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Summary

Single- and Multi-Microphone Speech Dereverberation

using Spectral Enhancement

In speech communication systems, such as voice-controlled systems, hands-free mobile
telephones, and hearing aids, the received microphone signals are degraded by room
reverberation, background noise, and other interferences. This signal degradation may
lead to total unintelligibility of the speech and decreases the performance of automatic
speech recognition systems.

In the context of this work reverberation is the process of multi-path propagation of an
acoustic sound from its source to one or more microphones. The received microphone
signal generally consists of a direct sound, reflections that arrive shortly after the
direct sound (commonly called early reverberation), and reflections that arrive after
the early reverberation (commonly called late reverberation). Reverberant speech
can be described as sounding distant with noticeable echo and colouration. These
detrimental perceptual effects are primarily caused by late reverberation, and generally
increase with increasing distance between the source and microphone. Conversely,
early reverberations tend to improve the intelligibility of speech. In combination with
the direct sound it is sometimes referred to as the early speech component.

Reduction of the detrimental effects of reflections is evidently of considerable practi-
cal importance, and is the focus of this dissertation. More specifically the disserta-
tion deals with dereverberation techniques, i.e., signal processing techniques to reduce
the detrimental effects of reflections. In the dissertation, novel single- and multi-
microphone speech dereverberation algorithms are developed that aim at the suppres-
sion of late reverberation, i.e., at estimation of the early speech component. This is
done via so-called spectral enhancement techniques that require a specific measure of
the late reverberant signal. This measure, called spectral variance, can be estimated
directly from the received (possibly noisy) reverberant signal(s) using a statistical re-
verberation model and a limited amount of a priori knowledge about the acoustic
channel(s) between the source and the microphone(s).

In our work an existing single-channel statistical reverberation model serves as a start-
ing point. The model is characterized by one parameter that depends on the acoustic
characteristics of the environment. We show that the spectral variance estimator that
is based on this model, can only be used when the source-microphone distance is larger
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than the so-called critical distance. This is, crudely speaking, the distance where the
direct sound power is equal to the total reflective power. A generalization of the statis-
tical reverberation model in which the direct sound is incorporated is developed. This
model requires one additional parameter that is related to the ratio between the direct
sound energy and the sound energy of all reflections. The generalized model is used to
derive a novel spectral variance estimator. When the novel estimator is used for dere-
verberation rather than the existing estimator, and the source-microphone distance
is smaller than the critical distance, the dereverberation performance is significantly
increased.

Single-microphone systems only exploit the temporal and spectral diversity of the re-
ceived signal. Reverberation, of course, also induces spatial diversity. To additionally
exploit this diversity, multiple microphones must be used, and their outputs must be
combined by a suitable spatial processor such as the so-called delay and sum beam-
former. It is not a priori evident whether spectral enhancement is best done before
or after the spatial processor. For this reason we investigate both possibilities, as
well as a merge of the spatial processor and the spectral enhancement technique. An
advantage of the latter option is that the spectral variance estimator can be further
improved. Our experiments show that the use of multiple microphones affords a sig-
nificant improvement of the perceptual speech quality.

The applicability of the theory developed in this dissertation is demonstrated using a
hands-free communication system. Since hands-free systems are often used in a noisy
and reverberant environment, the received microphone signal does not only contain the
desired signal but also interferences such as room reverberation that is caused by the
desired source, background noise, and a far-end echo signal that results from a sound
that is produced by the loudspeaker. Usually an acoustic echo canceller is used to
cancel the far-end echo. Additionally a post-processor is used to suppress background
noise and residual echo, i.e., echo which could not be cancelled by the echo canceller.
In this work a novel structure and post-processor for an acoustic echo canceller are
developed. The post-processor suppresses late reverberation caused by the desired
source, residual echo, and background noise. The late reverberation and late residual
echo are estimated using the generalized statistical reverberation model. Experimental
results convincingly demonstrate the benefits of the proposed system for suppressing
late reverberation, residual echo and background noise. The proposed structure and
post-processor have a low computational complexity, a highly modular structure, can
be seamlessly integrated into existing hands-free communication systems, and affords
a significant increase of the listening comfort and speech intelligibility.



Samenvatting

Single- and Multi-Microphone Speech Dereverberation

using Spectral Enhancement

In spraakcommunicatiesystemen, zoals spraakherkenningssystemen, hands-free tele-
foons en gehoorapparaten, worden de microfoon signalen gedegradeerd door nagalm,
achtergrond ruis en andere stoorbronnen. Deze degradatie van het signaal kan ertoe
leiden dat de spraak geheel onverstaanbaar wordt en dat automatische spraakherken-
ningssystemen niet meer goed functioneren.

In de context van dit werk is nagalm het proces van het meervoudig voortplanten van
een akoestisch geluid van de bron naar één of meerdere microfoons. Het microfoon sig-
naal bestaat over het algemeen uit drie onderdelen: een rechtstreeks geluid; reflecties
die kort na het directe geluid ontvangen worden (ook wel vroege nagalm genoemd); en
reflecties die na de vroege nagalm ontvangen worden (ook wel late nagalm genoemd).
Galmende spraak kan omschreven worden als spraak die op een afstand gehoord wordt
en duidelijke echo en spectrale kleuring vertoont. Deze effecten, die de perceptie ver-
slechteren, worden voornamelijk veroorzaakt door de late nagalm en worden gewoonlijk
groter naarmate de afstand tussen bron en microfoon wordt vergroot. Anderzijds zal
vroege nagalm de verstaanbaarheid van spraak verbeteren. In combinatie met het
directe geluid worden ze ook wel het vroege spraakcomponent genoemd.

Het terugdringen van de nadelige effecten van reflecties is erg belangrijk voor prak-
tische toepassingen en is het hoofdthema van dit proefschrift. Meer specifiek zal dit
proefschrift ontgalmingstechnieken behandelen, d.w.z. signaalbewerkingstechnieken
die de nadelige effecten van reflecties terugdringen. In dit proefschrift zijn nieuwe
spraakontgalmingsalgoritmes ontwikkeld, uitgaande van één of meerdere microfoons.
Deze algoritmes zijn gericht op onderdrukking van de late nagalm of, in andere woor-
den, op het schatten van het vroege spraakcomponent. Dit gebeurt via zogenoemde
spectrale verbeteringstechnieken die een specifieke maat van de late nagalm vereisen.
Door het toepassen van een statistisch model voor nagalm en een beperkte voorkennis
over het akoestische kanaal (kanalen) tussen de bron en microfoon(s) kan deze maat,
spectrale variantie genoemd, direct worden afgeleid van het ontvangen galmende (mo-
gelijk ruis bevattende) signaal (of signalen).

In ons werk dient een bestaand enkel-kanaals statistisch model voor nagalm als start-
punt. Het model wordt gekarakteriseerd door een parameter die afhankelijk is van de
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akoestische eigenschappen van de omgeving. We laten zien dat de spectrale variantie
schatter, die gebaseerd is op dit model, alleen gebruikt kan worden indien de bron-
microfoon afstand groter is dan de zogenaamde kritische afstand. Dit is grofweg de
afstand waarbij het vermogen van het directe geluid gelijk is aan het vermogen van
alle reflecties tezamen. Eveneens is een generalisatie ontwikkeld van het statistische
model voor nagalm waarin het directe geluid is opgenomen. Dit model vereist een
extra parameter die gerelateerd is aan de verhouding tussen de energie van het directe
geluid en de energie van alle reflecties. Het gegeneraliseerde model wordt gebruikt om
een nieuwe schatter voor de spectrale variantie af te leiden. Als de bron-microfoon
afstand kleiner is dan de kritische afstand, dan wordt bij toepassing van de nieuwe
schatter de ontgalming duidelijk verbeterd ten opzichten van de bestaande schatter.

Systemen die gebruik maken van slechts één microfoon benutten alleen temporele en
spectrale diversiteit. Nagalm vertoont echter ook spatiële diversiteit. Om ook deze
diversiteit te benutten, moeten meerdere microfoons worden gebruikt. De output
van deze verschillende microfoons moet dan gecombineerd worden door een passende
spatiële processor, zoals de zogehete delay-and-sum beamformer. Het is niet zonder
meer duidelijk of spectrale verbetering van voor of na de spatiële processor zou moeten
worden toegepast. Daarom onderzoeken we beide mogelijkheden, alsook een combi-
natie van de spatiële processor en de spectrale verbeteringstechniek. Een voordeel
van deze laatste optie is dat de spectrale variantie schatter nog verder verbeterd kan
worden. Onze experimenten tonen aan dat het gebruik van meerdere microfoons een
significante verbetering van de perceptuele spraakkwaliteit tot gevolg heeft.

De toepasbaarheid van de in dit proefschrift ontwikkelde theorie wordt gedemonstreerd
aan de hand van een hands-free communicatiesysteem. Daar hands-free systemen vaak
gebruikt worden in een lawaaiige en galmende omgeving, bevat het ontvangen micro-
foon signaal niet alleen het gewenste signaal, maar ook verstoringen. We hebben het
dan over verstoringen zoals nagalm die veroorzaakt wordt door de gewenste bron,
achtergrond ruis en een far-end echo signaal dat het gevolg is van het geluid dat
wordt geproduceerd door de luidspreker. Normaal gesproken wordt een akoestische
echo onderdrukker gebruikt om de far-end echo te onderdrukken. Daar wordt dan een
post-processor aan toegevoegd om achtergrond ruis en residu echo, ofwel echo die niet
voldoende gereduceerd kon worden door de akoestische echo onderdrukker, te onder-
drukken. In dit werk hebben we een nieuwe structuur en post-processor voor een akoes-
tische echo onderdrukker ontwikkeld. De post-processor onderdrukt zowel late nagalm
veroorzaakt door de gewenste bron, residu echo en achtergrond ruis. De late nagalm
en de residu echo worden geschat door gebruik te maken van het gegeneraliseerde
statistische model voor nagalm. Experimentele resultaten demonstreren duidelijk de
voordelen van het voorgestelde systeem ter onderdrukking van late nagalm, residu
echo en achtergond ruis. De ontwikkelde oplossing heeft een lage rekencomplexiteit,
een sterk modulaire structuur, kan naadloos gëıntegreerd worden in bestaande hands-
free communicatiesystemen en staat een significante verbetering van het luistercomfort
en de spraak verstaanbaarheid toe.
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Chapter 1

Introduction

1.1 Scope and Motivation

The work presented in this dissertation is motivated by the rapidly growing market of
speech communications systems. Typical speech communication systems are hands-
free (mobile) telephones, voice-controlled systems, and hearing aids. The main user
benefit of hands-free telephones is that they enable the user to walk around freely
without wearing a headset or a microphone, and hence provide a natural way of com-
munication. Voice-controlled systems are, for example, used in an operating room
where they allow surgeons and nurses to freely move around the patient. Obviously,
the main benefit of hearing aid applications is to increase the hearing capacity, en-
abling a hearing-aid user to interact better with other people. In all these examples,
the desired acoustical source can be positioned at a considerable distance from the mi-
crophone (see Fig. 1.1). As illustrated in Fig. 1.1, the desired source produces sound
waves. Some of these wave travel directly to the microphone. The resulting direct
signal can be degraded by reverberation, background noise, and other interferences.

Desired Source

Microphone

Interferences

Microphone signal

Wall

Figure 1.1 Illustration of a desired source, a microphone, and interfering sources.
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Channel(s)

AcousticDesired signal

Unknown Environment

Processor

Acoustic

Signal

Estimate of
desired signal

Interfering
signal(s)

microphone
Received

signal(s)
+

Figure 1.2 Application of acoustic signal processing concerned with the estimation of
a desired signal.

To counteract the degradations caused by reverberation, background noise and other
interferences, high-performance acoustic signal processing techniques are required. In
the context of this work reverberation is the process of multi-path propagation of an
acoustic sound from its source to one or more microphones. Sound is a disturbance
of mechanical energy that propagates through matter, e.g., a gas, as a wave. Under
the influence of a sound wave, variations of gas density and pressure occur, both of
which are functions of time and position. The difference between the instantaneous
pressure and and the static pressure is called the sound pressure. In this dissertation a
microphone is used to transform the pressure (or pressure gradient) present in the air
immediately in front of the microphone into an electrical signal. For simplicity we will
assume that the microphone is ideal, i.e., that its electrical output is identical (except
for a non-dimensionless scaling factor) to the local sound pressure. For this reason
we will not distinguish between them in this dissertation. A block diagram which
describes an application of acoustic signal processing is illustrated in Fig. 1.2. Here
the sound that is produced by the desired source, designated as the desired signal or
the anechoic signal , is ‘transmitted’ over the acoustic channel(s), and in combination
with the interfering signal(s) it results in the received microphone signal(s). The thick
lines in Fig. 1.2 denote one or more signals, whereas the thin lines denote one signal.
The interfering signals can either describe interfering sounds or electrical interferences,
such as sensor noise. The received microphone signal(s) are then processed using the
acoustic signal processor to estimate the desired signal.

A major challenge in acoustic signal processing originates from the degradation of the
desired signal by the acoustic channel within an enclosed space, e.g., an office room or
living room. Because the microphone cannot always be located near the desired source,
the received microphone signals are typically degraded by (i) reverberation introduced
by the multi-path propagation of the desired sound to the microphones and (ii) noise
introduced by interfering sources. While state-of-the-art acoustic signal processing
algorithms are available to reduce noise, the development of practical algorithms that
can reduce the degradations caused by reverberation has for a long time been one
of the ‘holy grails’. The main difference between noise and reverberation is that
the degrading component in case of reverberation is dependent on the desired signal,
whereas in case of noise it can be assumed to be independent of the desired signal. It
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should be noted that many, if not all, existing acoustic signal processing techniques
fail completely or experience a dramatically reduced performance when reverberation
is present, e.g., existing source localization and source separation techniques.

Reverberant speech can be described as sounding distant with noticeable colouration
and echo. These detrimental perceptual effects generally increase with increasing
distance between the source and the microphone. Furthermore, with the spread in
the time of arrival of reflections at the microphone, reverberation causes blurring
of speech phonemes. These detrimental effects seriously degrade the intelligibility,
the performance of voice-controlled systems, and the performance of speech coding
algorithms that are used in telephone systems. Reduction of these detrimental effects
is evidently of considerable practical importance, and is the focus of this dissertation.
The algorithms that reduce these detrimental effects are called speech dereverberation
algorithms.

To reduce the effects of reverberation by means of acoustic signal processing the phys-
ical properties of reverberation need to be understood. Therefore, reverberation in
enclosed spaces is discussed in Section 1.2. From the above discussion it is evident
that reverberation degrades speech intelligibility and the performance of automatic
speech recognition systems. In order to develop effective algorithms which counteract
the degrading affect of reverberation it is important to know how reverberation effects
the speech intelligibility and automatic speech recognition. This will be discussed in
Sections 1.3, and 1.4, respectively. The problem statement will then be formulated in
Section 1.5. In Section 1.6 the outline of this dissertation is given.

1.2 Reverberation in Enclosed Spaces

Reverberation, a central theme of this dissertation, is intuitively described by the con-
cept of reflections. The desired source produces wavefronts, which propagate outward
from the source. The wavefronts reflect off the walls of the room and superimpose at
the microphone. In Fig. 1.3 this is illustrated with an example of a direct path and
a single reflection. Due to differences in the lengths of the propagation paths to the
microphone and in the amount of sound energy absorbed by the walls, each wavefront
arrives at the microphone with a different amplitude and phase. The term reverbera-
tion designates the presence of delayed and attenuated copies of the source signal in
the received signal.

Reverberation is the process of multi-path propagation of an acoustic signal from its
source to the microphone. The received signal generally consists of a direct sound,
reflections that arrive shortly after the direct sound (commonly called early reverber-
ation), and reflections that arrive after the early reverberation (commonly called late
reverberation). The combination of the direct sound and early reverberation is some-
times referred to as the early sound component . The different sound components will
now be discussed in more detail.
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Source

Microphone

Direct Path

Reflection

Wall

Desired

Figure 1.3 Illustration of the direct path and a single reflection from the desired
source to the microphone.

Direct Sound The first sound that is received through free-field, i.e., without reflec-
tion, is the direct sound. In case the source is not in line of sight of the observer
there is no direct sound. The delay between the initial excitation of the source
and its observation is dependent on the distance and the velocity of the sound.

Early Reverberation A little time later the sounds which were reflected off one or
more surfaces (walls, floor, furniture, etc.) will be received. These reflected
sounds are separated in both time and direction from the direct sound. The
reflected sounds form a sound component which is usually called early rever-
beration. Early reverberation will vary as the source or the microphone moves
within the space, and gives us information about the size of the space and the
position of the source in the space. Early reverberation is not perceived as a
separate sound to the direct sound so long as the delay of the reflections does
not exceed a limit of approximately 80-100 ms with respect to the arrival time
of the direct sound. Early reverberation is actually perceived to reinforce the
direct sound and is therefore considered useful with regard to speech intelligibil-
ity. This is often referred to as the precedence effect . This reinforcement is what
makes it easier to hold conversations in closed rooms compared with outdoors.
Early reverberation is mainly important in so-called small-room acoustics since
the walls, ceiling and floor are really close. Early reverberation also causes a
spectral distortion called colouration.

Late Reverberation Late reverberation results from reflections which arrive with
larger delays after the arrival of the direct sound. They are perceived either as
separate echoes, or as reverberation, and impair speech intelligibility.

The acoustic channel between a source and a microphone can be described by an
Acoustic Impulse Response (AIR). This is the signal that is measured at the micro-
phone in response to a source that produces a ‘sound impulse’. The AIR can be
divided into three segments, the direct path, early reflections, and late reflections, as
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Figure 1.4 A schematic representation of an acoustic impulse response.

illustrated in Fig. 1.4. The convolution of these segments with the desired signal results
in the direct sound, early reverberation, and late reverberation, respectively. From a
signal processing perspective, early reflections appear as separate delayed impulses in
the AIR, whilst late reflections appear as a continuum. Furthermore, it is important
to note that the energy of the reflections decays at an exponential rate. This expo-
nential decay is a well-known property of the AIR, which has motivated the notion
of reverberation time. The reverberation time quantifies the severity of reverberation
within a room, and is denoted by RT60. It is defined as the time that is necessary
for a 60 dB decay of the sound energy after switching off a sound source. A detailed
discussion of the reverberation time can be found in Chapter 2, on page 44.

The time- and space-variant AIR h(r, rs, t, t
′) is defined as the response of the acoustic

channel between the source at position rs and the microphone at position r at time
instant t due to a unit impulse applied at time t′. The observed signal at position r
at time t is then given by

z(r, t) =
∫ ∞

−∞

∫
Vs

h(r, rs, t, t
′)s(rs, t

′) drs dt′, (1.1)

where s(rs, t
′) denotes the source signal at position rs, time t′, and Vs denotes the

source volume.

The Fourier transform of the AIR at time t is called the Acoustic Transfer Function
(ATF) and is denoted by H(r, rs, t;ω), where ω denotes the angular frequency. The
ATF defines the frequency response of the system relating the sound source to the
sound pressure at the microphone, and is probably the most frequently used function
to describe an acoustic channel. For reverberant environments it looks like a random
function, which cannot be predicted in advance without detailed knowledge of the
acoustic and geometric parameters of the room. The degree of randomness can be
characterized by the spectral deviation, denoted by σ, as defined in Chapter 2, Sec-
tion 2.7.3. Even though a reverberant sound field possesses an inherent randomness,
it also possesses an underlying structure. Insight into the structure of the ATF can be
obtained using the acoustic wave equation, which governs the propagation of acoustic
waves through a material medium. There are various room acoustic models for the
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ATF which will be discussed in this Chapter 2. Most of these models, e.g., all-zero,
all-pole and zero-pole, depend on hundreds and sometimes thousands of parameters.
Since the acoustic channels in real rooms are too complex to model explicitly, Statis-
tical Room Acoustics (SRA) is often used. SRA provides a statistical description of
the ATF and AIR in terms of a few key quantities, e.g., source-microphone distance,
and reverberation time.

In most cases it is not feasible to measure the ATF during operation of the acoustic
signal processing algorithm since the desired signal is unknown at the receiver side.
In some cases the desired signal is known at the receiver side, such that the ATF
can be calculated. Another problem is that the ATF changes rapidly as one moves
away from the original point of measure [1, 2, 3], and that it is sensitive to source
position, temperature, the positioning of room furnishings, and movements in the
room. Therefore, even if it is feasible to measure the ATF in real-time, frequent
re-measurement may be needed.

If the distance between the source and the microphone changes, the energy which
is related to the direct path changes, while the combined energy of the early and
late reflections is approximately constant. The distance at which the direct path
energy is equal to the combined energy of the early and late reflections is called the
critical distance. It should be understood that if the distance between a source and
a microphone is larger than the critical distance, then the reflective energy is larger
than the direct path energy.

1.3 Effects of Reverberation on Speech Perception

Reverberant speech can be described as sounding distant with noticeable echo and
colouration. The effects of reverberation on speech are clearly audible, and visible in
the spectrogram and waveform of a speech signal. In Fig. 1.5(a) the spectrogram and
waveform (including transcript) of an anechoic speech signal are depicted. The speech
signal was taken from the TIMIT speech database [4]. The speech formants, which
are defined as the resonance frequencies associated with the vocal tract [5], can clearly
been seen in the spectrogram. It can also be seen that the phonemes are well separated
in time. The anechoic signal of Fig. 1.5(a) was transmitted in an office room and its
response was measured at a distance of 0.5 m from the source. The spectrogram and
waveform of the received signal are shown in Fig. 1.5(b). The distortion of the speech
signal that is caused by the acoustic channel is clearly visible. Blurring of the speech
formants is visible in the spectrogram and the smearing of the phonemes in time is
visible in both the spectrogram and the waveform. Due to this smearing the empty
spaces between words and syllabi are filled by reverberation, and subsequent phonemes
overlap. These distortions result in an audible difference between the anechoic and
the reverberant speech, and degraded speech intelligibility and fidelity.

For the development of effective dereverberation algorithms it is of great importance
to have a good understanding of the effects of reverberation on speech perception.
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(a) Spectrogram (top) and waveform (bottom) of an anechoic speech sig-
nal.
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(b) Spectrogram (top) and waveform (bottom) of the measured reverber-
ant speech signal.

