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Abstract

A subset D ⊆ V (G) is a dominating set of a multigraph G if every vertex
in V (G) \D has a neighbor in D, while D is a 2-dominating set of G if
every vertex belonging to V (G) \D is joined by at least two edges with a
vertex or vertices in D. A graph G is a (2, 2)-dominated graph if it has a
pair (D,D′) of disjoint 2-dominating sets of vertices of G. In this paper
we present two characterizations of minimal (2, 2)-dominated graphs.

1 Introduction

For notation and graph theory terminology we generally follow [7]. Specifically, let
G = (V (G), E(G)) be a graph with possible multi-edges and multi-loops, and with
vertex set V (G) and edge set E(G). For a vertex v of G, its neighborhood , denoted by
NG(v), is the set of vertices adjacent to v. The closed neighborhood of v, denoted by
NG[v], is the set NG(v) ∪ {v}. In general, for a subset X ⊆ V (G), the neighborhood
of X, denoted by NG(X), is defined to be

⋃
v∈X NG(v), and the closed neighborhood

of X, denoted by NG[X], is the set NG(X) ∪ X. The 2-neighborhood of v, denoted
by N2

G(v), is the set of vertices at distance 2 from v in G, that is, N2
G(v) = {u ∈

V (G) : dG(u, v) = 2}. The closed 2-neighborhood of v, denoted by N2
G[v], is the set

of vertices within distance 2 from v in G, and so N2
G[v] = NG[v] ∪N2

G(v).
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If A and B are disjoint sets of vertices of G, then we denote by EG(A,B) the
set of edges in G joining a vertex in A with a vertex in B. For one-element sets
we write EG(v, B), EG(A, u), and EG(u, v) instead of EG({v}, B), EG(A, {u}), and
EG({u}, {v}), respectively. If v is a vertex of G, then by EG(v) we denote the set of
edges incident with v in G. The degree of a vertex v in G, denoted by dG(v), is the
number of non-loop edges incident with v plus twice the number of loops incident
with v. A vertex of degree one is called a leaf. A vertex is isolated if its degree equals
zero. The smallest and largest degrees in a graph G are denoted by δ(G) and Δ(G),
respectively. For an integer k ≥ 1, we let [k] = {1, . . . , k}.

A set of vertices D ⊆ V (G) of G is a dominating set if every vertex in V (G) \D
has a neighbor in D, while D is a k-dominating set , where k is a positive integer,
if every vertex belonging to V (G) \D is joined by at least k edges with a vertex or
vertices in D. If G is a graph without multiple-edges, then a subset D ⊆ V (G) is
a k-dominating set of G if |NG(v) ∩D| ≥ k for every v ∈ V (G) \D.

If k and � are positive integers, then a pair (D1, D2) of proper and disjoint subsets
of the vertex set V (G) of a graph G is a (k, �)-pair in G if D1 is a k-dominating
set of G, and D2 is an �-dominating set of G. A graph G is said to be a (k, �)-
dominated graph if it contains a (k, �)-pair. It is obvious from the above definition,
that if a graph G is a (k, �)-dominated graph, then necessarily max{k, �} ≤ Δ(G),
and 1 ≤ min{k, �} ≤ δ(G). Trivially, if G is a (k, �)-dominated graph, then G is
a (k′, �′)-dominated graph, where 1 ≤ k′ ≤ k and 1 ≤ �′ ≤ �. In addition, if G is
a (k, �)-dominated graph, then G is an (�, k)-dominated graph. Thus we may suppose
that if G is a (k, �)-dominated graph, then k ≤ �.

We observe that a complete graph Kn is a (k, �)-dominated graph (for positive
integers k and �) if and only if k + � ≤ n. Moreover, we observe that a complete
bipartite graph Km,n is a (m,n)-dominated graph. A cycle Cn is a (2, 2)-dominated
graph if and only if n is an even positive integer, while every cycle of odd length is
a (1, 2)-dominated graph but not a (2, 2)-dominated graph.

Of the four graphs in Fig. 1, the graphs F , H , and the Cartesian product K2�C5

are examples of (2, 2)-dominated graphs, while the Cartesian product K2�K4 is an
example of a (3, 3)-dominated graph (and a (1, 4)-dominated graph). The appropriate
(2, 2)- and (3, 3)-pairs in these graphs are determined by the sets of black and white
vertices, respectively, illustrated in Fig. 1. More generally, we show in Corollary 2.3
that if G and H are graphs without isolated vertices, then the Cartesian product
G�H is a (2, 2)-dominated graph.

