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Abstract

A graph G of order n > 3 is pancyclic if G contains a cycle of each length
from 3 to n, and vertex pancyclic (edge pancyclic) if every vertex (edge)
is contained on a cycle of each length from 3 to n. A chord of a cycle
is an edge between two nonadjacent vertices of the cycle, and a chorded
cycle is a cycle containing at least one chord. We define a graph G of
order n > 4 to be chorded pancyclic if G’ contains a chorded cycle of each
length from 4 to n. In this paper, we improve some known results on
chorded pancyclic, chorded vertex pancyclic, and chorded edge pancyclic
graphs.

1 Introduction

We consider only simple graphs in this paper. Let G be a graph and let H be a
subgraph of G. For u € V(G), the set of neighbors of u in G is denoted by Ng(u),
and we denote dg(u) = |Ng(u)|, Ng(u) = Ng(u) NV (H), and dy(u) = [Ny (u)|. Let
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S CV(G). Foru € V(G) — 8, Ng(u) = Ng(u) NS. The subgraph of G induced
by S is denoted by (S), G — S = (V(G) = S), and G — H = (V(G) — V(H)). If
S = {u}, then we write G —u for G — S. If C is a cycle with a given orientation
and z € V(C), then ™t (x7) denotes the first successor (predecessor) of z on C. If
z,y € V(C), then C[z, y| denotes the subpath of C' from z to y (including = and y) in
the given direction. The reverse sequence of C[z,y] is denoted by C~[y, z]. We also
write C(z,y] = ClzT,y], Clz,y) = Clz,y~], and C(z,y) = Clz™,y~], and consider
them as both paths and vertex sets. If C'is a cycle, say C' = x1, 29, ..., 2, x1, then
we assume that an orientation of C'is given from x; to x; clockwise. For two disjoint
graphs G and G5, G; U Gs, G + G, and G x G4 denote the union, the join, and
the cartesian product of G7 and G, respectively. A graph is claw-free if no vertex
has three pairwise nonadjacent neighbors. For an integer £ > 3, a cycle of length k
is called a k-cycle. Let P; be a path on ¢ vertices for an integer ¢ > 1. We denote the
distance between two vertices x and y in G by distg(z,y). For a graph G, we let

09(G) = min{dg(u) + dg(v) |u,v € V(GQ),uv € E(G)},
p2(G) = min{dg(u) + dg(v) |u,v € V(G), distg(u,v) = 2}, and

09(G) and ps(G) are both equal to oo when G is complete. For terminology and
notation not defined here, see [10].

In 1960, Ore proved the following theorem which is one of the most fundamental
results on Hamiltonian graphs.

Theorem 1.1 (Ore [12]). Let G be a graph of order n > 3. If 092(G) > n, then G is
Hamiltonian.

A graph G of order n > 3 is said to be pancyclic if G contains a cycle of each length
from 3 to n. In 1971, Bondy [2] proposed the following famous meta-conjecture.

Bondy’s Meta-Conjecture. Almost any nontrivial condition on a graph which
implies that the graph is Hamiltonian also implies that the graph is pancyclic. There
may be a simple family of exceptional graphs.

The following extension of Ore’s theorem (Theorem 1.1) by Bondy supports the
meta-conjecture.

Theorem 1.2 (Bondy [3]). Let G be a graph of order n > 3. If 02(G) > n, then G
is pancyclic or G = K3 /2 (n is even).

Let G be a graph of order n > 3, and let » > 3 be an integer. A graph G is
called wvertex pancyclic (edge pancyclic) if every vertex (edge) is contained on a k-
cycle for each 3 < k <nin G. A graph G is r-pancyclic if G contains a k-cycle for
each r < k < n, and G is also called vertex r-pancyclic (edge r-pancyclic) if every
vertex (edge) is contained on a k-cycle for each r <k <n in G.



M. CREAM ET AL./ AUSTRALAS. J. COMBIN. 88 (1) (2024), 97-108 99

Recently, chorded pancyclic properties have been well-studied (see [1,4-7,9]). A
chord of a cycle is an edge between two nonadjacent vertices of the cycle. We say
a cycle is chorded (doubly chorded) if the cycle has at least one chord (at least two
chords), and we call such a cycle a chorded cycle (doubly chorded cycle). Further, we
say a graph G of order n > 4 is chorded pancyclic (doubly chorded pancyclic) if G
contains a chorded cycle (doubly chorded cycle) of each length from 4 to n. In this
paper, we improve some known results on chorded pancyclic graphs.

