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Abstract

We consider twisted permutation codes, a class of frequency permutation
arrays obtained from finite groups with multiple permutation represen-
tations of the same degree, introduced by Gillespie, Praeger and Spiga in
2015 (and later studied by Akbari, Gillespie and Praeger in 2018), and
develop a decoding algorithm for such codes based on earlier work of the
first author for permutation group codes. In particular, we show how to
implement this algorithm for an infinite family of groups considered by
Akbari, Gillespie and Praeger.

1 Introduction

A permutation code is an error-correcting code where each codeword is a permutation
written in list form (i.e. a listing of the symbols from a set of size n, where each symbol
appears exactly once). Such a code is also known as a permutation array, PA(n, d),
where d denotes the minimum Hamming distance. Permutation codes have a history
dating back at least to the 1970s (see [9], for instance), but have more recently been
considered because of applications including powerline communications [12], solid-
state memory devices [19, 20] and DNA storage of data [8]. We note that for two
permutations g, h in the symmetric group Sn, their Hamming distance is n−fix(gh−1)
(where fix(g) denotes the number of fixed points of g). In the case where the set of
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permutations forms a subgroup G of Sn, the minimum distance is

min
g∈G
g �=1

{n− fix(g)} = n−max
g∈G
g �=1

{fix(g)} .

The study of groups of permutations as codes is the subject of several papers of the
first author and others [2, 3, 4, 5, 6, 7].

A more general notion is that of a frequency permutation array, FPAλ(m, d),
which is a code of alphabet size n and length m = λn, where each codeword contains
each of the n symbols exactly λ times. Frequency permutation arrays were introduced
in the 2006 paper of Huczynska and Mullen [18]. A straightforward example of a
frequency permutation array can be obtained by taking a permutation code C of
length n and forming the repetition code, Repλ(C), where each codeword is formed
by repeating each codeword of C λ times. If C has minimum distance d, then clearly
Repλ(C) has minimum distance λd.

For reasons of improved decoding performance, it is therefore desirable to obtain
FPAs with the same length, alphabet and size as Repλ(C), but with a larger minimum
distance. An approach to this was introduced in the 2015 paper of Gillespie, Praeger
and Spiga [15] and further developed by Akbari, Gillespie and Praeger in 2018 [1],
where twisted permutation codes were considered. Informally, the idea is that instead
of repeating the same permutation λ times over, a codeword can be formed by taking
the image of the same element of an abstract group from multiple permutation
representations of the same degree; it transpires that this can result in improved
minimum distance. Formally, these are defined as follows.

Definition 1.1. Let G be an abstract finite group, and let I = (ρ1, . . . , ρλ) be a λ-
tuple of (not necessarily distinct) permutation representations of G in the symmetric
group Sn. For g ∈ G, let ρi(g) be written in list form. The twisted permutation code,
Tw(G, I), is defined as

Tw(G, I) = {[ ρ1(g) | ρ2(g) | · · · | ρλ(g) ] : g ∈ G} .

That is, each element of Tw(G, I) is the concatenation of the images of g under
each ρi (written in list form), so we have a frequency permutation array with alphabet
size n and length λn. We call the subwords ρ1(g), ρ2(g), . . . , ρλ(g) the components of
a codeword (and similarly, we will refer to the components of a received word).

Unlike [1, 15], we will insist that each permutation representation in I = (ρ1, . . . ,
ρλ) is faithful (although all the examples in [1, 15] are faithful). In the case where
ρ1, . . . , ρλ are all the same permutation representation, then we have the λ-fold repe-
tition code Repλ(ρi(G)) once again. For a given G and I = (ρ1, . . . , ρλ), let δrep be the
minimum of all of the minimum distances of the λ-fold repetition codes Repλ(ρi(G))
(for 1 ≤ i ≤ λ), and let δtw be the minimum distance of Tw(G, I). In [15, Theo-
rem 1.1], it is proved that δtw ≥ δrep, and a number of examples are given where the
inequality is strict, such as the following.
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Example 1.2. Let G be the symmetric group S6, and let ρ1, ρ2 be the distinct
permutation representations of S6, interchanged by the outer automorphism. Now,
since S6 has minimum distance 2, we have that Rep2(ρ1(G)) and Rep2(ρ2(G)) both
have minimum distance 4. However, Tw(G, (ρ1, ρ2)) has minimum distance 8 (see [15,
Section 4.1]).