Ore [11] was the first to observe that a graph without isolated vertices con-
tains two disjoint dominating sets. That is, Ore observed that every such graph is
a (1, 1)-dominated graph. Subsequently, various properties of graphs having disjoint
dominating sets of different types have been extensively studied, for example, in
papers [1]–[10] and [12], to mention just a few. All (1, 2)-dominated graphs were
characterized in [6, 9, 10]. In this paper, we study (2, 2)-dominated graphs, and, in
particular, we present two characterizations of minimal (2, 2)-dominated graphs. It
is worth mentioning here that it follows from [1, Theorem 12] that in the general case
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Figure 1: Graphs F , H , K2�C5, and K2�K4

it is NP-complete to decide whether a given graph G is a (2, 2)-dominated graph if
δ(G) ≥ 2.

2 Elementary properties of (2, 2)-dominated graphs

In this section, we present properties of (2, 2)-dominated graphs that we need in
order to prove our main results.

Definition 1. A connected graph G is said to be a minimal (2, 2)-dominated graph,
if G is a (2, 2)-dominated graph and no proper spanning subgraph of G is a (2, 2)-
dominated graph.

From this definition, we immediately have the following observations.

Observation 2.1. Every spanning supergraph of a (2, 2)-dominated graph is a (2, 2)-
dominated graph, and every (2, 2)-dominated graph is a spanning supergraph of some
minimal (2, 2)-dominated graph.

Observation 2.2. Every bipartite graph of minimum degree at least 2 (and every
spanning supergraph of such a graph) is a (2, 2)-dominated graph.

As a consequence of Observation 2.2, we have the following result.

Corollary 2.3. If G and H are graphs without isolated vertices, then their Cartesian
product G�H is a (2, 2)-dominated graph.

Proof. We may assume that G and H are connected graphs each of order at least 2.
Let TG and TH be spanning trees of G and H , respectively. Then TG �TH is a bi-
partite spanning subgraph of G�H and δ(G�H) = 2. Thus, by Observations 2.2
and 2.1, TG �TH and G�H are (2, 2)-dominated graphs.

In view of Observation 2.1, minimal (2, 2)-dominated graphs can be viewed as
skeletons of (2, 2)-dominated graphs, skeletons which can be extended to any (2, 2)-
dominated spanning supergraph.
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The next theorem presents general properties of minimal (2, 2)-dominated graphs.

Theorem 2.4. A graph G is a minimal (2, 2)-dominated graph if and only if G has
the following three properties.

(a) δ(G) ≥ 2.
(b) G is a bipartite graph.

(c) Every edge of G is incident with a vertex of degree 2 in G.

Proof. Assume first that G is a minimal (2, 2)-dominated graph, and let (D1, D2)
be a (2, 2)-pair in G. Since D1 and D2 are disjoint, every vertex v of G belongs to
V (G) \D1 or to V (G) \D2, and thus v is joined by at least two edges with a vertex
or vertices in D1 or D2 (since D1 and D2 are 2-dominating sets), implying that
δ(G) ≥ 2. We now claim that D1 and D2 form a partition of V (G). Suppose, to the
contrary, that V (G) \ (D1 ∪D2) 	= ∅. Then, for every v ∈ V (G) \ (D1 ∪D2), the pair
(D1 ∪ {v}, D2) is a (2, 2)-pair in G − EG(v,D1) (and (D1, D2 ∪ {v}) is a (2, 2)-pair
in G − EG(v,D2)), a contradiction to the minimality of G. From the minimality
of G it also follows that G is a bipartite graph in which the sets D1 and D2 form
a bipartition, for if two vertices x and y belonging to D1 (or D2) were adjacent in
G, then (D1, D2) would be a (2, 2)-pair in G − xy, a contradiction. Finally, no two
vertices of degree at least 3 are adjacent in G, for if a vertex x ∈ D1 of degree at
least 3 were adjacent to a vertex y ∈ D2 of degree at least 3, then (D1, D2) would be
a (2, 2)-pair in G − xy. From this and from the fact that δ(G) ≥ 2, it follows that
every edge of G is incident with a vertex of degree 2 in G (and, therefore, δ(G) = 2).

Assume now that G is a bipartite graph with partite sets A and B, in which
δ(G) ≥ 2 and every edge of G is incident with a vertex of degree 2 in G. Then (A,B)
is a (2, 2)-pair in G and therefore G is a (2, 2)-dominated graph. Now, if e is an edge
of G, then G− e has a vertex of degree 1 (since e is incident with a vertex of degree
2) and therefore G−e is not a (2, 2)-dominated graph. Consequently, G is a minimal
(2, 2)-dominated graph.