Figure 1.5 Spectrograms and waveforms of (a) an anechoic speech signal
(FAKS0:SA1) taken from the TIMIT speech database [4], and (b) the reverberant ver-
sion of this measured at a distance of 0.5 m in an office room with a reverberation time
of 0.5 s.

Therefore, we will first investigate which physical properties of an enclosed space
determine the speech intelligibly and quality (Section 1.3.1). Reverberation is well
understood in terms of physical acoustics, but it is not yet well understood how the
afore mentioned distortions of the speech affect the intelligibility [6]. In Section 1.3.2
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we will describe two factors that contribute to the reduction of speech intelligibility,
viz., self-masking and overlap-masking. For normal listeners in small reverberant
rooms the distortion caused by reverberation seems to go largely unnoticed. The
underlying reason is discussed in Section 1.3.3 and is used later in the development of
dereverberation algorithms.

1.3.1 Speech Intelligibility and Quality

The physical properties of the enclosed space as well as the location of the source
and the listener within the space have a large influence on the reverberation [7]. Re-
verberation and background noise cause noticeable changes in the speech quality and
determine speech intelligibility in an enclosed space. It would be convenient to as-
sume that reverberation solely reduces intelligibility, but this assumption is incorrect
[8]. Acoustic engineers often consider reflections desirable since they increase the am-
plitude of the signal reaching a listener. This increase in amplitude can increase speech
intelligibility if it raises the speech level above the ambient noise levels [9]. The work
of Lochner and Burgers [10] demonstrates this effect for single reflections, and more
recently, Watkins and Holt [11] demonstrate this effect for complex early reflections.
Early reflections do not enhance intelligibility when the sound pressure level in the
anechoic and reverberant recordings is equal.

The integration property, commonly called inertia, of the human auditory system lead
to the integration of the early reverberation and the direct sound, and increases the
apparent strength of the direct sound. This property was reported in 1935 by Aigner
and Strutt [12]. They were the first to suggest an acoustic-energy-ratio based measure
to quantify the effects of background noise and room acoustics on speech intelligibility.
They called their measure the impression Q, which is given by

Q =
Ed + Ee

El + En
, (1.2)

where Ed is the direct sound energy, Ee is the early part of the reflected sound energy,
which in this case is defined as coming to the ear not later than 60 milliseconds
after the direct sound, El is the late part of reflected sound energy coming later than
60 milliseconds, and En is the noise energy. Aigner and Strutt went further by putting
a lower threshold of Q = 1 for a satisfactory sound impression. Eq. 1.2 essentially
forms the basis of most speech intelligibility metrics that were later developed. It is
important to note that the sound impression can be improved by reducing either El

or En.

Consonants play a much more significant role in speech intelligibility than vowels. If
the consonants are heard clearly, the speech can be understood more easily. In 1971
Peutz [13] proposed a measure called articulation loss for consonants (Alcons) which
quantifies the reduction in perception of consonants due to reverberation. The calcu-
lation of the measure depends on the distance between the source and the microphone.
The articulation loss can be decreased, i.e., the speech intelligibility can be increased,
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by either decreasing the source-microphone distance or the reverberation time, and by
increasing the room volume.

In 1980 Berkley investigated the perception of speech based on application of a room
simulation program providing a collection of well-controlled realistic room responses
with different room acoustic parameters [14]. Using the results obtained from listening
tests Berkley concluded that the perception of reverberation is mainly based on a
two-dimensional perceptual space. The two components are colouration and echo.
Berkley showed that the spectral deviation σ, was well correlated with the subjective
perception of this colouration component. The echo component is directly related to
the reverberation time RT60. Note that the amount of late reverberation is increased
when RT60 is increased.

In 1982 Allen [15] reported a formula to predict the subjective preference of reverberant
speech. Their main result is given by the equation

P = Pmax − σRT60, (1.3)

where P is the subjective preference in some arbitrary units, and Pmax is the maximum
possible preference. According to this formula, decreasing either the spectral deviation
σ or the reverberation time RT60 results in an increased reverberant speech quality.

Jetzt [16] showed that the spectral deviation σ is related to the Direct to Reverbera-
tion Ratio (DRR), which is defined as the direct path energy (Ed) divided by the total
reflective energy (Ee+El). It should be noted that within the same room σ is approxi-
mately constant, and reaches its maximum asymptotic value if the source-microphone
distance is larger than the critical distance, which is defined as the distance at which
the direct path energy is equal to the total reflective energy (see Section 2.7.1). When
the source-microphone distance is smaller than the critical distance the spectral devia-
tion σ can be used to determine the DRR. In the same room shorter source-microphone
distances result in higher DRR, and less spectral deviation and thus colouration in case
the source-microphone distance is smaller than the critical distance.

From the above discussion it can be concluded that late reverberation and noise are the
main causes of the degradation in speech intelligibility. Furthermore, the perceptual
speech quality, which is related to the subjective preference and sound impression, is
related to two physical properties of reverberation, i.e., colouration and reverberation
time. It should be noted that these properties are not independent since the amount
colouration depends on the reverberation time, room volume, and source-microphone
distance. The reverberation time RT60 is not only important from a perceptual point
of view but it also characterizes the ‘shape’ of the AIR, as discussed in Section 1.2.
Therefore, the reverberation time RT60 is an important measure that plays a crucial
role in our work. These insights will be vital to the work presented in this dissertation.
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1.3.2 Overlap-Masking and Self-Masking

Reverberation is well understood in terms of physical acoustics, but it is not yet well
understood how reverberation affects the speech intelligibility. In order to develop
effective speech dereverberation techniques it is vital to understand how reverberation
affects the intelligibility.

The reduction in speech intelligibly caused by late reverberation is especially noticeable
for listeners with non-native speakers [17], and hearing impairments [18]. The reason
for this reduction is not entirely known [6]. Bolt and MacDonald [19] and Nábělek
et al. [20] propose two contributing factors to the degradation of reverberant speech:
self-masking and overlap-masking .

Self-masking refers to the time and frequency alterations of an individual phoneme [19,
20]. Reverberation slows sound onsets and decays of transient sounds. For example,
the sound of an isolated /t/, which is basically a transient noise burst, becomes less
abrupt in the presence of reverberation [6]. Furthermore, due to the temporal smearing
caused by reverberation the formant transitions between vowels are disrupted. These
disruptions reduce the phonetic information that is required for identification.

Overlap-masking occurs when a preceding phoneme and its reflections mask a subse-
quent phoneme [19, 20]. An example of overlap-masking is two phonemes with similar
or different frequency content occurring sequentially with a brief delay between them.
Because of reverberation, the initial phoneme will endure and may overlap the second
phoneme and its associated reverberation. This overlap-masking impoverishes the sec-
ond phoneme. This masking effect can, for example, be seen in Fig. 1.5, where the /a/
and the /sh/ sounds of the word ‘wash’ at t = 2 s are well separated in the anechoic
signal but overlap in the reverberant signal.

1.3.3 Binaural Intelligibility Advantage

The distortion caused by reverberation in small rooms seems to go largely unnoticed
by normal listeners. Furthermore, there is a difference in speech intelligibility between
monaural (meaning ‘one ear’) and binaural (meaning ‘two ears’) listening. Most listen-
ers benefit from binaural listening when reverberation exists. This indicates that the
listeners binaural system processes the two signals to reduce reverberation. Binaural
listening enables the auditory system to ‘work out’ the distance and the direction of
sound sources, and to detect certain sounds at much lower intensity levels than if only
one ear is used. Reverberation induces spatial diversity, i.e., the direct sound and the
reflections arrive from different directions. Spatial diversity is apparently exploited
when two ears are used. This diversity can also be exploited by acoustic signal pro-
cessing algorithms via a spatial processor which combines multiple microphone signals.
In this work we also pursue this option in Chapter 5.

Reverberation may be assumed to act as uncorrelated noise that masks subsequent
reverberant phonemes. Libbey and Rogers [6] investigated the possibility that the bin-
aural system suppresses uncorrelated reverberation received at each ear. They found
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that the binaural intelligibility advantage using reverberation-like noise is not as large
as in real reverberation. This demonstrates that only a portion of the total binaural
intelligibility advantage is caused by the fact that reverberation acts as uncorrelated
noise at each ear. The latter fact is used in the development of our acoustic signal
processing algorithms. Since reverberation acts as uncorrelated noise we can use the
coherency between two microphone signals to distinguish between the direct sound
and the reverberation.

1.4 Effects of Reverberation on Automatic Speech
Recognition

The performance of Automatic Speech Recognition (ASR) systems relies on the quality
of the speech input. While reasonable recognition performance is commonly achieved
when the source-microphone distance is small, the performance tends to decrease
rapidly when this distance increases. The main problem is that the Signal to Noise
Ratio (SNR) and DRR decrease when the distance increases.

Automatic speech recognition systems can be divided into two groups: isolated-word
recognition, and continuous speech recognition. Isolated-word recognition systems as-
sume that words are uttered in a discrete manner so that there are silences at the be-
ginning and the end of each word. Continuous speech recognition systems are able to
process continuous speech. The later systems are more complex because word bound-
aries are not known a priori and are often ambiguous. This ambiguity is increased
when reverberation is present, and can have a negative influence on the recognition
performance.

Fig. 1.6 shows a block diagram of a typical speech recognition system. First, the speech
signal is pre-processed, to reduce distortion caused by, for example, lip radiation,
background noise, and reverberation. Secondly, feature vectors are extracted from
the pre-processed speech signal using short-time segments of the speech signal. These
feature vectors are meant to characterize the essential information present in the speech
signal. Based on these feature vectors the most likely text is found by the decoder using
two types of knowledge sources, viz., acoustic knowledge and linguistic knowledge.
The acoustic model contains the acoustic knowledge that is required to be able to
decode the features into words or phonemes, and the language model contains linguistic
knowledge that is required to decode these words or phonemes into text. The acoustic
and linguistic knowledge is acquired in a training phase that is required prior to the
decoding step.

The influence of reverberation on the performance of a state-of-the-art speech recog-
nition system is shown in Fig. 1.7. For this recognition experiment, the speaker-
independent large–vocabulary continuous speech recognition system was used that
has been developed at the ESAT-PSI speech group of the K.U.Leuven1. An overview

1Special thanks to prof. H. Van hamme, dr. J. Duchateau, and dr. K. Eneman.



12 Introduction

Extractor
Feature Text

Language

Model

Speech Signal
Pre−Processor Decoder

Model

Acoustic

Figure 1.6 Flow diagram of an Automatic Speech Recognition system.
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(b) Fixed reverberation time (RT60 = 0.32 s).

Figure 1.7 Speech recognition performance in a reverberant environment.

of the acoustic model that was used can be found in [21] and the decoder is described
in [22]. The reverberant signals were generated by convolving the anechoic speech
signals from the test set, taken from the Wall Street Journal speech corpus, with syn-
thetic acoustic impulse responses. These responses were generated using the room
impulse response generator described in Appendix A. In Fig. 1.7(a) the Word Error
Rate (WER) is shown for various reverberation times and a fixed source-microphone
distance of 3 m. These results demonstrate that the error rate increases rapidly for
reverberation times larger than 0.2 s. In Fig. 1.7(b) the WER is shown for various
distances and a fixed reverberation time of 0.32 s. Note that the WER increases with
increasing source-microphone distance.

From this simple example it is clear that the effects of reverberation on the ASR system
are rather severe. Compensation for the difference between the signal that was used
for training of the acoustic model and the received microphone signal can be achieved
either by pre-processing of the signal or by post-precessing of the feature vectors, or
both. To be able to develop an efficient and robust speech dereverberation algorithm
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that can be used in conjunction with an ASR system it is important to know which
speech degradations affect the speech recognition performance. Therefore, we will now
briefly discuss the pre-processor, feature extractor, and decoder.

1.4.1 Pre-Processor

The received speech signal can be enhanced prior to the feature extraction step using
a pre-processor to increase the recognition performance.

To compensate for the effect of the low-pass nature of voiced speech, a pre-emphasis
filter is commonly used in the first pre-processing step. The low-pass nature of voiced
speech is usually associated with the low-pass nature of the voiced excitation that
is produced by the glottal source. The lip radiation, which is commonly modelled
using a first-order high-pass filter [23], partially compensates for the low-pass nature
of the voiced excitation. The pre-emphases filter compensates for the remaining low-
pass nature of the voiced excitation by emphasizing the high frequency components
and attenuating the low frequency components. The pre-emphasis filter is commonly
implemented using a simple high-pass filter.

Other acoustic signal processing techniques can be used to compensate for the dis-
tortions caused by the acoustic channel and by noise. Noisy environments, such as
cafeteria or car interiors, can severely degrade the recognition rate of speech recog-
nition systems, sometimes rendering these systems useless. Current acoustic signal
processing techniques are not able to properly cope with impulsive and non-stationary
noise, whereas quite successful techniques have been developed for slow-varying or
stationary noise. The so-called spectral enhancement methods are the most popular
techniques for noise reduction, mostly because of their simplicity and effectiveness.
Unlike noise, reverberation is correlated with the anechoic speech signal. Although
many speech dereverberation algorithms are available in the literature, up to now,
only few of these algorithms have been ‘successfully’ used as a pre-processing step for
automatic speech recognition [24, 25]. The acoustic signal processing algorithm that
is developed in this work can also be used as a pre-processor for an ASR system.

1.4.2 Feature Extractor

For automatic speech recognition, the acoustic signal needs to be parameterized to
extract the speech information it contains. The parameters are described in the form
of so-called features. The features are calculated from the received, and possibly pre-
processed, speech signal. Since speech varies over time, it is more appropriate to
analyse the speech signal in short time intervals where the signal is more stationary.
The features are computed from short-time speech segments of 20 to 30 ms with an
overlap of 50 to 75%. Frequently used features are related to cepstral coefficients,
which are obtained by calculating the inverse Fourier transform of the logarithm of
the spectrum of a short-time speech segment. The lower-order cepstral coefficients
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represent the vocal tract impulse response. In an effort to take auditory characteristics
into consideration the Mel-frequency cepstral coefficients (MFCC) were proposed [26].
These coefficients are calculated from a so-called Mel frequency scale rather than the
short-term spectrum of a speech segment. The Mel frequency scale is closely related to
the frequency scale of the human auditory system. The time derivatives of the MFCC
are usually appended to the feature vector to capture the dynamics of speech. A speech
utterance is then represented as a sequence of these feature vectors. It is important
to note that most features are derived from the short-term amplitude spectrum of the
short-time speech segments, and the short-term phase spectrum is disregarded.

Features can be post-processed to improve recognition performance in adverse envi-
ronments using additional techniques:

1. One technique, which is often used for robust speech recognition, is applied
to the cepstral coefficients and is called Cepstral Mean Normalization (CMN)
[26]. CMN is used for removing short-term invariant linear channel distortion in
speech signals. Convolutional distortions caused by early reflections and different
microphones result in an additive offset of the cepstral coefficients. This offset
can be determined by estimating the mean for each cepstral coefficient from a se-
quence of cepstral coefficients. Subtracting the mean from the distorted cepstral
coefficients will provide an estimate of the undistorted cepstral coefficients. It
has been observed that CMN produces robust features for the distortions caused
by early reflections [27]. Although the CMN technique is simple and fast, its ef-
fectiveness is limited to the short-term invariant linear channel distortion caused
by early reflections, while late reflections cannot be properly handled.

2. Cepstral Mean and Variance Normalization (CMVN) [28] is a simple and fre-
quently used technique for improving the robustness in speech recognition. The
mean and variance for each cepstral coefficient are estimated from a finite se-
quence of cepstral coefficients. First, the mean is subtracted from each cepstral
coefficient, as in CMN. Secondly, each cepstral coefficient is scaled independently
in order to have unity variance. Due to the subtraction and scaling the first and
second moments of the feature distributions are forced to be the same for both
the training and test conditions. Therefore, the mismatch between these condi-
tions is reduced.

By post-processing the feature vectors using above techniques the distance between
the feature vectors that are used in the training phase and the feature vectors that are
calculated from the noisy and reverberation speech signal can be reduced. Therefore,
the recognition performance of the ASR system in a noisy and reverberant environ-
ment can be improved to some extent. It should be noted that the above mentioned
techniques assume that the feature vectors are independent of each other. However,
for a reverberant signal the feature vectors are dependent since the arrival time of
late reflections is much larger than the length of the short-time speech segments (in
seconds).
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1.4.3 Decoder

The decoding step is used to find the optimal sequence of phonemes or words given
a sequence of observed features. For this the decoder requires additional knowledge,
which is stored in the form of acoustic and language models. These models must be
known prior to recognition. If the received features do not match those used in the
training phase it becomes extremely difficult to decode them.

Recently, Sehr et al. [29] proposed a decoder that can be used in a reverberant
environment. Unlike conventional decoders, it implicitly accounts for the dependence
of successive feature vectors due to the reverberation. This is done via a combined
acoustic model consisting of a conventional Hidden Markov Model (HMM), modelling
the anechoic speech, and a reverberation model. Since the HMM is independent of
the acoustic environment, it needs to be trained only once using anechoic speech. The
training of the reverberation model is based on a set of room impulse responses for the
corresponding acoustic environment. In a simulation of an isolated-digit recognition
task in a highly reverberant room, the proposed method achieves a 60% reduction
of the WER compared to a conventional HMM trained on reverberant speech, at
the cost of an increased decoding complexity. It should be noted that the effects of
late reverberation have more impact on continuous speech recognition compared to
isolated-word recognition. Although these results are promising, it is unclear how
large the improvement is when continuous speech recognition is performed.

1.5 Objectives

Reduction of the detrimental effects of reverberation is evidently of considerable practi-
cal importance, and is the focus of this dissertation. More specifically the dissertation
deals with dereverberation techniques, i.e., acoustic signal processing techniques to
reduce the detrimental effects of reverberation.

From the discussion in the previous sections it has become clear that:

1. The speech intelligibility and quality, as well as the performance of speech recog-
nition systems, are affected primarily by late reverberation.

2. Due to changes in the source or microphone position, temperature, positioning
of room furnishings, and movements in the room, the acoustic channel cannot
be assumed to be time-invariant.

3. In any practical situation the desired signal is not only degraded by reverbera-
tion but also by other interferences, e.g., electronic sensor noise, thermal noise,
background noise.

In the development of a dereverberation technique that is effective, efficient and ro-
bust, these issues must be taken into account. Furthermore, the spatial diversity which
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is induced by reverberation, i.e., the spatial separation of the direct sound and reflec-
tions, can be exploited when multiple microphones are used. In case the developed
dereverberation technique is used as a pre-processor for an ASR system, the short-term
phase spectrum can often be disregarded.

Since the early days of acoustic signal processing researchers have developed numerous
algorithms to counteract the detrimental effects of reverberation. Only few of these
are useful in practice, and their performance is limited. In Chapter 3 an extensive
literature survey is presented in which we have categorized the reverberation reduction
processes depending on whether or not the AIR needs to be estimated. We then obtain
two main categories, i.e., reverberation suppression and reverberation cancellation.
In Chapter 3 it will become clear that so-called suppression techniques, which are
successfully used for the suppression of interfering signals, are more promising than
so-called cancellation techniques. We may also conclude that those techniques that
require hundreds and sometimes thousands of parameters which are usually hard to
estimate, result in less robust solutions compared to those techniques that require only
a few parameters.

Against this background, our main objective is to develop effective, efficient, and robust
speech dereverberation techniques which can be used to suppress late reverberation
in a possibly noisy environment. The use of quantifiable properties of reverberation,
e.g., the reverberation time, help us to minimize the number of parameters that are
required.

1.6 Outline and main contributions

In this section a chapter by chapter overview is given, summarizing the main con-
tributions of this work. Additionally, references to the publications that have been
produced in the course of this work are provided.

Chapter 2 provides background information on room acoustics for later chapters
(especially for Chapters 3, 5 and 6).

Although researchers have worked on speech dereverberation for three decades, at
this point in time there are only a few dissertations about speech dereverberation and
there is no extensive literature survey available. We have categorized the reverberation
reduction processes depending on whether or not the acoustic impulse response needs
to be estimated. We then obtain two main categories, i.e., reverberation suppression
and reverberation cancellation. Approaches within these categories can be divided into
smaller sub-categories depending on the amount of knowledge about the source and
channel that is utilized. In Chapter 3 an extensive literature survey is presented,
with examples of different methods of each sub-category.

Subjective and objective measures that can be used to assess the dereverberation
quality are very important in our research. Therefore, an overview of such measures
is provided in Chapter 4. Many (often vaguely defined) objective measures were
proposed in the past. Therefore, it is extremely difficult to compare the performance
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of different algorithms. At this point in time there are no standardized objective
measures available to evaluate the dereverberation quality. Some existing objective
measures used in this dissertation are analysed in this chapter. The relevance of
these measures with respect to perceptual factors such as the colouration and the
reverberation time is described. Furthermore, a novel time-frequency representation
of the reverberant signal is described. In this representation the spectrogram and
the instantaneous DRR have been combined. The representation reveals which time-
frequency components are affected most by the reverberation. Publications related to
this part of the dissertation are [30, 31].

In Chapter 5 of this dissertation, novel single- and multi-microphone speech dere-
verberation algorithms are developed that focus on the suppression of late reflections.
Single-microphone techniques are described which estimate the early speech compo-
nent via so-called spectral enhancement techniques that require a measure of the late
reflections and a measure of the background noise. These measures, called late rever-
berant spectral variance and noise spectral variance, respectively, can be estimated di-
rectly from the noisy and reverberant microphone signal(s). Two spectral enhancement
techniques that can be used to enhance the received reverberant signal are described.
The first technique is based on spectral subtraction, and the second technique is based
on the Optimally-Modified Log Spectral Amplitude (OM-LSA) estimator. Several
modification of these spectral enhancement techniques are proposed to increase their
performance. Single-microphone systems only exploit spectral diversity and temporal
diversity, i.e., the separation in time of direct sound and reflections. Reverberation, of
course, also induces spatial diversity. To be able to additionally exploit this diversity
multiple microphones must be used, and their outputs must be combined by a suitable
spatial processor such as the delay and sum beamformer. It is not a priori evident
whether spectral enhancement is best done before or after the spatial processor. For
this reason we investigate both possibilities, as well as configuration in which spectral
enhancement and a novel spatial processor are merged. An advantage of the latter
configuration is that the spectral variance estimator can be further improved. Our ex-
periments show that the use of multiple microphones affords a significant improvement
of the perceptual speech quality. Publications related to this part of the dissertation
are [32, 33, 34, 35, 31, 36, 37, 38].