In [1, 15], a number of examples of twisted permutation codes with improved
minimum distance (i.e. where δtw > δrep) are presented, but no decoding algorithm is
given. The purpose of the present paper is to adapt the approach of [3] for decoding
permutation groups as codes to the newer situation of twisted permutation codes.

2 General results

The following notion is crucial to the decoding algorithm (for permutation groups)
in [3], and in what follows.

Definition 2.1. Let G be a permutation group acting on a finite set Ω. A base for
G is a subset {x1, . . . , xk} of elements of Ω whose pointwise stabilizer in G is trivial.
The base size of G, denoted b(G), is the smallest size of a base for G.

A direct consequence of the definition is that the action of an element g ∈ G on
a base uniquely identifies g: if (xg1, . . . , x

g
k) = (xh1 , . . . , x

h
k) then g = h. These are

useful for decoding: if a permutation is transmitted and the received word contains
errors outside of the positions labelled by a base, then the transmitted permutation
can be identified correctly. However, as the errors could be in any possible positions,
a single base will not be sufficient. Instead, we have the following definition (also
taken from [3]).

Definition 2.2. Let G be a permutation group acting on a finite set Ω, and let
r ≥ 0. An uncovering-by-bases of strength r (or r-UBB) for G is a collection U of
bases for G with the property that any r-subset of Ω is disjoint from at least one
base in U .

If G has minimum distance d, then we usually assume that r = �(d− 1)/2�,
which we call the correction capability of G.

Example 2.3. Consider the group G = PGL(2, 7) in its action on Ω = {1, . . . , 8}.
This action is sharply 3-transitive, so any 3-tuple from Ω forms a base, and the
minimum distance is 5, so the correction capability is �(5− 1)/2� = 2. The following
is a 2-UBB for G:

1 2 3
4 5 6
2 3 7
1 7 8

By inspection, we see that any pair from {1, . . . , 8} is disjoint from at least one triple
in the UBB.
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We observe that, if the bases in U each have size k and each base for is regarded
as a k-subset, then the complements of the bases in U form an (n, n− k, r) covering
design (see [13, §VI.11]). The online database maintained by Gordon [17] is a useful
resource for examples of covering designs with small parameters. We also remark
that for r ≤ �(d− 1)/2�, an r-UBB is guaranteed to exist (see [3, Proposition 7]).
Constructions of UBBs for many permutation groups can be found in [2, 3, 5].

The decoding algorithm given in [3] works as follows: suppose a permutation
g ∈ G is transmitted and the received word w contains at most r errors. For each
base in U , identify the element (if one exists) of G which agrees with w in the
positions labelled by the base; if this permutation is within distance r of w then it
must be the transmitted permutation g. Since any combination of r error positions
is avoided by at least one base in U , we are guaranteed to succeed.

When we speak of a “base for a group G”, it is a property of the specified
permutation representation of G. In general, if G1 and G2 are isomorphic groups
acting on the same set Ω, it is not necessarily true that a base for G1 is a base
for G2. However, if the following stronger condition holds, the situation is more
straightforward.

Definition 2.4. Let G1 and G2 be groups acting on Ω1 and Ω2, respectively, and
suppose there is an isomorphism ϕ : G1 → G2. Then G1 and G2 are permutationally
isomorphic if there is a bijection ψ : Ω1 → Ω2 such that ψ(xg) = (ψ(x))(g

ϕ) for all
x ∈ Ω1 and all g ∈ G1. The pair (ψ, ϕ) is called a permutational isomorphism.

In other words, if G1 and G2 are permutationally isomorphic, then not only are
they isomorphic as abstract groups, but they act in the same way on their respective
domains Ω1 and Ω2. The next result is a straightforward exercise for the reader.

