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Abstract

For positive integers n, r, k with n > r and k > 2, a set {(x1,y1), (22, y2),
ooy (@, yp)} s called a k-signed r-set on [n] if z4,...,x, are distinct
elements of [n| and yy,...,y, € [k]. We say that a t-intersecting fam-
ily consisting of k-signed r-sets on [n] is trivial if each member of this
family contains a fixed k-signed t-set. In this paper, we determine the
structure of large maximal non-trivial ¢-intersecting families of k-signed
r-sets. In particular, we characterize the non-trivial ¢-intersecting fami-
lies with maximum size for ¢t > 2, extending a Hilton-Milner-type result
for signed sets given by Borg.

1 Introduction

Let n, r and t be positive integers with n > r > t. For an n-set X, let 2% and ()r()
denote the family of subsets and the set of r-subsets of X, respectively. A family
F C 2% is called t-intersecting if |F'N F'| > t for every F, F' € F. Moreover, we say
F is trivial if the members of F contain a fixed ¢-subset of X.

The famous Erdés-Ko-Rado Theorem [13, 15, 24] states that the largest ¢-inter-
secting subfamilies of (¥) are trivial if n > (¢ + 1)(r — ¢t + 1). In [15], Frankl

* Also at address of other two authors.
t Corresponding author.

ISSN: 2202-3518 ©The author(s). Released under the CC BY-ND 4.0 International License



T. YAO ET AL./AUSTRALAS. J. COMBIN. 89 (1) (2024), 32-48 33

conjectured the structure of the maximum-sized t-intersecting subfamilies of ():) for
all n,r and ¢. Frankl’s conjecture was partially settled by Frankl and Fiiredi [18],
and was completely confirmed by Ahlswede and Khachatrian [2].

The maximum-sized non-trivial ¢-intersecting subfamilies of (): ) have been char-
acterized. Hilton and Milner [21] gave the first result for the structure of such families
when ¢ = 1, which was also proved by Frankl and Fiiredi [17] via the shifting tech-
nique. In [16], Frankl proved the corresponding result for all ¢ and sufficiently large
n. The complete result was given by Ahlswede and Khachatrian [1]. Extending
this further, Han and Kohayakawa [20] described the structure of the second largest
maximal non-trivial 1-intersecting familes with n > 2r > 6. Kostochka and Mubayi
[22] determined the structure of 1-intersecting families with sizes quite a bit smaller
than (’;j) for large n. Recently, Cao et al. [11] gave the structure of large maximal
non-trivial t-intersecting families for all ¢ and large n.

The t-intersection problem has been studied for some other mathematical objects,
for example, signed sets. Write [n] = {1,2,...,n}. For k > 2, each element of

r

Covai= { (mdeoeslor} s ook € () oo e 01

is called a k-signed r-set on [n]. When r = n and k = 2, the family £, ,, » is considered
as 2", Notice that the family ([7;}) can be viewed as the set of all “1-signed r-sets”
on [n]. Signed sets generalize the classical sets and so the ¢-intersection problem for
this setting has attracted much attention.

A t-intersecting subfamily of £, , ; is said to be trivial if all its members contain
a fixed k-signed t-sets and non-trivial otherwise. There are a lot of Erdds-Ko-Rado
results for £, .k, see [3, 4, 5, 19, 23] for r = n and [5, 6, 7, 8, 12, 14] for r < n. In
general, the Erdés-Ko-Rado theorem for £, ., can be stated as follows.

Theorem 1.1. Let n,r, k and t be positive integers withn >r >t and k > 2. Ifn
or k is sufficiently large, then each mazimum-sized t-intersecting subfamily of L, ,
18 trivial.

We remark here that the t-intersection problem of signed sets does not focus
solely on L, .., and refer readers to [10] for an Erdés-Ko-Rado result about a family
which is more general than £, , .

In this paper, we study the structure of maximal non-trivial ¢-intersecting sub-

families of £, , . To present our main results, we introduce two constructions
of non-trivial ¢-intersecting subfamilies of £, .. For each d € [n], write M,; =

{(1,1),(2,1),...,(d, 1)}

Construction 1. Suppose that n,r, k,{ and t are positive integers with 2 < k, t+1 <
r<nandt+2 << min{r+1,n}. Let Hi(n,r, k,{,t) be the set of all elements F
of Ly Such that

o My CFand|FNONMy| >t+1, or
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o My ¢ F and |[FN M| =10¢—-1.

Construction 2. Suppose that n,r, k,c and t are positive integers with 2 < k, t+2 <
r<nandr+2<c<min{2r —t,n}. Let Hao(n,r k,c,t) be the set of all elements
F of L, ;1 such that

e My CFand|FNM.|>t+1, or
e FNM, =M, and M.\ M, C F, or
e My ¢ F,|[FNM,|=r—1and|FnN(M.N\M,) =1.