A survey of results and problems on chorded cycles can be found in [11].

2 Chorded Pancyclic Graphs

Bondy’s meta-conjecture was extended in [6] to almost any nontrivial condition that
implies a graph is Hamiltonian will imply it is chorded pancyclic, possibly with some
class of well-defined exceptional graphs, and some small order exceptional graphs. As
support for this extension, the following theorem which is the extension of Theorems
1.1 and 1.2 was proved.

Theorem 2.1 (Cream et al. [6]). Let G be a graph of order n > 4. If 02(G) > n,
then G is chorded pancyclic, G = K3 /2 (n is even), or G = Ky x K.

We improve Theorem 2.1 by considering the distance two degree condition. Since
p2(G) > o3(G), the following theorem is stronger than Theorem 2.1.

Theorem 2.2. Let G be a graph of order n > 4. If us(G) > n, then G is chorded
pancyclic, G = Ky 3 /2 (n is even), or G = Ky x Kj.

Remark 2.1. The degree condition of Theorem 2.2 is sharp. Let a,b be integers
such that @ > 1, b > 1, and a + b > 3. Consider the graph G = (K, U K;) + K; of
order n. Then ps(G) =a+b=n—1, and G does not contain a Hamiltonian cycle.
Thus pe(G) > n is necessary.

The following theorem by Zhang and Song will be used in the proof of Theo-
rem 2.2.

Theorem 2.3 (Zhang and Song [13]). Let G be a graph of order n > 4. If uo(G) > n,
then G is vertex 4-pancyclic or G = K3 5,72 (n is even).

Proof of Theorem 2.2. Let G, n be as described in Theorem 2.2. By Theorem 2.3,
G is Hamiltonian. If n = 4, then either G = Ks5 or G is a 4-cycle with chords
and is then chorded pancyclic. Suppose n = 5. Let C = vy, vy, v3,v4, 05,01 be a
Hamiltonian cycle in G. If dg(v;) = 4 for some 1 < ¢ < 5, then G is chorded
pancyclic. Thus, we may now assume that dg(v;) < 3 for each 1 < i < 5. Without
loss of generality, we may assume that v;v3 € E(G). Then distg(v1,v3) = 2. Since
p2(G) > n =5, without loss of generality, we may assume that dg(v;) > 3. Then we
have dg(v1) = 3, vivg € E(G), and dg(vy) = 3. If vous € E(G), then there exists a
chorded 4-cycle, and G is chorded pancyclic. Thus we may assume that vevs & E(G).
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By symmetry, vsvs € E(G). Thus dg(va) = dg(vs) = 2. Therefore, dg(vs) = 2.
Since distg(ve, v5) = 2 and ps(G) > n =5, this is a contradiction. Thus we suppose
n > 6. It follows from Theorem 2.3 that G is 4-pancyclic or G = K, /9 n/2 (n is
even). Suppose that G # K,/ /2 (n is even) and G # Ky x Ks. If G is complete,
then Theorem 2.2 holds. Thus we may assume that G is not complete. Then there
exist two distinct vertices z,y € V(G) with distg(z,y) = 2. We now choose two
such distinct vertices x,y with the smallest number of common neighbors. Partition

V(G) — {z,y} as follows:

M = Ne(x) N Ne(y),

X = Ng(z) — M,

Y = Ng(y) — M, and

D=V(G) - ({z,yUMUXUY).

Suppose |M| < 1. Since distg(z,y) = 2 and pe(G) > n, we have

n < pa(G) < da(z) +da(y) < |V(G) — {z, y}H + |M]
<(n-2)+1=n-1.

This is a contradiction. Thus |M| > 2. Set |M|=2+r,r > 0.
Claim 2.1. We have |D| < r.

Proof. Suppose not, and let |D| =r +¢, ¢t > 1. Then we have

n < pp(G) < dg(x) + da(y) < |V(G) —{z,y}| — |D| + | M|
=n—-2)—(r+t)+2+7r)=n—t.

