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Abstract

A subset D C V(@) is a dominating set of a multigraph G if every vertex
in V(G) \ D has a neighbor in D, while D is a 2-dominating set of G if
every vertex belonging to V(G) \ D is joined by at least two edges with a
vertex or vertices in D. A graph G is a (2, 2)-dominated graph if it has a
pair (D, D’) of disjoint 2-dominating sets of vertices of G. In this paper
we present two characterizations of minimal (2, 2)-dominated graphs.

1 Introduction

For notation and graph theory terminology we generally follow [7]. Specifically, let
G = (V(G), E(G)) be a graph with possible multi-edges and multi-loops, and with
vertex set V(G) and edge set E(G). For a vertex v of G, its neighborhood, denoted by
Ng(v), is the set of vertices adjacent to v. The closed neighborhood of v, denoted by
N¢[v], is the set Ng(v) U {v}. In general, for a subset X C V(G), the neighborhood
of X, denoted by Ng(X), is defined to be J,.x Na(v), and the closed neighborhood
of X, denoted by Ng[X], is the set Ng(X) U X. The 2-neighborhood of v, denoted
by NZ(v), is the set of vertices at distance 2 from v in G, that is, NZ(v) = {u €
V(G): dg(u,v) = 2}. The closed 2-neighborhood of v, denoted by NZ[v], is the set
of vertices within distance 2 from v in G, and so N&[v] = Ng[v] U N&(v).
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If A and B are disjoint sets of vertices of GG, then we denote by Eg(A, B) the
set of edges in G joining a vertex in A with a vertex in B. For one-element sets
we write Eg(v, B), Eg(A,u), and Eg(u,v) instead of Eq({v}, B), Eg(A,{u}), and
Eq({u}, {v}), respectively. If v is a vertex of GG, then by Eg(v) we denote the set of
edges incident with v in G. The degree of a vertex v in G, denoted by dg(v), is the
number of non-loop edges incident with v plus twice the number of loops incident
with v. A vertex of degree one is called a leaf. A vertex is isolated if its degree equals
zero. The smallest and largest degrees in a graph G are denoted by 6(G) and A(G),
respectively. For an integer k > 1, we let [k] = {1,...,k}.

A set of vertices D C V(G) of G is a dominating set if every vertex in V(G) \ D
has a neighbor in D, while D is a k-dominating set, where k is a positive integer,
if every vertex belonging to V(G) \ D is joined by at least k edges with a vertex or
vertices in D. If G is a graph without multiple-edges, then a subset D C V(G) is
a k-dominating set of G if |[Ng(v) N D| > k for every v € V(G) \ D.

If £ and ¢ are positive integers, then a pair (Dy, Dy) of proper and disjoint subsets
of the vertex set V(G) of a graph G is a (k,{)-pair in G if D; is a k-dominating
set of G, and Dy is an /-dominating set of G. A graph G is said to be a (k,/)-
dominated graph if it contains a (k, {)-pair. It is obvious from the above definition,
that if a graph G is a (k, £)-dominated graph, then necessarily max{k, (} < A(G),
and 1 < min{k, ¢} < §(G). Trivially, if G is a (k, ¢)-dominated graph, then G is
a (k',0')-dominated graph, where 1 < k' < k and 1 < ¢ < {. In addition, if G is
a (k, ¢)-dominated graph, then G is an (¢, k)-dominated graph. Thus we may suppose
that if G is a (k, )-dominated graph, then k < (.

We observe that a complete graph K, is a (k, ¢)-dominated graph (for positive
integers k and /) if and only if k£ + ¢ < n. Moreover, we observe that a complete
bipartite graph K, , is a (m,n)-dominated graph. A cycle C, is a (2, 2)-dominated
graph if and only if n is an even positive integer, while every cycle of odd length is
a (1,2)-dominated graph but not a (2,2)-dominated graph.

Of the four graphs in Fig. 1, the graphs F', H, and the Cartesian product Ky [ Cj
are examples of (2, 2)-dominated graphs, while the Cartesian product Ky O Ky is an
example of a (3, 3)-dominated graph (and a (1, 4)-dominated graph). The appropriate
(2,2)- and (3, 3)-pairs in these graphs are determined by the sets of black and white
vertices, respectively, illustrated in Fig. 1. More generally, we show in Corollary 2.3
that if G and H are graphs without isolated vertices, then the Cartesian product
GOH is a (2,2)-dominated graph.