Indeed, the sizes of these families are difficult to compute and the formulas are
quite messy, but in most cases we do not need exact values. For each d € [n], write

f(n,r,k,d,t) = (d—t) (Z:;:D ottt - (d ) t) (Z:f:;) KR (1)

g(n’m):(r—t+3)(r—t—1).max{(t+2>’m}' @)

n—1t—1 2 2

In the proofs of our main results, we will use f(n,r k,d,t) to give lower bounds
of families defined above, and show some inequalities for sizes of non-trivial t¢-
intersecting families based on the assumption that k& > g(n,r,t).

In the rest of this paper, for two subfamilies 7 and G of £, , , if there exists a
bijection o from [n] x [k] to itself such that G = {o(F') : F' € F}, then we say F is
isomorphic to G, and denote this by F = G. One of our main results is stated as
follows, describing the structure of maximal non-trivial ¢-intersecting subfamilies of
L, ;. with sizes no less than f(n,r k,r,t).

Theorem 1.2. Let n,r, k and t be positive integers withn >t +2, n>r >t+1

and k > max{2,g(n,r,t)}. Suppose that F is a mazimal non-trivial t-intersecting
subfamily of L, ;. Then |F| = f(n,r, k,r,t) if and only if one of the following holds.

(i) r = t+2 and F = Hi(n,r, k,m,t) for some m € {r,min{r + 1,n}}.
(i) n=>r+2>t+4 and F = Ho(n,r, k,c,t) for some c € {r+2,...,min{2r —
t,n}}.
(i) r < 2t4+2, r#t+2 and F = Hi(n,r k,t + 2,t).
The size of a largest non-trivial ¢-intersecting subfamily of £,, ;. was determined

in [5]. In [9], Borg determined the structure of the largest non-trivial 1-intersecting
subfamilies of L, , .

Theorem 1.3. ([9]) Let n,r, k and t be positive integers with n > 3, n > r > 2,
k> 2 and (r,k) # (n,2). If F is a mazimum-sized non-trivial intersecting subfamily
of Lk, then one of the following holds.
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(i) F=Hi(n,r, k,min{r+ 1,n},1).
(i) F = Hi(n,r k,3,1) whenr =3 orr=n=4.

By comparing the sizes of the families given in Theorem 1.2, we can describe the
structure of maximum-sized nontrivial ¢-intersecting subfamilies of £, when k is
sufficiently large. Notice that Theorem 1.3 is the result for the case ¢t = 1. Our
second main result focuses on the case t > 2.

Theorem 1.4. Let n,r, k and t be positive integers withn >t+2 >4, n>r >t+1
and k > max{2,g(n,r,t)}. Suppose that F is a largest non-trivial t-intersecting
subfamily of Ly, .

(i) If min{r + 1,n} < 2t + 2, then F = Hy(n,r, k, t +2,t).
(i) If min{r 4+ 1,n} > 2t + 2, then F = Hy(n,r, k, min{r + 1,n},t).

The rest of this paper is organized as follows. In Section 2, we will prove some
properties for t-intersecting families with ¢-covering number ¢ 4 1 in preparation for
the proof of our main results. In Sections 3 and 4, we will prove Theorems 1.2 and
1.4, respectively.

2 t-intersecting families with t-covering number ¢ + 1

For a t-intersecting subfamily F of £, ., a k-signed set T on [n] is said to be a
t-cover of F if [T'N F| >t for each F' € F, and the minimum size 7(F) of a t-cover
of F is called the t-covering number of F. Observe that ¢t < 7(F) < r, and F is
trivial if and only if 7(F) = ¢. In this section, we determine some properties of
t-intersecting subfamilies of £, ., with ¢t-covering number ¢ + 1.

For convenience, we write Fx := {F € F : X C F'} where F is a subset of L, .
and X a k-signed set on [n]. We make the following assumption when proving our
lemmas in this section and will handle the remaining case, i.e. 7(F) >t + 2, in the
proof of Theorem 1.2.

Assumption 2.1. Let n,r k and ¢ be positive integers with n > r > ¢t + 1 and
k > 2. Suppose F C L, is a maximal ¢-intersecting family with 7(F) = t+1. Let

T denote the set of all t-covers of F with size t + 1. Set M = |J T and ¢ = |M]|.
TeT

We first claim that 7 is a t-intersecting family with ¢ < 7,(7) < ¢+ 1. In fact, for
T €T and F € L, containing T, we have F' € F by the maximality of 7. Then
for each T" € T, there exists F' € F such that 7" C F' and T"NT = F' N F, which
implies that |T"NT| > t, as desired. To describe the structure of some ¢-intersecting
families, we need the following lemma, which shows a relationship between elements
of F and the set M defined in Assumption 2.1.