Proposition 2.5. Suppose that G1 and G2 are groups acting on Ω1 and Ω2, respec-
tively, such that (ψ, ϕ) is a permutational isomorphism. Then if B = {x1, . . . , xb} ⊆
Ω1 is a base for G1 in its action on Ω1, then ψ(B) = {ψ(x1), . . . , ψ(xb)} ⊆ Ω2 is a
base for G2 in its action on Ω2.

As a consequence, if we have two permutationally-isomorphic groups G1 and G2,
we can obtain an uncovering-by-bases for G2 by applying the map ψ to the bases in
a UBB for G1.

2.1 Adapting the algorithm

To adapt the algorithm from [3] to twisted permutation codes, we recall that the
codewords in Tw(G, I) are in one-to-one correspondence with the elements of the
abstract group G, so decoding will still involve identifying group elements. For
each i, we let Gi denote the image of the faithful representation ρi, so that G =
(G1, . . . , Gλ) is a list of permutation groups of degree n isomorphic to G. Without
loss of generality, we pick G1 as a “distinguished” copy. For now, assume that each
Gi is permutationally isomorphic to G1.
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Next, define αi : G1 → Gi as the composition of ρ−1
1 (defined on G1 = Im(ρ1))

with ρi. Consequently, A = (α1, . . . , αλ) gives a list of isomorphisms from G1 to each
of (G1, . . . , Gλ), while A−1 = (α−1

1 , . . . , α−1
λ ) gives their respective inverses. We also

let F = (ψ1, . . . , ψλ) be bijections such that (ψi, αi) is a permutational isomorphism
from G1 to Gi (for 1 ≤ i ≤ λ), and F−1 = (ψ−1

1 , . . . , ψ−1
λ ) gives the respective

inverses. (Note that in the case of the repetition code Repλ(G1), each αi and each
ψi is the identity map.)

Let rtw = �(δtw − 1)/2� be the correction capability of Tw(G, I), and let r′ =
�rtw/λ�; by the pigeonhole principle, if a received word contains at most rtw errors
spread across λ components, then there must be a component containing at most r′

errors. Finally, suppose that U is a UBB for G1 of strength r′ (so ψi(U) = {ψi(B) :
B ∈ U} is a UBB for Gi of strength r

′).

In an implementation of the algorithm, the receiver knows the list of groups
G1, . . . , Gλ, as well as the lists of mappings A, A−1, F and F−1, the correction
capability rtw, and the uncovering-by-bases U . An input to the algorithm consists of
a received word w = [w1, . . . , wλ].

Algorithm 2.6. Suppose that the transmitted codeword is g = [ρ1(g), . . . , ρλ(g)],
and that the received word w = [w1, . . . , wλ] contains at most rtw errors. Choose the
first base B1 ∈ U and examine the symbols in w1 in the positions indexed by B1; if
there are no repeated symbols, find (if it exists) the unique element h1 ∈ G1 which
agrees with w1 in those positions, then compute hα2

1 ∈ G2, . . . , h
αλ
1 ∈ Gλ to obtain

a codeword h = [h1, h
α2
1 , . . . , h

αλ
1 ] ∈ Tw(G, I). If h is within distance rtw of w, we

must have that h = g, and we have decoded successfully.

Otherwise, we move to w2 and examine the symbols in the positions of w2 in-
dexed by the base ψ2(B1) for G2; if there are no repeats, find (if it exists) the
unique element h2 ∈ G2 which agrees with w2 in those positions, then compute

h
α−1
2

2 ∈ G1 as well as h
α−1
2 α3

2 ∈ G3, . . . , h
α−1
2 αλ

2 ∈ Gλ to obtain a codeword h =

[h
α−1
2

2 , h2, h
α−1
2 α3

2 , . . . , h
α−1
2 αλ

2 ] ∈ Tw(G, I). Again, if h is within distance rtw of w, we
have decoded successfully.

This process is then continued for each wi until we can decode successfully; if we
fail each time, we then consider the next base B2 ∈ U and repeat the process for each
w1, . . . , wλ, examining the positions in each wi labelled by ψi(B2), reconstructing a
codeword in Tw(G, I) and comparing it to w. If there is still no success, we move
to the next base in U , and then the next, and so on, until we are successful.