Ore [11] was the first to observe that a graph without isolated vertices con-
tains two disjoint dominating sets. That is, Ore observed that every such graph is
a (1,1)-dominated graph. Subsequently, various properties of graphs having disjoint
dominating sets of different types have been extensively studied, for example, in
papers [1]-[10] and [12], to mention just a few. All (1,2)-dominated graphs were
characterized in [6, 9, 10]. In this paper, we study (2, 2)-dominated graphs, and, in
particular, we present two characterizations of minimal (2,2)-dominated graphs. It
is worth mentioning here that it follows from [1, Theorem 12] that in the general case
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Figure 1: Graphs F', H, Ks[C5, and Ky[1K,

it is N'P-complete to decide whether a given graph G is a (2,2)-dominated graph if
(G) > 2.

2 Elementary properties of (2,2)-dominated graphs

In this section, we present properties of (2,2)-dominated graphs that we need in
order to prove our main results.

Definition 1. A connected graph G is said to be a minimal (2,2)-dominated graph,
if G is a (2,2)-dominated graph and no proper spanning subgraph of G is a (2, 2)-
dominated graph.

From this definition, we immediately have the following observations.

Observation 2.1. Every spanning supergraph of a (2,2)-dominated graph is a (2,2)-
dominated graph, and every (2,2)-dominated graph is a spanning supergraph of some
minimal (2,2)-dominated graph.

Observation 2.2. Every bipartite graph of minimum degree at least 2 (and every
spanning supergraph of such a graph) is a (2,2)-dominated graph.

As a consequence of Observation 2.2, we have the following result.

Corollary 2.3. If G and H are graphs without isolated vertices, then their Cartesian
product GO H is a (2,2)-dominated graph.

Proof. We may assume that G and H are connected graphs each of order at least 2.
Let Ty and Ty be spanning trees of G and H, respectively. Then T Ty is a bi-
partite spanning subgraph of GO H and (GO H) = 2. Thus, by Observations 2.2
and 2.1, T 0Ty and GO H are (2, 2)-dominated graphs. O

In view of Observation 2.1, minimal (2,2)-dominated graphs can be viewed as
skeletons of (2,2)-dominated graphs, skeletons which can be extended to any (2, 2)-
dominated spanning supergraph.
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The next theorem presents general properties of minimal (2, 2)-dominated graphs.

Theorem 2.4. A graph G is a minimal (2,2)-dominated graph if and only if G has
the following three properties.

(a) 0(G) > 2.
(b) G is a bipartite graph.
(c) Every edge of G is incident with a vertex of degree 2 in G.

Proof. Assume first that G is a minimal (2,2)-dominated graph, and let (Dy, D)
be a (2,2)-pair in G. Since D; and D, are disjoint, every vertex v of G belongs to
V(G)\ D; or to V(G) \ Do, and thus v is joined by at least two edges with a vertex
or vertices in Dy or Dy (since D; and Dy are 2-dominating sets), implying that
0(G) > 2. We now claim that D; and D, form a partition of V(G). Suppose, to the
contrary, that V/(G) \ (D1 U Ds) # (). Then, for every v € V(G) \ (D1 U Dy), the pair
(Dy U{v}, Ds) is a (2,2)-pair in G — Eg(v, D) (and (Dy, Dy U {v}) is a (2, 2)-pair
in G — Eg(v, Dy)), a contradiction to the minimality of G. From the minimality
of G it also follows that G is a bipartite graph in which the sets D; and Dy form
a bipartition, for if two vertices  and y belonging to D; (or Dy) were adjacent in
G, then (Dq, Dy) would be a (2,2)-pair in G — xy, a contradiction. Finally, no two
vertices of degree at least 3 are adjacent in G, for if a vertex x € D; of degree at
least 3 were adjacent to a vertex y € Dy of degree at least 3, then (Dy, Dy) would be
a (2,2)-pair in G — zy. From this and from the fact that 6(G) > 2, it follows that
every edge of G is incident with a vertex of degree 2 in G (and, therefore, 6(G) = 2).