Lemma 2.2. Let n,r, k,t,{, F,T and M be as in Assumption 2.1.
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(i) If (T)=t+1, then M € Ly, 410% and |[FN M| >t+1 for each F € F.

(i) If n(T) =t, then M € Ly, px witht+1 < ¢ < min{r + 1,n}, and for any
t-cover S of T with sizet, |[F N M| =4{—1 for each F € F\ Fgs.

Proof. (i) Let T and T, be distinct members of 7. We claim that T1AT, € L, 9.
Indeed, since |11 NTy| = ¢ and F is non-trivially ¢-intersecting, we have |T1ATy| = 2
and there exists a member of F \ Fr,qr, containing TYATh, so TIAT, € L, 9.

Since 74(7T) = t+1, there exists T3 € T such that 7' N1y ¢ T5. From [Ty NT5| > ¢
and [Ty N T3] > t, we get TYATy, C Ty and |T3N (77 N'Ty)| =t — 1, which imply that
Ty C Ty UTy. For each Ty € T \ {11} containing Ty N Ty, we have T} N T3 ¢ Tj.
Similarly, we have Ty C T UT3 C T} UT;. Hence M C T7 UTy C M. Together with
TAT, € Lok, we get M =T1UTy € Ly, 440 Foreach F' € F, we have |[FNM| > t.
If |FN M| =t, then N M is contained in each member of T, but this contradicts
7,(T) =1t + 1. Therefore, |FN M| >t + 1, as desired.

(ii) By the claim in (i), it is routine to check that M € L, sx. Let S be a t-cover
of T. For each F € F\ Fs and T € T, we have |[F NT| = t, from which we get
r+1 < |SUF| < |TUF|=r+1 Then SUF = T U F, which implies that
IMUF|=|SUF|=r+1. Hence |[FNM|=¢—1and ¢ <r+ 1. Together with
M € Ly and T # (), we obtain ¢t + 1 < £ < min{r + 1,n}, as required. O

For a k-signed set @ = {(s1,1),...,(sq,ty)} on [n] with s; < ... < 54, consider
the permutation my = (q s4)(¢ — 1 S4—1) -+ (1 s1), and for each = € [n], let 7, be
a permutation on [k] with 7, = (1 ¢;) if z = s; for some ¢ € [¢], and 7w, = (1)
otherwise. We get a bijection 7 from [n] x [k] to itself with 7(z,y) = (mo(z), 72(y))
for each (z,y) € [n] x [k]. Observe that 7(Q) = M,, and 7(L,, sx) = Ly s for each
s € [n]. Tt is routine to check that there exists a bijection o from [n] x [k] to itself
such that o(F) is a t-intersecting subfamily of L, ., with ¢-covering number ¢ + 1,
My = Upers T, and M, is a t-cover of T" if 7,(T) = ¢, where T is the set of all
t-covers of o(F) with size t + 1. Let G denote the family o(F). In the following two
lemmas, based on Lemma 2.2, we characterize some special t-intersecting families.

Lemma 2.3. Let n,r, k,t, 0, F,T and M be as in Assumption 2.1. Suppose that
|[FNM|>t+1 for each F € F.

(i) If (T) =t+ 1, then F = Hy(n,r k,t +2,t).
(i) If (T) =t, then F = Hy(n,r,k, £,t) and £ € {t +3,...,min{r + 1,n}}.

Proof. (i) If 7(T) =t+1, then M € L, 412 by Lemma 2.2 (i). By the assumption
that F = G and |[F N M| >t + 1 for each F' € F, we have |G N Mo >t + 1 for
each G € G. Then G C Hq(n,r k,t + 2,t). Since H(n,r, k,t + 2,t) is t-intersecting
and G is maximal, we have F = G = Hi(n,r k,t + 2,1).

(ii) Since F is non-trivially ¢-intersecting, by Lemma 2.2 (ii), we have t + 2 <
¢ < min{r + 1,n}. Notice that each (¢ + 1)-subset of M, containing M, is a t-
cover of G. Then {G € L, : My C GN M,} C G. By Lemma 2.2 (ii), we have
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|GNM,| = ¢—1 for each G € G\ Gyy,. Hence G C Hy(n,r, k,£,t). Since G is maximal
and Hi(n,r, k,{,t) is t-intersecting, we have F = G = Hy(n,r, k,{,t). Notice that
7(T)=t+1if ¢ =t+2. Then ¢ >t + 3, as desired. O

Lemma 2.4. Let n,r, k., t, 0, F,T and M be as in Assumption 2.1. Suppose that
there exists Fy € F such that |FoN M| =1t. Thent <r—2 and { < min{r + 1,n}.
Moreover, if ¢ = min{r +1,n} — 1, then r < n—2 and F = Ho(n,r, k,c,t) for some
ce{r+2,...,min{2r —t,n}}.

