1‖k−1 + β2

n‖Tn‖k
)
,

and using the asymptotic formula(
‖Tn‖
k

)
−
(
‖Tn,1‖
k

)
∼ (‖Tn‖ − ‖Tn,1‖)

‖Tn‖k−1

(k − 1)!
=
‖Tn‖kβn
(k − 1)!

, (15)

which holds since ‖Tn‖ ∼ ‖Tn,1‖, we derive

γ(D,Tn) ≤ O(‖Tn‖−1 + βn) .

Therefore

Id(D) = lim
n→∞

γ(D,Tn) ≤ 0

as limn→∞ βn = 0. This contradicts the fact that Id(D) is strictly positive (which
was mentioned in the introduction and also follows from Theorem 2.3). Thus the
proof of Claim 2 is complete.

Back to the main argument, we can now assume (by Claim 2) that D has only
two nonempty branches, one of which (D1, say) is the tree that has only one vertex.
Since we are assuming that k > 2, the second nonempty branch D2 of D has at least
two leaves. Using Claim 1, we get

c(D,Tn) = c(D,Tn,1) + (‖Tn‖ − ‖Tn,1‖)c(D2, Tn,1) +O(β2
n‖Tn‖k) .
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Following the same course of reasoning used to prove Claim 2, it is not difficult to
see that(

1−
(‖Tn,1‖

k

)(‖Tn‖
k

) )c(D,Tn)

≤ (‖Tn‖ − ‖Tn,1‖)
(
‖Tn,1‖
k − 1

)
γ(D2, Tn,1) +O

(
βn‖Tn‖k−1 + β2

n‖Tn‖k
)
.

It follows from the asymptotic formula (15) now that

γ(D,Tn)− γ(D2, Tn,1) ≤ O(‖Tn‖−1 + βn) .

Applying lim inf to both sides of this inequality, we get

Id(D)− lim sup
n→∞

γ(D2, Tn,1) = lim inf
n→∞

(
γ(D,Tn)− γ(D2, Tn,1)

)
≤ 0 ,

which implies that

Id(D) ≤ lim sup
n→∞

γ(D2, Tn,1) ≤ Id(D2) .

This completes the proof of Case 2 and thus the entire proposition once we invoke
the final part of Lemma 3.2. 2

The following corollary is a direct consequence of Proposition 3.1 combined with the
first and second part of Lemma 3.2.

Corollary 3.3 Let D be a d-ary tree, and let D1, D2, . . . , Dd be its branches (some
of which might be empty). Moreover, let mj be the number of branches with j leaves
for every j ≥ 0. Then we have

Id(D) ≤
|M(D)|

∏
j≥0mj!

d!

d∏
i=1

Id(Di) .

If D has the property that no two nonisomorphic branches have the same size, then
this reduces to

Id(D) ≤
d∏
i=1

Id(Di) .

Further improvements rely on our ability to determine (or estimate) the supre-
mum over the function ZD occurring in Proposition 3.1. This will be achieved for a
special class of trees in the following section.

4 Balanced trees

Recall from Theorem 2.3 that ηd(D), as described in Definition 2.2, provides a lower
bound on the inducibility: ηd(D) ≤ Id(D). Simple instances where equality holds
are the empty tree or trees with only one or two leaves. It turns out that there are
many more such cases, which is a consequence of the following theorem:
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Theorem 4.1 Let D be a d-ary tree with branches D1, D2, . . . , Dd (some of which
may be empty). If Id(Di) = ηd(Di) for all branches and the supremum of ZD(x1, x2,
. . . , xd) under the conditions 0 ≤ xi < 1 and x1 + x2 + · · ·+ xd = 1 is attained when
x1 = x2 = · · · = xd = 1

d
, i.e.,

sup
0≤x1,x2,...,xd<1
x1+x2+···+xd=1

ZD(x1, x2, . . . , xd) = ZD

(1

d
,

1

d
, . . . ,

1

d

)
=
|M(D)|
d‖D‖ − d

,

then we also have Id(D) = ηd(D).

Proof. Let us compare the recursion for ηd,

ηd(D) =

(
‖D‖

‖D1‖, ‖D2‖, . . . , ‖Dd‖

)
|M(D)|
d‖D‖ − d

d∏
i=1

ηd(Di) , (16)

to the upper bound in Proposition 3.1:

Id(D) ≤
(

‖D‖
‖D1‖, ‖D2‖, . . . , ‖Dd‖

)( d∏
i=1

Id(Di)
)

sup
0≤x1,x2,...,xd<1
x1+x2+···+xd=1

ZD(x1, x2, . . . , xd) .

(17)
The similarities are obvious. Plugging x1 = x2 = · · · = xd = 1

d
into the representa-

tion (9), we obtain

ZD

(1

d
,

1

d
, . . . ,

1

d

)
=

1

1−
∑d

i=1 d
−‖D‖

· |M(D)|
d!