If H is a graph (with possible multi-edges or multi-loops), then the subdivision
graph of H , denoted by S(H), is the graph obtained from H by inserting a new
vertex into each edge and each loop of H . We remark that the graphs F in Fig. 1,
G in Fig. 2, and G in Fig. 3 are examples of subdivision graphs. We note that the
subdivision graph S(H) of H is a bipartite graph. On the other hand, we have the
following useful observation.

Observation 2.5. A connected graph G is a subdivision graph if and only if G is
a connected bipartite graph with partite sets A and B such that at least one of them
consists only of vertices of degree 2. Furthermore, a connected bipartite graph G with
partite sets A and B such that δ(G) ≥ 2 and |B| ≥ |A| is a subdivision graph if and
only if dG(x) = 2 for every x ∈ B.

We state the next two important corollaries of Theorem 2.4 that will prove very
helpful to us. This corollary states that every minimal (2, 2)-dominated graph (and
therefore every (2, 2)-dominated graph) can be constructed from a subdivision graph.
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Corollary 2.6. If a minimal (2, 2)-dominated graph has multi-edges, then at least
one of the vertices incident with them is of degree 2.

Corollary 2.7. If H is a graph with δ(H) ≥ 2 and with possible multi-edges or
multi-loops, then its subdivision graph S(H) is a minimal (2, 2)-dominated graph.

3 Constructive characterization of minimal (2, 2)-dominated

graphs

We remark that both graphs F and H in Fig. 1 are minimal (2, 2)-dominated graphs.
But only F is a subdivision graph. Thus, not every minimal (2, 2)-dominated graph is
a subdivision graph. Surprisingly, there are interesting connections between minimal
(2, 2)-dominated graphs and subdivision graphs. To prepare the ground for our
explanation, let us begin with the following definition of a P-contraction, which will
play an important role in our considerations.

Let G be a bipartite graph. We define a vertex v as a contractible vertex of G
if v is not incident with a multi-edge. Let v be a contractible vertex in G, and let
P(v) be a partition of the neighborhood NG(v) of v. Recall that N

2
G(v) is the set of

vertices at distance 2 from v in G, while N2
G[v] is the set of vertices within distance 2

from v in G. Let G′ = G(P(v)) denote a graph in which

V (G′) = (V (G) \NG(v)) ∪ ({v} × P(v)),

and where

NG′(u) = NG(u) if u ∈ V (G′) \N2
G[v],

NG′
(
(v, S)

)
= NG(S) if (v, S) ∈ {v} × P(v),

NG′(v) = {v} × P(v) and |EG′(v, (v, S))| = 1 for each S ∈ P(v),

and
NG′(u) = {(v, S) : S ∈ P(v) and NG(u) ∩ S 	= ∅} ∪ (NG(u) \NG(v))

for every vertex u ∈ N2
G(v). Moreover, in this case when u ∈ N2

G(v) and (v, S) ∈
NG′(u), then |EG′(u, (v, S))| = |EG(u, S)|.

The graph G(P(v)) is called a P-contraction of G with respect to the partition
P(v). To illustrate this construction, we present on the left side of Fig. 2 a graph G
with a specified vertex v and a partition P(v) = {S1, S2, S3, S4} of the neighborhood
NG(v) of v into four subsets indicated by ellipses. The graph on the right side of
Fig. 2 is the associated P-contraction G(P(v)) of G with respect to the partition
P(v).

The following observation follows readily from the definition of the P-contraction
of a graph.

Observation 3.1. If G is a bipartite graph and P(v) = {S1, . . . , Sk} is a partition of
the neighborhood NG(v) of a contractible vertex v of G, then the following properties
hold in the P-contraction G′ = G(P(v)) of G.
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Figure 2: Graph G and its P-contraction G(P(v))

(a) G′ is a bipartite graph.
(b) dG′(v) = |P(v)| = k.

(c) dG′((v, Si)) = 1 +
∑

u∈Si

(
dG(u)− 1

)
for every Si ∈ P(v).

(d) dG′(x) = dG(x) for every x ∈ V (G′) \N2
G[v].

(e) G′ is isomorphic to G if |P(v)| = dG(v), that is, if P(v) consists of singletons.

We are interested in determining partitions P(v) of NG(v) which transform a
minimal (2, 2)-dominated graph G into a minimal (2, 2)-dominated graph G(P(v)).
We begin with the following lemma.

Lemma 3.2. Let G be a minimal (2, 2)-dominated graph, and let P(v) be a parti-
tion of NG(v) for some contractible vertex v of G, say P(v) = {S1, . . . , Sk}, where
1 ≤ |S1| ≤ · · · ≤ |Sk|. Then the P-contraction G(P(v)) of G is a minimal (2, 2)-
dominated graph if and only if at least one of the following two statements holds.