Since there must be a component wi which contains at most r′ errors, and because
U is an uncovering-by-bases of strength r′, there must be a base ψi(Bj) forGi avoiding
these errors. So the algorithm is guaranteed to decode successfully after at most λ|U|
attempts.

Figure 1 gives a flowchart depicting Algorithm 2.6.

Example 2.7. Consider the group G = ASL(3, 2) of affine transformations of F3
2.

There are two distinct permutation representations ρ1, ρ2 as subgroups of S8, inter-
changed by an outer automorphism; using GAP [14], we find one (in terms of its
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Start

Separate received word into components

Choose first base

Choose first component

Identify corresponding group element

Build codeword using inverse maps

Within distance rtw of

received word?
Choose next component Choose next base

Stop

Yes

No No components

remaining

Figure 1: Decoding algorithm for a twisted permutation code

action on generators of G) to be

(2, 5)(4, 7) 	→ (1, 3)(2, 7)(4, 5)(6, 8),

(2, 3, 4)(5, 6, 8) 	→ (2, 3, 4)(5, 6, 8),

(1, 2)(3, 4)(5, 6)(7, 8) 	→ (1, 2)(3, 4)(5, 6)(7, 8),

(1, 3)(2, 4)(5, 7)(6, 8) 	→ (1, 3)(2, 4)(5, 7)(6, 8),

(1, 5)(2, 6)(3, 7)(4, 8) 	→ (1, 5)(2, 6)(3, 7)(4, 8).

Denote this mapping by α2, and consider the twisted permutation code Tw(G, I)
where I = (ρ1, ρ2). We have that A = (id, α2), and since Im(ρ1) = Im(ρ2) we have
F = (id, id). Now, by [15, subsection 7.1], we have δtw = 12, which is an improvement
on δrep = 8; this means that Tw(G, I) can correct �(12 − 1)/2� = 5 errors, while
r′ = �5/2� = 2.
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G has base size 4, with the minimum bases corresponding to affine-independent
4-tuples in F

3
2; below is an uncovering-by-bases U of strength r′ = 2 for G:

1 2 3 5
4 5 6 7
1 4 6 8
1 5 7 8
2 3 4 6
2 3 7 8

We can use GAP to verify that each row is a base for G, and by inspection any
2-subset of {1, . . . , 8} is disjoint from at least one base in U .

Let g = (1, 4, 6, 8, 5, 3)(2, 7) ∈ G. Now, gα2 = (1, 7, 5, 8, 2, 4)(3, 6), so by concate-
nating these in list form we obtain the codeword

g = [g1 | g2] = [4, 7, 1, 6, 3, 8, 2, 5 | 7, 4, 6, 1, 8, 3, 5, 2]
in Tw(G, I). Suppose that g is transmitted, and the following word (with two errors)
is received:

w = [w1 | w2] = [4, 7, 1, 6, 7, 8, 2, 5 | 4, 4, 6, 1, 8, 3, 5, 2].

The first base is {1, 2, 3, 5}, so we first examine the symbols in those positions
of w1, which are 4, 7, 1, 7; since symbol 7 is repeated, we cannot decode. We then
examine those positions of w2 and find 4, 4, 6, 8, so we are unsuccessful again.

The next base is {4, 5, 6, 7}; in w1 we find symbols 6, 7, 8, 2. There are no repeats,
so we obtain the element h1 = [4, 3, 5, 6, 7, 8, 2, 1] ∈ G1 which agrees with w1 in those
positions; applying α2 yields hα2

1 = [1, 2, 8, 7, 6, 5, 3, 4], and we obtain the codeword

h = [4, 3, 5, 6, 7, 8, 2, 1 | 1, 2, 8, 7, 6, 5, 3, 4].
However, since this is at distance 11 > δtw from w, it is rejected. In w2, we find

symbols 1, 8, 3, 5, and obtain h2 = [7, 4, 6, 1, 8, 3, 5, 2]; applying α−1
2 yields h

α−1
2

2 =
[4, 7, 1, 6, 3, 8, 2, 5], and we obtain the codeword

h = [4, 7, 1, 6, 3, 8, 2, 5 | 7, 4, 6, 1, 8, 3, 5, 2]
which is distance 2 from w. So we can conclude that h = g, and we have decoded
successfully.

