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Abstract

DP-coloring of a graph was introduced by Dvordk and Postle [J. Com-
bin. Theory Ser. B 129 (2018), 38-54] as a generalization of a list coloring.
Kim and Ozeki [Discrete Math. 341 (2018), 1983-1986] proved that pla-
nar graphs without k-cycles where k& € {3,4,5,6} are DP-4-colorable.
Kim and Yu [Graphs Combin. 35 (2019), 707-718] proved that every pla-
nar graph without 3-cycles adjacent to 4-cycles is DP-4-colorable. So it
was natural to ask whether every planar graph without ¢-cycles adjacent
to j-cycles is DP-4-colorable for i,j € {3,4,5,6} and i # j. For each
k € {5,6}, Liu, Li, Nakprast, Sittitrai and Yu [Discrete Appl. Math.
277 (2020), 245-251] proved that every planar graph without 3-cycles
adjacent to k-cycles is DP-4-colorable; Chen, Liu, Yu, Zhao and Zhou
[Discrete Math. 341 (2019), 2984-2993] proved that every planar graph
without 4-cycles adjacent to k-cycles is DP-4-colorable. In this paper, we
answer the last case of this question and prove that every planar graph G
without 5-cycles adjacent to 6-cycles is DP-4-colorable. This result also
improves a result of Kim and Ozeki in the 2018 paper mentioned above.

1 Introduction

Coloring is one of the most popular topics in graph theory. Let G be a simple
graph. A proper coloring of G is a function ¢ : V(G) — [k] = {1,2,...,k} such that
c(u) # c(v) for any edge uv € E(G). A graph G is k-colorable if it has a k-coloring,.
The chromatic number of G, denoted by x(G), is the smallest integer k& such that G
is k-colorable. A list assignment L of a graph G is a mapping that assigns a set of
colors to each vertex. An L-coloring of G is a function f : V(G) — Upey () L(v) such
that f(v) € L(v) for any v € V(G) and f(u) # f(v) for any edge uv € E. A graph
G is k-choosable if G has an L-coloring for every assignment L with |L(v)| > k for
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each v € V(G). The choice number of G, denoted by x;(G), is the smallest integer k
such that G is k-choosable.

As a generalization of list coloring, DP-coloring (or corresponding-coloring) was
first introduced by Dvorak and Postle [7]. The following equivalent definition is given
by Bernsheteyn, Kostochka and Pron [3].

Definition 1.1 Let G be a simple graph, and L be a list assignment of G. Definite
L, = {u} x L(v) for any vertex v € V(G), and let M,, be a matching (may be
empty) between sets of L, and L,. Let M, = {M,, : uv € E(G)}, which is called
the matching assignment over L. Let G, be a graph, called an M -cover of G, which
satisfies the following conditions.

e The vertex set of G is Uyev(q) Lo

o G1[L,] is a clique for any vertex v € V(G).

If wv € E(G), then the edges between L, and L, form a matching in M,,.

If wv ¢ E(G), then there is no any edge between L, and L,,.

Definition 1.2 If G, contains an independent set of size |V (G)|, then we say that
G has an M-coloring. If G has an M -coloring for any k-list assignment L, and
any matching assignment My over L, then G is DP-k-colorable. The DP-chromatic
number, denoted by xpp(G), is the minimum positive integer k such that G is DP-
k-colorable.

If for each wv € E(G), we define edges on G, to match exactly the same colors
between L(u) and L(v), then this M-coloring is the ordinary list coloring. So list
coloring is a special case of DP-coloring and xpp(G) > x;(G) for each graph G.

DP-coloring has proved attractive recently. Dvordk and Postle [7] proved that
xpp(G) < 5if G is a planar graph, and xpp(G) < 3if G is a planar graph with girth
at least 5. Meanwhile, DP-coloring and list coloring are quite different. Bernshteyn
[2] showed that the DP-chromatic number of every graph with average degree d is
Q(d/logd), while Alon [1] proved that y;(G) = Q(logd) and the gap is large. More
results about DP-coloring can be found in [2, 3, 4, 5, 8, 11, 10, 12, 14, 15] and others.

A k-cycle is a cycle of length k. Kim and Ozeki [8] proved that planar graphs
without k-cycles where k € {3,4,5,6} are DP-4-colorable. Kim and Yu [9] proved
that every planar graph without 3-cycles adjacent to 4-cycles is DP-4-colorable. One
naturally asked the following question.