Since t > 1, this is a contradiction. Thus |D| < r. O

Claim 2.2. There ezists a chorded n-cycle in G.

Proof. Since n > 6 and G contains a Hamiltonian cycle, say C, it is easy to see that
C is a chorded n-cycle by the distance two degree condition. 0

Claim 2.3. There exists a chorded 4-cycle in G.

Proof. Suppose that the claim does not hold. Since |M| > 2 by the above fact,
let a and b be any two distinct vertices in M. If ab € E(G), then a,y,b,z,a is a
4-cycle with chord ab, a contradiction. Thus we may assume that ab ¢ E(G). This
implies M is an independent set. Note distg(a,b) = 2. By the choice of x and y,
|INg(a) N Ng(b)| > 2+r, r > 0. Let w € Ng(a) N Ng(b). Since M is independent,
w ¢ M. If w e X, then a,w,b, x,a is a 4-cycle with chord xw, a contradiction.
Thus w ¢ X. Similarly, w ¢ Y. Therefore, w € {x,y} U D and then |D| > r. By
Claim 2.1, we obtain |D| = r. Since a and b are any two distinct vertices in M, we
have Np(v) = D for any v € M if D # (. If D # (), then D is an independent
set, otherwise, when |D| > 2, there exists a chorded 4-cycle in (M U D). Thus
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<M U D> = KQ.’_T?T if D 7£ @ If X = @ = Y, then G = K2+r,2+7" = n/2,n/2, a
contradiction. Thus we may assume that X UY ## (), and then, without loss of
generality, we may also assume that |X| > |Y|. Since distg(a,b) = 2, we have

[M]+ Kz, g} + [ X[+ Y]+ D] = n < p2(G) < dg(a) + da (D)
< 2(H, y} + [D]) + [Nxuy (a)| + [ Nxuv (b))

Since |[M| =2+ r and |D| =,
24+7r)+2+ X[+ |Y]+7 <22+ 7)+ |[Nxuv(a)| + [Nxuy ()],
and therefore,
| X| + Y| < [Nxuy(a)| + [Nxuy (b)]. (1)
Since Nxyy(a) N Nxuy (b) = 0, it follows from (1) that

NXUy(CL) U NXUy(b) =XUY. (2)

Let w; € X, and without loss of generality, we may assume that aw; € E(G).
Note that wyv ¢ E(G) for any v € X — {w;}, otherwise, say wiv’ € E(G) for some
v € X —{w }, then wy,v', x, a,w; is a 4-cycle with chord zwy, a contradiction. Note
that wyy ¢ E(G) by the definition of X. Also wit ¢ E(G) for any t € M — {a},
otherwise, again a chorded 4-cycle exists. Thus Ng(w;) C {a, 2} UY UD. If Y = 0,
then since distg(wy,y) = 2,

[M[+ [z, y} + [ X[+ [D] = n < pa(G) < da(wr) +daly) < ({a, 2} + |D]) + [M],

and thus |X| < 0, a contradiction. Therefore, Y # (). If Ny (w;) = (), then similarly,
|X| < 0, again a contradiction. Therefore, Ny (w;) # 0. Let wiz; € E(G) for
21 € Y. By (2), we have bz; € E(G), as otherwise, if az; € E(G), then a,y, z1,wy,a
is a 4-cycle with chord az;, a contradiction.

We now claim that |[M| = 2. Suppose that this claim does not hold. Then
|M| > 3, and let v € M — {a,b}. Since M is independent, av ¢ E(G). By the same
argument as (2), Nxuy(a) U Nxyuy(v) = X UY. Since azy € E(G), vz € E(G).
Then v,y,b, z1,v is a 4-cycle with chord yz;, a contradiction. Thus |M| = 2 and so
r = 0. By Claim 2.1, D = ().

We note that |Nx(u)| < 1 and |Ny(u)| < 1 for any u € {a, b}, otherwise, there
exists a chorded 4-cycle, a contradiction. If | X| > 3, then by (2), one of a and b has
at least two adjacencies in X, a contradiction. Thus |X| < 2, and similarly, |Y] < 2.