In the more general case where the groups G1, . . . , Gλ are not permutationally
isomorphic, we no longer have the list of mappings ψ1, . . . , ψλ, and will require a
separate uncovering-by-bases for each distinct image group Gi. The decoding algo-
rithm proceeds similarly, but the need for additional UBBs makes it more difficult
to implement. However, in each of the examples considered in [1, 15], the image
groups Gi are typically not just permutationally isomorphic, but are in fact equal.
This means that each map ψi is the identity map, and we can use the same UBB in
each component.
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2.2 Decoding repetition codes and “unimproved” codes

The following observation is helpful, as it ensures that known UBBs for permutation
codes can be applied to repetition codes and “unimproved” twisted permutation
codes (i.e. those for which δtw = δrep).

Proposition 2.8. Suppose that G is a permutation group with correction capability
r. Then, for the repetition code Repλ(G), the strength r′ of the UBB required for
Repλ(G) is equal to r.

Proof. We know that r = �(d− 1)/2�, where d is the minimum distance of G. Now,
Repλ(G) has minimum distance λd, correction capability �(λd− 1)/2�, and we have
r′ = ��(λd − 1)/2�/λ�. A case analysis to consider when d and λ are each odd or
even then shows that, in all cases, r′ = �(λd− 1)/2� = r.

Note that the same result holds for “unimproved” twisted permutation codes;
consequently, the UBBs obtained in [2, 3, 5] may be used not just for the corre-
sponding repetition codes, but also the “unimproved” twisted permutation codes. In
the table below, we give some further examples of groups (with multiple permutation
representations), including some mentioned in [15] (namely PSL(2, 11),M12 and A7),
and their parameters. For 24 : A6, 2

4 : S6 and M22, we verified that δtw = δrep with
the same techniques as [15], using GAP.

Group G |G| n λ δtw = δrep r r′ b(G) |U|
PSL(2, 11) 660 11 2 2 · 8 = 16 7 3 3 5

M12 95040 12 2 2 · 8 = 16 7 3 5 11

A7 2520 15 2 2 · 12 = 24 11 5 3 9

24 : A6 5760 16 4 4 · 12 = 48 23 5 4 12

24 : S6 11520 16 2 2 · 8 = 16 7 3 5 6

M22 443520 22 2 2 · 16 = 32 15 7 5 22

Table 1: Parameters and decoding for some “unimproved” twisted permutation codes

The UBBs mentioned in Table 1 can be found in Appendix A. Each was obtained
by taking the complements of blocks of the corresponding (n, n− b(G), r′)-covering
designs given in Gordon’s database [17]; in some cases, the points needed to be
relabelled to ensure that the complement of each block was a base for the group G.

2.3 Decoding twisted permutation codes with improved minimum dis-
tance

In the case of a twisted permutation code Tw(G, I) with improved minimum dis-
tance, the strength of the UBB we need is typically larger than that needed for the
repetition code Repλ(G). For the groups S6, A6 and ASL(3, 2), each of which were
shown in [15] to yield such “improved” codes, we summarize the details in Table 2
below.
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Group G |G| n λ δrep δtw rtw r′ b(G) |U|
S6 720 6 2 4 8 3 1 5 6

A6 360 6 2 6 8 3 1 4 3

ASL(3, 2) 1344 8 2 8 12 5 2 4 6

Table 2: Parameters and decoding for some “improved” twisted permutation codes

For S6, the corresponding UBB consists of all 5-subsets of {1, . . . , 6}; for A6, we
can use {1234, 1256, 3456}; for ASL(3, 2), the UBB is given in Example 2.7.

As Table 2 does not give very many examples, in the next section we consider an
infinite family of “improved” codes, taken from [1].

3 Codes from the groups Gk(p)

In [1, Section 3], Akbari et al. give an infinite family of twisted permutation codes,
which arise from affine groups over the vector space F

k
p. We begin by giving a

summary of these groups and the corresponding codes.