Proof. By Lemma 2.2 (i), we have 7,(T) = ¢. If r = ¢+ 1, then 7 = F, which implies
that 7(7) = t+1, a contradiction. Hence r > t+2. Observe that FyN M is a t-cover
of T. Let F' € F\ Fran. If £ = min{r + 1,n}, then by Lemma 2.2 (ii), we have
|F'NEFy| = |F N (FyN M)| <t, which is impossible. Therefore, ¢ < min{r + 1,n}.

Now suppose that £ = min{r + 1,n} — 1. Since F = G, there exists Gy € G such
that Go N M, = M,;. Let G € G\ Gpy,. f r > n— 1, then £ =n — 1. By Lemma 2.2
(ii), we have |Go NG N ([n — 1] x [k])| =t — 1, which implies that (n,z9) € Go NG
for some zy € [k]. Then M; U {(n,z0)} is a t-cover of G, which is impossible since
¢ < n and each member of 77 is contained in M,. Hence r <n — 2 and ¢ = r.

By |GoN G| >t and Lemma 2.2 (i), we obtain G\ ([r] x [k]) € (5°). Let
E={(i,j):i>r+1, (i,j) € G for some G € G\ Gy, }

Observe that E is a non-empty subset of Gy and EN M, = (). We have 1 < |E| <
min{r —t,n —r}. If E = {(e1,e2)} for some e; > r + 1 and ey € [k], then (ey,e2)
is contained in each member of G\ Gy, which implies that M; U {(e1,e2)} € T,
a contradiction. Therefore |E| > 2. Since M, is a t-cover of T’ then each (¢ + 1)-
subset of M, containing M; is a member of 7', which implies that {H € L,, . : M; C
HNM,} C G. For each G| € Gy, with |GyNM,| = t, observe that G\ ([r] x [k]) C G,
Then we have E C Gj,. For each G’ € G\Gyy,, we have |G'NM,| = r—1 and G'NE # 0.
Together with 2 < |E| < min{r —¢,n—r}, it is routine to check that G is isomorphic
to a subset of Ha(n,r k,c,t) where r + 2 < ¢ < min{2r — ¢,n}. Since that G is
maximal and Ha(n, 7, k,c,t) is t-intersecting, we have F = G = Hy(n,r k,c,t), as
desired. a

Now we prove upper bounds for sizes of families under Assumption 2.1 with
7(T) = t. We begin with a frequently used lemma.

Lemma 2.5. Let n,r k,t and u be positive integers with n > r > u + 1. Suppose
F C Ly, is a t-intersecting family and U € Ly, p. If [UNF| = s <t for some
F € F, then there exists R € Ly, ytt1—sx such that U C R and |Fy| < (::::)‘FR|-

Proof. W.l.o.g., assume that Fi; # 0. Let R denote the set of R € L,, 11— such
that U C R C FUU. For G € Fy, from |GNF| > tand |[FNU| = s < t, we
obtain [G N (FUU)| > u+t — s, which implies that R # 0 and Fyy = Uper Fr-
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Since [FUU| = u+r — s, we have |[R| < (;_°). Then the desired result holds by

|}—U| <ZR€R|FR|' O

Lemma 2.6. Let n,r, k,t,(,F,T and M be as in Assumption 2.1 with |T| = 1.

Then P -
n—=uv— n—=uv—
< kr—t—l t 1 — ¢ 2 kjr—t—Z.
Fa (T_t_l) 10 >(T_t_2)

Proof. Suppose that Ty is the unique element of 7. We have

F=Fpnu| |J Fw\7Fn |- (3)
we ()

For each W € (7;0), there exists F} € F\Fry, such that |WNF|| < t. Since |FiNTy| =t
and |To| =t + 1, we have |[FyNW| =t —1. Let H; = F; UW. It is routine to check
that |H,| =r+ 1 and Ty C H;. For each F| € Fy \ Fr,, we have |F{ N H| >t +1
by |Fy N F{| > t. Then

Fw \ Fr, = U Fi\ Fr,. (4)

IeLy 141,x\{To}, WCICH:

Suppose I € L1115\ {To} with W C I C H;. Since I ¢ T, there exists F/' € F
such that t — 1 < [FYNW/| < |F'NI| < t—1. Observe that I UTy € Ly 140k
Since F is maximal and 7y is a t-cover of F, each element of £, ,; containing 7
is a member of F, which implies that |F r,| = (’;;’:g) k™t=2. By Lemma 2.5 and
|FiNI| =t—1, we have |F;| < (r —t+ 1)|Fg| for some R € L,, 112 Together with

| Fr| < (Z:::;) k™—t=2 this produces |F7| < (r —t + 1)(::::;) k™=t=2. Then

n—t—2\ ,_,_
|ff\fTo|=|ff|—|fMO|<<r—t>(r_t_2)k )

Notice that [Fr| = ("—,_])k" """ and the number of I € L, 41 \ {To} with W C

I C Hy is at most r — t. Together with (3), (4) and (5), we get the desired bound of
7] =

Lemma 2.7. Let n,r k,t, 0, F, T and M be as in Assumption 2.1 with |T| > 2 and
Tt(T) =t.

(i) If ¢ =t+ 2, then

n—t—1 n—t—2
< 2 r—t—1 -1 . 1 r7t72.
| F| (T_t_1>k +(r=1)r—t+ )(T—t—Q)k

(i) If ¢ >t+ 3, then

n—t—1
< .
Fee-n("

>k’"“ +((r=Cl+1)(r—t+1)+1t) (Z:;:;) 2,
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Proof. Suppose that S is a t-cover of T with size t.

We first prove an upper bound for |Fg|. Let Fy € F\ Fg and Hy = SU F,. Tt
follows from Lemma 2.2 (ii) that M C H, and |Hy| = r + 1. For each Fj € Fg, if
FoN M =S, then from |Fy, N Fi| >t we get |Fy N Hy| >t + 1. Write

A={Ae€Ly1x: SCACH),yA¢g M}, B={Be€Ly1x:SCBCM}.

Observe that each member of Fg contains at least one element of A U B. For each
A€ A, since A ¢ T, there exists Fy € F such that t — 1 < |FY N S| < |[FYNA| <
t — 1. Then by Lemma 2.5, we have |F4| < (r — ¢t + 1)("_/_2)k"~*~2. Notice that

Al <r—(€+1,|B] = ¢—tand |Fp| < ("_/})k"'"! for each B € B. Then we
obtain

n—t—2

)k’"“ +(r—L4+1)(r—t+1) (r o 2)1@”2. (6)

n—t—1
< (-t
Fl<e-0("2,7)
Let C={C € Lpy1x:5¢CC M} Wehave |C| =t and F \ Fs C Upee Fo-
(i) Suppose ¢ =t + 2. For each C' € C, since C ¢ T, there exists F3 € F such
that [F3NC| <t — 1. Together with |F3 N M| > t, we have |[F3;NC| =t —1. By
Lemma 2.2 (ii), Lemma 2.5 and |C| = ¢, we have

n—t—2
F\ Fs| < Fo| <tlr —t+1 k2,
FAFsl < Yzl <0 (171 7)

Together with (6), this produces the desired result.

(ii) Suppose ¢ >t + 3. Observe that |F¢| < (?:ﬁﬁ) k=1 for each C € C. By
Lemma 2.2 (ii), £ > t + 3 and |C| = ¢, we have

n—~0+1 n—t—2
< <t k,r—(-l—l <t k,r—t—2.
7Tl Ozec|f0| (r—e+1) (T—t—Q)

Together with (6), this produces the desired bound on |F]. O

3 Proof of Theorem 1.2

Let n,r,k and t be positive integers with n > t+2, n > r > t+ 1 and k >
max{2, g(n,r,t)}. Suppose that F is a maximal non-trivial ¢-intersecting subfamily
of L. If r =1t+1, then 7(F) =t + 1 and F is the set of its t-covers with size
t + 1. It follows from Lemmas 2.2 (i) and 2.3 (i) that F = Hy(n,t + 1, k, t + 2,t)
and |F|=t+2>1= f(n,t+1,k,t+ 1,t). In the following, we may assume that
r>t+ 2. Write

f(n,r k,rt)—|F|

(n—t—2) fr—t—2

r—t—2

o(n,r k,t) =
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It is sufficient to show that ¢(n,r, k,t) < 0 if one of (i), (ii) and (iii) in Theorem 1.2
holds, and ¢(n,r, k,t) > 0 otherwise.

Case 1. ©(F) =t + 1.

In this case, let 7 be the set of all t-covers of F with size t +1 and £ = | Uo7 T
Recall from Section 2 that t < 7(7) < t+ 1, and t + 1 < ¢ < min{r + 1,n} by
Lemma 2.2.

Case 1.1. (7)) =1t.