Question 1.3 Is every planar graph without i-cycles adjacent to j-cycles DP-4-
colorable fori,j € {3,4,5,6} and i # 57

For each k € {5,6}, Liu, Li, Nakprast, Sittitrai, Yu [13] proved that every planar
graph without 3-cycles adjacent to k-cycles is DP-4-colorable; Chen, Liu, Yu, Zhao
and Zhou [6] proved that every planar graph without 4-cycles adjacent to k-cycles
is DP-4-colorable. In this paper, we answer the last case of Question 1.3 and prove
the following result.
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Theorem 1.4 FEvery planar graph G without 5-cycles adjacent to 6-cycles is DP-4-
colorable.

A cluster in a plane graph G is a subgraph of G that consists of a minimal set of
3-faces such that no other 3-face is adjacent to any 3-face in this set. It is called a
k-cluster if it contains k 3-faces. We present four clusters here (see Figure 1).

Hy H Hj Hy
Figure 1: Four clusters

A face f in Hjs is semi-poor, poor face if it is adjacent to exactly one or two
3-faces, respectively. So, there are two semi-poor faces and exactly one poor face in
any Hz. A 4-vertex in Hy is called a hub.

Finally we introduce some notation and terminology used in this paper. Let G be
a simple plane graph. We use F or F(G) to denote the face set of G. For f € F(G),
we write f = [ujug ... uy,] if uy,ug, ..., u, are the boundary vertices of f in a cyclic
order. A face of GG is said to be incident with all edges and vertices in its boundary.
The degree of a face f, denoted by dg(f), is the number of edges incident with it,
where a cut edge is counted twice. A k-vertex (kt-vertex, k~-vertex) is a vertex of
degree k (at least k, at most k). A k-face (k~-face or k™-face) is defined similarly. For
convenience, a k-face f = [vjvy...vx] is often said to be a (d(v1),d(vs), ..., d(vg))-
face. Let C be a cycle of a plane graph G. We use int(C') and ext(C) to denote the
sets of vertices located inside and outside C, respectively. The cycle C' is called a
separating cycle if int(C) # ) # ext(C).

2 Proof of Theorem 1.4

This section is devoted to proof of Theorem 1.4.

Let G be a cover of a graph G with a list assignment L. Let G’ = G — H
where H is an induced subgraph of G. A list assignment L’ is a restriction of
L on G"if L'(u) = L(u) for each vertex v in G'. A graph G is a restriction
of Gy on G’ if Gy = Grlvx L(v) :v € V(G')]. Assume that Gy has an M-
coloring. Then G, has an independent set I’ of size |I'| = |V(G)| — |V(H)]|. Define
Ly = Ly—Uyepe){(z,d) € Ly (u,c)(x, ) € E(GL),c € L(z), (u,c) € I'} for each
x € V(H), and define Gy« = Gplr x L*(z) : x € V(H)|. If H has an M «-coloring,
then G« has an independent set I* of size |[*| = |V(H)|. Since there are no edges
between I' and I*, I’ U I* is an independent set in G, of size |I'| + |I*| = |V(G)].
Thus, G, has an M -coloring.

Lemma 2.1 ([8]) For each k € {3,4,5,6}, every planar graph without k-cycles is
DP-4-colorable.
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We now introduce eztendability. Let G be a graph and C be a subgraph of G.
Then (G, C) is DP-4-colorable if every DP-4-coloring of C' can be extended to G.

Figure 2. A bad 4-cycle

A 4-cycle is bad if it is the outer 4-cycle in the subgraph isomorphic to the graph
in Figure 2 and good otherwise. For convenience, we say that every 3-cycle is a good
cycle. In order to prove Theorem 1.4, we prove a stronger result as follows.

Theorem 2.2 If G is a planar graph without 5-cycles adjacent to 6-cycles, then
every precoloring of a induced good k-cycle can be extended to a DP-4-coloring of G,
where k = 3, 4.

Proof of Theorem 1.4 via Theorem 2.2. By Lemma 2.1, we may assume that
G contains a k-cycle C', where k = 3,4. By Theorem 2.2, every precoloring of C' can
be extended to G, so G is also DP-4-colorable. O

Let (G, Cp) be a minimal counterexample to Theorem 2.2 with |V(G)| + |E(G)|
minimized, where Cy is a precolored k-cycle in G, where k = 3,4. We claim that
Cy has no chord. Suppose otherwise that Cy has a chord ey and two vertices of
ep have colored different colors. Let G’ = G — ¢y. By the minimality of G, any
DP-4-coloring of Cy can be extended to a DP-4-coloring of G’. Thus, G has a DP-4-
coloring, a contradiction. If Cj is a separating cycle, then any precoloring of Cy can
be extended to int(Cy) and ext(Cy), respectively. Then we get a DP-4-coloring of G,
a contradiction. So we may assume that Cj is the boundary of the outer face of GG
in the rest of this paper. A vertex v is an internal vertez if v ¢ Cy. For an internal
4F-vertex v is in a cluster H, where H € {Hy, H, H3, H,}, v is called i-type to H if
v is incident with exactly 7 edges in H.

