
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 82(1) (2022), Pages 1–20

Minimally connected r-uniform hypergraphs

Mark Budden

Department of Mathematics and Computer Science
Western Carolina University
Cullowhee, NC 28723, U.S.A.
mrbudden@email.wcu.edu

Josh Hiller

Department of Mathematics and Computer Science
Adelphi University

Garden City, NY 11530-0701, U.S.A.
johiller@adelphi.edu

Andrew Penland

Department of Mathematics and Computer Science
Western Carolina University
Cullowhee, NC 28723, U.S.A.
adpenland@email.wcu.edu

Abstract

In this paper, we define a construction process for minimally connected
r-uniform hypergraphs, which captures the intuitive notion of building
a hypergraph piece-by-piece, and a numerical invariant called the tight-
ness, which is independent of the construction process used. Using these
tools, we prove some fundamental properties of minimally connected hy-
pergraphs. We also give bounds on their chromatic numbers and provide
some results involving hyperedge colorings. We show that every con-
nected r-uniform hypergraph contains a minimally connected spanning
subhypergraph and provide a polynomial-time algorithm for identifying
such a subhypergraph.
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1 Introduction

Trees, and in particular, spanning trees, offer a very useful tool for studying con-
nectivity and have several interesting algorithmic properties in the context of other
graphs. In the graph case, trees are connected acyclic graphs. Equivalently, they are
minimally connected. When one transitions to the setting of r-uniform hypergraphs,
these definitions are no longer equivalent. For instance, it is well-known that every
connected graph has a spanning tree and that this statement is not true for r-uniform
hypergraphs in general.

The distinction between graphs and other r-uniform hypergraphs with regard to
spanning trees has important considerations in theoretical computer science. If one
needs a spanning tree in a graph, standard algorithms such as that of Prim [16]
or Kruskal [14] will do the job in low-degree polynomial time. For 3-uniform hy-
pergraphs, an algorithm due to Lovász [15] will also determine the existence of a
spanning tree in polynomial time. A subsequent, more efficient polynomial time
algorithm for the same problem is due to Gabow and Stallman [13]. However, An-
dersen and Fleischner [1] showed that the general problem of determining whether or
not a hypergraph has a spanning tree is NP-complete, even for relatively restricted
classes, such as linear hypergraphs in which each vertex is contained in at most three
hyperedges, or 4-uniform hypergraphs which have some vertex in common to all hy-
peredges. Andersen and Fleischner [1] quote this last fact as an unpublished result
of Carsten Thomassen.

Another important distinction between graphs and hypergraphs arises in the
equivalence of certain definitions of a spanning tree. In graph theory, every spanning
minimally connected subgraph is a tree, but the analagous statement does not hold
for hypergraphs. This distinction between spanning trees and minimally connected
subhypergraphs appears when generalizing certain results from graphs to hyper-
graphs. For example, in 2014, Chartrand, Johns, McKeon, and Zhang [7] proved
that a connected graph G has its rainbow connection number equal to its size if and
only if G is a tree. In order to prove an analogue of this result in the setting of
hypergraphs, Carpentier, Liu, Silva and Sousa [6] were forced to consider the more
general class of minimally connected hypergraphs. In this paper, we examine other
aspects of hypergraph theory where minimally connected hypergraphs are necessary
to prove results that typically concern trees in graphs.

In the next section, we give the formal definition of an r-uniform tree and provide
a very simple demonstration that for every r > 2, there exist connected hypergraphs
which do not admit spanning r-uniform trees. In Section 3, we consider structural
properties and existence theorems for minimally connected hypergraphs, introducing
a numerical invariant called tightness, associated to a hypergraph. In Section 4, we
examine chromatic numbers of minimally connected hypergraphs. Section 5 of this
paper deals with other connectivity issues related to minimally connected hyper-
graphs. We conclude with some open questions and directions for future research.
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2 Definitions and background

In this section, we provide the definitions, elementary examples, and concepts that
are necessary to derive the results of this paper. If S is any set, then we denote by(
S
r

)
the set of all r-element subsets of S. An r-hypergraph H consists of two sets: a

non-empty set V (H) called the vertex set, and a set E(H) ⊆
(
V (H)

r

)
, called the set

of hyperedges. When r = 2, our definition coincides with that of a graph. When the
r-uniform hypergraph being considered is clear from the context, we may write V
and E in place of V (H) and E(H), respectively.

The size of an r-uniform hypergraph is |E| while its order is |V |. The degree of a
vertex v ∈ V is the number of hyperedges that contain v. Throughout the remainder
of this paper, we will focus on r-uniform hypergraphs with r > 2. An r-uniform
hypergraph H is called finite if V (H) is finite. We will only consider finite r-uniform
hypergraphs and often, just refer to them as hypergraphs. For clarity, when we refer
to graphs, we will call them 2-graphs.

A Berge path consists of a sequence of k distinct vertices v1, v2, . . . , vk and k− 1
distinct hyperedges e1, e2, . . . , ek−1 such that vi, vi+1 ∈ ei for all i ∈ {1, 2, . . . , k−1}.
A Berge cycle is formed if there is a hyperedge ek that includes both v1 and vk.
Observe in these two definitions that for r > 2, the hyperedges contain vertices
other than v1, v2, . . . , vk, which are not assumed to be distinct (unless they are in a
common hyperedge). A Berge path is a loose path if for i < j,

|ei ∩ ej| =
{

0 if j 6= i+ 1
1 if j = i+ 1.