∑
π∈Sd

d−‖D‖ =
|M(D)|
d‖D‖ − d

.

Thus we can combine (16) and (17), giving us

ηd(D) ≤ Id(D) ≤
(

‖D‖
‖D1‖, ‖D2‖, . . . , ‖Dd‖

)
|M(D)|
d‖D‖ − d

d∏
i=1

Id(Di)

=

(
‖D‖

‖D1‖, ‖D2‖, . . . , ‖Dd‖

)
|M(D)|
d‖D‖ − d

d∏
i=1

ηd(Di) = ηd(D) ,

which implies that Id(D) = ηd(D). 2

Let us now define a class of trees for which the supremum condition of Theo-
rem 4.1 is satisfied. A balanced d-ary tree is a d-ary tree whose branches D1, D2, . . . ,
Dd (some of which may be empty) satisfy

∣∣‖Di‖ − ‖Dj‖
∣∣ ≤ 1 for all i, j, i.e., the

number of leaves in two different branches differs at most by 1. In particular, this
means that a balanced d-ary tree is either a star or has root degree d. Figure 4 shows
an example of a balanced 4-ary tree.

It turns out that balanced d-ary trees always satisfy the supremum condition of
Theorem 4.1. Among other things, this will imply Theorem 1.2.
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Figure 4: A balanced 4-ary tree.

Lemma 4.2 For every balanced d-ary tree D with branches D1, D2, . . . , Dd (some of
which may be empty), we have

sup
0≤x1,x2,...,xd<1
x1+x2+···+xd=1

ZD(x1, x2, . . . , xd) =
|M(D)|
d‖D‖ − d

.

In the proof of this lemma, we rely on Muirhead’s inequality (see [9, p. 44-45]).
Let A = (a1, a2, . . . , ad) and B = (b1, b2, . . . , bd) be vectors of real numbers with
a1 ≥ a2 ≥ · · · ≥ ad and b1 ≥ b2 ≥ · · · ≥ bd. We say that the vector A majorizes the
vector B if

∑d
i=1 ai =

∑d
i=1 bi and for every j ∈ {1, 2, . . . , d− 1},

j∑
i=1

ai ≥
j∑
i=1

bi .

Muirhead’s inequality states that for nonnegative real numbers x1, x2, . . . , xd, we
have ∑

π∈Sd

d∏
i=1

x
aπ(i)
i ≥

∑
π∈Sd

d∏
i=1

x
bπ(i)
i

if A majorizes B, the sum being over all permutations of [d] = {1, 2, . . . , d}. For
our purposes, the following special case is particularly relevant: let k be a positive
integer, and write it as k = ds+ b, with b ∈ {0, 1, . . . , d− 1}. It is not difficult to see
that the vector (s+ 1, . . . , s+ 1, s, . . . , s) (b copies of s+ 1, followed by d− b copies
of s) is majorized by all other vectors of d nonnegative integers with sum k.

Let us now get to the proof of Lemma 4.2.

Proof of Lemma 4.2. Let us write k = ‖D‖ as in previous proofs. Since D is balanced,
there exists a positive integer s such that each branch of D contains either s or s+ 1
leaves. Writing k = ds+ b, where b ∈ {0, 1, . . . , d− 1}, we have b branches with s+ 1
leaves, and d− b branches with s leaves.

We write the function ZD according to (9) as

ZD(x1, x2, . . . , xd) =
1

1−
∑d

i=1 x
k
i

· |M(D)|
d!

∑
π∈Sd

d∏
j=1

x
‖Dπ(j)‖
j .

As mentioned before, the vector of branch sizes (‖D1‖, ‖D2‖, . . . , ‖Dd‖) = (s +
1, . . . , s + 1, s, . . . , s) (without loss of generality in decreasing order) is majorized
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by all other ordered nonnegative integer vectors of the same length and sum. We
expand ( d∑

i=1

xi

)k
−

d∑
i=1

xki

by means of the multinomial theorem and group the terms according to the vector
of exponents. Each of the resulting groups has the form

C
∑
π∈Sd

d∏
j=1

x
aπ(j)
j

for a suitable constant C and a vector (a1, a2, . . . , ad) whose sum of entries is k.
Since each vector (a1, a2, . . . , ad) majorizes (‖D1‖, ‖D2‖, . . . , ‖Dd‖), we can apply
Muirhead’s theorem repeatedly to obtain

( d∑
i=1

xi

)k
−

d∑
i=1

xki ≥
dk − d
d!

∑
π∈Sd

d∏
j=1

x
‖Dπ(j)‖
j .

If the sum of the xis is equal to 1, then this immediately yields

ZD(x1, x2, . . . , xd) =
1

1−
∑d

i=1 x
k
i

· |M(D)|
d!