Lemma 2.3 FEach internal vertex is a 4T -vertex.

Proof. Suppose to the contrary that x is an internal 37 -vertex. By the minimality
of G, G' = G — r admits an M /-coloring where L’ is a restriction of L in G’. Thus
Gy has an independent set I’ of size |I'| = |V(G’)|. Consider a list assignment L*
on x. Since |L(x)] =4 and d(z) < 3, we obtain |L%| > 1. Clearly, (x,c) € L% is an
independent set in G[{x}]. Then I’ U{(x,c)} is an independent set of G, and hence
G has an M -coloring, a contradiction. O

By Lemma 2.3, since GG has no 5-cycles adjacent to 6-cycles, G has four clusters
depicted in Figure 1.

Lemma 2.4 G contains no separating good k-cycle, where k = 3, 4.
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Proof. Let C be a separating good k-cycle in GG. By the minimality of (G, Cy), any
precoloring of C can be extended to G — int(C'). After that, C' is precolored, then
again the coloring of C' can be extended to int(C'). Thus, G has a DP-4-coloring, a
contradiction. 0

Lemma 2.5 (a) Assume that g is a 4-cycle which is not bad and f is a 3-face
which is not Cy. If a 4-face g is adjacent to f, then f cannot be adjacent to
any 3-face and g cannot be adjacent to any 3- or 4-face h, where h # f.

(b) If v is a 5T -vertex incident with three consecutive 3-faces, then none of the
3-faces can be adjacent to any other 3-faces.

(c) A 3-face f is not adjacent to a 5-face g.
(d) For k > 5, a k-vertex is incident to at most k — 2 triangles.

Proof. (a) Let f = [uvw] and g = [uwzy]. Since f is not Cy, x and y are outside f
and v is outside g by Lemma 2.4.

We first show that f cannot be adjacent to a 3-face. Suppose to the contrary
that f is adjacent to a 3-face h = [vzw] by symmetry. Since z and y are outside f,
by Lemma 2.4, z is outside of both f and g. Let S = {u,v,w,z,y}. If 2 ¢ S, then
uvwxyu is a H-cycle adjacent to a 6-cycle uvzwzryu, a contradiction. Thus, assume
that 2 € S. Then z =2z or z =y. If 2 =z, then uw and y are either inside or outside
vwzw. In the former case, vuyxrv is a 4-cycle. By Lemma 2.4, such a 4-cycle is a
4-face and hence d(y) = 2, contrary to Lemma 2.3. In the latter case, vwzv is a
3-face by assumption and hence d(w) = 3, contrary to Lemma 2.3. If z = y, then
u and z are either inside or outside vwyv of GG. In each case, uvwyu is a separating
3-cycle, contrary to Lemma 2.4.

Next we show that g cannot be adjacent to any other 3-face. Suppose to the
contrary that g is adjacent to a 3-face h # f. By symmetry h shares exactly one
edge rw or xy with g.

We first assume that h = [zwz]. If 2 ¢ S, then wvwzyu is a 5-cycle adjacent to
a 6-cycle uwvwzryu, a contradiction. Thus, assume that z € S. Since G is a simple
graph, z = v or z = y. Since x and y are outside of f, by Lemma 2.4, z is outside g.
If z = v, this is the case that x = 2z in above proof and we are done. If z = y, then
wuyw is a separating 3-cycle, contrary to Lemma 2.4.

Now let h = [zyz]. If z ¢ S, then wvwzyu is a 5-cycle adjacent to a 6-cycle
uvwzzyu, a contradiction. Thus, assume that z € S. In this case, assume that z = v
or z = u by symmetry. Since x and y are outside of f, by Lemma 2.4, z is outside
g. If z = u, then uwxu is a separating 3-cycle, contrary to Lemma 2.4. If v = z,
then v and w are either inside or outside xyzz. In the former case, vuy is a 3-cycle,
by Lemma 2.4, d(u) = 3, contrary to Lemma 2.3. In the later case, either vuyv or
vwazw is a 3-cycle, by Lemma 2.4, such a 3-cycle is a 3-face and hence d(u) = 3 (or
d(w) = 3), contrary to Lemma 2.3.