Observe that although vertices in a Berge path may be repeated, all vertices con-
tained in a loose path are necessarily distinct.

An r-uniform hypergraph is called connected if for every distinct pair of vertices
u and v, there exists some Berge path that contains both u and v. An r-uniform
hypergraph that is not connected is called disconnected. A connected subhypergraph
H ′ of an r-uniform hypergraph H is called a component of H if H ′ is not a proper
subhypergraph of any connected subhypergraph of H. It follows that when H is
connected, it contains a single component.

We say that an r-uniform hypergraph H is minimally connected if the removal
of any hyperedge (while retaining all vertices) disconnects H. For example, consider
the hypergraphs in Figure 1. Every hyperedge in the first hypergraph contains some
vertex of degree one, but this is not the case in the second hypergraph.

Figure 1: Two minimally connected 4-uniform hypergraphs.
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Observe that if every hyperedge of a connected r-uniform hypergraph contains at
least one vertex of degree 1, then it is minimally connected. The second hypergraph
in Figure 1 demonstrates that the converse to this statement is false. Figure 2 shows
two other minimally connected hypergraphs, both of which are Berge cycles.

Figure 2: Two minimally connected hypergraphs that are also Berge cycles.

Of course, having defined minimally connected hypergraphs, one must inquire
about the appropriate definition of a hypergraph tree. We now give several possible
definitions.

Definition 2.1. The following definitions of r-uniform trees are equivalent:

(1) T is a connected r-uniform hypergraph that does not contain any Berge cycles.

(2) T is an r-uniform hypergraph that can be formed hyperedge-by-hyperedge with
each new hyperedge intersecting the previous hypergraph at exactly one vertex.
That is, each new hyperedge requires the creation of exactly r−1 new vertices.

(3) T is a connected r-uniform hypergraph in which the removal of any hyper-
edge (keeping all vertices) results in a hypergraph with exactly r connected
components.

(4) T is an r-uniform hypergraph in which there exists a unique loose path between
any pair of distinct vertices.

(5) T is a connected r-uniform hypergraph in which the size |E| and order |V |
satisfy |V | = (r − 1)|E|+ 1.

The equivalence of (1)–(4) can be found in Theorem 2.1 of [5]. We will wait
until Theorem 3.5 in Section 3 to complete the proof that (5) is also a suitable
definition. An important observation is that from (3), it immediately follows that
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every r-uniform tree is minimally connected (in that the removal of any hyperedge
disconnects the hypergraph). Of course, the hypergraphs given in Figure 2 and
the second hypergraph given in Figure 1 show that not all minimally connected
hypergraphs are trees.

As we begin our investigation into minimally connected hypergraphs, we will
emphasize how they can differ from r-uniform trees. The examples given so far
demonstrate that if a hyperedge-by-hyperedge construction of a minimally connected
hypergraph exists, then it must allow for the intersection of a new hyperedge with
more than one vertex (and even more than one hyperedge) in the previous hyper-
graph. Since some minimally connected hypergraphs are Berge cycles, there can also
be multiple Berge paths between a pair of distinct vertices. All connected 2-graphs
are known to contain spanning trees, but the following proposition shows that it
is quite easy to construct r-uniform hypergraphs with r > 2 in which this is not
true. Let us first define an r-uniform hypergraph spanning tree for an r-uniform
hypergraph H to be an r-uniform tree T with V (T ) = V (H) and E(T ) ⊆ E(H).

Proposition 2.2. For every r > 2 there exists a connected r-uniform hypergraph
which does not admit an r-uniform spanning tree.

Proof. Fix r > 2 and consider the r-uniform hypergraph on r + 1 vertices with two
hyperedges: e1 = v1v2 · · · vr and e2 = v2v3 · · · vr+1. Then the hypergraph obtained
is connected and not a tree, but the removal of either hyperedge disconnects the
hypergraph.

3 Structural properties and existence theorems

In this section, we analyze the underlying structure of minimally connected r-uniform
hypergraphs. We start by defining a construction process, which leads to the notion
of the tightness sum of such a hypergraph. Our attention then turns to possible sizes
and an algorithm for finding a spanning minimally connected subhypergraph for any
connected r-uniform hypergraph.

3.1 Construction processes for hypergraphs

The definition we offered for a minimally connected r-uniform hypergraph can be a
little fastidious to work with when proving basic properties of hypergraphs. Hence,
we wish to offer an equivalent constructive definition of a minimally connected r-
uniform hypergraph that will serve our purposes nicely. In order to make this notion
precise, we formally define a constructive process.

Definition 3.1. Let H be an r-uniform hypergraph of size m. A constructive process
P for H is a finite sequence of hypergraphs Hi, 1 ≤ i ≤ m satisfying the following
properties:

• Hm = H,



M. BUDDEN ET AL. /AUSTRALAS. J. COMBIN. 82 (1) (2022), 1–20 6

• Hj is a subhypergraph of Hk for j ≤ k,

• each Hi has exactly i hyperedges, and

• for each j, E(Hj+1) = E(Hj)
⋃
{ej} for some ej ∈ E(H).