If | XUY|=2, then G = Ky x K3, a contradiction. Thus we may assume that
| X UY| > 3. Then by |X| > |Y| which is our previous assumption, we have | X| = 2.
Let wy € X — {w;}. Then note bwy € E(G) since awy ¢ E(G). Suppose |Y]| = 1.
Then n = 7. Since distg(y, w1) = 2, dg(y) + dg(w1) > n = 7. On the other hand,
since dg(y) = 3 and dg(wq) = 3, we have dg(y) + dg(wy) = 6, a contradiction. Thus
Y] = 2. Now n = 8. Let 20 € Y — {z1}. Then az € E(G) since bzy & E(G). If
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wy29 € E(G), then a, z9, w1, x, a is a 4-cycle with chord aw;, a contradiction. Hence
wyz2 ¢ E(G). Since distg(y, w1) = 2, da(y) + dg(wy) > n = 8. On the other hand,
since dg(y) = 4 and dg(wy) = 3, we have dg(y) + dg(wy) = 7, a contradiction. This
completes the proof of Claim 2.3. O

Claim 2.4. If G contains a chorded 4-cycle, then there exists a chorded 5-cycle in G.

Proof. Suppose that C' = vy, vy, v3,v4,v1 is & 4-cycle in G with chord vovy. Recall
that G is connected. Since n > 6, there exists some x € V(G — C) such that
zv € E(G) for some v € V(C). By symmetry, we may assume that v = vy or v = vs.

Case 1. Suppose v = vy, that is, zv; € E(G).

If zv" € E(G) for some v' € V(C) — {v;}, then there exists a chorded 5-cycle.
Thus zv ¢ E(G) for any v € V(C)—{v}. Note distg(z,v9) = 2. By the distance two
degree condition,  and v, share at least two common neighbors, and the common
neighbors except v; must be off of C. Let y € V(G — C) — {z} be such a common
neighbor. Then vy, z,y, v9, v4, v1 is a b-cycle with chord v,vs.

Case 2. Suppose v = vy, that is, zvy € E(G).

Considering Case 1, we may assume that zvy, zvs € E(G). Note distg(x,v1) = 2.
By the distance two degree condition, = and v; share at least two common neighbors,
and let y be such a common neighbor except vy. If y € V(G — C) — {x}, then
Y, T, V2, Vg, V1, Yy is a H-cycle with chord vyvy. This implies y = vy, and then xv, €
E(G). If vjvz € E(G), then x, vy, v3,v1,v4, x is a 5-cycle with chord vyvy. Thus we
may assume that vivs € F(G). Then distg(vi, v3) = 2. Since dg(vy) + dg(vs) > n >
6, there exists some z € V(G —C) —{x} such that 20" € E(G) for some v' € {vy, v3}.
By symmetry, we may assume that zv; € E(G). Then we are now in a case analogous
to Case 1.

This completes the proof of Claim 2.4. U

If n=6,G # K33 and G # Ky x K3, then G is chorded pancyclic by Claims
2.2-2.4. Thus we may assume that n > 7.

Claim 2.5. There exists a chorded k-cycle for each 6 <k <n—11in G.

Proof. Recall that G is 4-pancyclic since G # Ky /3 nj2. Let 6 < k < n — 1 and
consider a chordless k-cycle C' = vy, vg, ..., 0,01 in G. Let L = {vy,v3,04,06}. Now
we claim that | N (z)| < 2 for any z € V(G —C'). Suppose that [Ny (z)| > 3 for some
' € V(G —C). By symmetry, it is sufficient to consider the cases when {vy, v3,v4} C
Np(2') and {vq,v3,v6} C Np(2'). If {v1,v3,v4} C Np(2'), then 2/, v3,v4, ..., 01,2 is
a k-cycle with chord z'vy. If {v1, v3,v6} C Np(2), then 2, v3, vy, ..., v1, 2" is a k-cycle
with chord z’vg. Thus the claim holds. Since |Np(z)| < 2 for any x € V(G — C),
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distg(v1,v3) = 2, and distg(vg, v6) = 2, we have
2n < 2p15(G) < (da(01) + dg(vs)) + (de(va) + da(vs))

= Z dgfc(v) + Z dc(’U)

vEL vEL
<2n—k)+2-4
=2n — 2k + 8,
and then £ < 4. Since k > 6, this is a contradiction. Thus Claim 2.5 holds. L]

Claims 2.2-2.5 imply that G is chorded pancyclic. This completes the proof of
Theorem 2.2. [ |

Finally, we consider an improvement of Bondy’s theorem (Theorem 1.2). If a
graph GG contains a chorded 4-cycle, then GG contains a 3-cycle. Thus if G is chorded
pancyclic, then G is pancyclic. Note that K5 x K3 in Theorem 2.2 is pancyclic. Thus
the following corollary holds by Theorem 2.2.