Let Bk be the following k × k matrix over Fp:

Bk =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
1 1 0 · · · 0
0 1 1 · · · 0
...

. . .
. . .

...
0 · · · 0 1 1

⎤
⎥⎥⎥⎥⎥⎦
.

Since Bk is lower unitriangular, it is clearly invertible. It can be shown (see [1,
Lemma 4]) that Bk has multiplicative order p, and that its powers are given by

Bi
k =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
i 1 0 · · · 0(
i
2

)
i 1 · · · 0

...
...

. . .
. . .

...(
i

k−1

) (
i

k−2

) (
i

k−3

) · · · 1

⎤
⎥⎥⎥⎥⎥⎦

for 0 ≤ i < p, and where the entries
(
i
j

)
are taken modulo p.

Definition 3.1. Suppose that V = F
k
p is the space of row vectors, and let Hk(p) be

the subgroup of GL(k, p) generated by Bk. Denote by Gk(p) the subgroup V �Hk(p)
of AGL(k, p).

Since Bk has multiplicative order p, it follows that Gk(p) has order p
k+1. Next,

define a (k + 1)× (k + 1) matrix

Av,i =

[
1 v
0T Bi

k

]
,
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where v is a row vector in F
k
p, and 0 ≤ i < p. Then denote the collection of all

such matrices by Gk(p). In [1, Lemma 5], it is shown that Gk(p) is a subgroup of
GL(k + 1, p) under matrix multiplication, has order pk+1, and is isomorphic to the
affine group Gk(p). They also show (in [1, Lemma 7]) that Gk(p) acts faithfully and
transitively on the set of pk row vectors Ω = {(1,v) : v ∈ F

p
k}, so Gk(p) can be

viewed as a permutation group on pk points. Furthermore, they give a collection of
isomorphisms, which they denote by τw, from Gk(p) to Gk(p); these give a collection
of permutation representations ofGk(p) in Sym(Ω), and thus can be used to construct
twisted permutation codes. In particular, they show that as a permutation code
Gk(p) has minimum distance pk − p, so the p-fold repetition code Repp(Gk(p)) has
minimum distance pk+1−p2; however, using a particular collection I of p permutation
representations, there is a twisted permutation code Tw(Gk(p), I) with improved
minimum distance pk+1 − p (see [1, Proposition 9]).

To apply Algorithm 2.6 to these codes, we first need to obtain bases for the group
Gk(p). Let e1, . . . , ek denote the standard basis vectors of Fk

p.

Proposition 3.2. For any j where 2 ≤ j ≤ k, we have that {(1, 0), (1, ej)} is a base

for Gk(p) acting on the set Ω. Furthermore, b(Gk(p)) = 2.

Proof. Suppose that Av,i lies in the pointwise stabilizer of {(1, 0), (1, ej)} in Gk(p).
First, we have

(1, 0)Av,i = (1, 0)

[
1 v
0T Bi

k

]

= (1 + 0,v + 0)

= (1,v),

so for Av,i to fix (1, 0) we must have v = 0. Then we have

(1, ej)A0,i = (1, ej)

[
1 0
0T Bi

k

]

= (1 + 0, 0+ ejB
i
k).

Now, ejB
i
k is precisely row j of Bi

k, i.e.

ejB
i
k =

((
i

j − 1

)
,

(
i

j − 2

)
, · · · ,

(
i

1

)
, 1, 0, · · ·0

)
.

So for this to be equal to ej , we require that j ≥ 2 and that all the binomial
coefficients are equal to 0; this will happen only when i = 0. Consequently, we have
that A0,i = A0,0 = Ik+1, i.e. the identity element of Gk(p). Hence {(1, 0), (1, ej)} is

a base for Gk(p) acting on Ω.

Since Gk(p) acts transitively on Ω but |Ω| > |Gk(p)|, it follows that Gk(p) has no
base of size 1; therefore b(Gk(p)) = 2.



R.F. BAILEY AND K.B.NICHOLSON /AUSTRALAS. J. COMBIN. 88 (1) (2024), 144–159 154

The next step is to obtain an uncovering-by-bases for Gk(p). Now, since b(Gk(p))
= 2, we can regard the minimum bases as the edges of a graph with vertex set Ω.
The following terminology and notation was introduced by in 2020 by Burness and
Giudici [10].