We say that a constructive process P for a hypergraph H is connected if and
only if each Hi is connected for all i. We say that a constructive process P for a
hypergraph H is minimally connected if and only if each Hi is minimally connected.
The following two theorems highlight the significance of constructive processes as a
tool for studying connected and minimally connected r-uniform hypergraphs.

Theorem 3.2. Let H be an r-uniform hypergraph. Then H is connected if and only
if H has a connected constructive process.

Proof. If H has a connected constructive process, then H must be connected since
Hm = H. To prove the forward implication, we use induction on the size of H. If a
hypergraph is connected and consists of a single hyperedge e, then the constructive
process consists only of H1, which is necessarily connected. Now assume that all
connected r-uniform hypergraphs of size at most m − 1 have connected construc-
tive processes and let H be a connected r-uniform hypergraph of size m. Select a
hyperedge e and remove it from H. There exist two possibilities: H − e is either
connected or disconnected. If it is connected, then by the inductive hypothesis, it
has a connected constructive process H1, H2, . . . , Hm−1. It follows that H1, H2,
. . . , Hm−1, H is a connected constructive process for H. In the case where H − e is
disconnected, let C1, C2, . . . , Ck be its components that have size at least one. By
the inductive hypothesis, each Ci has a connected constructive process. Denote the
constructive process for Ci by

C1
i , C

2
i , . . . , C

e1
i ,

where e1 + e2 + · · ·+ ek = m− 1. Let C1 + e be the connected hypergraph formed by
adding hyperedge e (and all vertices in e that are not already in C1) to the connected
hypergraph C1. It follows that

C1
1 , C

2
1 , . . . , C

e1
1 , C1 + e, C1

2 , C
2
2 , . . . , C

e2
2 , . . . , C

1
k , C

2
k , . . . , C

ek
k

is a connected constructive process for H, completing the proof of the theorem.

Theorem 3.3. Let H be an r-uniform hypergraph. Then H is minimally connected
if and only if H has a minimally connected constructive process.

Proof. If an r-uniform hypergraph H has a minimally connected constructive pro-
cess, then H must be minimally connected since Hm = H. To prove the forward
implication, suppose that H a is minimally connected r-uniform hypergraph. In
particular, H is connected, so it can be constructed hyperedge-by-hyperedge with
each resulting hypergraph being connected along the way. Let Hi be the resulting
hypergraph after the first i hyperedges e1, e2, . . . , ei have been added. Note that if
Hi is not minimally connected, then there exists some hyperedge whose removal does
not disconnect Hi, and hence, would not disconnect H.
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We have shown that there is a constructive process P that one can use to obtain
a minimally connected hypergraph. Suppose that H is a minimally connected r-
uniform hypergraph of size m. Denote the hyperedges in this constructive process
by e1, e2, . . . , em and let Hi be the resulting minimally connected hypergraph after
hyperedge ei has been added. Note that with the addition of each hyperedge, at
least one new vertex must be introduced. Otherwise, when adding in a hyperedge
ei that only uses existing vertices, the hypergraph Hi−1 would have to have been
disconnected, contradicting our assumption about the constructive process. It is
also worth observing that the addition of any ei cannot prevent the removal of a
previous hyperedge ej (j < 1) from disconnecting the hypergraph (although it may
change the number of resulting components).

3.2 The notion of tightness and some applications

A constructive process P produces a sequence t1, t2, . . . , tm−1 of tightnesses given
by

ti = |V (Hi) ∩ ei+1|,

where 1 ≤ ti ≤ r − 1 and 1 ≤ i ≤ m− 1. Although the constructive process that we
have described is not unique for a given connected hypergraph H, we will show in the
following theorem that the sum of the tightnesses is independent of the construction
chosen.

Theorem 3.4. Let P and P ′ be constructive processes for a connected r-uniform
hypergraph H of size m with tightness sequences

t1, t2, . . . , tm−1 and t′1, t
′
2, . . . , t

′
m−1,

respectively. Then the tightness sums

tP :=
m−1∑
i=1

ti and tP ′ :=
m−1∑
i=1

t′i

satisfy tP = tP ′.

Proof. Let H be a connected r-uniform hypergraph of size m and suppose that P
and P ′ are constructive processes for H with tightness sequences

t1, t2, . . . , tm−1 and t′1, t
′
2, . . . t

′
m−1,

respectively. Then for 1 ≤ i ≤ m− 1, the addition of ei+1 in P requires the addition
of r − ti new vertices. An analogous statement can be made for P ′. If H has order
n, then

n = r +
m−1∑
i=1

(r − ti) = r +
m−1∑
i=1

(r − t′i),
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from which it follows that
m−1∑
i=1

ti =
m−1∑
i=1

t′i,

completing the proof of the theorem.

Thus, the tightness sum of a connected r-uniform hypergraph H is independent
of the specific choice of constructive process, so we denote by tH the tightness sum
for any constructive process of H. Letting t1, t2, . . . , tm−1 be a tightness sequence for
any constructive process for H, the order of H is given by

|V (H)| = r +
m−1∑
i=1

(r − ti) = rm− tH .

The following theorem will prove the equivalence of (2) and (5) in Definition 2.1.