The spectral enhancement techniques that are developed in Chapter 5 require an esti-
mate of the spectral variance of the late reverberant signal component. In Chapter 6
we develop a novel estimator for this spectral variance. In this chapter an existing
single-channel statistical reverberation model which can be used to derive such an
estimator is described. The model is characterized by one parameter that depends on
the characteristics of the environment. It is shown that the statistical reverberation
model is closely related to the physical energy balance in an ideal diffuse environment.
We find that the spectral variance estimator that is based on this model, can only
be used when the source-microphone distance is larger than the critical distance. A
generalization of the statistical reverberation model in which the direct sound is incor-
porated is developed, and a novel spectral variance estimator is derived. This model
requires one additional parameter that is related to the DRR. Compared to the exist-
ing estimator the proposed estimator improves the dereverberation performance when
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the source-microphone distance is smaller than the critical distance. Furthermore, the
extension of the single-channel statistical reverberation model to multiple channels is
developed. This extension admits a further improvement of the spectral variance es-
timator and the resulting dereverberation performance. A solution for estimating the
amount of late reverberant spectral variance in a noisy environment is also developed.
Publications related to this part of the dissertation are [32, 39, 37].

In Chapter 7 the applicability of the theory described in the previous chapters is
demonstrated using a hands-free device. This work is the result of our collabora-
tion with dr. S. Gannot from the Bar-Ilan University and prof.dr. I. Cohen from the
Technion - Israel Institute of Technology. Since hands-free devices are often used in a
noisy and reverberant environment, the received microphone signal does not only con-
tain the desired signal (commonly called near-end signal) but also interferences such
as room reverberation that are caused by the near-end signal, background noise, and
a far-end echo signal that results from a sound that is produced by the loudspeaker.
An acoustic echo canceller is commonly used to estimate the echo path between the
loudspeaker and the microphone, the estimated echo signal is then used to cancel the
far-end echo. Additionally a post-processor is used to suppress background noise and
residual echo, i.e., echo which could not be cancelled by the echo canceller. In this
work a novel structure and post-processor for an acoustic echo canceller are developed.
The proposed system is unique in the following ways. Firstly, the acoustic echo path
is divided into three parts that contain (i) the direct path and a few early reflections,
(ii) remaining early reflections, (iii) late reflections. The echo related to the first part
is cancelled using a classical acoustic echo canceller technique. The echo related to
the second part is estimated using an adaptive filter and is suppressed by the post-
processor. The echo related to the third part is estimated using the statistical rever-
beration model described in Chapter 6, and is also suppressed by the post-processor.
Note that some of the required model parameters can be estimated using the second
part of the acoustic echo path which is estimated by the afore mentioned adaptive
filter. Secondly, an advanced spectral enhancement technique is used to suppress late
reverberation caused of the near-end source, residual echo, and background noise.
Experimental results convincingly demonstrate the benefits of the proposed system
for suppressing late reverberation, residual echo and background noise. Publications
related to this part of the dissertation are [36, 40].

The conclusion, Chapter 8, summarizes the main contributions of this work and gives
directions for further research.

Synthetic room impulse responses are often created using the image method developed
by Allen and Berkley. In Appendix A this method is described and a Matlabr

implementation in the form of a MEX-function is provided. Various improvements
are made to incorporate the directivity of the microphone and to ensure proper inter-
microphone phase relations, which are very important in the case of Single-Input
Multi-Output and Multi-Input Multi-Output systems. Some extra features are added
which allow the design of less complex AIRs.

The OM-LSA estimator is often used for noise reduction. In Appendix B an exten-
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sion of this estimator is provided, which improves the suppression of multiple inter-
ferences, more specifically one non-stationary and one stationary interference. Three
methods to estimate the a priori Signal to Interference Ratio are discussed, viz.,
decision-directed, causal and non-causal recursive estimation.
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Chapter 2

Room-Acoustics Prerequisites

2.1 Introduction

This chapter introduces some basic theoretical properties of acoustics, which are im-
portant for understanding why particular room acoustic models are used throughout
this work.

There are many different techniques for analysing the acoustics of a room and, in
general, each of these techniques applies to a different frequency range of the audible
spectrum, i.e., no single analytic or numerical technique can currently model the entire
audible spectrum. The Acoustic Transfer Function (ATF) is defined as the frequency
response of the system relating the sound source to the sound pressure at the mi-
crophone, and is probably the most frequently used function to describe an acoustic
channel. Insight into the structure of the ATF can be obtained using the acoustic
wave equation, which governs the propagation of acoustic waves through a material
medium. Various room acoustic models for the ATF will be discussed in this chapter,
e.g., pole-zero, all-zero, all-pole, common pole-zero. Since the acoustic channels in real
rooms are too complex to model explicitly, Statistical Room Acoustics (SRA) is often
used. SRA provide a statistical description of the ATF and the Acoustic Impulse Re-
sponse (AIR) in terms of a few key quantities, e.g., source-microphone distance, room
volume, and reverberation time. The reverberation time, which is a measurement of
the severity of reverberation within a room, is discussed in more detail. Furthermore,
the complex sound pressure in a room is studied using SRA.

When a sound is produced in a room, the reflections from the walls produce a sound
energy distribution that becomes increasingly uniform with time. Eventually, the dis-
tribution of energy may be assumed to be completely uniform, and the direction of
energy flow at a specific location in the room may be considered to be random. To pro-
vide useful insights in the transient behaviour of a room, the fundamental differential
equation that describes the conservation of energy in a room will be discussed.

21
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Figure 2.1 The audible spectrum, divided into four regions.

It should be understood that the inverse of an ATF or AIR can be used to equal-
ize the corresponding acoustic channel. However, the ATFs and AIRs are usually
non-minimum-phase, and can be decomposed into minimum-phase and excess-phase
components. Since stable and causal inverse of a non-minimum-phase transfer func-
tion does not exist, often only the minimum-phase component is inverted. Therefore,
we discuss the contribution of the excess-phase. Furthermore, the simulation and
measurement of room acoustics are discussed.

The structure of this chapter is as follows. Various techniques which are used for
analysing the acoustics of a room are discussed in Section 2.2. The acoustic wave
equation is discussed in Section 2.3, and the ATF and AIR are defined in Section 2.4.
Various deterministic and stochastic room acoustic models are discussed in Sections
2.5 and 2.6, respectively. A detailed description of the sound field and the energy
conservation in a room is provided in Section 2.7. In Section 2.8 the reverberation
time is discussed. The contribution of excess-phase is discussed in Section 2.9. How
room acoustics can be simulated and measured is described in Sections 2.10 and 2.11,
respectively.

2.2 Analysing Room Acoustics

There are many different techniques for analysing the acoustics of a room and, in
general, each of these techniques applies to a different frequency range of the audible
spectrum; no single analytic or numerical tool can currently model the entire audible
frequency range between 20 Hz and 20 kHz. The audible spectrum can be divided
into four regions, as depicted in Fig. 2.1, for each of which a different analytical tool is
appropriate. Each of these four regions will be described in the following subsections.

Very Low Frequencies

If the frequency of a sound source is below fw = c
2L , where c is the speed of sound in

meters per second, and L is the largest dimension of the acoustic environment, there is
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no resonant support for the sound in the room. The frequency band can be analysed
using non-harmonic solutions to wave equations. For instance, in a small living room
with dimensions 3× 5× 7 m, and a sound velocity of 344 ms−1, there is no resonant
lower than 24.5 Hz.

Low Sound Frequencies

The next region corresponds to frequencies for which the wavelength of the sound
under consideration is comparable to the dimensions of the room. The region spans
from lowest resonant mode to the Schroeder cut-off frequency : [41]

fg =
G√
V δ̄

[Hz], (2.1)

where G ≈ 5400, V is the volume of the room in m3, and δ̄ is the mean value of the
damping constant associated with each resonant in the room. The average damping
constant δ̄ is related to the reverberation time RT60, dictating a 60 dB dynamic range
(as will be discussed in Section 2.8), by the relation RT60 = 3 loge(10)/δ̄, such that
the cut-off frequency can be expressed in the well-known form: [42]

fg = C

√
RT60

V
[Hz], (2.2)

where C ≈ 2000 (ms−1)3/2. In the frequency range fw ≤ f < fg wave acoustics
are applicable for describing the acoustical properties of a room. Wave acoustics
assume a harmonic sound source and are based on solutions of the wave equation (see
Section 2.3). For instance, in a small living room with dimensions 3× 5× 7 m and a
reverberation time of 0.5 s, the lower sound frequencies range from 24.5 to 138 Hz.

High Sound Frequencies

The transition region, consists of the frequency components between fg and, approxi-
mately, 4fg, where fg is given by Eq. 2.2. In this region, the wavelengths are often too
short for accurate modelling using wave acoustics, and too long for geometric acous-
tics. Thus, in general, a statistical treatment is employed. The boundary frequencies
of this band for typical acoustic environments can be calculated using Eq. 2.2; for
example, a small living room with dimensions 3 × 5 × 7 m and RT60 = 0.5 s gives a
transition region of 138 Hz to 552 Hz, whilst a car compartment of volume V = 2.5 m3

and RT60 = 0.05 s gives a region of 282 Hz to 1131 Hz.

Very High Sound Frequencies

At very high sound frequencies geometrical room acoustics, also called ray acoustics,
apply. As in geometrical optics, geometrical room acoustics employs the limiting case
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of vanishingly small wavelengths. This assumption is valid if the dimensions of the
room and its walls are large compared with the wavelength of the sound; a condition
which is met for a wide-range of audio frequencies in standard rooms. Hence, in this
frequency range, specular reflections and the sound ray1 approach to acoustics prevail.
Because the sound is represented by energy waves rather than complex pressure waves
geometrical acoustics neglect wave related effects such as diffraction and interference.

2.3 Wave Equation

In principle, any complex sound field can be considered as a superposition of numerous
simple sound waves (e.g., plane waves), and their propagation within a room can be
considered linear if the properties of the medium in which the waves travel is assumed
to be homogeneous, at rest, and independent of wave amplitude [41]. In physics, the
acoustic wave equation governs the propagation of acoustic waves through a material
medium. The form of the equation is a second order partial differential equation. The
equation describes the evolution of velocity potential or sound pressure p(r, t) as a
function of position r = (x, y, z) and time t.

For an homogeneous medium undergoing inviscid fluid flow, one can linearize the
equations governing the dynamic behaviour of the fluid, namely the Euler’s equation,
i.e., Newton’s 2nd law applied to fluids, the continuity equation, and the linearized
state equation, to obtain the wave equation,

∇2p(r, t)− 1
c2
∂2p(r, t)
∂t2

= 0, (2.3)

where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.4)

is the Laplacian expressed in the Cartesian coordinates (x, y, z), and c is the speed of
sound. The wave equation provides a good description of the propagation of sound
waves of small amplitude in air. It accurately describes the pressure in the sound
field provided |p(r, t)| � ρ0c

2, where ρ0 is the density of the propagation medium at
equilibrium. In practice, two types of inhomogeneities occur: scalar inhomogeneities
(spatial distribution of sound speed and density), for example, due to temperature
variations in the medium, and vector inhomogeneities (spatial distribution of parti-
cle mean velocity), for example, due to the presence of fans or an air conditioning.
However, the effects of these inhomogeneities are so small that they can be ignored in
room acoustics.

Let us consider the wave equation in the frequency domain. The Fourier transform is

1A sound ray is meant as a small portion of a spherical wave with vanishing aperture, which
originates from a certain point. It has well-defined direction of propagation and is subject to the
same laws of propagation as light rays, apart from the different propagation attenuation.
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defined as
P (r;ω) , F{p(r, t)}(ω) =

∫ ∞

−∞
p(r, t)e−ιωt dt, (2.5)

where ι =
√
−1. By applying the Fourier transform to Eq. 2.3 the time-independent

Helmholtz equation is obtained, i.e.,

∇2P (r;ω) + k2P (r;ω) = 0, (2.6)

where k denotes the wave number that is related to the angular frequency ω and the
wave length λ through

k =
ω

c
=

2π
λ
.

In order to calculate the sound field emanating from a source in a specific room, we
need an additional source function in Eq. 2.3 and boundary conditions, which describe
sound reflection and absorption at the walls.

2.4 Acoustic Transfer Function

If there is a harmonic disturbance which is producing the waves, for which the source
function is given by s(r, t) = S(r;ω)e−ιωt, then it appears at the right hand side of
the wave equation Eq. 2.3, i.e.,

∇2p(r, t)− 1
c2
∂2p(r, t)
∂t2

= −s(r, t). (2.7)

The Helmholtz equation is now given by

∇2P (r;ω) + k2P (r;ω) = −S(r;ω). (2.8)

For a unit-amplitude harmonic point source at position rs , (xs, ys, zs) we have
S(r;ω) = δ(r − rs) = δ(x − xs)δ(y − ys)δ(z − zs), where δ(·) denotes the Kronecker
delta function. The partial differential equation in Eq. 2.8 can be solved by solving
the following inhomogeneous equation:

∇2H(r, rs;ω) + k2H(r, rs;ω) = −δ(r− rs), (2.9)

where H(r, rs;ω) is the ATF, or Green’s function, and rs is the position of the source.
For an arbitrary source function the desired source pressure can be calculated using
the following relation

P (r;ω) =
∫∫∫

Vs

H(r, rs;ω)S(rs;ω) drs, (2.10)

where Vs denotes the source volume, and drs = dxs dys dzs is the differential volume
element of position rs. The sound pressure p(r, t) can now be obtained using the
inverse Fourier transform of Eq. 2.10.
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The conventional way to solve Eq. 2.9 is to find the eigenfunctions, i.e., orthogonal
solutions, Ψm(r;ω) to the homogenous equation ∇2H(r, rs;ω) + k2H(r, rs;ω) = 0,
and express the inhomogeneous equation in terms of these eigenfunctions.

A general expression for the Green’s function in an arbitrary sound field can be ob-
tained using the eigenfunctions:

H(r, rs;ω) =
∑
m

Cm(rs;ω)Ψm(r;ω), (2.11)

where each coefficient Cm is dependent on the position of the sound source. The
eigenfunctions depend on the boundary conditions imposed by the enclosed space.

Free Space Green’s Function

For an omnidirectional point source in an unbounded space, i.e., free space, the Green’s
function results in the well-known solution [41]

H(r, rs;ω) =
eι ω

c ‖r−rs‖

4π‖r− rs‖
, (2.12)

where ‖ · ‖ denotes the Euclidean norm.

Classical Rectangular Room

In a rectangular room with physical dimensions Lx, Ly, Lz and rigid perfectly reflecting
walls the eigenfunctions in Cartesian coordinates are [41]

Ψm(r) = cos(kxx) cos(kyy) cos(kzz), (2.13)

where m = (mx,my,mz), kv = mvπ/Lv for v ∈ {x, y, z}, and mv are non-negative
integers. The eigenfunctions are often referred to as modes and have a simple physical
interpretation as three-dimensional standing waves. The corresponding eigenvalues
are k2

m = k2
x + k2

y + k2
z .

The solution for the inhomogeneous equation Eq. 2.9 for a classical rectangular room
is [41]

H(r, rs;ω) =
∑
m

Ψm(r)Ψ∗
m(rs)

Λm(k2 − k2
m)

, (2.14)

where Λm is a normalization constant for the associated eigenvector defined by∫∫∫
V

Ψm(r)Ψ∗
n(r) dr =

{
Λm, for m = n;
0, for m 6= n,

(2.15)

where V = {(x, y, z) : 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, 0 ≤ z ≤ Lz} is the entire space of the
room and dr = dx dy dz is the differential volume element at position r.
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Equation Eq. 2.14 reveals the frequency domain structure of the ATF. The eigenfre-
quencies ωm, related to the eigenvalues through km = ωm

c , are also known as the
resonance frequencies of the room. At each eigenfrequency ωm, the standing wave
pattern of mode m resonates strongly. From Eq. 2.14 it can be seen that H(r, rs;ω)
increases without bound as ω → ωm. Room mode Ψm(r) is said to be excited at
eigenfrequency ωm (i.e., Ψm(r) makes a large contribution to sound pressure at this
frequency). All rooms possess distinct resonances at low frequencies. However, in
practical rooms, where walls are non-rigid and finitely absorbing, eigenvalues km have
imaginary components that provide damping of resonance modes [41]. In that case
km = ωm

c + ι δm
c , where δm denotes the damping constant (Q-factor). Assuming that

δm � ωm, Eq. 2.14 results in

H(r, rs;ω) = c2
∑
m

Ψm(r)Ψ∗
m(rs)

Λm(ω2 − ω2
m − 2ιδmωm)

. (2.16)

The inverse Fourier transform of the frequency response of the room described by
Eq. 2.14 leads to a AIR, h(r, rs, t). The variation of the AIR, or ATF, with source
and microphone positions, is discussed in [43, 44], and its variation with temperature
in [45]. The form of Eq. 2.14 leads to the justification of the use of some well-known
modelling techniques used in signal processing, as discussed in the next section.

2.5 Modelling of Acoustic Transfer Functions

The ultimate aim of our work is to dereverberate a distorted signal recorded in an
echoic acoustic environment. To achieve this, the acoustical properties of the room
must be modelled. In this section we discuss some well-known modelling techniques
in signal processing for the representation of room acoustics and the robustness to
variations in the source and microphone positions.

2.5.1 Pole-Zero Modelling

Since the ATF can be expressed by a rational expression, it can be modelled by
the conventional pole-zero model with poles {pPZ(m), m ∈ {1, . . . , P}} and ze-
ros {qPZ(m), m ∈ {1, . . . , Q}}, or autoregressive (AR) coefficients {aPZ(m), m ∈
{1, . . . , P}} and moving average (MA) coefficients {bPZ(m), m ∈ {1, . . . , Q+R}}:

HPZ(z) = CPZ z−R

Q∏
m=1

[
1− qPZ(m)z−1

]
P∏

m=1
[1− pPZ(m)z−1]

=

Q+R∑
m=1

bPZ(m)z−m

1 +
P∑

m=1
aPZ(m)z−m

, (2.17)

where HPZ(z) represents the pole-zero modelled ATF, P is the number of poles, Q+R
is the total number of zeros including those at the origin, and CPZ is a gain constant.
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Since most acoustic transfer functions are stable and causal, the denominator of the
transfer function must correspond to a stable causal sequence and therefore the poles
must lie within the unit circle: |pPZ(m)| < 1,m ∈ {1, . . . , P}. The AIRs are often
non-minimum-phase, so the zeros qPZ(m) may lie outside the unit circle, these zeros
result in instabilities when the system is inverted. Alternatively, Eq. 2.17 may be
expressed as

HPZ(z) = CPZ z−R

Qm∏
m=1

[
1− rPZ(m)z−1

] Qm∏
m=1

[
1− sPZ(m)z

]
P∏

m=1
[1− pPZ(m)z−1]

, (2.18)

where |rPZ(m)| < 1,m ∈ {1, . . . , Qm} correspond to the minimum-phase component of
the transfer function, and the zeros |sPZ(m)| < 1,m ∈ {1, . . . , Qm} correspond to the
maximum-phase component of the transfer function. Mourjopoulos and Paraskevas
[46] discuss the pole-zero model in detail. From a physical point of view poles represent
resonances (see Eq. 2.14), and zeros represent time delays and anti-resonances. The
characteristics of all-zero and all-pole models when used to present room acoustics are
described in Section 2.5.3 and 2.5.4.

2.5.2 Pole-Zero Model Decompositions

There are two decompositions of Eq. 2.18 which are useful for inverting acoustic trans-
fer functions. The first is to write Eq. 2.18 as [47, 48]

HPZ(z) = HPZ,min(z)HPZ,max(z), (2.19)

where the minimum and maximum-phase components are given by

HPZ,min(z) , CPZ z−R

Qm∏
m=1

[
1− rPZ(m)z−1

]
P∏

m=1
[1− pPZ(m)z−1]

(2.20)

and

HPZ,max(z) ,
Qm∏
m=1

[
1− sPZ(m)z

]
, (2.21)

respectively.

The second is to observe that Eq. 2.18 can also be decomposed into a minimum-phase
function and a non-minimum-phase all-pass function [49]:

HPZ(z) = HPZ,mp(z)HPZ,ap(z), (2.22)
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where the minimum-phase and all-pass components of the acoustic transfer function
are given by

HPZ,mp(z) = CPZ z−R

Qm∏
m=1

[
1− rPZ(m)z−1

] Qm∏
m=1

[
1− sPZ(m)z−1

]
P∏

m=1
[1− pPZ(m)z−1]

(2.23)

and

HPZ,ap(z) =

Qm∏
m=1

[
1− sPZ(m)z

]
Qm∏
m=1

[1− sPZ(m)z−1]
, (2.24)

where |HPZ,ap(z)| = 1, for z = eιω, ∀ω.

2.5.3 All-Zero ATF Model

The ATF of Eq. 2.14 can be modelled by the conventional all-zero model or Finite
Impulse Response (FIR) filter which can be represented with either zeros {qZ(m), m ∈
{1, . . . , Q}} or MA coefficients {bZ(m), m ∈ {1, . . . , Q + R}}. This model can be
considered as the numerator of Eq. 2.17, i.e.,

HZ(z) = CZ z−R

Q∏
m=1

[
1− qZ(m)z−1

]
=

Q+R∑
m=1

bZ(m)z−m. (2.25)

As discussed in the previous section this can also be expressed in the form:

HZ(z) = CZ z−R

Qm∏
m=1

[
1− rZ(m)z−1

] Qm∏
m=1

[
1− sZ(m)z

]
, (2.26)

where |rZ(m)| < 1,m ∈ {1, . . . , Qm}, and |sZ(m)| < 1,m ∈ {1, . . . , Qm}. The first
product term corresponds to the minimum-phase component and the second prod-
uct term corresponds to the maximum-phase component of the all-zero ATF. This
expansion can be useful when calculating the inverse of the ATF.