Definition 3.3. Let G be a group acting on Ω with b(G) = 2. The Saxl graph of
G, denoted Σ(G), is the graph with vertex set Ω, and where {u, v} is an edge if and
only if it is a base for G.

Similar graphs (named “base-orbital graphs”) appear in [5, Section 3], but where
the edge set consists of a single orbit of G on its bases of size 2, rather than all such
bases. Thus the edge set of the Saxl graph Σ(G) is the union of the edge sets of each
of the base-orbital graphs of G.

Proposition 3.4. Let G be a permutation group, acting on a set Ω of size n, with
base size b(G) = 2. Then an optimal uncovering-by-bases for G is a matching in the
Saxl graph Σ(G).

Proof. The smallest possible size of a UBB of strength r′ is r′+1, as otherwise there
will be a set of r′ points which intersects each base non-trivially. A set of r′ + 1
disjoint bases (i.e. a set of r′ + 1 disjoint edges in Σ(G)) will be sufficient. But this
is exactly a matching of size r′ + 1 in Σ(G). Since r′ ≤ ⌊

n−2
2

⌋
, the requirement that

2(r + 1) ≤ n will always hold.

Recall that a perfect matching in a graph Γ on n vertices is a matching (of size
n
2
) which includes every vertex of Γ. If n is odd, no perfect matching can exist, but

a near-perfect matching is a matching which includes every vertex except one. The
following result is well-known (see, for example, Godsil and Royle [16, Section 3.5]).

Lemma 3.5. Let Γ be a connected, vertex-transitive graph with n vertices. Then
Γ has either a perfect matching or a near-perfect matching, depending on the parity
of n.

By construction, the Saxl graph Σ(G) will be vertex-transitive whenever G is
transitive; in order to apply Lemma 3.5 to Σ(G), one must show that it is connected.
(The condition is necessary: a disconnected graph where all components have odd
size can never have a (near-) perfect matching.) We would like to apply this to the
Saxl graph of Gk(p).

Lemma 3.6. Let G be the group Gk(p) acting on the set Ω = {(1,v) : v ∈ F
k
p}.

Then the Saxl graph Σ(G) is connected.

Proof. We will show that for each element (1,v) ∈ Ω, there exists a path in Σ(G) to
(1, 0).

We saw in Proposition 3.2 that {(1, 0), (1, ej)} is a base for G for 2 ≤ j ≤ k.
Now consider the orbit of G on such bases; for Av,i ∈ G, we have that

(1, 0)Av,i = (1,v)
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and
(1, ej)Av,i = (1,v + bi

j)

where bi
j = ejB

i
k denotes row j of the matrix Bi

k. So {(1,v), (1,v + bi
j)} is a base

for G. Therefore, in Σ(G) each vertex (1,v) is adjacent to (1,v ± bi
j); we can label

these edges by bi
j . Now, for 2 ≤ j ≤ k, we have that bi

j = ej , while b1
2 = e1 + e2.

Now suppose that v = (v1, v2, . . . , vk). Then there is a path in Σ(G) from
(1, v1, v2, . . . , vk) to (1, v1, v2, . . . , vk−1, 0) using edges labelled by ek, then a path from
(1, v1, v2, . . . , vk−1, 0) to (1, v1, v2, . . . , vk−2, 0, 0) using edges labelled by ek−1, and so
on, until we reach (1, v1, v2, 0, . . . , 0). From there, there is a path to (1, v1, v1, 0, . . . , 0)
using edges labelled by e2, and then finally a path to (1, 0, . . . , 0) using edges labelled
by e1 + e2.

Since there is a path in Σ(G) from any vertex to (1, 0), it follows that Σ(G) is
connected.

Putting all of this together, we have the following result.

Theorem 3.7. The twisted permutation code Tw(Gk(p), I), which has size pk+2,
length pk+1 and minimum distance pk+1 − p, can be decoded using an uncovering-by

bases of optimal size r′ + 1 =
⌊
pk−1
2

⌋
.