Corollary 2.1. Let G be a graph of order n > 3. If us(G) > n, then G is pancyclic
or G = K2, /2 (0 is even).

3 Doubly Chorded Edge (Vertex) Pancyclic Graphs

In this section, we first consider an extension of edge pancyclicity. Let » > 4 be an
integer. A graph G of order n > 4 is chorded edge r-pancyclic (doubly chorded edge
r-pancyclic) if every edge is contained on a chorded cycle (doubly chorded cycle) of
each length from r to n in G.

The following result is a consequence of a theorem in [8].

Theorem 3.1. (Faudree et al. [8, Theorem 2|) Let G be a graph of order n > 3. If
09(G) > n+ 1, then G is edge pancyclic.

In 2018, Cream et al. extended Theorem 3.1 as follows.

Theorem 3.2. (Cream et al. [7, Theorem 20]) Let G be a graph of order n > 5. If
09(G) > n+1, then G is chorded edge 5-pancyclic.

In this section we extend Theorems 3.1 and 3.2.

Theorem 3.3. Let G be a graph of order n > 5. If 05(G) > n+ 1, then G is doubly
chorded edge 5-pancyclic.

Remark 3.1. The graph K, /2 ,,/2 of even order n verifies that the 09(G) condition
in Theorem 3.3 is sharp. Theorem 3.3 is sharp in terms of 5-pancyclicity. We
consider the graph G of order n, n = 3 (mod 4), obtained from Kp,_1)/2, (nt1)/2
along with a perfect matching in the larger partite set. Then G is (n 4+ 1)/2-regular,
and o2(G) = n + 1. However, G does not contain K. Hence there exist no doubly
chorded 4-cycles containing any specified edge in G.
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Proof of Theorem 3.3. Let GG,n be as described in Theorem 3.3, and e be any
specified edge in G. If G is complete, then the theorem holds. Thus we may assume
that G is not complete.

Claim 3.1. Let a,b € V(G) with ab ¢ E(G), M = Ng(a) N Ng(b), A= Ng(a) — M,
B = Ng(b) — M, and D =V (G) — ({a,b} UM UAUB). Then |M| > |D|+3 > 3.

Proof. Let a,b, M, A, B, D be as described in Claim 3.1. Since ab ¢ E(G), by the
09(G) condition,

n+1<dg(a)+dg(b) = 2|M| + |A| + |B|.
Since n = |M| + |{a,b}| + |A| + |B| + | D|, we have |M| > |D|+ 3 > 3. O

Claim 3.2. There exists a doubly chorded n-cycle containing e in G.

Proof. By Theorem 3.2, there exists a chorded n-cycle (say C') containing e in G.
Since n > 5 and 02(G) > n+ 1 > 6, it is easy to see that C has at least two chords.
Thus the claim holds. O

Claim 3.3. There exists a doubly chorded 5-cycle containing e in G.

Proof. Let e = x1x5. We claim that there exists some y € V(G) — {x1, x2} such that
11y ¢ E(G). Suppose not. Since 09(G —x1) > (n+1) —2=n—1, G —x; contains a
Hamiltonian cycle (say C') by Ore’s theorem (Theorem 1.1). Now it is trivial to find
a path of length 3 on C starting at x5, and then there exists a doubly chorded 5-cycle
containing e. Thus the claim holds. We partition V(G) as follows: M = Ng(x1) N
Ne(y), X = Ng(z1) —M,Y = Ng(y) — M, and D = V(G) — ({z1,y} UM UX UY).

Case 1. Suppose x5 € M.