There are several limitations of FIR filters imposed by the nature of room acoustics
[44, 48, 50, 46]:

• Acoustic impulse responses are, in general, very long and an all-zero filter typ-
ically requires up to 10.000 coefficients. The number of coefficients is approxi-
mately determined by

ns = RT60fs [samples] (2.27)

where fs is the sampling frequency in Hertz, and RT60 is the reverberation
time for the enclosure. As an example, if RT60 = 0.5 s and fs = 44.1 kHz,
ns = 22050 samples [48].
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• The resulting FIR may be effective and appropriate only for very limited spatial
combinations of source and microphone positions within a particular enclosure
[51]. The large variations in ATF for small changes in source-microphone po-
sitions can cause invertibility problems, see Section 3.3.5. In some cases the
distortion of the ‘equalized’ transfer function will be greater than the original
distortions due to the ATF [43, 44, 50, 48, 2]. The sensitivity can be explained
by the nature of room acoustics; transfer function zeros result from local can-
cellations of multipath sound components which are easily disturbed by slight
changes in source-microphone positions [46]. This suggests that if the room im-
pulse response is incorrectly estimated there may be problems with equalization.

Tohyama and Lyon [52] discuss the effect of truncating an impulse response and demon-
strate that truncation can change the minimum-phase behaviour of an ATF into a
non-minimum-phase characteristic.

2.5.4 All-Pole ATF Model

An alternative to Eq. 2.25 for the representation of Eq. 2.14 is the causal all-pole
model, or Infinite Impulse Response (IIR) filter, which can be represented either by
the poles {pP(m), m ∈ {1, . . . , P}} or by AR coefficients {aP(m), m ∈ {1, . . . , P}}
and can be considered as the denominator of Eq. 2.17:

HP(z) =
CP

P∏
m=1

[1− pP(m)z−1]
=

CP

1 +
P∑

m=1
aP(m)z−m

. (2.28)

The all-pole or autoregressive model for approximating rational transfer functions is
widely used in many fields, especially in speech analysis. Typical all-pole model orders
required for approximating acoustic transfer functions are in the range of 50 ≤ P ≤
500 [46]. Mourjopoulos and Paraskevas [46] state that the all-pole model orders are
typically a factor 40 lower than the all-zero model orders, while several studies by
Gudvnagen and Flockton [53, 54] state that the gain achieved using pole-zero over all-
zero modelling of reverberant acoustic environments is not as high as generally thought
throughout the literature, with reduction in the number of coefficients typically in the
order of 1.2 to 1.5. These latter studies use modelling error functions to measure
the fit of the pole-zero models to the complete AIR, rather than fitting the most
important reverberant characteristics. Therefore, a significant reduction in model
order should be expected for those applications where it is more important to model
the main reverberant component rather than just minimizing the modelling error.
Using least squares approximation theory Liavas and Regalia concluded that there
was no substantial improvement by the use of IIR models compared to FIR models
[55].

A significant advantage of the all-pole model over the all-zero model is its lower sen-
sitivity to changes in source and observer positions. Mourjopoulos and Paraskevas
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[46] conclude that in many signal processing applications dealing with room acoustics,
it may be both sufficient and more effective to manipulate all-pole model coefficients
rather than high order all-zero models. The all-pole model is also the basis of the
technique discussed in [56] which allows the classification of all possible ATFs cor-
responding to different source-observer positions, thereby providing a ‘codebook’ for
possible transmission paths in dereverberation applications. A shortcoming of the
causal all-pole model filter is that, since it is causal and stable, it is minimum-phase
and therefore cannot model the non-minimum-phase component of room acoustics.
Nevertheless, a subband all-pole model can be used to avoid this problem since only a
number of subbands considered individually have non-minimum-phase characteristics
[57, 58].

2.5.5 Common Acoustical Pole-Zero Modelling

Acoustical poles are approximately independent of the source and observer position
since they correspond to the resonant frequencies of the room. Standing waves occur
at these resonances and can be observed at any point in the room, except at node
points. However, the amplitude of the standing wave varies depending on the micro-
phone positions. This variation is reflected in the zeros of the ATF [51]. The spatial
independency of the poles was not assumed in Eq. 2.17 and 2.28. As such Eq. 2.18
can be written in the simpler form:

HCAPZ(r, rs; z) = CCAPZ(r, rs) z−R

Qm∏
m=1

[
1− rCAPZ(r, rs,m)z−1

] Qm∏
m=1

[
1− sCAPZ(r, rs,m)z

]
P∏

m=1
[1− pCAPZ(m)z−1]

(2.29)

where {pCAPZ(m), m ∈ {1, . . . , P}} are the common poles independent of r and
rs. Nevertheless, it should be noted that the spatial independence assumption of the
acoustical poles is simplistic, and other investigations on the fluctuation of ATFs within
reverberant environments suggest that this may not be strictly true [2]. Eq. 2.29 is
known as the CAPZ model of ATFs and was first introduced by Haneda et. al. [59, 51]
and extended in [60].

2.5.6 Theoretical Pole Order

As shown in Section 2.4 the harmonic solutions of the wave equation Eq. 2.3 for a
rectangular room can be found by solving Eq. 2.9. The number of modes in the
harmonic solution can be counted, and it can be shown that the order of modes N(fu)
for a room of dimensions Lx,Ly,Lz with volume V = LxLyLz up to an upper frequency
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limit fu is given by [41]

N(fu) =
4πV

3

(
fu

c

)3

+
πS

4

(
fu

c

)2

+
L

8

(
fu

c

)
, (2.30)

where V = LxLyLz is the room’s volume, S = 2(LxLy + LxLz + LyLz) is the room’s
surface area and L = 4(Lx + Ly + Lz) is the sum of all the edge lengths occurring
in the rectangular room. If fu � 500 Hz, and 3

√
V �

√
S, then the last two terms

in Eq. 2.30 can be ignored. The order of the all-pole model up to a given sampling
frequency fs is therefore given by P ≈ 2N(fs/2), or [51]

P ≈ πV

3

(
fs
c

)3

. (2.31)

If the all-pole model order is the same as the theoretical order in Eq. 2.31, the all-
pole model corresponds well with the actual room response. If the model order is
lower than the theoretical order, the least squares estimated poles correspond to the
major resonance frequencies which have high Q factors [51]. This is typically the case
since, for example, a typical small office with volume 40 m3 has ±1.75× 105 acoustic
modes with natural frequencies below 3.5 kHz, giving a very high all-pole model order.
Moreover, it is clear for most typical rooms that the model order given by Eq. 2.31
is much greater than the typical length of an FIR filter, as given in Eq. 2.27. Hence,
Eq. 2.31 is a very loose upper bound.

2.6 Statistical room acoustics

In theory the validity of the modal expressions derived in Section 2.4 is not restricted to
low frequencies. Therefore, it may seem surprising that a completely different approach
based on statistical considerations, i.e., SRA, is actually more useful at medium and
high frequencies than the deterministic approach described in the foregoing section.
SRA provides a statistical description of the ATF between the source and microphone
in terms of a few key quantities, e.g., source-microphone distance, room volume, and
reverberation time. The crucial assumption of SRA is that the distribution of ampli-
tudes and phases of individual plane waves, which sum up to produce sound pressure
at some point in a room, is so close to random that the sound field is fairly uniformly
distributed throughout the room volume. Evidently, using a model based on statistical
considerations we can only make predictions with a certain probability. There are two
reasons why SRA are considered. The first reason is that expressions based on sums
of modes are in practice less useful at high frequencies. The problem is that when
hundreds of complex terms are summed the result becomes very sensitive to small er-
rors in each term. For example, the dimensions of the room might be slightly different
from the dimensions used in the model. Even very small modelling errors will shift the
natural frequencies of the modes, and the amplitude and phase of each of the terms
that correspond to modes driven by their natural frequency may change somewhat.
As a result the sum can be completely different. Secondly, statistical models can be
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surprisingly powerful in the sense that they make it possible to predict a number of
characteristics of, e.g., the sound field or the reverberation time in a room, on the
basis of very little information.

Sabine’s [61] major contribution was the introduction of statistical methods to cal-
culate the reverberation time of a space without considering the details of the space
geometry. Schroeder has extended Sabine’s fundamental work [42, 62] and derived
a set of statistical properties describing the frequency response of a random impulse
response.

In a room response, the average number of modes per Hz, i.e., the modal density Dm,
is approximately proportional to the square of frequency f [41]:

Dm(f) ≈ 4πV
f2

c3
. (2.32)

The average number of reflections, i.e., the echo density De, is approximately propor-
tional to the square of time t [41]:

De(t) ≈ 4πc3
t2

V
. (2.33)

These expressions can be demonstrated for rectangular rooms, and can be generalized
to rooms of any geometry [41]. For higher frequencies and larger times, both densities
become very high. These properties provide the foundation for statistical models of
room responses, as developed by Schroeder [42] in the frequency domain, and more
recently in the time domain by Polack [63].

2.6.1 Frequency-domain statistical model

Eq. 2.32 implies that, at high frequencies, the normal modes of a room overlap in the
frequency domain, i.e., the average separation between natural frequencies is smaller
than the bandwidth ∆fm of a mode. The bandwidth of a mode can be expressed as
follows:

∆fm =
δm
π
, (2.34)

where δm is the damping constant of mode m. A parameter which quantifies the
probable number of modes which exist within the 3 dB bandwidth of any mode is the
modal overlap M(f), a parameter widely used in statistical energy analysis, defined
by the expression

M(f) = ∆f Dm(f). (2.35)

Thus, at high frequencies, any source signal will simultaneously excite several room
modes. Assuming a sine-wave excitation and a microphone located in the reverberant
field, the signal received by the microphone is the sum of the contributions of a large
number of modes, where the amplitude and phase of each contribution varies with the
microphone position. Consequently, the complex frequency response can be considered
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as a space dependent stochastic process whose real and imaginary part are independent
Gaussian processes having the same variance [62, 64, 41]. This two-dimensional Gaus-
sian density arises from the central limit theorem, assuming independence between
modes, and implies that the amplitude of the frequency response follows a Rayleigh
distribution. These statistical properties also apply when the complex response is
considered as a frequency dependent stochastic process, for a given microphone posi-
tion. These properties are valid irrespective of the microphone position and the room,
provided that the direct sound can be neglected compared to the reflected sound and
that the frequency of interest is above the Schroeder frequency. The high modal over-
lap implies that the peaks in the frequency response of the acoustic transfer function
do not correspond to the individual natural frequencies. Although the modal density
increases as the square of frequency, as shown by Eq. 2.32, the average separation
between adjacent peaks in the amplitude frequency response only depends on modal
bandwidth. Accordingly, the density of peaks in the frequency domain is propor-
tional to the reverberation time [65, 41]. The average number of maxima per Hz is
approximately given by

Df ≈
√

3
δ̄
≈ RT60

4
. (2.36)

Eq. 2.36 is obtained using the fact that the average damping constant δ̄ is related to
the reverberation time RT60 by

δ̄ =
3 loge(10)

RT60
. (2.37)

This frequency-domain statistical model relies on the assumption of high modal over-
lap in the frequency domain, which is not valid at low frequencies. The Schroeder
frequency, above which the theory is valid, has been verified experimentally in [62],
and is given by Eq. 2.2. By combining Eq. 2.32, 2.2, and 2.36, one can verify that
the average spacing between natural frequencies must be less than one third of the
bandwidth of a mode for the theory to be valid.

The validity of the frequency-domain statistical model is subject to a set of conditions:
[41, 2, 66]

1. The dimensions of the room are relatively large compared to the wavelength.
For the frequencies of interest (in speech processing we are mainly interested in
the band 300-3500 Hz), this condition is usually satisfied.

2. The average spacing of the resonance frequencies of the room must be smaller
than one third of their bandwidth. In a room with volume V (in m3), and
reverberation time RT60 (in seconds), which is defined as the time for the rever-
beration level to decay to 60 dB below the initial level, this condition is fulfilled
for frequencies that exceed the Schroeder frequency: fg = 2000

√
RT60/V .

3. The source and the microphones are located in the interior of the room, at least
a half-wavelength away from the walls, where λ = c/f is the wavelength and f is
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the frequency of the source signal. The sound field at a wall-mounted microphone
can hence not be modelled as diffuse2.

The frequency-domain statistical model can be used to derive different properties
of the acoustic transfer function. The acoustic transfer function from the source to
a microphone at position r can be expressed as the sum of the direct component,
Hd(r, rs;ω), and a reverberant component, Hr(r, rs;ω), such that

H(r, rs;ω) = Hd(r, rs;ω) +Hr(r, rs;ω). (2.38)

Under the conditions stated above, and due to the different propagation directions and
the random relation of the phases of the direct component and all the reflected waves,
it can be assumed that the direct and the reverberant components are uncorrelated
[41, 64].

In the following it is assumed that the source and microphone position is represented
by θ = [rT rT

s ]T . Eq. 2.38 can now be written as

H(θ;ω) = Hd(θ;ω) +Hr(θ;ω). (2.39)

The spatial expectation Eθ{·} is defined as the ensemble average over all allowable (in
terms of condition 3) values of θ. The direct component of the ATF is the free-space
Greens function as defined in Eq. 2.12. If we additionally assume that all realizations θ̃
of θ have a constant source-microphone distance, i.e., only rotations and translation of
the source-microphone position are allowed, then the direct component only depends
on the distance D = ‖r − rs‖, such that Eθ{Hd(θ;ω)} = Hd(D;ω). From SRA, the
expected density spectrum of the reverberant component is given by [41, 2]

Eθ{|Hr(θ;ω)|2} =
1− ᾱ

πᾱS
, (2.40)

with S being the total surface area of the room and ᾱ the average absorption coefficient
of the room walls. Although Eq. 2.40 is often used (c.f. [2, 67, 68, 69]) it should be
noted that the absorption coefficient is frequency dependent due to the frequency
dependent absorption coefficients of walls and other objects, and of air [41].

In [2] it is shown that the spatial expectation of the cross terms of the squared mag-
nitude of Eq. 2.38 is zero. Hence, the spatially expected energy density spectrum of
the ATF can be written as

Eθ{|H(θ;ω)|2} = |Hd(D;ω)|2 + Eθ{|Hr(θ;ω)|2}. (2.41)

Note that only the reverberant component varies with the source and microphone
position θ but its spatial expectation is independent of θ.

The spatial cross-correlation of the reverberant paths between the mth and the nth

acoustic channel has been shown to be [67]

Eθ{Hr(rm, rs;ω)H∗
r (rn, rs;ω)} =

(
1− ᾱ

πᾱS

)
sin (k‖rm − rn‖)
k‖rm − rn‖

, (2.42)

2In case the sound field is diffuse the sound energy density and the direction of the intensity vector
are uniformly distributed across the room.
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where k = 2πf/c = ω/c is the wave number, θ = [rT
m rT

n rT
s ]T , and rm and rn are the

three-dimensional position vectors of the mth and nth microphone, respectively, with
the origin at (x, y, z) = (0, 0, 0). All realizations θ̃ of θ have a constant distance between
all positions, i.e., only rotations and translations of the source-array configuration are
allowed.

2.6.2 Time-domain statistical model

Moorer noted the auditive resemblance between a concert hall impulse response and a
white noise signal multiplied by an exponentially decaying envelope, and reported that
such a synthetic response can produce, by convolution with anechoic signals, a natural
sounding reverberation effect [70]. To obtain a frequency-dependent reverberation
time, he suggested to use a filter bank and to sum the subband signals after multiplying
them with different exponential envelopes.

Polack [63] developed a time-domain model complementing Schroeder’s frequency-
domain model. In this model, an acoustic impulse response is described as one real-
ization of a non-stationary stochastic process:

h(t) = b(t)e−δ̄t for t > 0, (2.43)

where b(t) is a zero-mean stationary Gaussian noise, and δ̄ is related to the reverber-
ation time RT60 by Eq. 2.37. The random noise b(t) is characterized by its power
spectral density, denoted B(f). According to Polack [63], the acoustic impulse re-
sponse can then be observed on two different time scales:

1. A small time scale corresponding to the fast variations of the signal b(t), i.e.,
to the order of the millisecond (measured by the temporal spreading of the
autocorrelation function of b(t)). This corresponds, in the frequency domain, to
the scale of slow variations of the power spectral density B(f).

2. A large time scale corresponding to the slow variations of the temporal enve-
lope, i.e., to the order of seconds (measured by the reverberation time), and
corresponding to the scale of the fast variations of the frequency response of the
room (measured by the bandwidth of the normal modes, given by Eq. 2.34).

Since these two scales differ several orders of magnitude, it is possible to separate the
time variable t and the frequency variable f in the calculation of statistical quantities
[63].

In the time domain there is an interval after which Polack’s stochastic model becomes
valid. The time-domain response can only be Gaussian if a sufficient number of re-
flections overlap at any time along the response. The peaks in the acoustic impulse
response then no longer correspond to the arrivals of individual reflections. Since the
reflection density increases with time according to Eq. 2.33, the situation is similar to
that found in the frequency domain, except that the ‘width’ of a reflection in the time
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domain cannot be defined solely with respect to the intrinsic properties of the room
(unlike the bandwidth of a mode).

The spreading of a reflection in the time domain can only be expressed with reference
to the bandwidth of the source excitation (which determines the spreading of the
source pulse), or to the bandwidth of the microphone. If the criterion is that at least
10 reflections overlap within a characteristic time resolution of the auditory system,
taken equal to 24 ms in [63], Eq. 2.33 leads to:

tmix = 1000
√
V [s]. (2.44)

This value was also proposed in [71] as a reasonable approximation for the transi-
tion time between early reflections and late reverberation. Polack shows that the
exponentially decaying stochastic model can be established within the framework of
geometrical acoustics and billiard theory [63, 72], and defines the mixing time as the
time it takes for a set of initially adjacent sound rays to spread uniformly across the
room. By that time (if the origin is taken as the time of emission of a sound pulse
by the source), the reverberation process has become diffuse, i.e., the sound energy
density and the direction of the intensity vector are uniformly distributed across the
room. The mixing character of a room depends on its geometry and the diffusing
properties of the boundaries. When mixing is achieved, the echo density increases
exponentially with time, rather than proportional to t2 [72]. Consequently, the value
1000

√
V can be considered as an upper limit for the mixing time in typical ‘mixing’

rooms. The validity region of the stochastic time-frequency model of reverberation
decays is limited to frequencies higher than the Schroeder frequency, given by Eq. 2.2,
and to times later than the mixing time, for which an upper limit is given by Eq. 2.44.
The validity region is illustrated in Fig. 2.2.

It is worth recalling that the late reverberation can be described by a stochastic
model (implying no knowledge of the natural frequencies of the room) only above
the Schroeder frequency, which takes a value of 100 Hz for a 400 m3 room having a
reverberation time of 1 second. Unlike typical bathrooms, concert halls are relatively
absorbent with a relatively large volume, leading to Schroeder frequencies close to the
lower limit of the audible range.

2.7 Sound Field

The complex sound pressure can be decomposed into two components. The first
component, i.e., direct component Pd(r;ω), is the part of the sound that arrives from
a sound source directly, without reflection or diffraction. The second component,
i.e., the reverberant component Pr(r;ω), is what remains after subtracting the direct
component. The complex sound pressure P (r;ω) can thus be expressed as

P (r;ω) = Pd(r;ω) + Pr(r;ω). (2.45)

Using statistical room acoustics it can be shown (c.f. [64]) that the real and imaginary
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Figure 2.2 Validity region of the statistical model in the time-frequency domain
(hatched).

parts of the complex sound pressure Pr(r;ω) have zero mean and are statistically
independent, i.e.,

Eθ{Re{Pr(r;ω)}} = Eθ{Im{Pr(r;ω)}} = 0 (2.46)

and
Eθ{Re{Pr(r;ω)}Im{Pr(r;ω)}} = 0, (2.47)

where we have again used Eθ{·} to denote the operation of spatial averaging.

If a sound source generates a sound wave it has to deliver some energy to a fluid. The
energy is carried away by the sound wave. Accordingly the amount of energy contained
in one unit volume of the wave is characterized by the energy density. As with any
kind of mechanical energy one has to distinguish between potential and kinetic energy
density:

Epot(t) =
p2(t)
2ρ0c2

, (2.48)

Ekin(t) =
ρ0|v(t)|2

2
, (2.49)

where v(t) denotes the vector of the particle velocity at time t. The instantaneous
total energy density is given by

E(t) = Epot(t) + Ekin(t) [J/m3]. (2.50)

In a simple travelling plane wave the sound pressure and the longitudinal component
v of the particle velocity vector v are related by p = ρ0cv. In this case the energy
density is expressed by

E(t) =
p2(t)
ρ0c2

. (2.51)
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Direct Sound
The time delay of the direct sound component is related to the distance D, in meters,
and the sound velocity c, in meters per second, through

td =
D

c
[s]. (2.52)

The sound energy density related to the direct sound at distance D from the source
is given by [41, 2]

Ed =
Eθ{Pd(r;ω)P ∗

d (r;ω)}
ρ0c2

=
QWs

4πcD2
, (2.53)

where Q denotes the directivity of the source compared to a sphere, and Ws denotes
the power of the source in Watt.

Reverberant Sound
In order to deal with sound fields in a room at high frequencies, or, strictly speaking, in
a room where many modes have natural frequencies within the bandwidth of any mode,
a model can be adopted in which it is assumed that the sound field at a point consists
of a superposition of the contributions from a number of planes waves. The plane
waves are assumed to be arriving at the point considered from all possible propagation
directions. One can visualize this by assuming that a point in the sound field is at
the center of a sphere whose surface is divided into a very large number of segments
of equal area. The line passing through the center of one of these segments and the
center of the sphere defines the propagation direction associated with a particular
plane wave. The field is then assumed to consist of an infinite number of plane waves,
each associated with a different propagation direction. These propagation directions
are defined by assuming that all segments of equal area on the surface of the sphere
become infinitesimally small. In case all of these directions of propagation contribute
equally to the spatially averaged energy density then the sound field is called diffuse.
Although sound fields in a real room do not exactly exhibit a diffuse field behaviour,
the diffuse field turns out to be a good approximation.

The spatial correlation of pressure, which is the correlation coefficient of complex
sound pressure between two points, is well defined in a diffuse field [73]:

Eθ{Pr(r;ω)P ∗
r (r + ∆r;ω)}

Eθ{|Pr(r;ω)|2}
=

sin(k||∆r||)
k||∆r||

, (2.54)

where k = ω/c. Eq. 2.54 is equal to Eq. 2.42 normalized by the density spectrum
of the reverberant component, given by Eq. 2.40. Using statistical room acoustics,
the correlation in the acoustic transfer function between different frequencies can be
determined. Utilizing the fact that the impulse response is approximately exponential,
Eθ{h2(r, t)} ∼ e−t/τ with decay constant τ = 1/2δ̄, the frequency correlation is [62]:

Eθ{Pr(r;ω)P ∗
r (r;ω + ∆ω)}

Eθ{|Pr(r;ω)|2}
=

1
1 + (τ∆ω)2

. (2.55)
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The frequency correlation drops rapidly with increasing ∆ω. For example in an office,
a reverberation time of 400 ms is typical. Here the frequency correlation drops rapidly
beyond ∆ω = 20 Hz.