Theorem 3.5. Let H be a connected r-uniform hypergraph of size m. Then H is
an r-uniform tree if and only if tH = m− 1. Equivalently, H is an r-uniform tree if
and only if it has order |V (H)| = (r − 1)|E(H)|+ 1.

Proof. Every r-uniform tree of size m is minimally connected and has order
r + (m − 1)(r − 1). Thus, we need only show that if H is a connected r-uniform
hypergraph of size m and order r + (m− 1)(r − 1), then H is a tree. We prove the
contrapositive to this statement. Suppose that H is a connected r-uniform hyper-
graph that is not a tree. Then H can be constructed hyperedge-by-hyperedge, with
the resulting hypergraph being connected at each stage of the construction. Since H
is connected, ti ≥ 1 for all 1 ≤ i ≤ m− 1. If H is not a tree, some tightness ti ≥ 2.
So, the sum of the tightnesses of H satisfies tH ≥ m, giving a maximal order of
r + (m− 1)(r − 1)− 1.

Denote by S
(r)
n the r-uniform star of order n consisting of r−1 vertices in the in-

tersection of all hyperedges (called the center), along with each hyperedge containing
a single vertex of degree 1. This definition agrees with the more general definition of
a star given in [4]. Observe that such a star is minimally connected since the removal
of any hyperedge leaves the vertex of degree 1 isolated. See Figure 3 for an example
of a 6-uniform star.

Theorem 3.6. For r ≥ 3, a minimally connected r-uniform hypergraph H of order
n and size m is an r-uniform star if and only if

tH = (m− 1)(r − 1).

Proof. If a minimally connected hypergraph H is a star, then every constructive
process for H requires each tightness ti = r − 1, giving tH = (m − 1)(r − 1). To
prove the converse, we will use induction on m. When m = 1, tH = 0 and H
consists of a single hyperedge, which is trivially a star. Now suppose that H is a
minimally connected hypergraph of size m > 1 in which tH = (m − 1)(r − 1) and
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Figure 3: A 6-uniform star of order 9.

that all minimally connected hypergraphs of size m− 1 with tightness sum equal to
(m − 2)(r − 1) are necessarily stars. As a minimally connected hypergraph, H has
a minimally connected constructive process P . Let em be the last hyperedge added
in such a process and consider the hypergraph H ′ formed by removing em (and all
resulting isolated vertices) from H. Since tH = (m − 1)(r − 1), all tightnesses ti in
P are equal to r− 1. Hence, the removal of em removes only one isolated vertex and
we find that |V (H)| = |V (H ′)|+ 1. So,

tH′ = r(m− 1)− |V (H ′)|
= r(m− 1)− (|V (H)| − 1)

= r(m− 1)− (rm− tH − 1)

= r(m− 1)− (rm− (m− 1)(r − 1)− 1)

= (m− 2)(r − 1).

By the inductive hypothesis, H ′ is a star. When adding back in hyperedge em to
form H, including any vertex x of degree one from H ′ will prevent the hyperedge ei
that includes x from disconnecting H if it is removed, contradicting the assumption
that H is minimally connected. Thus, the only vertices that can be included in the
intersection of em with H ′ are those of degree greater than one in H ′. It follows that
H is a star.
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3.3 The possible sizes of minimally connected subhypergraphs

We now focus our attention on finding bounds for the size of a minimally connected
r-uniform hypergraph. Let H be a connected hypergraph of order n ≥ r + 1. From
Theorem 3.3, each minimally connected spanning hypergraph M can be constructed
hyperedge-by-hyperedge, with each resulting hypergraph being minimally connected,
and this process results in a (finite) sequence of tightnesses t1, t2, . . . , tm−1, where
1 ≤ ti ≤ r − 1 and m is the size of M . The maximum number of hyperedges M can
contain occurs when M is (r − 1)-tight (i.e., t1 = t2 = · · · = tm−1 = r − 1). In this
case, we find that M contains m = n− r + 1 hyperedges. For example, consider the
star in Figure 3.

The minimum number of hyperedges that M can contain occurs when M is a
tree, or is close to being a tree (with say, only one tightness not equal to 1). If M is
an r-uniform tree of order n and size m, then

m =
n− 1

r − 1
.

If M is not a tree, but is close to being a tree, then suppose that

n− 1 = (m− 1)(r − 1) + k, where 1 ≤ k ≤ r − 2.

It follows that

m =
n− 1

r − 1
+
r − 1− k
r − 1

=
⌈n− 1

r − 1

⌉
.

Putting together these upper and lower bounds, we have shown the following.

Theorem 3.7. Let H be a connected r-uniform hypergraph of order n with minimally
connected spanning subhypergraph M of size m. Then

n− 1

r − 1
≤ m ≤ n− r + 1.

Theorem 3.7 hints at a question: for a given order n is there a minimally connected
r-uniform hypergraph of size m for every permissible value of m? The following result
shows that this is the case.

Theorem 3.8. Fix an order n ≥ r and let m ∈ N satisfy

n− 1

r − 1
≤ m ≤ n− r + 1.

Then there exists a minimally connected r-uniform hypergraph of size m and order n.