Finally, we show that g cannot be adjacent to a 4-face. Suppose to the contrary
that ¢ is adjacent to a 4-face h. By symmetry h shares exactly one edge xw or xy
with ¢g. Assume first that h = [zwzt]. If {z,¢t} NS = 0, then wvwzyu is a 5-cycle
adjacent to a 6-cycle uwztryu, a contradiction. Thus, {z,t} NS # (). Since z and
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y are outside f, by Lemma 2.4, z,t are outside g. Assume first that z € S and
t ¢ S. Since G is planar, z # u. Then z = v or z = y. If z = v, then vwztv is a
4-cycle. By Lemma 2.4, such a 4-cycle is a 4-face and hence d(w) = 3, contrary to
Lemma 2.3. If z = y, then G has a separating 3-cycle uywu, contrary to Lemma 2.4.
Then assume that z ¢ S and t € S. If t = y, then wzyuw is a separating 4-cycle,
contrary to Lemma 2.4. If ¢ = u, then xwux is a separating 3-cycle, contrary to
Lemma 2.4. If t = v, then G has a separating 3-cycle vwxv, contrary to Lemma 2.4.
Thus, {z,t} C S. Since G is planar, z = v and t = u. Then uyzu is a 3-cycle. By
Lemma 2.4, such a 3-cycle is a 3-face and hence d(y) = 2, contrary to Lemma 2.3.

Thus, assume that h = [yzzt]. If {z,t}NS = (), then uvwzyu is a 5-cycle adjacent
to a 6-cycle uwzztyu, a contradiction. Thus, assume that {s, ¢} NS # ). Since x and
y are both outside of f, by Lemma 2.4, z and t are outside of g. Assume first that
one of s and ¢ is in S. By symmetry, assume that t ¢ S and z € S. If z = v, then
G has a separating 4-cycle vuyxv, contrary to Lemma 2.4. If 2 = w, then G has a
separating 4-cycle wuytw, contrary to Lemma 2.4. If z = u, then G has a separating
3-cycle uwxu, contrary to Lemma 2.4. Thus, assume that z and ¢ are both in S.
Since G is simple, {z,t} N{z,y} =0 and {z,¢} N {u,w} = 0. By symmetry, assume
that z = v. Since G is planar, ¢ = u. In this case, zwvx is a 3-cycle. By Lemma 2.4,
such a 3-cycle is a 3-face and hence d(w) = 3, contrary to Lemma 2.3.

(b) Assume that v is a 57-vertex incident with three consecutive 3-faces f; =
[uvw], fo = [wvx] and f3 = [zvy|. Let S = {u,v,w,z,y}. Suppose to the contrary
that at least one of the three 3-faces is adjacent to another 3-face f,. By Lemma 2.4,
f1 shares exactly one edge with one of fi, fo and f3. By symmetry we may assume
that f; = [uzw] or [uvz] or [wzz]. If z ¢ S, then there exists a 5-cycle adjacent
to a 6-cycle, a contradiction. So, assume that z € S. If f; = [wzv], then v # z
since f; # fo. Thus, let z = u by symmetry. In this case, rwux is a 3-cycle.
By Lemma 2.4, d(w) = 3, contrary to Lemma 2.3. By symmetry, assume that
fi = [uwz]. If z = z, then rwux is a 3-cycle. By Lemma 2.4, such a 3-cycle is a
3-face and hence d(w) = 3, contrary to Lemma 2.3. Thus, f, = [uzw] and z = y. In
this case, vwywv is a separating 3-cycle, contrary to Lemma 2.4.

(c) Suppose to the contrary that f = [zyz] and ¢ = [uvway]. If z ¢ S, then
uvwzxyu is a 5-cycle adjacent to a 6-cycle uvwzrzyu, a contradiction. If z € S, then
we assume z = u or z = v by symmetry. In the former case, xyux is a 3-cycle, by
Lemma 2.4, d(y) = 2 (or d(w) = 2), contrary to Lemma 2.3. In the later case, uvyu
(or zwvx) is a 3-cycle. By Lemma 2.4, such a 3-cycle is a 3-face and hence d(u) = 2
(or d(w) = 2), contrary to Lemma 2.3.

(d) It follows that G has no 5-cycles adjacent to 6-cycles. O

Lemma 2.6 Two (4,4,4)-faces in int(Cy) cannot share exactly one common edge

m G.

Proof. Suppose to the contrary that 73 = [uvz] and T, = [uvy] share a common
edge uv. Let S = {u,v,z,y} and G' = G — S. By the minimality of G, G, admits
an M -coloring where L' (and G,) is a restriction of L (and G, respectively). Thus
G has an independent set I’ of size |V(G")| = |V(G)| — 4.