∑
π∈Sd

d∏
j=1

x
‖Dπ(j)‖
j ≤ |M(D)|

dk − d
.

Equality holds in Muirhead’s inequality if and only if all xi are equal, so this is also
the case for our inequality: when x1 = x2 = · · · = xd = 1

d
, the upper bound is

attained (as we have already seen in the proof of Theorem 4.1). This proves the
lemma. 2

The following theorem is now straightforward.

Theorem 4.3 For a balanced d-ary tree D with branches D1, D2, . . . , Dd (some of
which may be empty), the inequality

Id(D) ≤ |M(D)|
d‖D‖ − d

(
‖D‖

‖D1‖, ‖D2‖, . . . , ‖Dd‖

) d∏
i=1

Id(Di)

holds for every d. Furthermore, if Id(Di) = ηd(Di) for all i, then we also have
Id(D) = ηd(D).

Proof. The first part is a consequence of Proposition 3.1 and Lemma 4.2. The second
part follows from Theorem 4.1 together with Lemma 4.2. 2

The upper bound in Theorem 4.3 can be extended to trees which have fewer than
d nonempty branches, but are otherwise balanced (i.e., the number of leaves in any
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two nonempty branches differs at most by 1). In this case, the same approach yields
the inequality

Id(D) ≤ |M(D)|
Σ(D)

(
‖D‖

‖D1‖, ‖D2‖, . . . , ‖Dd‖

) d∏
i=1

Id(Di) ,

where Σ(D) is defined as follows: let r be the number of nonempty branches of D,
and let V (D) be the set of all vectors (k1, k2, . . . , kd) with 0 ≤ ki < ‖D‖ for all i,
k1 + k2 + · · ·+ kd = ‖D‖, and at least d− r of the entries ki equal to 0. Then

Σ(D) =
∑

(k1,k2,...,kd)∈V (D)

(
‖D‖

k1, k2, . . . , kd

)
.

Let us now look at an application of Theorem 4.3.

Proof of Theorem 1.2. Let us define Ed
0 to be the empty tree, which is consistent

with the recursive definition. We have Id(E
d
0) = ηd(E

d
0) = Id(E

d
1) = ηd(E

d
1) = 1.

Since even trees are balanced and their branches are again even trees, it follows by
induction on k from the second part of Theorem 4.3 that Id(E

d
k) = ηd(E

d
k) for all k.

Setting ck = Id(E
d
k)/k! = ηd(E

d
k)/k!, we have c0 = c1 = 1. The recursive definition

of ηd yields

cds+b =
ηd(E

d
ds+b)

(ds+ b)!
=
|M(Ed

ds+b)|
dds+b − d

(ηd(Ed
s )

s!

)d−b(ηd(Ed
s+1)

(s+ 1)!

)b
.

The even tree Ed
ds+b has two types of branches (Ed

s and Ed
s+1), occurring d − b and

b times respectively. Thus the elements of M(Ed
ds+b) correspond precisely to the

b-element subsets of [d]. So |M(Ed
ds+b)| =

(
d
b

)
, and it follows that

cds+b =

(
d
b

)
dds+b − d

cd−bs cbs+1 ,

which is precisely the recursion stated in Theorem 1.2. 2

A complete d-ary tree is a strictly d-ary tree in which all leaves are at the same
distance from the root; the complete d-ary tree with dh leaves (whose distance from
the root is h) is denoted by Cd

h. It is not difficult to see that complete d-ary trees
are precisely the even trees of the form Ed

dh
, see for instance E3

9 in Figure 2. As
a corollary of Theorem 1.2, we obtain an explicit formula for the inducibility of a
complete d-ary tree.

Corollary 4.4 For the complete d-ary tree of height h, we have

Id
(
Cd
h

)
= (dh)!

h−1∏
i=0

(
dd

h−i − d
)−di

.

Proof. Note that Id(C
d
h) = (dh)!cdh , and the recursion

cdh =
1

ddh − d
cddh−1

holds. The stated formula follows easily by induction. 2
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Balanced trees are by far not the only trees that satisfy the supremum condition of
Theorem 4.1. For example, one can show that all binary trees where one branch has
` ≥ 2 leaves and the other `+2 leaves satisfy it. This implies, among other instances,
that the binary tree T1 in Figure 5 has inducibility I2(T1) = η2(T1) = 45

217
. The tree

T2 in the same figure can also be shown to satisfy the conditions of Theorem 4.1
(even though it is not balanced), and one obtains I3(T2) = η3(T2) = 15

121
.

T1 T2

Figure 5: Further examples satisfying the conditions of Theorem 4.1.

Unfortunately, it does not seem easy to characterise the cases when the supremum
condition of Theorem 4.1 is satisfied. An answer to this open question would be
extremely useful.