The steady-state sound energy density related to the reverberant sound component in
a diffuse sound field is given by [41, 2]

Er =
Eθ{Pr(r;ω)P ∗

r (r;ω)}
ρ0c2

=
4Ws

cR
, (2.56)

where R denotes the room constant. In case we assume that the absorption is inde-
pendent of the angle of incidence, the room constant R is given by

R =
ᾱS

1− ᾱ
, (2.57)

where ᾱ denotes the average absorption coefficient and S is the total absorption area.

2.7.1 Critical Distance

The distance at which the steady-state reverberant energy equals the direct sound
energy is called the critical distance or radius. Using Eq. 2.53 and 2.56 we obtain

Q

4πD2
c

=
4
R
. (2.58)

By solving Eq. 2.58 the critical distance Dc is obtained for a point sound source, i.e.,

Dc =

√
QR

16π
[m]. (2.59)

The reverberation time can be estimated using Sabine’s equation [61]

RT60 =
24 ln (10)V

cāS
[s] (2.60)

where ā denotes Sabine’s absorption coefficient. Another well-known formula to esti-
mate the reverberation time was derived by Eyring:

RT60 = − 24 ln (10)V
c ln (1− ᾱ)S

[s]. (2.61)

For many practical purposes it is safe to assume that the average absorption coefficient
ᾱ is small compared to unity. The logarithm in Eq. 2.61 can be expanded into a series

− ln (1− ᾱ) = ᾱ+
ᾱ2

2
+
ᾱ3

3
+ . . . (2.62)
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Figure 2.3 Spatial dependence of direct (Ed) and reverberant (Er) energy densities.
The critical distance Dc is determined by Eq. 2.59.

and all terms higher than the first order in ᾱ may be neglected. In the later case the
average absorption coefficient ᾱ is similar, or equal, to Sabine’s absorption coefficient
ā, i.e., ᾱ ' ā. Assuming that the speed of sound in air is 344 ms−1, Eq. 2.59 can be
approximated by

Dc ≈ 0.1
√

QV

πRT60
[m]. (2.63)

The critical distanceDc is a function of the room parameters and the source directivity.
The reverberation distance, denoted byDh, is obtained using an omnidirectional sound
source and is only a function of the room volume and the reverberation time of the
room. For an omnidirectional point sound source the reverberation distance is equal
to [41]

Dh = 0.1
√

V

πRT60
[m]. (2.64)

If an observer is within the critical distance of a source, the direct energy is greater
than the reverberant energy while, if the observer is outside the critical distance, the
reverberant energy will be dominant. The direct and reverberant energy as a function
of the source-microphone distance D are depicted in Fig. 2.3. The intelligibility of
speech, for example, depends greatly on whether the observer is near the source, or far
from the source. This explains why reverberation has negligible effect on intelligibility
when using normal telephones or equipment where the microphone can be placed close
to the sound source. Speech intelligibility is affected when the distance between the
source and an omnidirectional microphone is larger than 0.3Dc, or larger than 0.5Dc for
a directional microphone. For example, when using an omnidirectional microphone in
a small living room with dimensions 3×5×7 m and RT60 = 0.5 s, the critical distance
Dc ≈ 0.82 m. Speech intelligibility would be affected when the source-microphone
distance is larger than 0.25 m.
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2.7.2 Energy Balance

When a sound is produced in a room the reflections from the walls and other surfaces
produce a sound energy distribution in the room that becomes increasingly uniform
with time. After a certain time the distribution of energy may be assumed to be
completely uniform, and the direction of energy flow at a specific location in the room
may be considered to be random. It should be noted that these assumptions are not
true close to the absorbing surfaces or the source.

The fundamental differential equation governing the growth of sound in a room is

Ws = V
dEr(t)

dt
+BᾱS, (2.65)

where B denotes the irradiation strength, i.e.,

B =
c

4
Er(t), (2.66)

and ᾱ is the average absorption coefficient. The term ᾱS is often referred to as the
equivalent absorption area of the room and is denoted by A. Eq. 2.65 can now be
written as

Ws = V
dEr(t)

dt
+
cA

4
Er(t). (2.67)

This equation states that the rate at which energy is absorbed by the surfaces
(

cA
4 Er(t)

)
plus the rate

(
V dEr(t)

dt

)
at which it increases throughout the room must equal the rate

at which energy is being produced by the source. Using the time-constant

τ =
1
2δ̄

=
4V
cA

(2.68)

Eq. 2.67 can be rewritten as

4Ws

cA
= τ

dEr(t)
dt

+ Er(t). (2.69)

Let us now study the energy density in case an acoustic source Ws(t) is switched on
at t = 0 and switched off at time t = ts. The evolution of the energy density can be
divided into three different stages, i.e., the (i) sound growth, (ii) steady state, and (iii)
sound decay, and is depicted in Fig. 2.4.

i) Sound Growth: Assuming that the source starts at time t = 0, the solution of
the differential equation in Eq. 2.67 may be expressed as

Er(t) =
4Ws(t)
cA

(
1− e−t/τ

)
. (2.70)

ii) Steady-State: For steady-state conditions Ws(t) is constant and the differential
quotient in Eq. 2.67 is zero. The energy density is then given by

Er(t) =
4Ws(t)
cA

. (2.71)
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Figure 2.4 Energy density during sound growth, steady-state, and sound decay.

iii) Sound Decay: If the sound source is switched off at t = ts, i.e., for Ws(t) = 0
for ts ≥ 0, the differential equation Eq. 2.67 becomes homogeneous and has the
solution

Er(t) = E0 e−t′/τ for t′ ≥ 0, (2.72)

where t′ = t − ts, and E0 denotes the initial energy density in J/m3 at t = ts.
Eq. 2.72 may also be written in terms of the average damping constant δ̄ using
the relation 1/τ = 2δ̄ [41], which results in

Er(t) = E0 e−2δ̄t′ for t′ ≥ 0. (2.73)

2.7.3 Spectral Deviation Measure

A pressure spectral response can be measured by placing an omnidirectional micro-
phone at a distance D from the source. The source is driven by a pure sine wave so
which is slowly varied in frequency, with the acoustic power output of the source main-
tained at a constant level. The microphone, which has a constant response over the
frequency range, is connected to a recording device which records the magnitude of the
steady-state sound pressure versus frequency. At any frequency, the complex sound
pressure P (r;ω) at the microphone is the vector sum of a direct component Pd(r;ω)
from the source and the reverberant components Pr(r;ω) which arrive at amplitudes
and phases that are, in general, different from the direct component and from each
other. Above the Schroeder frequency fg it can be assumed that the reverberant com-
ponents are the results of large numbers of simultaneously excited, but uncorrelated,
normal modes.

In SRA it is often assumed that the real and imaginary parts Re{Pr(r;ω)} and
Im{Pr(r;ω)} of the reverberant pressure are zero-mean with Gaussian probability den-
sities. The expected value of the square of the magnitude of the reverberant pressure



44 Room-Acoustics Prerequisites

Pr(r;ω) may be expressed

E{|Pr(r;ω)|2} = E
{

(Re{Pr(r;ω)})2
}

+ E
{

(Im{Pr(r;ω)})2
}
, (2.74)

where E{·} denotes the mathematical expectation. Without any loss in generality, it
can be assumed the direct pressure, Pd(r;ω), has only a real part. The total measured
pressure P (r;ω) is the vector sum of Pd(r;ω) and Pr(r;ω). Assuming that the direct
and reverberant pressures are independent we have

E{|P (r;ω)|2} = |Pd(r;ω)|2 + E{|Pr(r;ω)|2}. (2.75)

The acoustic intensity level relative to the expected acoustic intensity is

I(r;ω) = 10 log10

(
|P (r;ω)|2

E{|P (r;ω)|2}

)
[dB]. (2.76)

The standard deviation σ of the intensity level (commonly called spectral deviation)
is a measure for the randomness of the spectral response [16] and is given by

σ(r) =
(

1
ωe − ωs

∫ ωe

ωs

(
I(r;ω)− Ī(r)

)2 d ω
)0.5

[dB], (2.77)

where ωs (ωs > 2πfg) and ωe denote the start- and end-frequency of the region of
interest, and Ī(r) = 1

ωe−ωs

∫ ωe

ωs
I(r;ω)d ω denotes the average intensity level.

The spectral response between the source and the microphone is defined by the ATF
H(r, rs, ω). Therefore, we can calculate σ directly from the ATF by

σ(r, rs) =
(

1
ωe − ωs

∫ ωe

ωs

(
10 log10 |H(r, rs;ω)|2 − H̄(r, rs)

)2
d ω
)0.5

[dB], (2.78)

where H̄(r, rs) = 1
ωe−ωs

∫ ωe

ωs
10 log10 |H(r, rs;ω)|2d ω.

Schroeder proved that σ has a theoretical upper-bound of approximately 5.57 dB [74].

2.8 Reverberation Time

Sabine’s pioneering research [41] started the field of modern room acoustics and estab-
lished many important concepts, most importantly the concept of reverberation time.
Sabine determined that the reverberation time was proportional to the volume of the
room and inversely proportional to the amount of absorption. Because the absorptive
properties of materials vary as a function of frequency, the reverberation time varies
as well.

The reverberation time can be measured by exciting a room to steady state with a
noise signal, turning off the sound source, and plotting the resulting squared pressure
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Figure 2.5 (a) Energy Decay Curve and (b) Energy Decay Relief of the AIR depicted
in Fig. 2.8.

as a function of time [75]. The time required for the resulting Energy Decay Curve
(EDC) to decay 60 dB is defined as RT60. The true energy decay curve can be obtained
by integrating the impulse response of the room as follows: [76]

EDC(t) =
∫ ∞

t

h2(τ) dτ, (2.79)

where h(t) is the impulse response of the room which may be band-pass filtered to
yield the EDC for some particular frequency band. The integral in Eq. 2.79, which
is often called the Schroeder integral, computes the energy remaining in the impulse
response after time t. As an example, the normalized energy decay curve3 of the
measured AIR shown in Fig. 2.8 is depicted in Fig. 2.5(a).

Jot [77] proposed a variation of the EDC that he called the Energy Decay Relief (EDR)
or EDR(t, f). The EDR represents the reverberation decay as a function of time and
frequency in a 3D plot. To compute it, the impulse response is divided into multiple
frequency bands, the Schroeders integral is computed for each band, and the result
are plotted as a 2D surface. As an example, the energy decay relief of the measured
AIR shown in Fig. 2.8 is depicted in Fig. 2.5(b). Because the walls and air absorb
the high frequencies more than the low frequencies the decay at high frequencies is
faster than the decay at low frequencies. Consequently, the reverberation time at high
frequencies is shorter than the reverberation time at low frequencies.

2.9 Excess-Phase

The acoustic transfer functions are usually non-minimum-phase. Since stable and
causal inverses of non-minimum-phase systems do not exist, a problem investigated in

3Note that the EDC is often normalized with respect to the total energy of the AIR.
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Section 3.3.4, it is important to known the contribution of the non-minimum-phase or
excess-phase in Eq. 2.22 to the intelligibility of speech. Johansen and Rubak [78] have
considered this question in detail trough a number of listening tests:

i) An anechoic speech signal is compared with the same signal filtered by the all-
pass component of a real acoustic impulse response.

ii) An anechoic speech signal filtered by the minimum-phase component of a real
AIR is compared with the same anechoic speech signal filtered by the complete
impulse response.

The minimum-phase and all-pass component of Eq. 2.22 are extracted from a non-
minimum-phase impulse response using the cepstrum method. Results from the first
experiment indicate that the all-pass component affects the anechoic speech signal
sufficiently for detection by the human ear. The second experiment indicates that if
the excess-phase component is removed from the reverberant speech signal, there is still
an audible difference, but less than the first experiment. These experiments suggest
that the minimum-phase component, which contains the magnitude information, is
able to partly mask the effect of excess-phase. However the ability of excess-phase
to degrade speech quality is significant. The importance of phase in signals has been
discussed in depth by Oppenheim and Lim [79]. Some of their comments are relevant
here, particularly where they argue that phase reflects the location of events more than
the magnitude. Acoustic distortion is mainly due to the arrival, or temporal locations,
of early and late reflections. Much of this temporal information will be reflected in
the phase response rather than the magnitude response and therefore it is important
to consider excess-phase. The work in [78, 80] also reinforces the observation that
the longer the reverberation time, the more excess-phase is present, and the lower the
observed speech quality. Moreover, the longer the impulse response and the larger the
distance between the source and the observer, the larger the degradation of the speech
quality. As the distance between the source and observer increases, the measure of
direct energy to reverberant energy, as discussed is Section 2.7.1, decreases rapidly,
with a rate of decrease higher in rooms with small volume or long reverberation time.
As a result it is crucial that dereverberant techniques do not neglect the excess-phase
of the ATF. Further discussion of the importance of phase distortion due to non-
minimum-phase systems may be found in a paper by Radlović and Kennedy [2].

2.10 Simulating room acoustics

Although this dissertation is primarily concerned with modelling the impulse response
of a real room, it is instructive to consider room acoustic modelling methods which
simulate the impulse response of a room. In this section a brief overview of various
room acoustic modelling methods is presented.

Mathematically the sound propagation is described by the wave equation. An im-
pulse response from a source to a microphone can be obtained by solving the wave
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Figure 2.6 Room acoustic models are based on sound rays (ray-based), on solving the
wave equation (wave-based) or some statistical method [81].

equation. Since it can seldom be expressed in an analytic form the solution must be
approximated. There are three main modelling methods, as illustrated in Fig. 2.6,
viz., wave-based, ray-based and statistical [81]. The ray-based methods, such as the
ray-tracing [82] and the image-source method [83], are the most often used. The
wave-based methods, such as the Finite Element Method (FEM), Boundary Element
Method (BEM) [84, 85] and Finite-Difference Time-Domain (FDTD) [86] methods,
are computational more demanding. In real-time auralization4 the limited compu-
tation capacity requires simplifications. A frequently used simplification consists of
modelling the direct path and early reflections individually and the late reflections
by recursive digital filter structures. The statistical modelling methods, such as the
Statistical Energy Analysis (SEA), have been widely used in aerospace, ship and au-
tomotive industry for high frequency noise analysis and acoustic designs. They are
not suitable for auralization purposes since those methods do not model the temporal
behaviour of a sound field.

Wave-based methods

The most accurate results can be achieved by the wave-based methods. An analytical
solution for the wave equation can be found only in extremely simple cases such as a
rectangular room with rigid walls. Therefore, numerical methods such as FEM and
BEM [85, 84] are often used. The main difference between these two element methods
is in the element structure. In FEM, the space is divided into volume elements, while
in BEM only the boundaries of the space are divided into surface elements. The
elements interact with each other according to the basics of wave propagation. The
size of these elements has to be much smaller than the size of the wavelength for every

4Auralization is the process of rendering audible, by physical or mathematical modelling, the sound
field of a source in a space, in such a way as to simulate the binaural listening experience at a given
position in the modelled space.
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particular frequency. At high frequencies, the required number of elements becomes
very high, resulting in a large computational complexity. Therefore, these methods
are suitable only for low frequencies and small enclosures.

Another method for room acoustics simulation is provided by the FDTD method
[86, 87]. The main principle of this method is that derivatives in the wave equation
are replaced by corresponding finite differences. The FDTD method produces im-
pulse responses that are better suited to auralization than FEM and BEM. The main
benefit of the element methods over FDTD methods is that one can create a denser
mesh structure where required, such as locations near corners or other acoustically
challenging places.

In all the wave-based methods, the most difficult part is the definition of the boundary
conditions. Typically a complex impedance is required, but it is hard to find that data
in existing literature.

Ray-based methods

The ray-based methods are based on geometrical room acoustics [41], as described
in Section 2.2. The most commonly used ray-based methods are the ray-tracing [82]
and the image method [83]. The main difference between these methods is the way
the reflection paths are calculated [81]. To model an ideal impulse response from a
source to a receiver all possible sound reflection paths, commonly called rays, should
be discovered. In ray-tracing methods the sound power emitted by a sound source
is described by a finite number of rays. These rays propagate through space and are
reflected after every collision with the room boundaries. During that time, their energy
decreases as a consequence of the sound absorption of the air and of the walls involved
in the propagation path. When the rays reach the receiver, an energy calculation
process is performed. When all rays are processed the impulse response is obtained.
Rays can be selected at random, based on a fixed interval or restricted to a given range
of angles. Due to this the ray-tracing methods are by no means exhaustive, whereas
the image method finds all the rays. However, while the image method is limited to
geometries that are formed by planer surfaces the ray-tracing method can be applied
to geometries that are formed by arbitrary surfaces.

It should be mentioned that all ray-based methods are based on energy propagations.
This means that all effects involving phase differences such as refraction or interference
are neglected. This is admissible if the sound signals of interest are not sinusoids or
other signals with small frequency bandwidth but are composed of many spectral com-
ponents covering a wide frequency range. Then it can be assumed that constructive
and destructive phase effects cancel each other when two or more sound field compo-
nents superimpose at a point, and the total energy in the considered point is simply
obtained by adding their energies. Components with this property are often referred
to as mutually incoherent [88].

The image method, which was developed by Allen and Berkley in 1979, is probably one
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of the methods most commonly used in the acoustic signal processing community. In
this dissertation we have used the image method to create synthetically reverberated
signals. Details of this method, and an efficient implementation, can be found in
Appendix A.

2.11 Acoustic Impulse Measurement

The acoustic impulse response is the main acoustical property of interest in derever-
beration, and its measurement can be considered as a system identification problem.

Acoustic impulse responses can be acquired using White Gaussian Noise (WGN) se-
quences. Impulsive excitations are usually avoided since they are always approximated
by short finite pulses and, furthermore, in order to attain a given Signal to Noise Ratio
(SNR), the energy of the excitation must exceed a limit which could exceed the linear
region of the devices, e.g., microphones and loudspeakers. Frequency sweeps are used
when the impulse response must be measured in a short time, whereas long WGN
sequences are required in order to attain a reasonable SNR.

The use of Maximum Length Sequences (MLS) forms a powerful method for the ac-
curate determination of impulse responses in Linear Time-Invariant (LTI) systems.
The method is based on the use of a deterministic pseudo-random stimulus, which is
cross-correlated with the acquired response to yield the impulse response of the system
under test. In literature, maximum length sequences are also known as pseudo-noise
sequences, maximal-length shift register sequences or m-sequences. The MLS method
is suitable for exceedingly long impulse responses, from which very finely scaled fre-
quency responses can be calculated.

Binary maximum length sequences have a period of 2N − 1, where N is a positive
integer. The sequences are generated recursively using a digital shift register with N
binary elements (c.f. Fig. 2.7). The shift register output x(n) is produced at the last
register element. The output and up to three other register elements, commonly called
taps, are summed together using the bitwise exclusive-or (XOR) function. The result is
fed back into the first element after shifting the register contents one element towards
the output. Only certain shift register tap and order combinations cycle through all
of the 2N − 1 states, i.e., all states minus the null-state, and lead to maximum length
sequences. Suitable tap combinations for common register lengths can be found in
[89, 90].

In practical applications, the binary MLS is commonly mapped from values (0, 1)
to symmetrical signal levels (1, −1), which is called a symmetrical MLS. Due to the
sequence properties, the sum of a symmetrical MLS is always −1. This results in an
important factor for impulse response measurements: the symmetrical MLS signal is
practically AC coupled, and contains very little energy at DC.

The MLS has the desirable property that its normalized periodic auto-correlation
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Figure 2.7 Shift register for generating maximum length sequences.

approximates a Dirac pulse, i.e.,

r̃xx(m) =
1
L

L−1∑
n=0

x(n)x((n+m) mod L) for |m| ≤ L− 1 (2.80)

= δ̂(m),

where L = 2N − 1, and

δ̂(m) =

{
1, for m = 0;
− 1

2N−1
, for 1 ≤ |m| ≤ L− 1.

(2.81)

Eq. 2.81 can be written as

δ̂(m) =
L+ 1
L

δ(m)− 1
L

for 0 ≤ |m| ≤ L− 1. (2.82)

For large L the normalized periodic auto-correlation results in

δ̂(m) ≈ δ(m) for 0 ≤ |m| ≤ L− 1. (2.83)

Which implies that the frequency spectrum of the MLS is approximately flat.

Due to this property the estimation of the AIR, denoted by h(n), can simply be
obtained by calculating the periodic cross-correlation between the transmitted MLS
x(n) and the received signal y(n), i.e.,

r̃xy(m) =
1
L

L−1∑
n=0

x(n)y((n+m) mod L) for |m| ≤ L− 1

=
1
L

L−1∑
n=0

x(n)

L−1∑
j=0

h(j)x((n+m− j) mod L)


=

1
L

L−1∑
j=0

h(j)

(
L−1∑
n=0

x(n)x((n+m− j) mod L)

)

=
L−1∑
j=0

h(j)r̃xx(m− j)

= ĥ(m). (2.84)
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Figure 2.8 Measured acoustic impulse response.

Using Eq. 2.80 and 2.81 ĥ(m) can be written as

ĥ(m) =
L−1∑
j=0

h(j)δ̂(m− j)

= h(m) +
h(m)−

∑L−1
j=0 h(j)

2N − 1
. (2.85)

From this last equation it can be seen that the error depends on the order of the
MLS and the AIR h(m). Note that the periodic cross-correlation can be efficiently
calculated in time domain by using the Fast Hadamard Transform [91], or in frequency
domain by using the Fourier transform. The measurement noise can be reduced by
averaging the impulse responses in time or frequency domain.

The AIRs that are used in this dissertation to create real reverberated signals are
measured using the MLS technique. An example of a measured AIR in an office room
with a reverberation time of 0.5 s is depicted in Fig. 2.8.

2.12 Summary

In this chapter we have introduced some basic theoretical acoustic properties which
are important for understanding why particular models are used throughout this work.
The suitability of some well-known models for the representation of room acoustics
were discussed. Furthermore, the robustness of these models to variations in the source
and observer position, and the effect of parameter variation on the accuracy of the
model were discussed. Commonly used models include the pole-zero, all-zero, all-pole,
and common-acoustical pole. However, determining which model is most robust to
source and microphone movements, is an ongoing discussion.