(a) k = |NG(v)|.
(b) k = 2 and dG(x) = 2 for every x ∈ NG(Si) \ {v} if |Si| ≥ 2 (i ∈ {1, 2}).

Proof. From the fact that G is a minimal (2, 2)-dominated graph and from Theorem
2.4 it follows that G is a bipartite graph, δ(G) = 2, and every edge of G is incident
with a vertex of degree 2. Let G′ denote the P-contraction G(P(v)) of G, where
v is a contractible vertex of G, P(v) = {S1, . . . , Sk} is a partition of NG(v) and
1 ≤ |S1| ≤ · · · ≤ |Sk|.

We shall show that G′ is a minimal (2, 2)-dominated graph if and only if at least
one of the statements (a) and (b) holds. Since the result is obvious if k = |NG(v)|
(as in this case P(v) = {x : x ∈ NG(v)} and G′ is isomorphic to G, see Observation
3.1(e)), we may assume that k < |NG(v)|. Then k < |NG(v)| = |S1|+. . .+|Sk| ≤ k|Sk|
and therefore |Sk| ≥ 2. In addition, it follows from Theorem 2.4 that neither the
case k = 1 < |NG(v)| nor the case 3 ≤ k < |NG(v)| is possible as otherwise either v
is of degree 1 in G′ or v and (v, Sk) are adjacent vertices of degree at least 3 in G′.
Thus it remains to consider the case k = 2 < |NG(v)|.
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It follows from Observation 3.1 (a)–(d) that G′ is a bipartite graph and δ(G′) = 2,
because G is bipartite, δ(G) = 2, and k = 2. Consequently, by Theorem 2.4, to prove
that G′ is a minimal (2, 2)-dominated graph, it suffices to show that every edge of
G′ is incident with a vertex of degree 2. Since the edges v(v, S1) and v(v, S2) are
incident with v, which is of degree 2 in G′, and every edge of G′, which is not incident
with (v, S1) or (v, S2), has inherited this property from the graph G, the graph G′ is
a minimal (2, 2)-dominated graph if and only if every edge of G′ incident with (v, S1)
or (v, S2) (and different from v(v, S1) and v(v, S2)) is incident a vertex of degree 2
in G′ (and in G). This property holds if and only if |S1| = 1 and dG(x) = 2 for every
x ∈ NG(S2) \ {v} or 2 ≤ |S1| ≤ |S2| and dG(x) = 2 for every x ∈ NG(S1 ∪ S2) \ {v},
that is, if and only if dG(x) = 2 for every x ∈ NG(Si)\{v} if |Si| ≥ 2 where i ∈ {1, 2}.
This completes the proof.

A 2-P-contraction of a graph G is a P-contraction G(P(v)) of G with respect
a partition P(v) = {S1, S2} of NG(v), where v is a contractible vertex of degree at
least 3, and dG(x) = 2 for every x ∈ NG(Si) \ {v} if |Si| ≥ 2 (i ∈ {1, 2}). It follows
from Lemma 3.2 that every 2-P-contraction transforms a minimal (2, 2)-dominated
graph into a minimal (2, 2)-dominated graph.

By M we denote the family of all connected minimal (2, 2)-dominated graphs.
We are now in a position to present a constructive characterization of the family M.
For this purpose, let F be the family of graphs that:

(1) contains the subdivision graph S(H) for every connected graph H with δ(H) ≥
2 (and possibly with multi-edges and multi-loops); and

(2) is closed under 2-P-contractions.

Examples of graphs G=S(H), and 2-P-contractions F = G(P(v)), S = F (P(u)),
and T = S(P(w)) belonging to the family F are given in Fig. 3.

v

G = S(H)

u

F = G(P(v))

w

S = F (P(u)) T = S(P(w))

Figure 3: Graphs G, F , S, and T belonging to the family F

The following theorem provides a constructive characterization of minimal (2, 2)-
dominated graphs.
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Theorem 3.3. A connected graph G belongs to the family M if and only if G belongs
to the family F .

Proof. It follows from Corollary 2.7 and Lemma 3.2 that F ⊆ M. Thus it remains
to prove that M ⊆ F . Assume that G is a connected graph belonging to M. By
Theorem 2.4, G is a bipartite graph with δ(G) = 2 such that every edge of G is
incident with a vertex of degree 2 in G. Let A and B be the partite sets of G. Let

A2
G = {x ∈ A : dG(x) = 2} and A3

G = A \ A2
G,

and
B2

G = {x ∈ B : dG(x) = 2} and B3
G = B \B2

G.