Proof. The size, length and minimum distance of Tw(Gk(p), I) were all determined
in [1]. Calculating r′ is a straightforward exercise from this. Since Σ(Gk(p)) is
connected (by Lemma 3.6), it has a (near-) perfect matching (by Lemma 3.5), which
forms an optimal UBB (by Proposition 3.4).

4 Another infinite family

We conclude the paper by mentioning another family of groups, mentioned in [15,
Section 6], with multiple permutation representations. Let V be the additive group
of F2

2m and K denote the special linear group SL(2, 2m). Since the first cohomology
group H1(K, V ) has order 2m (cf. [11, Table 7.3]), we have 2m outer automorphisms
of the semidirect product G = V � K. It follows that there are 2m permutation
representations of G, the affine special linear group ASL(2, 2m), and thus ASL(2, 2m)
is a candidate for constructing a twisted permutation code. Furthermore, a family
of UBBs which can be used for these groups is constructed in [2, Theorem 5.27].

Unfortunately, as shown in [15, Theorem 6.1], twisting does not yield codes with
improved minimum distance in this instance. The possible numbers of fixed points
of a non-identity element of G = ASL(2, 2m) are 0, 1 or 2m, and thus the minimum
distance is 22m − 2m. For the minimum distance of a twisted permutation code
Tw(G, I) to be improved from that of the repetition code Repλ(G), a necessary
condition is that each conjugacy class of elements of G with the maximum number
of fixed points must be mapped by an outer automorphism to a conjugacy class of
elements with fewer fixed points; these two conjugacy classes must have the same size
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and consist of elements of the same order. However, in ASL(2, 2m) no such conjugacy
classes can exist: there is a unique conjugacy class of elements with 2m fixed points,
and these elements have order 2; there is only one other conjugacy class of elements
of order 2, formed of the non-zero elements of the elementary abelian subgroup V ,
and this has a different size.

A Appendix: Some examples of uncoverings-by-bases

Example A.1. For the group G = PSL(2, 11), we have n = 11, b(G) = 3 and r′ = 3:

1 2 11
2 8 10
3 4 5
6 7 9
8 10 11

Example A.2. For the group M12, we have n = 12, b(M12) = 5 and r′ = 3. Since
M12 is sharply 5-transitive, any 5-subset forms a base. This example is taken from [2,
Table 1].

1 2 3 4 5
1 2 6 11 12
1 3 7 8 9
1 4 6 7 10
1 5 8 9 11
2 4 8 9 12
2 5 7 10 11
3 4 7 11 12
3 5 6 10 12
3 6 8 9 11
6 7 8 9 10

Example A.3. For the group A7, we have n = 15, b(A7) = 4 and r′ = 5. This
example is referred to in [2], but is not given there explicitly.

1 2 8
2 6 7
3 4 5
6 7 8
9 12 15
9 13 14
10 11 12
10 11 15
13 14 15
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Example A.4. For the group G = 24 : A6, we have n = 16, b(G) = 4 and r′ = 5:

1 2 9 16
1 3 9 10
1 4 9 11
2 3 10 16
2 4 11 16
3 4 10 11
5 6 12 13
5 7 13 14
5 8 13 15
6 7 12 14
6 8 12 15
7 8 14 15

Example A.5. For the group G = 24 : S6, we have n = 16, b(G) = 5 and r′ = 3:

1 3 4 6 13
2 3 6 11 16
2 4 11 13 16
5 7 9 14 15
7 8 10 12 14
8 9 10 12 15

Example A.6. For the group M22, we have n = 22, b(M22) = 5 and r′ = 7:

1 2 4 14 19 6 8 10 20 21
1 2 7 13 17 6 9 12 16 21
1 3 4 15 17 6 10 12 18 22
1 3 5 7 19 6 11 16 20 22
1 5 13 14 15 7 14 15 17 19
2 3 5 14 17 8 9 10 16 22
2 3 13 15 19 8 11 12 21 22
2 4 5 7 15 8 12 16 18 20
3 4 7 13 14 9 10 11 12 20
4 5 13 17 19 9 18 20 21 22
6 8 9 11 18 10 11 16 18 21
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