If zom’ € E(G) for some m' € M — {x5}, then for any m € M — {z,m’'},
X1, o, m' Yy, m,xq is a H-cycle with chords x;m’ and x9y containing e. If mymy €
E(G) for any my,my € M — {xs}, then z1, xo,y, ma, my, x1 is a 5-cycle with chords
x1mgy and myy containing e. Thus we may assume that M is an independent set.
If 2 € Nx(xg) N Nx(m') for some m’ € M — {x5}, then xo9, 21,2, m',y,x9 is a 5-
cycle with chords zym’ and 2z containing e. Thus Nx(x2) N Nx(m) = 0 for any
m € M — {xs}. Similarly, Ny(xz3) N Ny(m) = 0 for any m € M — {xs}. Since
zom ¢ E(Q) for any m € M — {z3}, by the 02(G) condition,

n+1<da(rs) +do(m) < 2|{ay, y}| + [X|+ Y] +2|D].

Since n = | M|+ |{z1,y} + |X]|+|Y|+|D|, we have |M| < |D|+ 1. This contradicts
Claim 3.1.

Case 2. Suppose xo & M.

In this case, note x5 € X. If [Ny (z2)| > 2, then there exists a doubly chorded
5-cycle containing e. Thus we may assume that |Ny(zo)] < 1. Since |M| > 3
by Claim 3.1, there exists m; € M such that xom; ¢ E(G). Now we consider
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xo (respectively, my) as x; (respectively, y) in Case 1. Note that z; is a common
neighbor of x5 and m;. Then we are in a case analogous to Case 1.

Hence Claim 3.3 holds. L]

Claim 3.4. There exists a doubly chorded k-cycle for each 6 < k < n —1 containing
e in G.

Proof. By Theorem 3.2, G is chorded edge 5-pancyclic. Let C' = vy, v, ..., vk, vy,
6 < k <n—1 be a chorded cycle of length k containing e in G. Without loss of
generality, we may assume that v1v;, 3 <7 < k — 1 is a chord of C. Then note that
|C'(v1,v;)| > 1 and |C(v;,v1)| > 1. Also we may assume that C[vy, v;] contains e. Let
e=vvj4 for 1 <j<i—1

Case 1. Suppose |C(vq,v;)| > 5.

In this case, ¢ > 7. By symmetry, we may assume that 1 < 5 < ¢ — 4. First
suppose j > 2. If vgv; € E(G), then C is the desired cycle. Thus we may as-
sume that vov; € E(G). Similarly, v;_sv;1 € FE(G). By Claim 3.1, there exist
T € Ngfc(vz) N Ngfc(vi) and y € NG,C(UZ',;),) N Ngfc(’l}prl) with x # y. Then
Clvg, vi_s],y, Clvis1, v1], v, T, v9 is a k-cycle with chords v1v9 and v;v;41 containing e.

Next suppose j = 1. We have vyvs, v;_1v, € E(G), otherwise, C' is the desired
cycle. By Claim 3.1, there exist x € Ng_¢(v2) N Ng_c(vs) and y € Ng_c(vi—1) N
Ne_c(vg) with  # y. Then vy, ve, x, Clus, v;_1],y, C~ [vg, v;],v1 is a k-cycle with
chords v;_1v; and v,v; containing e.

Case 2. Suppose |C(vy,v;)| = 4.

In this case, ¢ = 6. By symmetry, we may assume that 1 < 57 < 3. First
suppose j = 1, that is, e = vjvy. We have vyvs, v5v € E(G). By Claim 3.1, there
exist * € Ng_c(v2) N Ng_c(vs) and y € Ng_c(vs) N Ng_c(vg) with  # y. Then
v1, Vg, X, U5, Y, C " [ug, vg], v1 18 a k-cycle with chords vsvg and viv; containing e.

Next suppose j = 2, that is, e = vov3. We have vyuvg, v3v7; € E(G). By Claim 3.1,
there exist © € Ng_¢(v2) N Ng_c(vs) and y € Ng_c(v3) N Ng_c(v7) with © # y.
Then vy, vs,y, Clvz, v1], vg, x, v2 is a k-cycle with chords vjve and vgv; containing e.