The background of statistical room acoustics was provided. We showed when statistical
room acoustics can be used, and summarized some important properties of the acoustic
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transfer function that are used throughout this work.

Furthermore, the contribution of non-minimum-phase to the perception of reverber-
ation was discussed, and it was observed that it is important that this component is
not neglected since it contains most of the reverberant energy.

Finally, we showed how acoustic impulse responses can be simulated and measured
in practice. In this dissertation we use the image method (see Appendix A for more
details) to generate synthetic acoustic impulse responses. The real acoustic impulse
responses were measured using maximum length sequences.



Chapter 3

Literature Survey

3.1 Introduction

In a patent [92] filed by Ryall in 1938, an electric signal amplifier was proposed for a
two-way transmission system for voice-operated devices. In this patent the problem
caused by reverberation was briefly discussed. It was noticed that reverberation was
most severe at low frequencies. As such the amplification in this frequency range was
limited. Since the early days of digital signal processing many dereverberation tech-
niques have been proposed. Only recently a short review article on speech dereverber-
ation techniques was published by Naylor and Gaubitch in [93]. However, since there
is no comprehensive literature survey on speech dereverberation techniques available,
we will categorize and review existing techniques in this chapter.

Reverberation reduction techniques can be divided into many categories. They may,
for example, be divided into single- or multi-microphone techniques and into those
primarily affecting colouration or those affecting late reverberation. We have catego-
rized the reverberation reduction techniques depending on whether or not the acoustic
impulse response needs to be estimated. We then obtain two main categories, i.e.,
reverberation suppression and reverberation cancellation. Techniques in the first cat-
egory, reverberation suppression, do not require an estimate of the acoustic impulse
response while techniques in the second category, reverberation cancellation, do re-
quire an estimate of the acoustic impulse response. Techniques within these categories
can be divided into smaller sub-categories depending either on the amount of knowl-
edge about the source or the acoustic channel that is utilized. In Fig. 3.1 the two main
categories and sub-categories are depicted. The techniques used in the categories re-
verberation suppression and reverberation cancellation will be discussed in Sections
3.2 and 3.3, respectively.

53
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Figure 3.1 Classification of various techniques used for speech dereverberation.

3.2 Reverberation Suppression

In this section we will give a comprehensive overview of the reverberation suppression
techniques that have been proposed until now. We have created smaller sub-categories
by taking into account the amount of knowledge about either the source or the acoustic
channel that is utilized, and by looking at the signal processing techniques that are
involved.

3.2.1 Explicit Speech Modelling

Techniques that belong to this category exploit the underlying structure of the anechoic
speech signal. Hardwick developed a Dual Excitation speech model in 1992, which was
applied to the problem of speech enhancement in [94]. This model was extended by
Yoo to a Generalized Dual Excitation speech model by taking pitch variations into
account [95]. It should be noted that both models are mainly based upon the voiced
speech segments.

Brandstein exploited the Dual Excitation model to model the speech signal in com-
bination with spatial filtering to enhance reverberant speech in [96]. The Generalized
Dual Excitation model was later used in [97].
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Attias and Deng proposed a unified probabilistic framework for denoising and dere-
verberation of speech signals in [98]. The framework transforms the denoising and
dereverberation problems into Bayes-optimal signal estimation. The key idea is to use
a strong speech model that is pre-trained on a large data set of anechoic speech. The
framework applies equally well to single- and multiple-microphone cases. Experiments
show that the optimal estimation can outperform standard techniques such as the
spectral subtraction in terms of noise suppression. Unfortunately the dereverberation
performance was not evaluated separately. A disadvantage of this technique is that
the result strongly depends upon the model training.

3.2.2 LP Residual Enhancement

The source-filter production model is often used for modelling speech [99]. The model
describes speech production in terms of an excitation sequence exciting a time-varying
all-pole filter. The excitation sequence consists of random noise for unvoiced speech
and quasi-periodic pulses for voiced speech, while the filter models the human vocal
tract. The all-pole filter coefficients can be estimated through Linear Prediction (LP)
analysis of the recorded speech and are commonly called Linear Prediction Coeffi-
cients (LPC). The excitation sequence, or LP residual, can be now obtained by inverse
filtering of the speech signal. The motivation for the proposed techniques is the ob-
servation that in reverberant environments, the LP residual of voiced speech segments
contains the original impulses followed by serval other peaks due to multi-path reflec-
tions. Furthermore, an important assumption is made that the LPCs are unaffected
by reverberation. Consequently, dereverberation is achieved by attenuating the peaks
in the excitation sequence due to multi-path reflections, and synthesizing the enhanced
speech waveform using the modified LP residual and the time-varying all-pole filter
with coefficients calculated from the reverberant speech.

In Fig. 3.2 a general structure for multi-microphone LP residual enhancement is de-
picted. Here x(n) contains the samples of M microphones at discrete time n. In
the LP coefficient analysis stage the poles of the time-varying all-pole filter â(l) are
estimated (here l denotes the time frame index), and the M LP residuals ẽ(n) are
constructed. The LP residuals are used to estimate the clean LP residual ê(n). Then
the estimated clean LP residual and the estimated poles are used to synthesize the
speech signal ŝ(n).

The first speech dereverberation algorithms using the LP residual enhancement tech-
nique were most likely proposed by J.B. Allen and F. Haven, from Bell Telephone

x(n)

Analysis
LPC ẽ(n) LP Residual

Processing

â(l)

ê(n) LPC
Synthesis

ŝ(n)

Figure 3.2 General structure for multi-microphone LP residual enhancement.
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Laboratories Inc., in a patent that was filed in 1972 [100]. In this patent both single
and multi-microphone solutions were proposed. They used a detector to distinguish
between voiced and unvoiced speech frames, a pitch estimator, and a gain estimator.
All signals were then used to synthesize a clean LP residual. Using the estimated vocal
tract an estimate of the anechoic speech signal was constructed.

LP residuals were also used by Griebel and Brandstein in 1999. In [101] a technique for
enhancing multi-channel reverberant speech using event-based processing of wavelet
transform coefficients was proposed. Clustering of the wavelet extrema across multiple
channels is employed to obtain a single multi-scale extrema representation from which
the enhanced signal is synthesized. Processing is done in the LP residual domain, with
the entire analysis being preceded by a multi-channel LPC inverse filter and followed
by the corresponding forward LPC filter. The algorithm was compared to delay and
sum beamforming and results were presented for reverberant and noisy conditions. By
focusing on event-based data and a wavelet-domain analysis, the proposed algorithm is
capable of discriminating impulses of the excitation residual generated by the desired
speech signal from those brought about by multi-path echoes and uncorrelated noise.
The enhanced speech derived from an all-pole synthesis with the clean excitation
sequence demonstrates a robustness to environmental reverberation and additive noise.

Another multi-channel dereverberation technique is proposed by Griebel and Brand-
stein in [102]. They used a coarse channel modelling to modify the LP residuals of the
channel data. Specifically, the incorporated channel model requires only approximate
time and amplitudes of the initial multi-path reflections.

Yegnanarayana and Murthy proposed a single microphone technique to dereverberate
speech [103, 104], and provided a comprehensive study on the effects of reverberation
on the LP residual. The technique is based on analysis of short (2 ms) segments of data
to enhance the regions in the speech signal having low Signal to Reverberation Ratio
(SRR) components. The short segment analysis shows that SRR is different in different
segments of speech. The processing technique involves identifying and manipulating
the LP residual in three different regions of the speech signal, namely, high SRR region,
low SRR region and only reverberation component region. A weighting function is
derived to modify the LP residual. The weighted residual samples are used to excite
the time-varying LP all-pole filter to obtain perceptually enhanced speech.

Experiments performed by Gillespie [105] showed that the kurtosis of the LP resid-
ual is a reasonable measure of reverberation. The LP residual signal becomes more
Gaussian due to reverberation, consequently, the kurtosis becomes smaller. In [105]
the microphone signals are processed by a sub-band adaptive filtering structure using
a Modulated Complex Lapped Transform (MCLT), in which the sub-band filters are
adapted to maximize the kurtosis of the LP residual of the reconstructed speech. In
this way, they attain good solutions to the problem of blind speech dereverberation.
Experimental results with actual data, as well as with artificially difficult reverberant
situations, show very good performance, both in terms of a significant reduction of
the perceived reverberation, as well as improvement in spectral deviation. However,
the calculation of the kurtosis and its derivative are prone to instability [106, 107]. In
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order to reduce this sensitivity, a single-channel blind dereverberation algorithm that
uses a maximum likelihood approach to estimate the inverse filter was proposed by
Tonelli et al. in [106], and was recently extended to multiple channels [108]. Their
simulation results showed that good dereverberation is achieved even in real room, al-
though pre-processing might be necessary, particularly for widely spaced microphones.
Both the kurtosis and maximum likelihood based algorithms require sufficient spacing
between the microphones.

Yegnanarayana et. al. proposed a multi-channel speech enhancement technique in
[109] which is based on exploiting the features of the excitation source in speech
production. The most important property is that in voiced excitation the strength of
excitation is largest around the instant of glottal closure. The Hilbert envelope of the
LP residual was used to derive the information of the strength of excitation. A weight
function was derived by coherently combining the delay compensated Hilbert envelopes
of the LP residual signals from the different microphones. The enhanced speech was
again obtained by exciting the time-varying all-pole filter with the LP residual modified
by the weight function. The reverberation effects are reduced significantly, however,
the proposed technique introduces a significant amount of speech distortion.

The techniques proposed by Griebel, Yegnanarayana and Gillespie reduce the effects
of reverberation, but do not consider the original structure of the excitation signal.
The enhanced residual can differ from the original clean residual and can result in less
natural sounding speech. Gaubitch and Naylor proposed to enhance the LP residual
from the output of a delay and sum beamfomer [110]. They used the fact that the
waveform of the LP residual between adjacent larynx-cycles1 varies slowly, so that each
such cycle can be replaced by an average of itself and its nearest neighbouring cycles.
The averaging results in a suppression of spurious peaks in the LP residual caused by
room reverberation. In this paper only voiced speech segments were addressed.

Above techniques rely on the observation that in reverberant conditions the LP resid-
ual contains the original excitation impulses followed by several other peaks due to
reverberation. Moreover, they rely on the important assumption that the calculated
LP coefficients of the all-pole filter are unaffected by the multi-path reflections of the
room. Gaubitch and Naylor showed that this latter assumption holds only in a spa-
tially averaged sense [111], and that it can not be guaranteed at a single point in space
for a given room. More recently Gaubitch et al. used statistical room acoustic theory
for the analysis of the Auto Regressive (AR) modelling of reverberant speech [69].
They investigated three scenarios, and showed that in terms of spatial expectation,
the AR coefficients calculated from reverberant speech are approximately equivalent
to those from anechoic speech both in the single-channel case and in the case when
the coefficients are calculated jointly from an M -channel observation. Furthermore,
it was shown that the AR coefficients calculated at the output of a delay and sum
beamformer differ from the anechoic speech coefficients due to spatial correlation,
which is governed by the room characteristics and the microphone array arrangement.
This difference decreases as the distance between adjacent microphones is increased.

1The larynx-cycle starts when the glottis opens, and ends when the glottis closes. The length of
a larynx-cycle is approximately 20 ms.
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It was also demonstrated that AR coefficients calculated jointly from the M -channel
observation provide the best approximation of the anechoic speech AR coefficients at
individual source-microphone positions and in particular when the microphone sep-
aration is small < 0.3 m. Thus, in general, the M-channel joint calculation of the
AR coefficients is the preferred option, specifically in the case of closely spaced mi-
crophones. It should be noted that all analyses have been performed using a single
vowel, i.e., the effects of windowing, self-masking, and overlap-masking, are not con-
sidered in this paper. It is expected that proper calculation of the LP coefficients, i.e.,
using spatially averaged LP coefficients, improves the quality of earlier published LP
residual enhancement techniques.

3.2.3 Temporal Envelope Filtering

The temporal envelope filtering techniques try to model the relation of the envelopes
of the anechoic and reverberant speech waveforms, aiming at the enhancement of
single microphone recorded reverberant speech. Most techniques were motivated by
studies on the effect of reverberation on the Modulation Index (MI) of speech and
the reduction of intelligibility in reverberant environments [112]. The speech signal is
amplitude modulated, the modulation index, also called modulation depth, indicates
by how much the modulated variable varies around its ‘original’ level. Tails produced
by past acoustic events fill in low energy regions between consecutive sounds reducing
the modulation depth of the original envelope and thus modifying its MI. A general
structure used for temporal envelope filtering is depicted in Fig. 3.3. In the first stage
the temporal envelope is extracted. In some cases the obtained envelope is used to
estimate the required parameters, e.g., the reverberation time. In the next stage the
envelope signal is filtered to construct an estimate of the anechoic envelope. In the
final stage the anechoic speech signal is reconstructed using the fine structure of the
reverberant signal. Notice that in this case the phase modifications in the fine structure
are not considered.

Berkley and Mitchell (Bell Telephone Laboratories Inc.) filed a patent for automati-
cally reducing reverberation in typical voice telecommunications systems in 1978 [113].
This system uses center clipping levels adaptive to the level of reverberation input
speech. In one configuration, the speech spectrum is divided into two sub-bands, and
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Figure 3.3 General structure for temporal envelope filtering.
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center clipping was applied only to the lower band. They suggested to use a clipping-
level holdover circuitry with exponential decay, which appears to work well for a large
variety of reverberant enclosures. The complete system was implemented using analog
circuits and was based on the temporal envelope of the signal.

Langhans and Strube proposed an enhancement technique for speech signals corrupted
by reverberation or noise where they appropriately filtered the envelope signals in
critical frequency bands based on short-time Fourier transform (STFT) [114]. They
used a theoretically derived inverse Modulation Transfer Function (MTF) as high-
pass filtering. The MTF of a reverberant room can be derived from a single impulse
response and is defined as:

M(ω) =

∞∫
0

h2(t)eιωtdt

∞∫
0

h2(t)dt
, (3.1)

where ι =
√
−1. Using Eq. 2.43 and 2.37 it can be shown that [115]:

|M(ω)| =

(
1 +

(
ω

RT60

13.8

)2
)− 1

2

. (3.2)

Another attempt was made by Hirsch using ad hoc high-pass filtering [116]. Avendano
and Hermansky [117] used a training sequence to estimate the temporal envelope filters
for each sub-band. The filters are applied to the short-term power spectrum trajecto-
ries of speech based on the STFT. Although an audible reduction of reverberation is
achieved some severe artifacts are introduced.

Mourjopoulos showed that reverberation reduction can be achieved by envelope decon-
volution in each frequency sub-band, which recovers the envelope of the anechoic signal
from the measured speech envelope [118]. The final reconstruction of the speech wave-
form was performed using the original phase function. The structure of the proposed
scheme is depicted in Fig. 3.4. In this work Mourjopoulos assumed that the inverse
filter could be estimated in advance. Later, Hirobayashi et al. proposed the power
envelope inverse filtering technique [119]. This technique differs from Mourjopoulos in
the signal definition of the envelope (amplitude or power) and the carrier (sine-wave or
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white noise) based on the amplitude modulation representation. Hirobayashi derived
the following inverse filter using Eq. 2.43

Hinv(z) = σ2
b

(
1− e−

13.8
RT60fs z−1

)
, (3.3)

where z = eιωt and σ2
b denotes the variance of b(t) in Eq. 2.43. Unfortunately only

synthetic speech signals and impulse responses were used for testing.

The techniques proposed by Hirobayashi and Mourjopoulos in [118, 119] try to restore
the temporal envelope from reverberant speech. The techniques in [114, 116, 117] at-
tempted to restore the modulation index of reverberant speech to suppress the degra-
dation of speech intelligibility caused by reverberation.

Recently Unoki et al. proposed an improved technique based on the MTF concept for
restoring the power envelope from a reverberant speech signal [120, 121]. They used a
similar structure as depicted in Fig. 3.4 and proposed a technique to blindly estimate
the required parameters, i.e., σ2

b and the reverberation time RT60, to construct the
inverse filter. They concluded that the enhancement of the fine structure, i.e., phase
or carrier information, should not be disregarded but needs to be addressed to improve
speech intelligibility.

3.2.4 Spectral Enhancement

The spectral enhancement techniques discussed in this section achieve dereverberation
by modifying the short-time spectrum of the received microphone signal(s). This
technique dates back to the work of Allen et al. in 1977 [122].

Allen et al. [122] used sound recordings of two microphones, and processing was
performed in the frequency domain. The process uses a sub-band technique and, within
each band, the delay existing between the ‘coherent part’ of the two microphone signals
(i.e., the actual signal and early reflections but not the late reflections) is removed by
shifting the phase of one signal to align it with the other. These phase corrected signals
are then summed and the entire process is referred to as co-phase and add in bands.
The gain of each band is then adjusted according to the normalized cross-correlation
function of the observed signals, as was devised and implemented in an analog system
by Danilenko in 1968 [123]. This has the effect of attenuating bands with low-levels
of ‘coherence’ containing mainly reverberation, while passing relatively unaltered, or
slightly enhanced, frequency bands with a strong level of ‘coherence’ implying the
presence of a strong direct component and early echoes. This technique was evaluated
by normal and impaired listeners for its ability to enhance the intelligibility of isolated
words recorded in a small room with relative long reverberation time of 1.3 s. In general
no significant change in the average recognition score was observed [124]. Bloom
improved the output by using narrower analysis bands and by deriving a gain function
from a time-varying estimate of the magnitude-squared coherence function, which
was smoothed in frequency domain on a critical-band basis [125]. He concluded that
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these modifications do not necessarily improve the average recognition score. Similar
techniques are used by Hussain in [126, 127].

Lebart et al. proposed proposed a single-microphone spectral enhancement technique
for speech dereverberation [24]. An estimate of the late reverberant energy was ob-
tained directly from the microphone signal, and dereverberation was achieved by using
spectral subtraction. The proposed estimator is based on Polack’s statistical rever-
beration model (see Section 6.3), and only requires an estimate of the reverberation
time. Lebart et al. assumed that the reverberation time was frequency independent,
and implicitly assumed that the energy related to the direct sound could be ignored.

Recently, Wu et al. proposed a two-stage approach for multi-microphone dereverber-
ation [128]. In the first stage the LP residual enhancement technique proposed by
Gillespie [105] was used to enhance the Direct to Reverberation Ratio (DRR). In a
second stage spectral subtraction was used to reduce late reverberation. They used
a heuristic function to estimate the late reverberant energy, thereby assuming that
the first stage was able to reduce a significant amount of reverberation. In [129] a
single-microphone solution was proposed by the same authors using a similar two-
stage approach.

3.2.5 Spatial Processing

Spatial Processing techniques can be used for multi-microphone speech dereverbera-
tion. The signals can be manipulated to enhance or attenuate signals emanating from
particular directions. Using these techniques the reverberant part can be spatially
separated from the direct signal. Most techniques require some a priori knowledge of
the position of the source.

Spatial processing techniques can be classified using all kinds of properties, e.g. array
configuration, filter design and algorithms. An extensive overview can be found in
‘Optimum Array Processing’ written by Van Trees [130]. A rather educational tutorial,
focusing on the enhancement of speech signals, has been written by McCowan [131].
The majority of research has been focusing upon enhancing the robustness in noisy
environments. Experiments and analyses of spatial processing techniques usually do
not focus on dereverberation capabilities, which makes the comparison difficult.

Fixed Beamforming

Microphone arrays achieve directionality by exploiting the fact that an incoming acous-
tic plane wave will generally arrive at the different microphones at slightly different
times. The frequency components of these sounds could either reinforce or cancel, de-
pending on the angle of arrival, the frequency of the component, the distance between
the microphones, and the geometry of the microphone array. As a result, by summing
the microphone outputs, the array develops a directional response that favours some
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Figure 3.5 Directivity patterns of uniform linear microphone arrays over a range of
frequencies, (a) using an array of 4 elements, and (b) using an array of 8 elements.

directions over others. Fig. 3.5 shows some sample response directivity patterns from
4-element and 8-element uniform linear arrays with microphones separated by 5 cm.
Note that the largest response is always at 90 degrees, and that as the frequency
increases, the width of the major response beam becomes narrower.

The arrival direction that produces the largest response does not need to be perpendic-
ular to the axis of a linear array, as it normally would be for incident plane waves. By
inserting suitable delays into each channel, an array can be designed to have its max-
imal response in any desired direction. The added delays ensure that, for a particular
frequency, the source signal that arrives from the desired look direction at the micro-
phones, are coherently added. This simple type of array processing is called delay and
sum beamforming. Delay and sum beamforming is popular because it is easy to imple-
ment, because the directional response is stable over all environmental conditions, and
because the directional response is unaffected by reverberation. Nevertheless, direc-
tional selectivity for a given number of microphones is relatively modest, as doubling
the number of microphones increases the Signal to Noise Ratio (SNR) at the output
of the delay and sum beamformer by only 3 dB [132]. Gaubitch and Naylor used tools
from statistical room acoustics in order to predict the expected improvement in DRR
at the beamformer output compared to the best microphone, which is normally the
microphone closest to the source[68]. The improvement, denoted by ∆DRR, is given
by

∆DRR = 10 log10

(
Eθ{DRRdsb}
Eθ{DRRmax}

)

= 10 log10

 Dmin

M−1∑
m=0

M−1∑
n=0

1
DmDn

M−1∑
m=0

M−1∑
n=0

sin (k||rm − rn||)
k||rm − rn||

cos (k(Dm −Dn))

 , (3.4)

where Eθ{·} is the spatial expectation, k denotes the wave number, DRRmax is the
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Figure 3.6 Filter and Sum Beamformer structure, with a plane wave arriving from
an angle θ.

DRR of the microphone closest to the source (with distance Dmin) and DRRdsb is the
DRR at the output of the delay and sum beamfomer. The distance between the source
and the mth microphones is denoted by Dm. From the derived expression it could be
seen that the relative improvement depends only on the microphone spacing and on
the distance of the source from the array, where the effect of the latter decreases as
the distance is increased. Thus, for a given geometric setup the DRR improvement is
independent of the reverberation time. Simulation results were presented to confirm
the validity of the derived expression.