X. LI AND M ZHANG / AUSTRALAS. J. COMBIN. 87 (1) (2023), 86-97 92

We claim that xy ¢ E(G). Suppose otherwise. Then G has either a 3-cycle
Dy = zvyzx such that w is in int(D;) or a 3-cycle Dy = zuyx such that v is in
int(Ds). In the former case, since both x and y are 4-vertices, D; is a separating
3-cycle, contrary to Lemma 2.4. In the latter case, similarly, D, is a separating 3-
cycle, contrary to Lemma 2.4. Consider a list assignment L* on S. Since |L(v)| > 4
for all v € V(G), we have

Lol 23, L3 =3, L3 22, |Ly] > 2.
Since |L}| > |Lk|, we can choose a vertex (v,c) in
Ly —A{(v,d): (x,") e LE, (v, )(x, ") € My }.

Then L} has at least two available colors. We color y,u,x in order, we can find
an independent set I* with |I*| = 4. So I’ U I* is an independent set of G with
|I" U I*| = |V(G)|. Then G has an M -coloring, a contradiction. O

We are now ready to present a discharging procedure that will complete the proof
of the Theorem 1.4. For each x € VUF', we define the initial charge ch(z) = d(z) —4
if v e VU(F\{Cy}) and ch(Cy) = |Cy| + 4. By Euler’s Formula,

> eh(z)+ Y ch(x)+ch(Co) =Y (d(z) —4)+ Y (d(z) —4)+8=0.

zeV zeF\{Co} zeV zel’

We define suitable discharging rules such that, for every z € V U (F \ {Cy}), the
final charge of z, denoted ch/(z), is non-negative and ch'(Cy) > 0. So, we get
0<> evurch(z) =2 cvupch(z) = 0. This contradiction proves our result.

A 5-vertex v is special if v is 3-type to H, and 2-type to one of Hy and Hj.
Denote by w(v — f) to transfer the charge from a vertex v to a face f. We define
the discharging rules as follows.

(R1) Let v be an internal vertex in a 3-face f.

(a) If v is a 4-vertex, then

( 5, ifvis 3-type to Hy;
%, if v is 3-type to Hs and f is a semi-poor face;
wv— f) = %, if v is 3-type to Hz and f is a poor face;
%, if v is 3-type to Hy and f is a (4,4, 57)-face;
\ %, if v is 3-type to Hy and f is a (4,4, 4)-face.

(b) If v is a 5-vertex, then

( %, if v is 3-type to Hy;
w(v — f) =14 %, ifvis2-type to Hy or Hs and v is special;
\ %, otherwise.

(c) If v is a 6T-vertex, then

w('u—>f):{

, if v is 3-type to Hy;

W= lw

, otherwise.
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(R2) Every 4-face sends % to each adjacent 3-face; every k-face sends k—;‘l to each
adjacent 3-face, where k& > 6.

(R3) Every 5-face sends + to each adjacent 4-face.

(R4) Let v be an internal 4-vertex. If v is incident with two adjacent 6*-faces, then
each such a 6-face gives % to v and each such a 7t-face gives 1—321 to v.

(R5) The outercycle Cy gets ch(v) from each incident vertex and sends 1 to any
3-face sharing at least one vertex with Cj.

It suffices to check that each x € V(G) U F(G) has nonnegative final charge and
Cy has positive final charge. By (R4), we have ch’(v) = 0 for each v € V(Cy). Thus,
we need to check ch’(v) > 0 for each internal 4-vertex v by Lemma 2.3.

(1) Let v be a 4-vertex. If v is incident with at most one 3-face, then v is 2-type
to one of Hy, Hy and Hs. By (Rl)(a), ch'(v) = ch(v) = 0. If v is incident
with two nonadjacent 3-faces, then v is 2-type to one of Hy, H, and Hj3 and
also 2-type to the other of Hy, Hy and H;. By (R1)(a), ch'(v) = ch(v) = 0. If
v is incident with three 3-faces, then v is 4-type to Hs. Similarly by (R1)(a),
ch'(v) = ch(v) = 0. If v is incident with four 3-faces, then v is 4-type to H,.
Thus, ch/(v) = ch(v) =0 by (R1) (a). Thus, assume that v is incident with two
adjacent 3-faces. Then v is 3-type to one of Hy, Hy and Hy. If v is 3-type to Ho,
by Lemma 2.5(a) and (c), v is incident with two 67-faces. By (R1)(a) and (R4),
ch(v) = ch(v)+§ x2—%x2=0. If v is 3-type to Hs, by Lemma 2.5(a) and (c),
v is incident with two 7*-faces since G has no 5-cycles adjacent to 6-cycles. By
(R1)(a) and (R4), ch'(v) = ch(v) + & x2— (3 4+ 2) = 0. If v is 3-type to Hy, by
Lemma 2.5(b), v is incident with two 7*-faces since G has no 5-cycles adjacent
to 6-cycles. By Lemma 2.6, v is incident with at least one (4,4, 5%)-face in Hjy.
By (R1)(a) and (R4), ch/(v) = ch(v) + & x 2 — (2 +2) = 0.