We conclude this section with a result on the speed of convergence of the maxi-
mum density over strictly d-ary trees to the inducibility.

Theorem 4.5 If Id(D) = ηd(D), then we have

id(D;n) = Id(D) +O(n−1) . (18)

Proof. The lower bound is a consequence of Theorem 2.3, since

id(D;n) ≥ γ(D,Hd
n) = ηd(D) +O(n−1).

The upper bound follows directly from (4):

id(D;n) ≤ Id(D; (d− 1)n+ 1) ≤ Id(D) +
‖D‖(‖D‖ − 1)

(d− 1)n+ 1
.

2

As mentioned in the introduction, this result gives support to the conjecture
that (18) holds for arbitrary trees D (in general, it has only been proven with an
error term O(n−1/2)). As we have seen in this section, there are many examples for
which the condition Id(D) = ηd(D) holds, such as all even trees.

5 Further bounds

Even when Theorem 4.3 does not yield the precise value of the inducibility, it often
gives us very good bounds. In the case whereD has d identical branches, the following
theorem shows that it is at least “almost sharp”.
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Theorem 5.1 Let d ≥ 2 be a fixed integer and D a d-ary tree. Assume that D has
d branches all of which are isomorphic to the same d-ary tree, say D′. Then we have

‖D‖!
d‖D‖

(
Id(D

′)

‖D′‖!

)d

≤ Id(D) ≤ ‖D‖!
d‖D‖ − d

(
Id(D

′)

‖D′‖!

)d

.

Proof. The lower bound is a special case of [4, Theorem 9], while the upper bound
is a direct consequence of Theorem 4.3. 2

We conclude with a lower bound on the inducibility of a tree in terms of the
inducibilities of its branches, of which the lower bound in the previous theorem is
also a special case.

Theorem 5.2 Let D be a d-ary tree with branches D1, D2, . . . , Dd (some of which
may be empty). The following inequality holds:

Id(D) ≥
(

‖D‖
‖D1‖, ‖D2‖, . . . , ‖Dd‖

)
‖D‖−‖D‖

d∏
i=1

‖Di‖‖Di‖
d∏
i=1

Id(Di) .

Here, we set 00 = 1 if ‖Di‖ = 0 for some i.

Proof. Let us write k = ‖D‖ and `i = ‖Di‖ as in previous proofs. For each Di, we can

find a sequence of rooted trees T
(i)
n such that ‖T (i)

n ‖ = n and limn→∞ γ(Di, T
(i)
n ) =

Id(Di). Now define a new sequence of trees Tn as follows:

• For each i ∈ [d], take a copy of the tree T
(i)
`in

, which has `in leaves (if `i = 0, this
is the empty tree).

• Add a new root, which is connected to the roots of all these trees by an edge.

Note that the tree Tn has
∑d

i=1(`in) = kn leaves. If we take a leaf set in the i-th
branch that induces a copy of Di for each i, then the union of all these leaf sets
induces a copy of D. Therefore, we have

c(D,Tn) ≥
d∏
i=1

c(Di, T
(i)
`in

) .

This also follows easily from Lemma 2.1. Now note that c(Di, T
(i)
`in

) =
(
`in
`i

)
γ(Di, T

(i)
`in

)

and c(D,Tn) =
(
kn
k

)
γ(D,Tn). It follows that

γ(D,Tn) ≥
∏d

i=1

(
`in
`i

)(
kn
k

) d∏
i=1

γ(Di, T
(i)
`in

) .

As n→∞, the right side of this inequality tends to∏d
i=1

`
`i
i

`i!

kk

k!

d∏
i=1

Id(Di) =

(
k

`1, `2, . . . , `d

)
k−k

d∏
i=1

``ii

d∏
i=1

Id(Di) ,
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so it follows that

Id(D) ≥ lim sup
n→∞

γ(D,Tn) ≥
(

k

`1, `2, . . . , `d

)
k−k

d∏
i=1

``ii

d∏
i=1

Id(Di) ,

which completes the proof. 2

Let us illustrate the results of this section with two final examples, which are
shown in Figure 6.

T1 T2

Figure 6: Two final examples.

For the ternary tree T1 on the left, Theorem 5.1 yields 0.08535 ≈ 560
6561
≤ I3(T1) ≤

7
82
≈ 0.08537, giving us an excellent approximation. The lower bound provided by

Theorem 2.3 is much weaker in this case, as η3(T1) = 189
5248
≈ 0.03601. For the binary

tree T2 on the right, Theorem 5.2 yields I2(T2) ≥ 80
243
≈ 0.32922, which is stronger

than the lower bound η2(T2) = 60
217
≈ 0.27650. An upper bound can be obtained

from Proposition 3.1, which gives us I2(T2) ≤ 15
31
≈ 0.48387. We do not know the

precise value in either of the two cases, though.
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