In addition, the frequency dependence of the beam shape seen in Fig. 3.5 poses a num-
ber of problems. One is that the beam narrows as frequency increases. This can be
addressed, for example, by combining nested delay and sum beamformers with differ-
ent microphone spacing to produce an array with relatively constant beam width over
a wide frequency range [133], a technique known as sub-array beamforming. Another
consequence of the frequency dependence of the beam shape is that the frequency
response depends on the arrival angle, which means that a desired speech signal ar-
riving slightly ‘off-axis’ will be subjected to spectral colouration by the array. Since
most current Automatic Speech Recognition (ASR) systems involve some type of spec-
tral pattern matching, this colouration causes a mismatch between input speech and
typical ASR training data, which in turn reduces ASR accuracy. A general set of
solutions to these problems is available through the use of filter and sum beamform-
ing, in which the delays of the delay and sum beamformer are replaced by linear
filters. In Fig. 3.6 such a system is depicted. The mth filter of length L is represented
by wm = [wm(0) wm(1) . . . wm(L − 1)]T . The output of the beamformer is then
constructed using

y(n) =
M−1∑
m=0

wT
mxm(n), (3.5)

where xm(n) = [xm(n) xm(n − 1) . . . xm(n − L + 1)]T . In principle, these filters
can impose different delays or phase shifts at different frequencies, which permits a
much wider and more flexible set of directivity patterns than is possible with delay
and sum processing, at the cost of a much greater number of free parameters to be
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determined. A comprehensive study on the design of robust filters for linear and
non-linear microphone arrays can be found in [134].

Using superdirective beamforming techniques it is possible to achieve superdirectiv-
ity, i.e., spatial selectivity greater than what is obtained with conventional delay and
sum beamforming. These techniques are based upon the maximization of the array
gain, or directivity index, for a well-defined noise field. However, while superdirec-
tivity can be achieved, the actual response can be extremely sensitive to practical
problems such as coefficient errors, incorrect assumptions about the environment, and
misalignment of sensor response or placement. For speech processing applications,
superdirective techniques are useful for obtaining acceptable spatial selectivity at low
frequencies for realistic array dimensions, especially when a so-called endfire array is
used. Bitzer experimentally demonstrated that the ASR performance in a reverberant
environment using a standard superdirective beamformer is superior to the delay and
sum beamformer [135].

Adaptive Beamforming

Fixed Beamformers are easy to implement but have the obvious disadvantage that
they cannot deal with a changing acoustic environment. In adaptive beamforming, the
array-processing parameters are dynamically adjusted according to some optimization
criterion, either on a sample-by-sample or frame-by-frame basis. Most commonly, the
relevant parameters are the coefficients of FIR filters used in a filter and sum beam-
former. Typically the goal of the adaptation algorithm is to maintain a fixed response
to signals arriving from a desired ‘look’ direction, while minimizing the overall en-
ergy of the filter output. The filter can accomplish this by positioning null responses
in the directions of interfering noise sources. Popular adaptive array algorithms in-
clude maximum a posteriori beamforming, Minimum Variance Distortionless Response
(MVDR) beamforming [136], Linear Constrained Minimum Variance (LCMV) beam-
forming, maximum SNR beamforming [137, 138], and linear predictive beamforming.
The MVDR beamforming is also known as optimum beamforming. LCMV beam-
forming is developed from MVDR beamforming with additional linear constraints to
improve its robustness [130]. In MVDR beamforming, the directivity pattern is formed
to maximize the output signal to interference plus noise ratio while maintaining a con-
stant gain in the direction of the desired signal. The MVDR beamforming is sensitive
to Direction of Arrival (DOA) estimation errors and its performance decreases signif-
icantly when an interferer is inside the mainlobe [130]. The LCMV beamforming can
be implemented by placing nulls in the directions of interferers when multiple interfer-
ers are considered. One limitation of the LCMV beamforming is that the number of
microphones has to exceed the number of nulls by one. An efficient implementation of
a LCMV beamformer is the classical Griffiths & Jim Generalised Sidelobe Canceller
(GSC) [139] which is depicted in Fig. 3.7. The GSC consists of two structures: a fixed
beamformer (wq) which produces a non-adaptive output, and an adaptive structure
for sidelobe cancelling. The adaptive structure of the GSC is preceded by a blocking
matrix Ca, which blocks signals coming from the look direction. The weights of the
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Figure 3.7 The generalized sidelobe canceller, which is an efficient implementation of
the LCMV beamformer.

adaptive structure (wa(n)) are then adjusted to cancel any signal common to both
structures.

Adaptive Beamforming and Reverberation

Unfortunately, many traditional adaptive algorithms become ineffective in reverberant
environments. This is because the algorithms assume that the input to the system
consists of a desired signal in the presence of statistically independent noise or other in-
terference. In reverberation, the ‘distortion’ consists of an ensemble of attenuated and
delayed replicas of the desired signal, which violates the assumption of independence
between signal and noise. As an example, in case of the GSC algorithm, the leakage of
the desired signal into the sidelobe cancelling path due to multi-path reflections will
distort or cancel the desired signal. However, this problem can be reduced, but not
solved, in case adaptation is performed in noise-only segments using a Voice Activity
Detection mechanism. Hoshuyama et al. proposed to use an adaptive blocking matrix
to reduce signal leakage, c.f. [140].

A more general beamformer technique, called the Transfer Function Generalized Side-
lobe Canceller (TF-GSC), was proposed by Gannot et al. In [141] they derived a
solution for arbitrary transfer functions, rather than relying on the assumptions that
the received signals are simple delayed versions of the source signal. A sub-optimal
solution was proposed using transfer function ratios that were estimated online. The
blocking matrix was constructed using the same transfer function ratios, thereby sig-
nificantly reducing the leakage of the desired signal. Although this solution can be
used in a moderate reverberant environment it should be noted that it does not reduce
the amount of reverberation.

Affes et al. [137] used a maximum SNR beamforming approach and replaced the
fixed beamformer in the GSC by an adaptive beamformer which maximizes the SNR.
The main advantage of the maximum SNR approach is that early reflections are co-
herently added to the desired speech signal, thereby increasing the DRR. Recently
Warsitz and Haeb-Umbach [138] proposed a stochastic gradient ascent algorithm to
maximize the SNR at the output of the filter and sum beamformer. Unfortunately the
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dereverberation performance of such an approach has not been verified.

Bitzer et al. showed the theoretical amount of noise reduction obtained by a classical
Griffiths & Jim GSC as a function of reverberation time [142]. They concluded that
little reduction is observed for reverberation times greater than 200 ms. In a reverber-
ant environment coherent noise fields trend to diffuse fields. Unfortunately the GSC
is fundamentally unable to reduce diffuse noise sources.

Post-filtering

In practice, the basic filter and sum beamformer or adaptive beamformer, seldom
exhibits the theoretical performance limits, e.g., due to incorrect assumptions about
the environment, and misalignment of sensor response or placement. Furthermore, the
level of improvement that can be obtained by the beamformer is often lower than the
required improvement and further enhancement is desired. One technique of improving
the system performance is to add a post-filter to the output of the beamformer. The
post-filter enhances the beamformer output in the following ways:

• The post-filter suppresses any incoherent noise.

• The post-filter further enhances the beamformer’s rejection of coherent corre-
lated or uncorrelated noise sources not emanating from the steered direction.

• The post-filter displays robustness to minor steering errors.

Marro et al. investigated the effects on noise reduction and dereverberation of mi-
crophone arrays using post-filtering [143]. The experimental results show that for the
reverberation reduction alone, the improvement yielded by the post-filter is limited.
In summary, it is found that the effectiveness of such a post-filter follows that of
the beamformer - if the beamformer is effective, the post-filter will further improve
the system output. However, in the case where the beamformer is ineffective, the
post-filter, being intrinsically linked to the beamformer performance, will be similarly
ineffective. Cohen et al. proposed a multi-microphone post-processor in [144, 145] for
the TF-GSC proposed by Gannot in [141]. The proposed post-processor is designed
only to enhance the noise suppression, and does not reduce reverberation.

3.3 Reverberation Cancellation

The dereverberation problem can be viewed as the inverse filtering of the acoustic
impulse response. In the usual formulation of the deconvolution problem, it is assumed
that the system input s(t) and system output x(t) are both known. In the case of
dereverberation and many other physical cases the system input is unknown. It is in
situations of this kind that we speak of blind deconvolution (see Fig. 3.8). A good
overview of existing blind deconvolution techniques can be found in [146, 147].
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Figure 3.8 Block diagram illustrating the background to the blind deconvolution prob-
lem.

There are two distinct techniques to this problem of blind deconvolution: [148]

• Estimate s(t) directly, or the parameters and excitation of an appropriate para-
metric model, as a missing data problem by treating the parameters of the system
L(t) as nuisance parameters.

• Model the linear system L(t), estimate the parameters of the system L(t) by
treating s(t) as a nuisance parameter, and then deconvolve x(t) with L−1(t) to
recover s(t).

These techniques are in general based on simplistic source signal models. Many blind
deconvolution techniques assume the source signal is contained within a finite support
[149, 150, 151] and that its samples are independent and identically distributed (i.i.d.)
[150, 152]. However, when the source signal is highly correlated, these techniques
cannot be directly applied. Furthermore, many techniques assume quasi-stationarity
of the system, and do not take global non-stationarity into account. Utilizing the global
non-stationarity of the system allows the identification of system characteristics which
may otherwise be unattainable.

In a Single-Input Single-Output (SISO) system the problem is under-constrained and
can only be solved by incorporating varying degrees of prior knowledge regarding
s(t) and L(t), e.g., exploiting time diversity. A characteristic of blind deconvolution
is that the source signal and impulse response of the distortion operator must be
irreducible for unambiguous deconvolution [153]. An irreducible signal is one that
cannot be expressed as the convolution of two or more signal components, on the
understanding that the delta function is not a signal component. Suppose the channel,
h(t), is Linear Time-Invariant (LTI), then the observed signal may be expressed as,
x(t) = h(t)∗s(t), where ∗ denotes convolution. If either h(t) or s(t) are reducible such
that h(t) = h1(t)∗h2(t), and s(t) = s1(t)∗s2(t), then x(t) = h1(t)∗h2(t)∗s1(t)∗s2(t),
and it is impossible to decide which component belongs to the source signal or to the
distortion operator without additional knowledge. Consequently, many linear systems
become reducible when they are considered stationary, and blind deconvolution is
impossible. However, if, in fact, s(t) and L(t) are both quasi-stationary and locally
reducible, but possess different rates of global non-stationarity, then s(t) and L(t) are
no longer globally reducible and, therefore, in this case blind deconvolution is possible.
In a Single-Input Multi-Output (SIMO) system it is also possible to exploit the spatial
diversity of the received signals.
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3.3.1 Blind Deconvolution

Much research has been undertaken on the topic of blind deconvolution. Multi-channel
techniques appear particularly interesting because theoretically perfect inverse-filtering
can be achieved if the Acoustic Impulse Responses (AIR) could be obtained a priori,
and they do not have any common-zeros in the z-plane [154]. To achieve dereverber-
ation without a priori knowledge of the room acoustics, i.e., blind dereverberation,
many traditional techniques assume that the target signal is i.i.d. However, the i.i.d.
hypothesis does not hold for speech-like signals. When applying such traditional decon-
volution techniques to speech, the speech generating process is somehow deconvolved
and the target speech signal is excessively whitened.

Hopgood used a realistic source signal model and uses Baysian parameter estimation
techniques to estimate the unknown parameters [148]. The speech signal is modelled
using a Block Stationary AR process while the room acoustics are modelled using
an all-pole model (see Section 2.5.4). Several examples of blind deconvolution of
reasonable low-order channels are investigated, and the results are encouraging.

Another technique which explores the null space of the correlation matrix, calculated
from the received signals (M ≥ 2), was developed by Gürelli and Nikias [155]. It was
shown that the null space of the correlation matrix of the received signals contains
information on the transfer function relating the source and the microphones. This
observation constitutes the basis of their EVAM algorithm. This technique, although
originally aimed at solving communication problems, has also potential in the speech
processing framework and was extended by Gannot and Moonen [156, 157]. Although
these techniques are supported by theory they have several drawbacks in real-life
scenarios. The Generalized Eigenvalue Decomposition which is used to construct the
null space of the correlation matrix is not robust enough, and quite sensitive to small
estimation errors in the correlation matrix. Furthermore, the matrices involved become
extremely large causing severe memory and computational requirements. Another
problem arises from the wide dynamic range of the speech signal. This phenomenon
may result in an erroneous estimate of the frequency response of the AIRs in the low
energy bands of the input signal. Although some results are very encouraging, these
drawbacks need to be investigated further.

It is well-known that a SIMO system can be equalized blindly by applying multi-
channel LP to its output when the input is white. When the input is coloured, multi-
channel LP will both equalize the acoustic channel and whiten the source. Triki and
Slock [158, 159, 160] exploit the spatial diversity of the channel to estimate the source
correlation structure, which can hence be used to determine a source whitening filter.
The general structure of the proposed solution is depicted in Fig. 3.9. Multi-channel LP
was then applied to the sensor signals filtered by the source whitening filter, to obtain
the dereverberation filters. The estimated dereverberation filters were then applied
to the received signals to obtain the dereverberated speech signal. They increase the
derevreberation accuracy by exploit the time diversity of the source signal, i.e., they
average dereverberation filters that are computed at different time frames. It should
be noted that the order of the whitening filter is of great importance, and affects the
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Figure 3.9 Equalization with pre-whitening.
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Figure 3.10 Linear-predictive multi-input equalization.

dereverberation performance of the complete system. Simulation results showed that
the proposed solution is capable of reducing reverberation in a noise-free environment.

In [161, 162, 163] Delcroix et al. proposed a two-channel dereverberation algorithm
called LInear-predictive Multi-input Equalization (LIME) with a view to solving the
whitening problem of traditional blind deconvolution techniques. The structure of the
proposed technique is depicted in Fig. 3.10. Delcroix et al. also used multi-channel
LP, however, they allowed the source to be whitened and restored the colouration in a
final stage. The prediction filter and AR polynomial a(z) are calculated from a matrix
Q which in practice can be calculated using

Q =
(
E{x(n− 1)xT (n− 1)}

)+ E{x(n− 1)xT (n)}, (3.6)

where A+ is the Moore-Penrose generalized inverse of matrix A. Simulation results
showed that LIME could achieve almost perfect dereverberation for short duration
impulse responses [162]. However, the presence of numerically overlapping zeros among
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the channels prevent the possibility to deal with longer room impulse responses [164].
It is known [165] that the Acoustic Transfer Function (ATF) may have a large number
of zeros close to the unit circle in the z-plane. Consequently, for a small number
of microphones, the channels would contain numerically overlapping zeros and the
dereverberation algorithm would perform poorly. In [164], Delcroix et al. showed how
the use of spatial information, obtained by increasing the number of microphones,
enables one to deal with long duration impulse responses. They also proposed to use
cepstral mean normalization [166] to reduce the effect of the remaining distortions
caused by the overlapping zeros. Experiments showed that, for a reverberation time
of 0.2 seconds, dereverberation is possible in the presence of a coloured noise source
of SNR of 5 dB. In [167] Delcroix et al. address the speech dereverberation problem
in the presence of a coherent noise source. They showed that the LIME algorithm can
achieve both dereverberation and noise reduction.

3.3.2 Homomorphic Deconvolution

A well-known homomorphic deconvolution technique is the cepstum-based technique
[27, 168, 169, 170]. The underlying motivation is the fact that deconvolution in the
time-domain corresponds to division in the frequency-domain and subtraction in the
cepstrum-domain. These techniques generally perform poorly for reverberant speech
for several reasons: framing effects, cepstral overlap of speech and late reverberation.

3.3.3 HERB

Nakatani et al. proposed a single-microphone speech dereverberation technique called
Harmonicity based dEReverBeration (HERB) [171, 172]. HERB explicitly uses the
fact that the source signal has a harmonic structure, in the design of a dereverberation
filter. HERB estimates the dereverberation filter as an average of filters that transform
observed reverberant signals into the output of an adaptive harmonic filter. The output
of an adaptive harmonic filter corresponds to a rough estimation of the harmonic
components of direct signals in the observed signals. The dereverberation filter, W (k),
is calculated as follows:

W (k) = A

(
X̂(l, k)
X(l, k)

)
, (3.7)

where X(l, k) and X̂(l, k) are discrete STFTs of an observed reverberant signal and the
output of an adaptive harmonic filter at time frame l and frequency bin k, respectively.
Here A(·) is a function that calculates the weighted average of X̂/X for each k over
different time frames. This filter has been proven to approximate the inverse filter of
the acoustic transfer function between a speaker and a microphone. In a recent paper
[173] Kinoshita et al. evaluated the effect on speech intelligibility, and the potential to
use HERB as a preprocessing algorithm for ASR. In both cases HERB seems to be able
to decrease the Word Error Rate (WER) of the ASR system. The main disadvantage
is that they required more than 5000 reverberant words, i.e., more than 60 minutes
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of speech data, to acquire the dereverberation filter under the assumption that the
system is time-invariant.

The conventional formulation of HERB does not provide an analytical framework
within which the dereverberation performance can be optimized. In [174], Nakatani
et al. reformulated HERB as a maximum a posteriori (MAP) estimation problem, in
which the dereverberation filter was determined as one that maximizes the a posteriori
probability given the observed signals. They derived a closed-form solution to this
problem by assuming that the a posteriori probability is given by means of a Gaussian
probability distribution function (PDF) under a harmonicity constraint. The proposed
solution is shown to become identical to that of conventional HERB when a particular
type of PDF is adopted, and it reveals the physical meaning of the weight with which
conventional HERB calculated the average transfer function.

3.3.4 Inversion of mixed-phase impulse responses

In case the parameters of the system, or more specifically the filter coefficients of the
acoustic impulse response have been identified, the question that remains is how to
invert these long, mixed phase impulse responses, to produce inverse filters that are
causal, stable and have finite length. The question was addressed in the last years
by many authors, but the most efficient results are those of Mourjopoulos, and of
Miyoshi and Kaneda. Mourjopoulos proposes two general techniques for inversion of
finite length sequences, namely, homomorphic and least squares. Miyoshi and Kaneda
proposed the well-known MINT principle which is closely related to the Bezout iden-
tity. In this section these techniques will be discussed.

Homomorphic techniques

The homomorphic techniques require decomposition of the AIR prior to inversion
[175]. As shown in Section 2.5.2 the acoustical impulse response can be decomposed
in two components: a minimum-phase one, containing all the zeros which fall inside
the unit circle on the z-plane, and a maximum-phase component, containing all the
poles which fall outside the unit circle (it is assumed that no pole falls exactly on the
unit circle). The decomposition of a mixed-phase impulse response in the minimum
and maximum phase components is not easy. It was approached both by homomorphic
decomposition and by complex cepstral separation, but in general the results are poor.
Once the components are separated, the minimum phase component can be inverted
directly, because taking the Inverse Fast Fourier Transform (IFFT) of the reciprocal
of its Fast Fourier Transform (FFT) yields a finite, stable and causal inverse impulse
response. The same approach is unsuccessful for the maximum-phase component, as
its inverse is causal and unstable or acausal and stable. However, the maximum-phase
component needs to be time-reversed before getting inverted, and then time-reversed
again. The acausality introduced by this process has to be eliminated by means of
a time delay, causing no practical problem to not-real-time processing. Finally, the
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inverse of the minimum and maximum phase components are convolved, producing
the final approximate inverse filter.

Least squares techniques

The inverse of a non-minimum phase AIR is two-sided (acausal) and in general infinite
in length [175]. In case a causal inverse filter is desired the inverse filter can only be
approximated when the inverse filter is of infinite length. Treitel and Robinson [176]
have shown that the inversion can be improved by incorporating a delay between the
input and desired output sequence.

The inverse filter of length L, denoted by wτ = [wτ (0), . . . , wτ (L− 1)]T , can be found
by minimizing the following cost function:

J(τ) =
L−1∑
j=0

(δ(j − τ)− fτ (j))2 , (3.8)

where fτ (j) =
∑L−1

i=0 wτ (i)h(j − i), h denotes the time-invariant acoustic impulse
response, and τ denotes the additional delay.

MINT

The drawback in the conventional inverse filtering techniques seems to result from the
use of only one channel. However, many systems in room acoustics can be modified to
multiple output systems by adding extra microphones. In case the acoustical impulse
responses do not have any common zeros an exact inverse of the system can be con-
structed using the MINT principle as proposed by Miyoshi and Kaneda [154]. MINT
makes use of some fundamental results of multi-variable system theory. The advantage
of this technique is that the inverse system consists of finite and causal filters.

The dereverberation problem can be generalized for an arbitrary M -input channel
system, leading to the following set of relations

xm(n) = hm(n) ∗ s(n) for 0 ≤ m ≤M, (3.9)

and

ŝ(n) =
M−1∑
m=0

gm(n) ∗ xm(n), (3.10)

where xm(n), hm(n), gm(n) are respectively the mth observation, transfer function
and equalizer of the corresponding acoustic channel. For a multi-channel structure,
equalization is achieved by finding a set of filters with impulse response gm(n) so that

δ(n− τ) =
M−1∑
m=0

gm(n) ∗ hm(n). (3.11)
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This expression it is closely related to the Bezout identity, which states that there
exists polynomials Gm(z) such that

M−1∑
m=0

Gm(z)Hm(z) = 1 (3.12)

holds if the polynomials Hm(z) ∀ 0 ≤ m ≤ M − 1 have no common zeros. The
algebraic decomposition that satisfies the Bezout identity is in general not unique
and the algorithm reported in [154] calculates one of the possible solutions for the
equalizers gm(n) ∀ 0 ≤ m ≤M − 1.

Putnam investigate the numerical precision of multiple input inverse filtering tech-
niques [177]. He showed that in practice, the finite precision of measured impulse
responses along with the inversion of poorly conditioned matrices, may pose numeri-
cal limitations. However, from his results we may conclude that the condition number
decreases, and hence the numerical performance is enhanced as the number of micro-
phones is increased.

3.3.5 Equalization Robustness

The AIR strongly depends on the source and microphone positions. Mourjopoulos [44]
experimentally demonstrated that the AIR can vary drastically with changes in the
source and microphone positions and orientations. Radlovic et al. [1, 2] demonstrated
that even small variations, of the order of a tenth of the acoustic wavelength, can cause
large degradations in the equalized acoustic impulse response. In this connection, it
was found that as long as diffuse-field conditions are met, the room size, geometry
and reverberation time have no significant effect on the spatial extent of the zone of
equalization. Outside of such a region, equalization is ineffective and may actually
yield performance worse than having no equalizer at all. This implies that sound
equalization in practical environments may be an ill-posed problem [2].