Proof. Let z = n−r+1−m. We will define a constructive process which culminates
in an r-uniform hypergraph of size m and order n. Let us choose r vertices to form
e1 and label these v1, v2, . . . , vr. We then proceed with two cases based on the value
of z:
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Case 1: If z ≥ r − 2, then define a, b ∈ Z such that z = a(r − 2) + b. For 1 ≤ i ≤ a
let ti = 1, ta+1 = r − b − 1, and tj = r − 1 for a + 1 < j < m − 1. For e2 let
e1 ∩ e2 = {v1}. For ek (2 < k < m) pick any ti−1 vertices from v2, v3, . . . , vr. Then
every edge, except possibly e1 contains a vertex of degree 1. If e1 is removed then e2
is disconnected from the rest of the hypergraph. Thus the resulting hypergraph is of
size m, order n, and is minimally connected.

Case 2: If z < r − 2, then let t1 = r − z − 1. Let e1 ∩ e2 = {v1, v2, . . . , vt1} create
m − 2 edges e3, e4, . . . , em and for every 2 < i ≤ m, let e1 ∩ ei = {v1, v2, . . . , vr−1}.
Thus every edge has at least one vertex of degree 1, and so the resulting hypergraph
is of size m, order n, and is minimally connected.

Theorem 3.8 leads to an interesting observation. The complete hypergraph K
(r)
n

contains minimally connected subhypergraphs of size m for every permissible value
of m. This fact stands in stark contrast to the context of 2-graphs, where it is well
known that the size of a spanning tree is completely determined by the order of the
parent graph.

3.4 Existence of an algorithm for minimally connected spanning subhy-
pergraphs

One motivation for this paper was to generalize a ubiquitous result in the study of
trees: every connected graph contains a spanning tree. We now provide an analo-
gous result for r-uniform hypergraphs and describe a polynomial-time algorithm for
finding such an subhypergaph.

Proposition 3.9. Every connected r-uniform hypergraph contains a spanning min-
imally connected subhypergraph.

Proof. Let H be a connected r-uniform hypergraph. If H is not minimally connected,
then there exists some hyperedge e1 whose removal does not disconnect H. Let H1

be the hypergraph formed by removing e1 from H. If H1 is not minimally connected,
then repeat this process. As H has a finite number of hyperedges, the process
must eventually terminate with a minimally connected hypergraph Hi that spans
the vertices in H.

In this subsection we discuss an algorithm for finding a minimally connected
spanning subhypergraph of an r-uniform hypergraph. In order to make the discussion
clear, we start with some necessary definitions.

An algorithm is an unambiguous, step-by-step process that takes input and ter-
minates with some output. If f and g are functions from N to itself, we say that g(n)
is O(f(n)) if there exist positive constants c and n0 such that 0 ≤ g(n) ≤ cf(n) for
all n ≥ n0. For an algorithm A, we let TA(n) denote the maximum number of steps
that it takes A to terminate on an algorithm of size n; note that TA is a function
from N to N. Given an algorithm A and a function f(n), we say that an algorithm A
is O(f(n)) if the function TA is O(f(n)). If there exists a polynomial p(n) such that
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A is O(p(n)), we say that A is polynomial time. For a more thorough definition of
these concepts, we would direct the curious reader towards the standard [8, Chapter
2]. Throughout the rest of this section, assume that n = |V (H)|, where H is an
r-uniform hypergraph.

Gallo, Longo, Pallottino, and Nguyen [10] provide an algorithm Visit(H, v) which
takes as input a hypergraph H and a vertex v ∈ V (H), and returns all vertices in H
that are in the same connected component as v. The Visit algorithm is O(s), where

s =
∑

e∈E(H)

|e|.

If we assume that H is an r-uniform hypergraph, then there are at most
(
n
r

)
hyper-

edges, and each e ∈ E(H) has |e| = r. Recall that if r is a fixed constant,
(
n
r

)
is

O(nr) when viewed as a function of n. Thus, in the case of an r-uniform hypergraph,
we have s = O(nr), and Visit becomes a polynomial time algorithm. Notice that
since being in the same connected component is an equivalence relation, it is not
hard to see that an r-uniform hypergraph H is connected if and only if Visit(H, v)
returns the entire set V (H) for any v ∈ V (H).

Theorem 3.10. For any value of r, there exists an algorithm that takes as input
a connected r-uniform hypergraph H and returns M , a minimally connected span-
ning subhypergraph of H. If r is viewed as a fixed constant, this algorithm runs in
polynomial time on the number of vertices in H.

Proof. Consider the following algorithm: Let H∗ be a copy of H. Begin by choosing
an arbitrary vertex v∗ ∈ H. For each edge e in E(H∗), run Visit(H∗ − {e}, v∗)
to determine if e can be removed without disconnecting H∗. If yes, remove e from
E(H∗). Note that H∗ − {e} can only be connected if H∗ − {e} will contain all of
V (H∗). So at each stage, H∗ remains a spanning subhypergraph ofH. This algorithm
will terminate with H∗ as a minimally connected subhypergraph of H, since if an
edge of E(H∗) could be removed without disconnecting H∗, that edge would have
been removed at the stage it was considered. Since H is an r-uniform hypergraph,
there are at most

(
n
r

)
hyperedges, which is O(nr), and for each hyperedge we call

Visit(H, v∗) which we know is an O(nr) algorithm. Hence the algorithm is O(n2r),
which is a polynomial in r.