(2) Let v be a 5-vertex. By Lemma 2.5(b), v is incident with at most three consecu-
tive 3-faces. If v is not incident with any 3-face, then ch’(v) = ch(v) =1 > 0 by
(R1)(b). If v is incident with exactly one 3-face, then v is 2-type to one of Hy, Hy
and Hs. Thus, ch/(v) = ch(v) —3 = 3 > 0 by (R1)(b). If v is incident with two
nonadjacent 3-faces, then v is 2-type to one of Hy, H, and H3 and also 2-type to
the other one of Hy, Hy and Hs. By (R1)(b), ch'(v) = ch(v) =2 x 3 = 5 > 0.
If v is incident with two adjacent 3-faces, then v is 3-type to one of H,, Hj
and Hy. If v is 3-type to Hy or Hj, then v sends 3 to each 3-face. By (R1)(b),
ch'(v) = ch(v)—2x 3 =3 > 0. If v is 3 type to Hy, then ¢h/(v) = ch(v) —2x 2 =
2 >0 by (R1)(b). We now assume that v is incident with three 3-faces. If v

is incident with consecutive three 3-faces, then v is 4-type to Hs. By (R1)(b),

ch/(v) = ch(v)—3x 3 = 0. Thus, v is incident two adjacent 3-faces and the other
3-face. Then v is 3-type to one of Hy, H3 and H, and 2-type to one of Hy, Ho
and Hj. If v is 3-type to one of Hy and Hj and 2-type of Hy, Hy, and Hs. Then

ch(v) = ch(v) — 5 x 3 =0 by (R1)(b). If v is 3-type of Hy and 2-type to one of
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H> and Hs, then v sends % to each 3-face in the H, and % to the other 3-face.

Thus, ch'(v) = ch(v) — (£ x 2+ 1) > 0 by (R1)(b).

(3) Let v be 67-vertex. If v is not incident with 3-faces, then ch/(v) = ch
d(v) —4 > 2 > 0. By Lemma 2.5(d), v is incident with at most (d(v )
3-faces. Then ch/(v) > (d(v) —4) =2 x (d(v) —2) = 2d(v) -2 > 2 -2 = %
by (R1)(c).

We now check that ch/(f) > 0 for each f € F. For simplicity, we also use f to
denote the set of vertices of f for a face f. Let fi, fo,..., fi be 3-faces of a [-cluster
H,. Define ch(H;) = ch(f1) + - -+ ch(fi) and ch'(H;) = ch/(f1) + - - -+ ch'(f1).

We first check that f N Cy # 0.

(1) Let f be a 3-face in G. If f is not adjacent with any other 3-face, then by (R5)
f gets 1 from Cy. So ch'(f) >3 —-4+1=0.

Assume that f is in Hy. Let g be the 3-face in Hy adjacent to f. If Cy Ng # 0,
then Cy sends 1 to both f and g. Thus, ch/(Hs) = =2+ 141 = 0 by (R5).
Thus, assume that Cy N g = (. In this case, Cy sends charge 1 to f. By
Lemma 2.5, there are four 67-faces adjacent to this Hs. By (R2) and (R5),
ch'(Hy) > =241+ x4>0.

Assume that f is in Hz. Assume that the Hj is induced by three 3-faces f, g
and h. If gNCy # O and h N Cy # B, then ch/(Hz) = -3+ 1+ 141 =0 by
(R5). Thus, assume that one of g N Cy and h N Cp is not empty. By Lemma 2.5,
there are five 7*-faces adjacent to this Hs. Thus, ¢h/(Hz) > =3 +1+2x5>0
by (R2) and (R5).