In this case, (iii) does not hold since the corresponding T for H;(n,r, k,t+2,t) has
t-covering number ¢+ 1. Therefore, in this case, we need to show that ¢(n,r, k,t) <0
when (i) or (ii) holds and ¢(n,r, k,t) > 0 when neither (i) nor (ii) holds.

Case 1.1.1. (i) or (ii) holds.

We may assume that F = Hi(n,r, k,m,t) for some m € {r,min{r + 1,n}}, or
n=r+2>t+4and F = Ha(n,rk,c,t) for some ¢ € {r+2,... min{2r — t,n}}.
Note that £ > r.

Let a be an integer with a >t + 1. Foreach b € {t +1,...,a}, set
No(My, My) = {F € L, : M; C F,|F N M,| =b}.

We claim that .
— 3i — i

k t) = . i Ma,M . 7

Pl k) = 32 P N0 M) )

For each b € {t + 1,...,a}, let My(M,, M;) denote that set of all (I, F) € L, px X

Ly,r with My C I C M, and I C F. By double counting |M,1(M,, M;)| and

|Miy2(M,, My)|, we obtain

- ; n—t—1 r—t—1
S il (Mo, My)| = (a— 1) R,
1=1

r—t—1

e a—t\[/n—t—2
(M. M| = r—t—2
— (2) |M+Z( as t)‘ ( 2 ) ([r _ t _ Q)k )

)

which imply that (7) holds. If ¢ +2 < a < ¢, then we have

f(nv r, ka a, t) < |M+1(Ma’ Mt)| + |M+2(Ma’ Mt)|
< [ Nig1 (M, My)| + [Nigo(My, My)| < | F]|

by (7). Then ¢(n,r, k,t) <0, as desired.
Case 1.1.2. Neither (i) nor (ii) holds.

In this case, we have £ < r. Indeed, if |[FNJ o T'| = t+41 for each F' € F, then by
Lemma 2.3 (ii) and the assumption that (i) does not hold, we get £ < min{r+1,n} <
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7+ 1 and ¢ # r, which produce £ < r. On the other hand, if |Fy N {J;orT| =t for
some Fy € F, then by Lemma 2.4 and the assumption that (ii) does not hold, we
have ¢ < min{r + 1,n} —1<r.

If ¢ =t +1, then from (1), Lemma 2.6 and (n —t— 1)k > (“}?)(r —t)?, we obtain

o(n,rk,t) > (n—t—1)k— (T;t) —(t+D(r—t)?> E+t-=1r -1

> 0.
2

If ¢ =t+ 2, then, since ¢ < r, r —¢ > 3. From (1), (2), Lemma 2.7 (i) and
k > g(n,r,t), we obtain

oln,r k,t) > (r -t _7“ 2_)5571_—115 — Lk (7" N t) (r—1)(r—t+1)

t+2 3(r—t)? + (2t—1)(r—t) +2(t—1)
> (r—t=2)(r—1+3) (( ) 2(r—t—=2)(r—t+3) )

t+2 4t+11
>(r—t—=2)(r—t+3) ((+) + )

> 0.

If ¢ > t+ 3, then, since ¢ < r, r —t > 4. Notice that

g(n,r,t) > (a(tJFQ) +(1_Oé),7n_t+1) (r=t+3)(r—t-1)

2 2 n—t—1

> (t+(1_3(r—1t—|—3)> ' (T_Hl)z(r_Hg)) 'Ziiii )

B t+3(r—t)2+11(r—t)+8 r—t—1
B 6 n—t—1

where « is a real number such that (*}%)(r — ¢ + 3)a = t. Together with (1), (2),
Lemma 2.7 (i), k > g(n,r,t) and r — E 1, we get

p(n,r,k,t) > (T—i)(_nt—_tl— Dk — (r;t) —(r—fl4+0)(r—-t+1)-—

> (r—{) (%—(r;l)—ﬂr—t—l—l)—t)

>3(7“—1%) +él(r—t)+8_ (r;t) o —t11)

> 0,
as desired.
Case 1.2. (7)) =1+ 1.

In this case, by Lemmas 2.2 (i) and 2.3 (i), we have F = Hi(n,r k,t + 2,1).
Then (ii) does not hold. Next we show that ¢(n,r k,t) < 0 if either (i) holds with
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r < 2t + 2 or (iii) holds, and ¢(n,r, k,t) > 0 otherwise. Observe that
n—t—1 n—t—2
Hi(n,r k,t+2,t)] = (t +2 Ertl — (41 k2 (10
R ] Gy L (P ] (M e

and it follows from (1) that

o(n,r k,t) =

(r—=2t—=2)(n—t—1k r—t
r—t—1 _< 2

) +(t+1). (11)

Suppose that either (i) holds with » < 2t + 2 or (iii) holds. Then r < 2t 4 2. If
r = 2t + 2, then by (11), we have

@(n,r,k,t)z—(t;Q) +(t+1):—<t;1) <.