It is worth emphasizing that these results provide a sharp contrast between span-
ning minimally connected subhypergraphs and spanning trees. For instance, for a
4-uniform hypergraph on n vertices, we have just shown that there must be a span-
ning minimally connected subhypergraph, and in fact there is an O(n8) algorithm
to find one. As discussed in the Introduction, 4-uniform hypergraphs do not always
have spanning trees, and no known polynomial time algorithm is known to find such
a spanning tree if it does exist. We would hazard the following intuitive explanation
for the potential gap in complexity between the problems. Our algorithm is able to
consider each edge one at a time and check whether removal will result in a discon-
nected subhypergraph. The problem of finding a spanning tree adds the additional
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difficulty of avoiding a cycle, which is a more global property based on collections of
edges rather than single edges.

4 Chromatic numbers of minimally connected hypergraphs

Chromatic numbers give insight into the connectivity of a 2-graph or hypergraph.
Let χw and χs denote the weak and strong chromatic numbers, respectively. That is,
χw(H) is the minimum number of colors needed to color the vertices of H so that no
hyperedge is monochromatic and χs(H) is the minimum number of colors needed to
color the vertices of H so that every pair of adjacent vertices receive different colors.
When these concepts are restricted to the case of 2-graphs, they both agree with
that of the chromatic number.

Theorem 4.1. If H is a minimally connected r-uniform hypergraph, then χw(H) =2.

Proof. Let H be a minimally connected r-uniform hypergraph with m edges. From
Theorem 3.3, we know that a minimally connected hypergraph can be constructed
hyperedge-by-hyperedge with a connected hypergraph each step of the way and such
that each new hyperedge requires the addition of a new vertex. Suppose that Hi is the
connected hypergraph formed after adding hyperedge ei (1 ≤ i ≤ m). We proceed
by induction on m to prove that χw(H) = 2. H1 consists of a single hyperedge, so
its vertices can be trivially 2-colored. Now suppose that Hi can be weakly 2-colored.
When adding ei+1 to construct Hi+1, there are two possibilities: the vertices in
E(Hi)∩ei+1 are all the same color or receive both colors 1 and 2. In the former case,
give a new vertex added with ei+1 the other color. In the latter case, a new vertex
can receive either color. In both cases, we find that Hi+1 can be weakly 2-colored,
and hence, χw(H) = 2.

While r-uniform trees with size m ≥ 1 have strong chromatic number χs(T ) = r
(this is a simple inductive exercise to confirm), we are unable to provide such precise
limitations on the strong chromatic number of hypergraphs that are only assumed to
be minimally connected. The following theorem demonstrates a method for finding
minimally connected hypergraphs with arbitrarily large strong chromatic numbers.
Note that the following statement is not true for minimally connected 2-graphs (i.e.,
2-uniform trees), so one must assume r ≥ 3.

Theorem 4.2. For all natural numbers n ≥ r ≥ 3, there exists a minimally con-
nected r-uniform hypergraph with strong chromatic number equal to n.

Proof. We begin with a complete graph Kn of order n, which has size m = n(n−1)
2

and
chromatic number χ(Kn) = n. From this graph, we form an r-uniform hypergraph

H
(r)
n that is minimally connected by replacing each edge ab in Kn with an r-uniform

hyperedge ei = abxi1x
i
2 · · ·xir−2, where xij are new vertices (with 1 ≤ i ≤ m and

1 ≤ j ≤ r−2) that all have degree one. The hypergraph H
(r)
n is minimally connected

since the removal of ei leaves each xij disconnected from the rest of the hypergraph.
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Also, H
(r)
n requires at least n colors in any strong proper coloring since adjacent

vertices in Kn are still adjacent in H
(r)
n . Hence, χs(H

(r)
n ) ≥ n. On the other hand,

since n ≥ r, there are enough colors from the original proper coloring of Kn to
color the vertices xi1, x

i
2, . . . , x

i
r−2 distinct from one another. Thus, χs(H

(r)
n ) ≤ n,

completing the proof.

The construction in the above proof provides, for any natural number n, a means
of producing a minimally connected r-uniform hypergraph with strong chromatic
number equal to n. As an example, consider Figure 4. In this figure, H

(3)
4 is con-

structed from K4. The hypergraph H
(3)
4 contains six hyperedges, the deletion of any

hyperedge results in a disconnected hypergraph containing an isolated vertex, and
χs(H

(3)
4 ) = 4.

Figure 4: Using a K4 to construct a minimally connected 3-uniform hypergraph H
(3)
4

satisfying χs(H
(3)
4 ) = 4.

Theorem 4.3. For r ≥ 3, let H be a minimally connected r-uniform hypergraph of
size m ≥ 2 with minimally connected constructive process P having tightness sequence
t1, t2, . . . , tm−1. Then

χs(H) ≤ r + tH − t1 −m+ 2.

Proof. We proceed by induction on m ≥ 2. When m = 2, tH = t1, and it is easily
seen that χs(H) = r. Now, suppose that the result is true for all minimally connected
r-uniform hypergraphs of size m− 1 and let H be a minimally connected r-uniform
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hypergraph of size m. Let H ′ be the minimally connected hypergraph formed by
removing em (and all isolated vertices) from H. Then by the inductive hypothesis,

χs(H
′) ≤ r +

m−2∑
i=1

ti − t1 − (m− 1) + 2.