Assume that f is in Hy. Let V(Hy) = {u,v,w,x,y}, where x,y,u, v are 3-type
vertices to Hy. Assume that o € V(Hy) NCy and = € f. If [V(Hy) N Coy| > 2,
then G has a 5-cycle adjacent to a 6-cycle, a contradiction. Thus, V(Hy) N
Co = {z}. By Lemma 2.5, there are four 7*-faces adjacent to this Hy, and the
Cp is incident with two 3-faces in Hy. Applying Lemma 2.6 to the subgraph
induced by {y, u,v,w}, there are at least one 5*-vertex in int(Cy) in Hy. Thus,
ch'(Hy) > =4+ 1+1+2x4+2%x2>0by (R1)(b), (R2) and (R5).

(2) Let d(f) = 4. If |f nCy| = 2, by Lemma 2.4, then f cannot be adjacent to
any 3-face rather than Cy (if Cy is a 3-face) since G has no 5-cycle adjacent to
6-cycle. Thus, ch'(f) = ch(f) = 0. Thus, assume that |f N Cy| = 1. By Lemma
2.5(a), f is adjacent to at most one 3-face. If f is not adjacent to any 3-face,
then ch/(f) = ch(f) = 0. If f is adjacent to one 3-face, then f is not adjacent
to any 4-face by Lemma 2.5(a). Thus, f is adjacent to three 57-faces. By (R2)
and (R3), ch/(f) > ch(f) +:x3—2=1>0.

(3) Let d(f) > 5. If f is a b-face, then f is not adjacent to any 3-face and adjacent
to at most five 4-faces. Thus, c¢h/(f) > ch(f) — % x 5 =0 by (R3). Thus, f is a
6t-face. By (R2), ch/(f) > (k—4) —k x 4 =0,
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From now on we may assume that f N Cy = 0.

(1) Let f be a 3-face. If f is H;, then f is adjacent to at most one 4-face. If f
is adjacent to one 4-face, by Lemma 2.5, the other faces incident with f are
6*-faces. By (R1), ch/(f) > d(f) —4+2+2x 52> -14+24+2x 1> 0. Thus,
assume that f is not adjacent to any 4-face. Since G had no 5-cycle adjacent

to any 6-cycle, f cannot adjacent to any 5-face. Thus, f is adjacent to three
6t-faces. By (R1)(c), ch'(f) > d(f) —4+ 3 x 3 =0.

Assume first that f is in Hy. Then ch(Hs) = —2 and let f; and fy be two
3-faces in Hy. Let V(Hsy) = {u,v,z,y}, where z,y are 2-type to Hy and u,v
are 3-type to Hy. Since GG has no separating 3-cycle, x is not adjacent to y.
Since GG has no 5-cycles adjacent to 6-cycles, each face adjacent to an internal
face of Hy is a 67-face by Lemma 2.5. In this case, there are four 6*-faces
adjacent to this Hy. By (R1), each such face sends é to f1 or fo in Hy. If one
of u and v is a 5T-vertex, then it sends % to each of the two adjacent 3-face by
(R1)(b), (R1)(c) and (R1)(e). Thus, ch'(Hy) > =2+ 3 x4+ 5 x2=0. We
now assume that each of u and v is a 4-vertex. By Lemma 2.6, at least one
of x and y is a 5T-vertex. Assume that z is a 5T-vertex. If z is a 6t-vertex
or a non-special 5-vertex, then x sends 3 to the 3-face in Hs by (R1)(c). By
(R1)(a), (R1)(b) and (R2), each of u and v sends ¢ to each adjacent 3-faces.
Thus, ch/(Hy) > =2+ 3 x 44+ 4+ % x4 > 0. Thus, assume that = is a special
5-vertex. In this case, z is incident with two 7T-faces. So, there are two 6T -faces
and two 7'-faces adjacent to this Hy. In this case z sends % to the 3-face in Hs.

By (R1)(a), (R1)(b) and (R2), ch/(Hy) > =24+ s X2+ 2 x 24+ 1+ 1 x4 > 0.

Next, assume that f isin H3. Then ch(Hs) = —3 where f1, fo, and f3 are 3-faces
in Hs. Let V(H3) = {u,v,w,z,y}, where v is 4-type to Hs, u,w are 3-type to
H;, and z and y are 2-type to Hs. By Lemma 2.4, x is not adjacent to w and
y is not adjacent to u. Since G has no 5-cycles adjacent to 6-cycles, each face
adjacent to an internal face of Hj is a 7"-face by Lemma 2.5. By (R2), each such
7T-face sends at least % to the Hs. If v is a 5T-vertex, then v sends % to each of
three 3-faces in the Hy by (R1)(b). Thus, ch'(Hz) > =342 x5+ 3 x 3 > 0.
If one of u and w, say u, is a 5T-vertex, then w is a 4"-vertex by Lemma 2.4.
In this case, u sends  to two 3-faces incident with w in the Hjz by (R1)(b),
w sends 1 and 2 to two 3-faces incident with w in the Hj by (R1)(a). So,
cW(H3) > —3+2x5+%x2+2+1 > 0. Now we assume that each of u, v, w is a
4-vertex. By Lemma 2.6, x and y are 5" -vertices. If x and y are 5-vertices, then
they may be special 5-vertices. By (R1)(b) and by (R1)(c), each of z and y sends
at least % to the 3-face in the Hs. Each of u and w sends % and % to the two 3-faces
in the Hz by (R1)(a). Thus, ch/(Hs) = =3+ (2 x5)+ (% x2)+ (£ x2)+(1 x2) > 0.