Finally, suppose j = 3, that is, e = v3vy. Assume |C(vg,v1)| > 2. We have
V9vg, V59 & E(G) (if k = 8, then vg = v7). By Claim 3.1, there exist x € Ng_c(v2) N
Neg-c(vs) and y € Ng_c(vs) N No_c(vg) with x # y. Then Cluvg, vs],y, Clvg, v1],
Vg, X, Vg is a k-cycle with chords vyvy and vsvg containing e. Next assume that
|C'(vg, v1)| = 1. We have vaus, v4vg € E(G). By Claim 3.1, there exist © € Ng_c(v2)N
Ng_c(vs) and y € Ng_c(v4) N Ng_c(vg) with = # y. Now we make a new cycle
C" = v9,v3,04,Y, g, U5, 2, V3. Then C’ is a k-cycle with chord vsvs containing e =
v3vy, and yus,v3vs € E(G). Since |[Ng_c(y) N Ng_cr(vs)| > 1, we first take z €
Na_c» (y) N NG,C/(ULL—)). Next we take w € Ng_c» (Ug) N Ng_cr (UG) with w # z. Then
v3, W, Vg, Y, 2, Us, Uy, V3 is a k-cycle with chords v,y and vsvg containing e.
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Case 3. Suppose |C(vy,v;)| = 3.

In this case, i = 5. By symmetry, we may assume that j € {1,2}. First suppose
j = 1, that is, e = vjvg. Assume |C(vs,v1)| > 2. We have vsvg, vovg € E(G).
Since |Ng_c(vs) N Ng_c(v7)] > 1 when |C(vs,v1)| = 2, ie., k = 7, we first take
x € Ng_c(vs) N Ng_c(vr). Next we take y € Ng_c(v2) N Ng_c(vg) with & # y.
Then vy, ve,y, Clus, vi], x, vs, v1 is a k-cycle with chords vsvg and viv; containing e.
Next assume |C(vs,v1)| = 1. We have vjvs, vovy € E(G). By Claim 3.1, there exist
x € Ng_c(v1)NNg_c(v3) and y € Ng_c(v2) N No_c(vg) with x # y. Now we make a
new cycle C' = vy, vq,y, vy, v3, 2, v1. Then C” is a k-cycle with chord wvyvs containing
e = v1vg, and vv3, vex € E(G). By Claim 3.1, there exist z € Ng_c(v1) N Ng_c(v3)
and w € Ng_c(v2) N Ng_c(x). If z # w, then vy, vy, w, x,v3, z,v1 is a k-cycle with
chords vz and vyvs containing e. If z = w, then vy, v, y, v4, v3, 2, v1 is a k-cycle with
chords vyv3 and zw, containing e.

Next suppose j = 2, that is, e = wvyvz. Assume |C(vs,v1)] > 2. We have
vovy, v3v8 € E(G) (if kK =7, then vg = v1). By Claim 3.1, there exist x € Ng_c(v2) N
Ng_c(v4) and y € Ng_c(v3) N Ng_c(vs) with x # y. Then

Va2, U3, Y, 0[087 Ul]a Vs, U4, T, Vg

is a k-cycle with chords v;ve and vzv, containing e. Next assume |C'(vs,vq)| = 1.
We have vyvy, v305 € E(G). By Claim 3.1, there exist x € Ng_c(v2) N Ng—c(v4)
and y € Ng_c(v3) N Ng_c(vs) with = # y. Now we make a new cycle C” =
Vg, U3, Y, Us, Uy, T, V3. Then C” is a k-cycle with chord vsvy containing e = vgv3, and
this case is the same as C” above.

Case 4. Suppose |C(vy,v;)| = 2.

In this case, ¢ = 4. Since k > 6, |C(vg,v1)| > 2. By symmetry, we may assume
that 7 € {1,2}. First suppose j = 1, that is, e = vyvy. Assume |C(vy,v1)| > 3.
We have vyvg, v307 € E(G). By Claim 3.1, we first take € Ng_c(v2) N Ng—c(v4).
Next we take y € Ng_c(v3) N Ng_c(v7) with & # y. Then vy, vs, , vy, v3, y, Clvr, v1]
is a k-cycle with chords v;vy and vovs containing e. Next assume |C(vy,v1)| = 2.
We have vyv3,v9v4 € E(G). By Claim 3.1, there exist x € Ng_¢(v1) N Ng_c(v3)
and y € Ng_c(v2) N Ng_c(vy). If & # y, then vy, v, y, v4, v3, 2,01 is a k-cycle with
chords vyv4 and vyu3 containing e. If x = y, then vy, v9, x, vy, V5, vg,v1 is a k-cycle
with chords vy and vyv4 containing e.