Fix a strongly proper vertex coloring of H ′. When adding in em, the only vertices
that may need new colors are those that are the same color in V (H ′) ∩ em. So, at
most, tm−1 − 1 new colors are needed, from which it follows that

χs(H) ≤ r +
m−1∑
i=1

ti − t1 −m+ 2 = r + tH − t1 −m+ 2,

completing the proof of the theorem.

Observe that we can optimize the bound in Theorem 4.3 by picking a constructive
process in which t1 is maximal. We encourage the reader to check that when r ≥ 3,
the inequality proved in Theorem 4.3 is tight for all r-uniform stars of order 2.

5 Some hyperedge coloring results

In this section we will examine colorings of the hyperedges of complete r-uniform
hypergraphs. A t-coloring of an r-uniform hypergraph H is a function

c : E(H) −→ {1, 2, . . . , t}

that assigns colors to the hyperedges of H. We do not assume that such a coloring is
proper, nor do we assume that c is surjective. A subgraph H ′ of H is called rainbow
if all of the hyperedges in H ′ receive different colors. We call H rainbow connected
with respect to c if for every pair of distinct vertices u, v ∈ V (H), there exists a
rainbow Berge path connecting u to v. Observe that every connected hypergraph
H is rainbow connected with respect to some coloring as one could always choose
the coloring in which every hyperedge of H receives a different color. The rainbow
connected number rc(H) of a connected r-uniform hypergraph H is defined to be the
minimal number of colors t such that H is rainbow connected with respect to some
t-coloring.

Since every connected r-uniform hypergraph H is spanned by a minimally con-
nected subhypergraph M , the edges of M can each receive a different color, pro-
viding a rainbow Berge path between every distinct pair of vertices. Hence, from
Theorem 3.7, it follows that

rc(H) ≤ n− r + 1.

Let K
(r)
n denote the complete r-uniform hypergraph of order n. A Gallai t-

coloring of K
(r)
n is a t-coloring of the hyperedges in K

(r)
n such that no rainbow K

(r)
r+1-

subhypergraph exists. Thus, when t ≤ r + 1 all t-colorings are Gallai t-colorings.
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The following theorem is a nice generalization of a result concerning Gallai colorings
of graphs from Gyárfás and Simonyi [13].

Theorem 5.1. Let r ≥ 3. Then every Gallai (r + 1)-coloring of K
(r)
n contains a

color that spans a connected r-uniform hypergraph using all n vertices.

Proof. We proceed by induction on n. When n = r + 1, at least two hyperedges in
K

(r)
r+1 are the same color by the definition of a Gallai coloring, and hence, span the

complete hypergraph. Now assume the theorem is true for n ≥ r + 1 and consider
a Gallai coloring of K

(r)
n+1. Let {x1, x2, . . . , xn+1} be the vertices of this K

(r)
n+1 and

define ki to be the subhypergraph formed by removing xi from the K
(r)
n+1, for each

i ∈ {1, 2, . . . , n+ 1}. Thus, we have a total of n+ 1 complete Gallai (r + 1)-colored
hypergraphs where n + 1 ≥ r + 2. By the inductive hypothesis, each ki contains a
spanning color, and by the pigeonhole principle, at least two of the kis are spanned
by the same color. This color necessarily spans all of K

(r)
n+1.

Combining Theorem 3.9 with Theorem 5.1, it follows that every Gallai (r+1)-coloring

of K
(r)
n contains a monochromatic minimally connected spanning subhypergraph.

We now turn our attention to the colorings of complete hypergraphs involving
only two colors, but first, we must recall the definitions of diameter and complement.
If u and v are any two distinct vertices in a connected r-uniform hypergraph H, then
the distance from u to v, denoted d(u, v), is the minimum number of hyperedges
contained in any Berge path connecting u to v. The diameter diam(H) is then
defined by

diam(H) := max{d(u, v) | u, v ∈ V (H)}.
For every r-uniform hypergraph H, there is a corresponding r-uniform hypergraph
H, called the complement of H, such that V (H) = V (H) and E(H) =

(
V (H)

r

)
−E(H).

Results involving 2-colorings in the setting of 2-graphs are plentiful. In particular,
it has been noted that Erdős and Rado claimed that for any graph G, either G or
G is connected [3]. Rephrasing this result in terms of colorings, every 2-coloring
of Kn contains a color that spans all n vertices. More precisely, it was shown by
Bialostocki, Dierker, and Voxman [2] that if a graph G is not connected, then G is
connected and diam(G) ≤ 2. When r ≥ 3, we offer a generalization of this fact in
Theorem 5.4. But first we derive some helpful results.

Theorem 5.2. If r ≥ 3 and H is a disconnected r-uniform hypergraph of order
n ≥ r, then H is connected and every subset {x1, x2, . . . , xr−1} of distinct vertices in
V (H) is contained in some hyperedge in H.

Proof. Suppose that H is a disconnected r-uniform hypergraph of order n ≥ r. Let
S = {x1, x2, . . . , xr−1} be a subset distinct vertices in V (H). We consider two cases.