Finally, assume that f is in H,;. Let z be a hub and u,v,w,y be 3-type to
Hy. Similarly, ch(H,) = —4. where f; = [zuv], fo = [zvw], f3 = [zwy] and
fa = [ryu] are 3-faces in Hy. By Lemma 2.4, u is not adjacent to w, and v is
not adjacent to y. By Lemma 2.5, each 3-face in Hy is adjacent to a 7'-face.
By (R2), each such 7*-face sends at least % to the adjacent 3-face in the Hy.
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By Lemma 2.6, at least two 3-type vertices to Hy are 5"-vertices. By (R1)(a),
(R1)(b) and (R1)(c), each 3-type 5*-vertex sends 2 to each incident 3-face in Hy
and the other 3-type vertices to H4 are 4-vertices, each of which sends at least
% to each incident 3-faces in Hy. If Hy contains exactly two 3-type 5'-vertices,
then ch/(Hy) > —4+4 2 x4+ 2 x4+ 1 x4 =0. If Hy contains at least three
3-type bT-vertices, then ¢h/(Hy) > —4+2 x4+ 3 x6+1x2>0.

(2) Let f be a4-face. Let f = [vjvavzvg]. By Lemma 2.5(a), f is adjacent to at most
one 3-face. If f is adjacent to a 3-face, then the other faces adjacent to f are 5-
faces by Lemma 2.5(a). By (R1)(d) and (R2), ¢h(f) > d(f) —4++x3—2>0.
If f is not adjacent to any 3-face, then f is adjacent to at most four 4-faces.

Thus, ch(f) > d(f) —4=0.

(3) Let f be a bt-face. If f is a 5-face, then [ is adjacent at most five 4-faces. Since
G has no 5-cycles adjacent to 6-cycles, f is not adjacent to any 3-face. By (R2),
[ sends £ to each adjacent 4-face. Thus, ch/(f) > d(f) —4—5x £ = 0. Assume
that f is a k-face where k& > 6. Then f sends at most k—;‘ to 3-faces or 4-faces
by (R2). This yields ch/(f) > (k—4) — k x = = 0.

We now consider the final charge of the outer face Cj.

Let F; = {f: fisa 3-face and |b(f)NCy| =1} and FY = {f: f is a k-face and
Ib(f)NCol =2}, and f§ = |F5|, f§ = |F¥|. Let E(Co, V(G) — Cp) be the set of edges
between Cy and V(G) — Cy and let e(Cy, V(G) — Cy) be its size. Then by (R4),

ch'(Co) = |Col+4+ > (d( - fi-
vely
= |Col+44 > (d(v) —2) —2|Co| — f5— f§
vely

— —[Col + 4+ (el Co, V(@) — Co) — fy— £1).

So we may think that each edge e € FE(Cy,V(G) — Cp) contributes 1 to e(Cy,
V(G) — Cy). Note that each 3-face contains two edges in E(Cy, V(G) — Cp). Since
Cy is not a bad 4-cycle, any vertex v € int(Cp) is adjacent at most three vertices
on Cy. Thus, if F§ # (), then all the 3-faces in Fy contributes at least f§ + 1 to
e(Co, V(G) — Cp) while get at most f§ from Cy. Similarly, if F} # (), then all the
3-faces in F} contribute at least f} + 1 to e(Cp, V(G) — Cp) while get at most f;
from Cy. Thus, if fi # 0 or f{ # 0, then e(Cy, V(G) — Cy) — f5 — f{ > 0 and so
ch'(Cy) > 0. Thus, f§ = f{ =0 and e(Co, V(G) — Cy) — fi — f§ > 0. It |Cy| = 3,
then ch/(Cy) > 0. Let |Co| = 4. If e(Cy, V(G) — Cy) = 0, then G is a 4-cycle, a
contradiction. If e(Cy, V(G) — Cy) # 0, then ch’(Cy) > 0.
This completes the proof.
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