By induction on k = min{|A3
G|, |B3

G|} we will prove that G ∈ F . If k = 0, then
at least one of the sets A and B consists of vertices of degree 2, implying that G is
a subdivision graph (by Observation 2.5) and proving that G belongs to F . Thus,
let k be a positive integer, and assume that |A3

G| ≥ |B3
G| = k.

Among all vertices u ∈ A3
G and v ∈ B3

G, let u and v be chosen to be at minimum
distance apart in G, that is, dG(u, v) = min{dG(x, y) : x ∈ A3

G and y ∈ B3
G}. Let

P : v = v0, v1, . . . , v� = u be a shortest (u, v)-path in G. Since u and v belong to
different partite sets of G, we note that � is odd. Further since G is a minimal
(2, 2)-dominated graph, the set A3

G ∪B3
G is an independent set, implying that � ≥ 3.

By the choice of the path P , every internal vertex of the path P has degree 2 in G,
while the vertices u and v are both of degree at least 3. Further from the minimality
of G and by Theorem 2.4, every neighbor of v has degree 2 in G.

Without loss of generality we assume that the subset NG(v) \ {v1} of NG(v) is
the union of two disjoint sets {p1, . . . , pm} and {s1, . . . , sn}, where each vertex pi
has degree 2 in G and is joined by a pair of parallel edges with v (say by edges ei
and e

′
i), while each vertex sj has degree 2 in G and is adjacent to a vertex, say s′j,

different from v. We remark that possibly s′i = s′j if i 	= j, and possibly one of the
sets {p1, . . . , pm} and {s1, . . . , sn} is empty. Now let G′ be a graph with vertex set
V (G′) = (V (G) \ {v}) ∪ V ∗, where

V ∗ = {(v, e1), (v, e′1), . . . , (v, em), (v, e′m)} ∪ {(v, s1), . . . , (v, sn)},

and with edge set E(G′) obtained from E(G) as follows:

• deleting all edges incident with v in G,

• adding an edge from v1 to every vertex in the set V ∗,
• adding an edge from pi to both the vertices (v, ei) and (v, e′i) for all i ∈ [m],
and

• adding an edge from si to the vertex (v, si) for all i ∈ [n].
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That is, defining
E1 = E(G) \ EG(v),

E2 = {v1x : x ∈ V ∗},
E3 = {(v, ei)pi, (v, e′i)pi : i ∈ [m]},
E4 = {(v, si)si : i ∈ [n]},

we have E(G′) = E1 ∪E2 ∪E3 ∪E4. An illustration of the construction of the graph
G′ from the graph G is given in Fig. 4.

vl v2 v1 v

G

s1 s′1

sn s′
n

p1

pm

e1
e′1 em

e′
m

S1

sn s′
n

s1 s′1

(v, s1)

(v, sn)

(v, e′
m
)

(v, em)

(v, e′1)

(v, e1)

vl v2 v1

G′

p1

pm

S2

Figure 4: Graphs G and G′ such that G′(P(v1)) is isomorphic to G

We note that every new vertex added to G when constructing G′ has degree 2 in
G′. Further, the degrees of all vertices in G different from v remain unchanged in
G′, except for the vertex v1 whose degree changes from 2 to 1 + 2m+ n. It follows
from the fact that G is a minimal (2, 2)-dominated graph and from Theorem 2.4
that G′ is a minimal (2, 2)-dominated graph, that is, from the fact that G ∈ M it
follows that G′ ∈ M. Recall that by assumption, we have |A3

G| ≥ |B3
G| = k. Since

B3
G′ = B3

G \ {v} and A3
G′ = A3

G ∪ {v1}, we therefore have

min{|A3
G′|, |B3

G′|} = min{|A3
G|+ 1, |B3

G| − 1} = |B3
G| − 1 = k − 1 < k.

Applying the induction hypothesis to the graph G′, we have that G′ ∈ F . Fi-
nally, if P(v1) = {S1, S2} is a partition of NG′(v1), where S1 = {v2} and S2 =
NG′(v1) \ {v2} = V ∗, then the 2-P-contraction G′(P(v1)) belongs to the family F
(by Lemma 3.2). Consequently, the graph G belongs to F as G is isomorphic to
G′(P(v1)). This completes the proof of Theorem 3.3.
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[8] C. Löwenstein and D. Rautenbach, Pairs of disjoint dominating sets and the
minimum degree of graphs, Graphs Combin. 26 (2010), 407–424.
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