If r < 2t 42, then by (2), (11) and k > g(n,r,t), we get

(n—t—1)k

k) < —
()0(717707 7) T—t—l

_(T;t)+(t+1) < —(t;Q)(r—t+3)+(t+1) <0,

as desired.

Now suppose that we neither have (i) with r < 2t 4+ 2 nor have (iii). Then
r > 2t + 2. From (2), (11) and k > g(n,r,t), we obtain

(n—t—l)k:_(r—t (r—t—|—3)(r—t—|—1)_(r—t>>0’

o(n,r k,t) >

t1) >
r—t—1 2>+(+)/ 2 2

as required.
Case 2. 7y(F) >t +2.

Observe that none of (i), (ii) and (iii) holds. To show @(n,r, k,t) > 0, we first
prove an upper bound on |F]|.

Claim 1. |F| < (r —t+1)? (t;2) (Z:::S) Lr—t-2

Proof of Claim 1. Suppose 1:(F) = z and Z is a t-cover of F with size z. For
Yy € (f), without loss of generality, assume that Fy, # (. Since Yj is not a t-cover
of F, there exists Xy € F such that | Xy N Yy < ¢t. By Lemma 2.5, there exists
Y1 € L, 20— x0nv0|,x containing Yy such that

’I"—‘Xoﬂ}/o|

Fyo| <

)\m < (r — t 4 1)IXo By .

Note that Fy, # 0 by |Fy,| > 0. Similarly, we deduce that there exist k-signed sets
Yo, Y1, ..., Y, on [n] such that Yy C --- C Y, with |Y,,_1| < z, |Y,| = 2z and

|]:Yi| < (7« —t+ 1)|3€+1|—\5’i\|fn

+1|
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for each 2 =0,...,w — 1. Therefore

— Y,
Bl < (=4 DR | < (1 — ¢ 1)l (n v Dkr—Yw.
[ P2

Together with k& > g(n,r,t), we obtain

‘Yw‘_l o s ‘le_z
| Fy, | < H (r—t—+ 1)'(7“ i) < ( 2 ) <l
(r—t+1)t("22)k— Py (n—1i)k r—t+3

Notice that F = UYE(Z) Fy. Then

< _ 1z—t Z n—=z r—z
Rei- () ()

For each y € {t +2,...,r}, write

Y(y) = (r—t+1)"" (?) (7; B yy) kY.

Ify<r—1,thenbyy>t+2, k> g(n,rt)and (2), we have
vy+1)  y+1l  (r—t+ D —y)

vly) oyt (n—y)k
t+3 r—i—1 (r—t+1)(n—t—1)

< .
3 n—t—1 (")r—t+3)(r—t—1)
Then from z > ¢ + 2, we get |F| < ¢(t + 2), as desired. O

~

Observe that

s (00131 5 1) bttt

(=) +3(r—t)+4 [t +2 N 1 [(r—t r—t—1

a r—t+1 2 r—t\ 2 n—t—1
where  is a real number such that (r —t+3)(r—t+1)5 =r —t — 1. Together with
(1), (2),r>t+2, k> g(n,rt) and Claim 1, we have

P it [l eV 8 (r—t) - (t+2)(r_t+1>2

r—t—1 2 2
t+2 (r—t)32+3(r—t)?+4(r—t) )
> — —t+1
(2 )( r—t+1 (r=t+1)
_T—t—l t+ 2
Cor—t4+1\ 2
> 0.

This finishes the proof of Theorem 1.2. O
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4 Proof of Theorem 1.4

Let n,r,k and ¢t be positive integers with n > t4+2 > 4, n > r > t+ 1 and
k > max{2, g(n,r,t)}. Suppose that F is a maximum-sized non-trivial ¢-intersecting
subfamily of £,, ;. If r = t+1, then by Theorem 1.2, we have F = H;(n,r, k, t+2,1).
In the following, we assume that r >t + 2. Write p = min{r + 1, n}.

Claim 2. F is isomorphic to Hi(n,r, k,p,t) or Hi(n,r k,t+ 2,1).

Proof of Claim 2. Suppose for contradiction that neither H;(n,r, k, p, t) nor H;(n,r,
k,t+2,t) is isomorphic to F. Let T be the set of all ¢-covers of F with size 7,(F) and
¢ =|Uper T|. By Theorem 1.2 and Lemmas 2.2 (i), 2.3, 2.4, we have 7(F) = ¢ + 1,
7(T) =t and £ = r # p. Therefore n >r, p=r+1and |T| > 2.