Case 1: Assume that two distinct vertices xi and xj are in different connected com-
ponents in H. Then if y is any vertex not in S, then x1x2 · · ·xr−1y ∈ E(H).

Case 2: Assume that C1 and C2 are distinct connected components in H with x1, x2,
. . . , xr−1 ∈ C1. If y is any vertex in C2, then x1x2 · · ·xr−1y ∈ E(H).
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In both cases, we find that H is connected and every subset {x1, x2, . . . , xr−1} of
vertices is contained in some hyperedge in H.

From Theorem 5.2, observe that whenever H is disconnected, it follows that H
is connected and diam(H) = 1. Furthermore, using this theorem with Theorem 3.9,
we obtain the following corollary.

Corollary 5.3. Let r ≥ 3. In every 2-coloring of the hyperedges in K
(r)
n , there exists

a monochromatic spanning minimally connected subhypergraph.

Theorem 5.4. If r ≥ 3 and H is a connected r-uniform hypergraph of order n ≥ r
with diam(H) ≥ 2, then diam(H) = 1.

Proof. Assume that H has diameter at least 2. Then by Corollary 5.3 we can assume
that H is connected. We may choose x, y ∈ V (H) to be nonadjacent vertices.
Since H is connected and has at least r > 2 vertices then there are r − 2 vertices
z1, z2, . . . , zr−2 such that for some e ∈ E(H) {x, z1, z2, . . . , zr−2} ⊂ e. Then the
hyperedge e1 = {x, z1, z2, . . . , zr−2, y} 6∈ E(H). Thus e1 ∈ E(H). Therefore x and y
are adjacent in H, proving that diam(H) = 1.

6 Conclusions and future directions

This paper has been an investigation into hypergraph generalizations of trees. The
specific generalization which we explored (minimally connected hypergraphs) stresses
the role that trees play in results concerning connectivity. While minimally connected
hypergraphs work well to expand upon many theorems for 2-graphs, the fact that
the size of a minimally connected spanning tree is not necessarily determined by the
parent graph shows that many open problems still exist. We conclude by listing
several open problems that we deem worthy of future investigation.

1. Is there an efficient algorithm that would provide, for arbitrary weights, the op-
timum cost minimally connected spanning subhypergraph? The answer to this
question could have serious ramifications, not just for bioinformatics (where
punning algorithms have already been applied), but also in realms as distinct
as physics and banking. Algorithms for exact and approximate minimum span-
ning trees in hypergraphs are already known (e.g., see [9], [11], and [12]). We
could ask for conditions under which a greedy approach yields the optimal re-
sult, and the running time of an optimal algorithm for finding it. Figure 5
shows that a greedy approach of taking the hyperedges in order of least weight
can be suboptimal. Such an approach algorithm would yield a minimally con-
nected subhypergraph with hyperedges cde, bde, and ade, for a total weight
of 5, whereas the hyperedges cde and abc would form a minimally connected
subhypergraph with a lower total weight of 4.
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Figure 5: A weighted 3-uniform hypergraph for which the greedy approach does not
produce a minimally connected subhypergraph of minimum total edge weight.

2. Recall that the Ramsey number R(H1, H2; r) of two r-uniform hypergraphs H1

and H2 is defined to be the least natural number p such that every 2-coloring
of hyperedges of K

(r)
p , using say, red and blue, results in a red subhypergraph

isomorphic to H1 or a blue subhypergraph isomorphic to H2. A connected
r-uniform hypergraph H of order m is called n-good if

R(H,K(r)
n ; r) = (m− 1)

(⌈ n

r − 1

⌉
− 1

)
+ t(K(r)

n ),

where d·e is the ceiling function and t(K
(r)
n ) is the minimum number of vertices

in any color class of a weak vertex coloring of H. The fact that this number
is a lower bound for the given Ramsey number was proved in Theorem 3.1 of
[5]. So, showing that an r-uniform hypergraph is n-good follows from proving
that this number is also an upper bound. In [5], it was conjectured that all
r-uniform trees are n-good and infinitely-many examples of n-good 3-uniform
trees were given. It was also shown that the minimally connected 3-uniform
cycle C

(3)
4 of length 2 and order 4 is 4-good, but is not 5-good. What are

the conditions under which a minimally connected r-uniform hypergraph is n-
good? It is worth noting that if a connected r-uniform hypergraph is n-good,
then so is every minimally connected spanning subhypergraph.

3. In Section 4, we considered the weak and strong chromatic numbers of mini-
mally connected r-uniform hypergraphs, but other chromatic numbers can be
considered when r ≥ 4. More generally, define the k-chromatic number χk(H)
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of an r-uniform hypergraph H to be the minimum number of colors needed to
color the vertices of V (H) so that every hyperedge contains vertices using at
least k distinct colors. It follows that

χw(H) = χ2(H) and χs(H) = χr(H).

Can one determine χk(H), when 2 < k < r (assuming r ≥ 4)? We saw
in Section 4 that χw(H) = 2 when H is minimally connected, but for every
n ≥ r, there exists a minimally connected r-uniform hypergraph H such that
χs(H) = n. For r ≥ 4, what is the smallest value of k for which χk is bounded
by a constant for all minimally connected r-uniform hypergraphs?
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