Next suppose j = 2, that is, e = wvyvz. Assume |C(vg,v1)] > 3. We have
vovy, v3v7 € E(G). Since |[Ng_c(v2) N Ng_c(v4)| > 1, we first take x € Ng_c(v2) N
Ne_c(vs). Next we take y € Ng_c(vs) N No_c(v7) with & # y. Then vy, vs,y,
Clvr, v1], v4, T, v9 is a k-cycle with chords v;ve and vsv, containing e. Next assume
|C'(vy, v1)] = 2. We have vyv3, vovs € E(G). By Claim 3.1, there exist © € Ng_c(v1)N
Ng_c(v3) and y € Ng_c(v2) N Ng_c(vy). If & # y, then vy, z,v3,v9,y,v4,v1 is a k-
cycle with chords vyvy and vzvy containing e. Thus we may assume that x = y.
Noting vvs ¢ FE(G), by Claim 3.1, there exists z € Ng_c(v2) N No_c(vg) with
z # x. Then vy, z,v3, v9, 2, V6, v1 is a k-cycle with chords v1ve and xvy containing e.
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Case 5. Suppose |C(vq,v;)| = 1.

In this case, i = 3. By symmetry, we may assume that j = 1, that is, e = vyvs.
Since k > 6, |C(vs,v1)| > 3. We have vyug,v3v5 ¢ E(G). By Claim 3.1, there
exist £ € Ng_c(v2) N Ng_c(vg) and y € Ng_c(v3) N No_c(ve) with o # y. Then
v1, 3, Y, Clvg, U], z,ve, v1 is a k-cycle with chords vivy, and vevs containing e.

Thus Claim 3.4 holds. O

By Claims 3.2-3.4, Theorem 3.3 holds. [

Let m > 4 and £ > 1 be integers, and let G be a graph of order n > m. We
say G is doubly chorded ( Py, m)-pancyclic if any path Py is contained on a doubly
chorded cycle of each length from m to n in G.

Corollary 3.1. Let k > 2 be an integer, and let G be a graph of order n > k+ 3. If
09(G) > n+ 2k — 3, then G is doubly chorded (Py, k + 3)-pancyclic.

Proof. Contract P, to an edge e to obtain a new graph G’ of order n — (k — 2) > 5.
Then 05(G') >n+2k—-3—-2(k—2)=n+1l,andn+1> (n—k+2)+1=|G"|+1
since k > 2. By Theorem 3.3, G’ is doubly chorded edge 5-pancyclic. Thus e is
contained on a doubly chorded cycle of each length from 5 to n — (k — 2). Now we
expand e back to P,. Then each doubly chorded cycle in G’ containing e expands
to a doubly chorded cycle in G' containing P,. These cycles have each length from
5+ (k—2) =k + 3 ton. Thus the corollary holds. [ |

Finally, we consider an extension of vertex pancyclicity. Similar to the definitions
of (doubly) chorded edge r-pancyclic graphs (r > 4), we define (doubly) chorded ver-
tex r-pancyclic graphs.

Theorem 3.4 (Cream et al. [7, Theorem 6]). Let G be a graph of order n > 5. If
09(G) > n+1, then G is chorded vertex 5-pancyclic.

On the assumption that G in Theorem 3.4 is claw-free, Beck et al. proved the
following theorem.

Theorem 3.5 (Beck et al. [1, Theorem 4.4]). Let G be a claw-free graph of order
n>5. Ifoo(G) > n+1, then G is doubly chorded vertex 5-pancyclic.

We show that the same result as Theorem 3.5 holds, even if G is not claw-free.

Corollary 3.2. Let G be a graph of order n > 5. If 05(G) > n+ 1, then G is doubly
chorded vertex 5-pancyclic.

Remark 3.2. The two graphs in Remark 3.1 show that the o9(G) condition and
5-pancyclicity in Corollary 3.2 are sharp.

Proof of Corollary 3.2. We consider any edge e in G such that an endvertex of e
is any specified vertex. Then we can prove Corollary 3.2 by Theorem 3.3. [
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