If r =t +2, then by (1), (2), k > g(n,r,t) and Lemma 2.7 (i), we get

f(n,r k,p,t)—|F| S (n—t—l)k_(r—t+1)_3(r_1> >5<t+2)—3(1€+2) > 0.

e i1\ 2 2

If r > ¢+ 3, then by (1), (2), (9), k > g(n,r,t) and Lemma 2.7 (ii), we have

_ —t—1 — 1
f(nan":alfazpat) |f|>(n t )k_(’l“ t+ )—(T—t—}-l)—t
(o) k2 r—t—1 2
2 _ _
23(7“ t)? + 11(r t)+8_<7“ t+1)—(r—t+1)
6 2
> 0.

Together with (8), we get |F| < f(n,r, k,p,t) < |Hi(n,r, k,p,t)], a contradiction to
the assumption that F is maximum-sized. a

If n =t+ 2, then it follows from Claim 2 that F = Hi(n,r, k,t + 2,t). In the
following we may assume that n >t 4+ 3. Write

|,H1(n7 Tkt + 2, t)‘ - |,H1(na r, k,p, t>|
(n*t*2) for—t—2 )

r—t—2

win,r k,t) =

By Claim 2, it suffices to show that u(n,r, k,t) < 0if p > 2t +2, and pu(n,r, k,t) >0
if p < 2t 4 2. We divide the remaining proof into three cases.

Case 1. p > 2t + 2.

Since k > g(n, r,1) and [Hi(n,r, k,p,t)| > f(n,r, k,p,1), by (1), (2) and (10), we
have

3(r—t+1)

uln,r k,t) < — 5

(n—t—l)k+(p—t —(t+1) <0,

—(t+1) < —
r—t—1 2)(+)



T. YAO ET AL. / AUSTRALAS. J. COMBIN. 89 (1) (2024), 32-48 45

as desired.
Case 2. p < 2t + 2.
By the construction of Hi(n,r, k, p,t), it is routine to verify that

n—=t—
r—t—1

Ha(n, 7 b, p, )] < (p—t)( )k (1),

Therefore, if > t 4 3, then by (2), (10), t > 2 and k > g(n,r,t), we have

(n—t—1)k

k,t) >
/‘L(n7T’ ’)/ r—t—]_

1) —t> (t—g2>(r—t+3)—(2t—|—1)>0.

Ifr=t+4+2 thenp=t+3byn=>t+3, and
|Hi(n,t +2,k,t+3,t)|=3(n—t—1)k+t—3.
Together with (10), n >t + 3 and ¢,k > 2, we obtain
pn,t+2,kt) =t —-1)((n—t—1)k—-2) >0,
as required.

Case 3. p =2t + 2.

In this case, we have r > p — 1 > t + 2. By the construction of H;(n,r, k,p,t),

we have
p—t

[Ha(n, 7,k p, )] < INei(M, My)| + t(k — 1),

=1

Together with (7) and [Ny (M,, M) < (%52 (")) k™t~ for each i € {3,...,p—t},
we get

Ha(n,r ko, 8)] — f(nr ko, ) Z( )wm M|+ 1k — 1)

2

p—t .. .
1— 1\ [t+2\ (n—t—1 -
< E " 4 t(k—1).
: ( 2 )( 1 )(r—t—z’) +#(k—1)
3
For each i € {3,...,p — t}, write

=)0

Ifi<p—t—1,thenby (2),t>2i>3andk > g(n,r,t), we have

Ai+1) it +2—1) r-t—i _ 3(t—1) <1

i) (i—2)(i+1) (n—t—ik S At+1)(t+2) 4
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Then

|H1(n7r7k7pat)| f(n T, k p, 24 +t

J

( (-t )kr—t—w_l).

Together with (2), ¢ > 2, k > g(n,r,t) and

t+1 —t—
|Hi(n,r k,t+2,t)] — f(n,r k,p,t) = ( + )(n )k’" =2

S,

2 r—t—2
we get
t+1 Adr—t—2) [t+2
k,t) > -
uln,m K 2) ( 2 ) 3(n—t—2)k( 3 )
o (1 8 (t+2)(t+ 1)t
“\2) 3¢t+1D)(Et+2)(r—t+3) 6
t—1 4
> (- |t
2 9
>0
This finishes the proof of Theorem 1.4. O

Remark. In Theorem 1.4, we assume ¢ > 2. We can also get the corresponding
result for ¢ = 1 using the same method. It should be noted that, when ¢t = 1,
comparing the sizes of H;(n,r, k, min{r+1,n},1) and Hy(n,r, k,3, 1) is a little more
complicated because these two families may have the same size.
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