Assume now that G is a bipartite graph with partite sets A and B, in which
d(G) > 2 and every edge of G is incident with a vertex of degree 2 in G. Then (A, B)
is a (2,2)-pair in G and therefore G is a (2, 2)-dominated graph. Now, if e is an edge
of G, then G — e has a vertex of degree 1 (since e is incident with a vertex of degree
2) and therefore G —e is not a (2, 2)-dominated graph. Consequently, G is a minimal
(2,2)-dominated graph. O

If H is a graph (with possible multi-edges or multi-loops), then the subdivision
graph of H, denoted by S(H), is the graph obtained from H by inserting a new
vertex into each edge and each loop of H. We remark that the graphs F' in Fig. 1,
G in Fig. 2, and G in Fig. 3 are examples of subdivision graphs. We note that the
subdivision graph S(H) of H is a bipartite graph. On the other hand, we have the
following useful observation.

Observation 2.5. A connected graph G is a subdivision graph if and only if G 1is
a connected bipartite graph with partite sets A and B such that at least one of them
consists only of vertices of degree 2. Furthermore, a connected bipartite graph G with
partite sets A and B such that 6(G) > 2 and |B| > |A| is a subdivision graph if and
only if dg(x) = 2 for every x € B.

We state the next two important corollaries of Theorem 2.4 that will prove very
helpful to us. This corollary states that every minimal (2,2)-dominated graph (and
therefore every (2, 2)-dominated graph) can be constructed from a subdivision graph.
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Corollary 2.6. If a minimal (2,2)-dominated graph has multi-edges, then at least
one of the vertices incident with them is of degree 2.

Corollary 2.7. If H is a graph with §(H) > 2 and with possible multi-edges or
multi-loops, then its subdivision graph S(H) is a minimal (2,2)-dominated graph.

3 Constructive characterization of minimal (2, 2)-dominated
graphs

We remark that both graphs F' and H in Fig. 1 are minimal (2, 2)-dominated graphs.
But only F' is a subdivision graph. Thus, not every minimal (2, 2)-dominated graph is
a subdivision graph. Surprisingly, there are interesting connections between minimal
(2,2)-dominated graphs and subdivision graphs. To prepare the ground for our
explanation, let us begin with the following definition of a P-contraction, which will
play an important role in our considerations.

Let G be a bipartite graph. We define a vertex v as a contractible verter of G
if v is not incident with a multi-edge. Let v be a contractible vertex in G, and let
P(v) be a partition of the neighborhood Ng(v) of v. Recall that N2 (v) is the set of
vertices at distance 2 from v in G, while NZ[v] is the set of vertices within distance 2
from v in G. Let G’ = G(P(v)) denote a graph in which

V(G") = (V(G) \ No(v)) U ({v} x P(v)),
and where
Ng/(u) = N(;(u) if ue V(G/) \ Né[v],
Ne ((v,5)) = Ng(S) if (v,5) € {v} x P(v),

Ne/(v) = {v} x P(v) and |Eg(v,(v,S))] =1 for each S € P(v),
and
Ne(u) = {(v,S5): S € P(v) and Ng(u) NS # 0} U (Ng(u) \ Ng(v))

for every vertex u € NZ(v). Moreover, in this case when u € N&(v) and (v,S) €
Ngi(u), then |Eg (u, (v, S))| = |Eg(u, S)|.

The graph G(P(v)) is called a P-contraction of G with respect to the partition
P(v). To illustrate this construction, we present on the left side of Fig. 2 a graph G
with a specified vertex v and a partition P(v) = {S1, Sa, S3, 54} of the neighborhood
N¢(v) of v into four subsets indicated by ellipses. The graph on the right side of
Fig. 2 is the associated P-contraction G(P(v)) of G with respect to the partition
P(v).

The following observation follows readily from the definition of the P-contraction
of a graph.

Observation 3.1. If G is a bipartite graph and P(v) = {S1, ..., Sk} is a partition of
the neighborhood Ng(v) of a contractible vertex v of G, then the following properties
hold in the P-contraction G' = G(P(v)) of G.
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Figure 2: Graph G and its P-contraction G(P(v))

(a) G’ is a bipartite graph.

(b) d(v) = [P(0)] = k.

(c) dar((v,8:) =1+ ,cs (da(u) — 1) for every S; € P(v).

(d) dg/(x) = dg(x) for every x € V(G') \ N&[v].

(e) G’ is isomorphic to G if |P(v)| = dg(v), that is, if P(v) consists of singletons.

We are interested in determining partitions P(v) of Ng(v) which transform a
minimal (2,2)-dominated graph G into a minimal (2, 2)-dominated graph G(P(v)).
We begin with the following lemma.

Lemma 3.2. Let G be a minimal (2,2)-dominated graph, and let P(v) be a parti-
tion of Ng(v) for some contractible vertex v of G, say P(v) = {Si,..., Sk}, where
1 < |Si| < --- < |Sk|. Then the P-contraction G(P(v)) of G is a minimal (2,2)-
dominated graph if and only if at least one of the following two statements holds.

(a) k
(b) k

Proof. From the fact that G is a minimal (2, 2)-dominated graph and from Theorem
2.4 it follows that G is a bipartite graph, 6(G) = 2, and every edge of G is incident
with a vertex of degree 2. Let G’ denote the P-contraction G(P(v)) of G, where
v is a contractible vertex of G, P(v) = {Si,..., Sk} is a partition of Ng(v) and
1< IS < < |SH.

We shall show that G’ is a minimal (2, 2)-dominated graph if and only if at least
one of the statements (a) and (b) holds. Since the result is obvious if k = |Ng(v)]
(as in this case P(v) = {z: z € Ng(v)} and G’ is isomorphic to G, see Observation
3.1(e)), we may assume that k& < |[Ng(v)|. Then k < |Ng(v)| = |S1]+. . .+|Sk| < k|Sk]
and therefore |Sx| > 2. In addition, it follows from Theorem 2.4 that neither the
case k = 1 < |[Ng(v)| nor the case 3 < k < |Ng(v)| is possible as otherwise either v
is of degree 1 in G’ or v and (v, Sg) are adjacent vertices of degree at least 3 in G'.
Thus it remains to consider the case k = 2 < |Ng(v)|.

[Na(v)].
2 and dg(x) =2 for every x € Ng(S;) \ {v} if |S:| > 2 (i € {1,2}).



M.A. HENNING AND J. TOPP / AUSTRALAS. J. COMBIN. 83 (1) (2022), 163-172 169

It follows from Observation 3.1 (a)—(d) that G’ is a bipartite graph and §(G") = 2,
because G is bipartite, §(G)) = 2, and k = 2. Consequently, by Theorem 2.4, to prove
that G’ is a minimal (2, 2)-dominated graph, it suffices to show that every edge of
G’ is incident with a vertex of degree 2. Since the edges v(v,S;) and v(v, S;) are
incident with v, which is of degree 2 in G, and every edge of G', which is not incident
with (v,S7) or (v,S3), has inherited this property from the graph G, the graph G’ is
a minimal (2, 2)-dominated graph if and only if every edge of G’ incident with (v, S7)
or (v,S52) (and different from v(v, S;) and v(v, S3)) is incident a vertex of degree 2
in G’ (and in G). This property holds if and only if |S;| = 1 and dg(z) = 2 for every
x € Ng(S2) \ {v} or 2 < |S;| < [Ss| and dg(x) = 2 for every x € Ng(S1 U S2) \ {v},
that is, if and only if dg(z) = 2 for every x € Ng(S;)\{v} if |S;| > 2 where ¢ € {1,2}.
This completes the proof. O

A 2-P-contraction of a graph G is a P-contraction G(P(v)) of G with respect
a partition P(v) = {S1, S2} of Ng(v), where v is a contractible vertex of degree at
least 3, and dg(x) = 2 for every x € Ng(S;) \ {v} if |5;| > 2 (i € {1,2}). It follows
from Lemma 3.2 that every 2-P-contraction transforms a minimal (2, 2)-dominated
graph into a minimal (2, 2)-dominated graph.

By M we denote the family of all connected minimal (2,2)-dominated graphs.
We are now in a position to present a constructive characterization of the family M.
For this purpose, let F be the family of graphs that:

(1) contains the subdivision graph S(H) for every connected graph H with §(H) >
2 (and possibly with multi-edges and multi-loops); and

(2) is closed under 2-P-contractions.

Examples of graphs G=S(H), and 2-P-contractions F' = G(P(v)), S = F(P(u)),
and T'= S(P(w)) belonging to the family F are given in Fig. 3.

Figure 3: Graphs G, F', S, and T belonging to the family F

The following theorem provides a constructive characterization of minimal (2, 2)-
dominated graphs.
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Theorem 3.3. A connected graph G belongs to the family M if and only if G belongs
to the family F.

Proof. Tt follows from Corollary 2.7 and Lemma 3.2 that / C M. Thus it remains
to prove that M C F. Assume that G is a connected graph belonging to M. By
Theorem 2.4, G is a bipartite graph with §(G) = 2 such that every edge of G is
incident with a vertex of degree 2 in G. Let A and B be the partite sets of G. Let

A% = {r € A do(r) = 2} and A% = A\ A2,

and
B ={z € B: dg(r) =2} and B}, = B\ B%.

By induction on k = min{|A}|, |B%|} we will prove that G € F. If k = 0, then
at least one of the sets A and B consists of vertices of degree 2, implying that G is
a subdivision graph (by Observation 2.5) and proving that G belongs to F. Thus,
let k be a positive integer, and assume that |A}| > |Bg| = k.

Among all vertices u € A}, and v € B2, let u and v be chosen to be at minimum
distance apart in G, that is, dg(u,v) = min{dg(z,y): © € A}, and y € B&}. Let
P:v = vy,v1,...,v9 = u be a shortest (u,v)-path in G. Since u and v belong to
different partite sets of G, we note that ¢ is odd. Further since G is a minimal
(2,2)-dominated graph, the set A%, U B, is an independent set, implying that ¢ > 3.
By the choice of the path P, every internal vertex of the path P has degree 2 in G,
while the vertices u and v are both of degree at least 3. Further from the minimality
of G and by Theorem 2.4, every neighbor of v has degree 2 in G.

Without loss of generality we assume that the subset Ng(v) \ {v1} of Ng(v) is
the union of two disjoint sets {p1,...,pn} and {si,...,s,}, where each vertex p;
has degree 2 in G and is joined by a pair of parallel edges with v (say by edges e;
and ¢;), while each vertex s; has degree 2 in G and is adjacent to a vertex, say s/,
different from v. We remark that possibly s; = s’ if i # j, and possibly one of the
sets {p1,...,pm} and {s1,...,s,} is empty. Now let G’ be a graph with vertex set
V(G = (V(G) \ {v}) UV*, where

V*={(v,e1), (v,€}),...,(v,em), (v,es ) U{(v,51),...,(v,8,)},

and with edge set E(G’) obtained from E(G) as follows:

e deleting all edges incident with v in G,

e adding an edge from v; to every vertex in the set V*,

e adding an edge from p; to both the vertices (v, ¢;) and (v,e}) for all i € [m],
and

e adding an edge from s; to the vertex (v, s;) for all i € [n].
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That is, defining
By = E(G)\ Ea(v),

Ey = {vz:zeV*},
By = {(v,e)pi, (v, €))pi: i € [m]},
Ey = {(v,s;)si: i € [n]},

we have F(G') = E1 U Ey U E3U Ey. An illustration of the construction of the graph
G’ from the graph G is given in Fig. 4.

Figure 4: Graphs G and G’ such that G'(P(vy)) is isomorphic to G

We note that every new vertex added to G when constructing G’ has degree 2 in
G'. Further, the degrees of all vertices in G different from v remain unchanged in
G', except for the vertex v; whose degree changes from 2 to 1 4+ 2m + n. It follows
from the fact that G is a minimal (2,2)-dominated graph and from Theorem 2.4
that G’ is a minimal (2,2)-dominated graph, that is, from the fact that G € M it
follows that G’ € M. Recall that by assumption, we have |A%| > |Bg| = k. Since
Bi, = B¢\ {v} and A%, = A% U {v1}, we therefore have

min{|A%|, |B&/|} = min{|A}| + 1,|B| -1} = |Bd| - 1=k -1 <k

Applying the induction hypothesis to the graph G’, we have that G’ € F. Fi-
nally, if P(vy) = {51, 52} is a partition of Ng/(vy), where S; = {ve} and Sy =
Ngr(v1) \ {ve} = V¥, then the 2-P-contraction G'(P(v;1)) belongs to the family F
(by Lemma 3.2). Consequently, the graph G belongs to F as G is isomorphic to
G'(P(vy1)). This completes the proof of Theorem 3.3. O
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