Equalization using a multi-channel system has been recently investigated by Talantzis
[3]. Multi-channel equalization shows an increase in equalization robustness compared
to single-channel equalization. However, the equalization quality still remains highly
restricted to a fraction of the wavelength. It was also found that the distance ratio, e.g.
the distance between the source and microphones and the inner distance between the
microphones, and the value of the wavelength are the parameters that mostly affect
the equalization process whereas the room size and reverberation characteristics are
of small significance.

Note that in all of the above cases exact equalization is assumed. The equalization
zone may be extended if an inverse filter is used which is designed to approximate
equalization for different source-microphone positions.
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3.4 Summary

In theory, blind deconvolution of the acoustic channel allows perfect dereverberation.
However, at this point in time there are no techniques available to blindly estimate
AIRs in a realistic environment. Another problem is caused by the fact that small
estimation errors can result in a highly distorted output signal.

Currently, most practical and robust solutions can be found in the techniques in-
volving spatial processing. Fixed beamformers are capable of suppressing specular
reflections. However, they only achieve a limited amount of reverberation suppres-
sion. Adaptive beamformers generally achieve superior noise suppression performance
in noise-dominated environments compared to fixed beamformers, but their derever-
beration capability is similar to that of the fixed beamformers. Adaptive beamfomers
that are based on minimizing the output energy, are fundamentally unable to achieve
good performance in reverberant environments simply because the reflections of the
desired signal violate the assumption of independence between signal and noise.

The spectral enhancement techniques, and especially the single-microphone technique
proposed by Lebart [24], are capable of suppressing late reverberation. The advantage
of this technique is that it requires only a limited amount of a priori information,
viz., the reverberation time of the room. Unfortunately some speech distortion is
introduced by the spectral enhancement technique which decrease the quality of the
dereverberated speech. In Chapter 6 it will be shown that the technique proposed in
[24] can only be used when the source-microphone distance is larger than the critical
distance.



Chapter 4

Dereverberation Quality Measures

4.1 Introduction

Many signal processing algorithms have been developed to enhance the quality of
distorted speech. The speech quality can be quantified using subjective and objective
measures. By comparing the speech quality before and after processing, one can
investigate the speech quality improvement. In this chapter subjective and objective
quality measures that can be used to determine the dereverberation quality will be
briefly discussed.

In general, objective quality measures can be classified into intrusive (also known as
end-to-end or reference) measures, and non-intrusive (also known as single-ended or
no-reference) measures. The intrusive measures compare the distorted signal with
the undistorted signal, which is usually called the reference signal. The non-intrusive
measures do not require a reference signal, i.e., the speech quality is determined given
only the distorted speech signal. In this chapter we will focus on intrusive measures,
i.e., we assume that the undistorted signal is available.

Reliable quantitative measurement of the level of reverberation in a speech signal is
particularly difficult and a unanimously accepted methodology has yet to emerge [93].
If an objective quality measure could be found that highly correlates with the re-
sults obtained from subjective test, its utility would be undeniable. Existing objective
measures have been adopted to determine the dereverberation quality, e.g., Segmental
Signal to Noise Ratio and the Bark Spectral Distortion [58] measures. Independent re-
search has shown that the reverberation time and the spectral deviation are important
perceptual factors that determine the quality of reverberant speech (see Section 1.3).
Therefore, the relation of different objective measures with respect to these important
factors is investigated.

The spectrogram and waveform are often used to represent a reverberant signal. How-
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ever, from these representations, is not always clear how severely the signal is degraded
by reverberation. In this chapter we describe a novel time-frequency representation
of the reverberant signal. In this representation the spectrogram and instantaneous
Direct to Reverberation Ratio are combined. This representation reveals which time-
frequency components are affected most by reverberation and provides more insight
than the spectrogram and the waveform do.

The structure of this chapter is as follows. In Section 4.2 a novel time-frequency
representation of the reverberant signal is developed. In Section 4.3 a frequently used
subjective measure is briefly described. Objective measures are then discussed in
Section 4.4. The objective measures are analysed in Section 4.5. Finally, conclusions
are given in Section 4.6.

4.2 Visual Representation

The waveform and the spectrogram are often used to visualize the time and time-
frequency content of the signal, respectively. The spectrogram is the most frequently
used time-frequency representation, and is determined from the short-time Fourier
transform (STFT) of the signal. The STFT of the signal z(n) is denoted by Z(l, k),
where l is the time frame and k the frequency bin (more details can be found in
Chapter 5). Smearing in time can be observed in both the time and the time-frequency
representation (see for example Figs. 1.5(a) and 1.5(b)). Spectral deviations are often
clearly visible in the time-frequency representation. However, in both representations
it is not possible to see how large the amount of reverberation is with respect to the
direct signal, i.e., how severe the disturbance is. Therefore a novel time-frequency
representation is proposed.

As a starting point the standard spectrogram is used, where the log amplitude values
of Z(l, k), for all l and k, are mapped to a colour value. In the proposed representation
the colour is determined not only for the log amplitude value of Z(l, k) but also from
the instantaneous Direct to Reverberation Ratio (DRR). The instantaneous DRR is
determined from two signals, i.e., the STFT of the direct signal zd(n) and the rever-
berant signal zr(n), which are denoted by Zd(l, k) and Zr(l, k), respectively. Note that
Z(l, k) = Zd(l, k) + Zr(l, k).

In order to get a proper colour representation a specific subset of colours is chosen
from the hue-saturation-value colour-map. The hue can be used to select a desired
colour (in this case red). The colour value (also known as the brightness) ranges from
0 to 1, and is calculated using the received signal Z(l, k):

Value(l, k) =
20 log10(|Z(l, k)|)− Zmin

Zmax − Zmin
(4.1)

where Zmin = minl,k{20 log10(|Z(l, k)|)}, and Zmax = maxl,k{20 log10(|Z(l, k)|)}. The
saturation of the colour also ranges from 0 (shades of gray) to 1 (no white component),
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and is calculated according to the instantaneous DRR:

Saturation(l, k) =
DRR(l, k)−DRRmin

DRRmax −DRRmin
(4.2)

where DRR(l, k) = 20 log10(|Zd(l, k)|/|Zr(l, k)), DRRmin = minl,k{DRR(l, k)}, and
DRRmax = maxl,k{DRR(l, k)}.

Two examples of a spectrogram and the proposed time-frequency representation of a
reverberant signal measured at a distance of 0.25 m and 2 m, are depicted in Figs. 4.1
and 4.2, respectively. In case the signal value and the DRR value are high, the colour
brightness and saturation will be high, and indicates no distortion. For decreasing
DRR values the colour gradually becomes grayer. In case the signal value decreases
the brightness of the colour drops, i.e., for low signal values the colour is black. In
case the signal value is high and the DRR value is low the colour will be white, i.e.,
the direct signal is masked by reverberation. It can clearly been seen that the signal
depicted in Fig. 4.1 is less affected by reverberation than the signal depicted in Fig. 4.2.

4.3 Subjective Measures

Subjective speech quality measures can be obtained using subjective listening tests
in which human participants rate the performance of a system or quality of a signal
in accordance with an opinion scale [178]. The International Telecommunications
Union (ITU-T) has standardized the most commonly used methods for measuring the
subjective quality of speech transmission over voice communication systems. For both
listening-only and conversational tests the ITU-T recommends the use of a speech
quality rating on a 5-point category scale, which is commonly known as the listening-
quality scale [178]. An alternative speech quality scale that is used in listening-only
tests is the listing-effort scale. In conversational tests a binary conversation difficulty
scale is usually employed. These scales are listed in Table 4.1.

A listening test is performed by a number of subjects that listen to recordings that
are degraded by an acoustic channel, and enhanced by the algorithm under test. The
subjects provide their opinion on the quality of each signal, or the effort required to
understand it, using the listening-quality scale or listening-effort scale, respectively.
In conversational tests, subjects use a voice communication system before providing
their opinion on its quality. Mean Opinion Score (MOS) is the averaged opinion score
cross subjects and indicates the subjective quality of the system or algorithm under
test. To obtain a realistic variability in the opinion scores, a large numbers of subjects
is required. Therefore, the main drawback of subjective testing is cost [179]. Even
with a large amount of subjects, the variance of MOS can still be high. Furthermore,
the quality that is expected by a customer will be different depending on whether the
device is an expensive conference system or a cheap mobile telephone. The constraints
imposed by the need to limit the cost and the amount of subjects also limit the ability
to test the system or algorithm under different environmental conditions. Hence,
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(a) Spectrogram.
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(b) Proposed representation.

Figure 4.1 Time-frequency representation of a reverberant signal (RT60 = 500 ms,
D = .25 m) using (a) the spectrogram, and (b) the proposed method.

it would be more practical if an automatic assessment system would exist whereby
quality measures could be obtained.

4.4 Objective Measures

With the rapidly evolving speech enhancement systems and voice communication sys-
tems, there is an increasing need for robust objective speech quality measures that
correlate well with subjective speech quality. During the design and validation stages
of algorithms, codecs, and communication systems, objective quality measures are
valuable assessment tools. Over the last two decades, researchers have developed dif-
ferent measures based on various speech analysis models [180, 179].

In general, objective speech quality measures can be categorized in three domains:
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(b) Proposed representation.

Figure 4.2 Time-frequency representation of a reverberant signal (RT60 = 1 s, D =
2 m) using (a) the spectrogram, and (b) the proposed method.

time domain, spectral domain or perceptual domain. The time domain measures are
generally applicable to analogue or waveform coding systems in which the receiver
reproduces the waveform. However, they can also be used to determine the speech
quality improvement. Signal to Noise Ratio (SNR) and segmental SNR are typical
time domain measures [180]. Spectral domain measures are usually preferred above
time-domain measures and are less influenced by possible time misalignments between
the original and the received or processed signals. Most spectral domain measures
are related to speech codec design. Perceptual domain measures are based on models
of the human auditory system, compared to time and spectral domain measures they
have and have a higher change of predicting the subjective quality of speech. Theoret-
ically, perceptually relevant information is both sufficient and necessary for a precise
assessment of perceived speech quality [179].

Most objective measures are intrusive perceptually-based measures. They are based
on psychoacoustics considerations and are trained on subjective databases to represent
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Listening-Quality Scale:
Quality of the speech/connection Score
Excellent 5
Good 4
Fair 3
Poor 2
Bad 1

Listening-Effort Scale:
Effort required to understand the meaning of sentences Score
Complete relaxation possible; no effort required 5
Attention necessary; no appreciable effort required 4
Moderate effort required 3
Considerable effort required 2
No meaning understood with any feasible effort 1

Conversation Difficulty Scale:
Did you and your partner have any difficulty in hearing over the
connection?

Yes 1 / No 0

Table 4.1 ITU-T recommended speech quality measurement scales [178].

human perception. Among these perceptual models, the ITU-T has standardized the
Perceptual Evaluation of Speech Quality (PESQ) in 2001 as ITU-T Recommendation
P.862 [181]. PESQ predicts the listening quality of a speech signal which is degraded
by codecs, background noise and packet loss.

4.4.1 Intrusive Measures

In this section various intrusive time and frequency domain measures are summarized.

Segmental Signal to Reverberation Ratio

The instantaneous segmental Signal to Reverberation Ratio (SRR) [93] of the lth frame
is defined similar to the segmental SNR [180], i.e.,

SRRseg(l) = 10 log10

( ∑lR+N−1
n=lR z2

d(n)∑lR+N−1
n=lR (zd(n)− ẑd(n))2

)
[dB], (4.3)

where N is the frame length in samples (fsN is usually equal to 32 ms), R is the frame
rate in samples, zd(n) is the direct signal, which is a delayed version of the anechoic
signal, and ẑd(n) is the enhanced signal. The frame rate R is usually chosen such
that the frames overlap 50% − 75%. The mean segmental SRR is then obtained by
averaging Eq. 4.3 over all frames.
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Log Spectral Distortion

One of the oldest distortion measures proposed for speech and the one which most
closely resembles traditional difference distortion measures is formed by the Lp norm
of the difference of the log spectra of the desired signal zd(n) and the enhanced signal
ẑd(n). In most cases short-time spectra are used, which are obtained using the STFT
of the signals. The STFT of the signal z(n) is denoted by Z(l, k), where l denotes
the time frame and k the frequency bin. The frame length is usually between 32 and
64 ms long, and the overlap is 50% − 75%. The Lp norm of the difference between
Zd(l, k) and Ẑd(l, k), in the lth frame, is defined as

LSD(l) =

 2
K

K
2 −1∑
k=0

∣∣∣L{Ẑd(l, k)} − L{Zd(l, k)}
∣∣∣p


1
p

[dB], (4.4)

where L{X(l, k)} , max{20 log10(|X(l, k)|), δ} is the log spectrum confined to about
50 dB dynamic range (δ = maxl,k{20 log10(|X(l, k)|)} − 50). The mean Log Spectral
Distortion (LSD) is obtained by averaging Eq. 4.4 over all frames containing speech.
The most common choices for p are 1, 2, and ∞, yielding mean absolute, root mean
square, and maximum deviation, respectively.

Modulation Spectrum

Speech can be considered as a sequence of sounds with a continuously varying spec-
trum. These spectral variations lead to fluctuations of the envelope of the signal within
individual frequency bands. Based on this concept, Steeneken and Houtgast [182] de-
rived the Speech Transmission Index (STI), which is a powerful and widely accepted
measure to predict the effect of room acoustics on speech intelligibility. This measure
quantifies the speech intelligibility in terms the spectral content of the signal enve-
lope. Plomp [183] derived a so-called modulation spectrum of speech by determining
the spectrum of the signal envelope within each frequency bands. The modulation
spectra show that the relevant modulation frequencies of speech are roughly in a
range between 0.1 to 40 Hz and that the strongest fluctuations are between 3 to 5 Hz.
The shape of the modulation spectrum is about the same for all octave bands, but
the amount of modulation, denoted by the Modulation Index (MI), differs between
the bands. The strongest modulations are found within the frequency band that is
centred around 500 Hz, while the low-frequency bands contain less modulation.

The temporal envelope filtering techniques (as described in Section 3.2.3) are moti-
vated by studies of the effect of reverberation on the MI of the speech signal. Tails
produced by past acoustic events fill in low energy regions between consecutive sounds,
and reduce the modulation depth of the original envelope and thus modifying its MI.
In case the degraded signal is successfully dereverberated the modulation spectrum
should be restored.
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The modulation index as function of modulation frequency can be calculated using
the following steps:

i) The speech signal is first analysed using an octave filter bank. The filter bank
can also be bypassed resulting in a broad-band analysis.

ii) For each octave band the envelope is estimated by taking the magnitude of a
standard Hilbert-transform, which results in the Hilbert envelope. The Hilbert
envelope is low-pass filtered with a 50-Hz low-pass filter and then downsampled
to a frequency of 200 Hz. The low-pass filtering removes any fine-structure com-
ponents of the speech signal, such as the fundamental frequency of the speaker.
The resulting signal will be referred to as the envelope signal.

iii) For each octave band the Power Spectral Density (PSD) of the envelope signal
is estimated using a standard Welch procedure [184]. The parameters used for
the Welch procedure are a window length of 8 seconds, a Hanning window with
40% overlap between successive windows.

iv) The intensity values of the PSD are summed over modulation frequencies for
each octave band and are normalized using the DC-component of the PSD. The
normalization is set to reach a value of 0 dB (m=1) for an amplitude modulated
sine-wave. This calculation results in a modulation spectrum defined in the
intensity domain.

4.4.2 Intrusive Perceptually-Based Measures

In this section various intrusive measures are summarized that are perceptually moti-
vated.

Bark Spectral Distortion

The Bark Spectral Distortion (BSD) can be classified as a perceptual domain measure
that transforms the speech signal into a perceptually relevant domain which incorpo-
rates human auditory models [58]. Studies have shown that the correlation coefficient
of this measure with MOS scores is above 0.9 [58, 99]. The BSD metric makes use
of the Bark spectra Lzd and Lẑd , of the direct signal zd and the enhanced signal
ẑd(n), respectively. The Bark spectrum is calculated by going through three steps,
i.e., critical band filtering, equal loudness pre-emphasis and phon to sone conversion.
The input to this process is the magnitude squared spectrum for the current analysis
frame with index l. The output is denoted by Lx(l, ks), where the index ks denotes
Bark frequency bin.

When the Bark spectra are calculated the BSD score can be obtained by

BSD =
1
L

L−1∑
l=0

∑Ks

ks=1 (Lzd(l, ks)− Lẑd(l, ks))
2∑Ks

ks=1 (Lzd(l, ks))
2

, (4.5)
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where L denotes the number of analysis frames. The resulting BSD score for a speech
signal is the weighted average of the BSD scores for all of the analysis frames.

The Modified Bark Spectral Distortion (MBSD) is a modification of the BSD in which
the concept of a noise-masking threshold is incorporated [185]. Due to this threshold
the MBSD measure differentiates between audible and inaudible distortions. The
MBSD measure assumes that loudness differences below the noise masking threshold
are not audible and are therefore excluded from the calculation of the perceptual
distortion. The MBSD uses a simple cognition model to calculate the distortion value.

Reverberation Decay Tail

Recently, Wen and Naylor proposed a novel objective measure called the Reverberation
Decay Tail (RDT) [186]. The RDT jointly characterizes the relative energy in the tail
of the AIR and the rate of decay.

As a reference for this speech quality measure the direct speech signal zd(n) is used.
The analysis of the test signal and the reference signal are performed in the Bark
spectral domain. First so-called end-points are detected in each Bark spectral bin.
The end-points are defined as time instants at which the speech energy abruptly falls.
Secondly, the decay and corresponding absolute decay tail energy and direct path
energy are calculated for all end-points and Bark spectral bins. Note that the direct
path energy is calculated using the Bark spectrum of the reference signal. Secondly,
the decay, absolute decay tail energy, and direct path energy are averaged over all
detected end-points, and subsequently over all Bark spectral bins, and result in λavg,
Davg, and Aavg, respectively. Finally the RDT can be calculated by:

RDT =
Aavg

λavgDavg
. (4.6)

Note that higher RDT values correspond to either a higher amount of relative energy
in the tail or a slower decay rate.

In [30] the RDT measure was tested using three dereverberation methods. The results
were compared to the subjective amount of reverberation indicated by 26 normal
hearing subjects. The results showed a high correlation between the RDT values and
the amount of reverberation perceived by the subjects.

Perceptual Evaluation of Speech Quality

The objective measures described in ITU-T Recommendation P.862 (February 2001) is
known as PESQ [181]. It is the result of several years of development and is applicable
not only to speech codecs but also to intrusive measurements. Real systems may
include filtering and variable delay, as well as distortions due to channel errors and
low bit-rate codecs. The PSQM measure as described in ITU-T Recommendation
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P.861 (February 1998), was only recommended for use in assessing speech codecs, and
was not able to take proper account of filtering, variable delay, and short localized
distortions. PESQ addresses these effects with transfer function equalization, time
alignment, and a new algorithm for averaging distortions over time. The validation
of PESQ included a number of experiments that specifically tested its performance
across combinations of factors such as filtering, variable delay, coding distortions and
channel errors. It is recommended that PESQ be used for speech quality assessment
of 3.1 kHz (narrow-band) handset telephony and narrow-band speech codecs [181].

PESQ compares an original signal s(t) with a degraded signal z(t) that is the result
of passing s(t) through a communications system, or with the enhanced signal ŝ(t)
calculated by the enhancement system. The output of PESQ is a prediction of the
perceived quality that would be given to z(t), or ŝ(t), by subjects in a subjective lis-
tening test. In the first step of PESQ a series of delays between original input and
test signal are computed, one for each time interval for which the delay is significantly
different from the previous time interval. For each of these intervals a corresponding
start and stop point is calculated. The alignment algorithm is based on the principle
of comparing the confidence of having two delays in a certain time interval with the
confidence of having a single delay for that interval. The algorithm can handle delay
changes both during silences and during active speech parts. Based on the set of delays
that are found PESQ compares the original signal with the aligned test signal of the
device under test using a perceptual model. The key to this process is transformation
of both the original and test signals to an internal representation that is analogous to
the psychophysical representation of audio signals in the human auditory system, tak-
ing account of perceptual frequency (Bark) and loudness (Sone). This is achieved in
several stages: time alignment, level alignment to a calibrated listening level, time fre-
quency mapping, frequency warping, and compressive loudness scaling. The internal
representation is processed to take account of effects such as linear filtering and local
gain variations that may have little perceptual significance if they are not too severe.
This is achieved by limiting the amount of compensation and making the compensa-
tion lag behind the effect. Thus minor, steady state differences between the original
and degraded speech are compensated. More severe effects, or rapid variations, are
only partially compensated so that a residual effect remains and contributes to the
overall perceptual disturbance. The internal representation process allows a small
number of quality indicators to be used to model all subjective effects. In PESQ, two
error parameters are computed in the cognitive model; these are combined to give an
objective listening quality score.

4.4.3 Intrusive Channel-Based Measures

There are a number of objective measures for indicating the quality and intelligibility
of filtered speech for a given impulse response. In this section different objective
measures are summarized that are derived from the Acoustic Impulse Response (AIR).
Additional measures can be found in [41].
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In case a reverberation cancellation algorithm is used (see Section 3.3) it is possible
to calculate the total impulse response that described the system between the source
to the output of the algorithm. Ideally this response should be equal to a (possibly
scaled and delayed) Dirac pulse. The total impulse response can also be evaluated
using one of the objective measures summarized in this section. The improvement of
the objective measure can be determined subsequently by calculating the objective
measure of a reference impulse response, e.g., the impulse response of the system
between the source and the closest microphone.

Direct to Reverberation Ratio

The most straightforward objective measure is called the DRR or SRR and is defined
as:

DRR = 10 log10

(
Ed

Er

)

= 10 log10


nd∑

n=0
h2(n)

∞∑
n=nd+1

h2(n)

 [dB], (4.7)

where the direct sound arrives at nd. Due to finite sampling of the AIR the arrival time
nd, which is measured with respect to the source signal, will usually not fall onto an
exact sample moment. When synthetic AIRs are used the direct path can be computed
separately (see Appendix A). However, when dealing with measured impulse responses
the direct path component, and therefore the related energy, can not be determined
precisely. Therefore, ndfs is often taken 8-16 ms larger than the approximate arrival
time of the direct sound.

It should be noted that the DRR depends on the distance between the source and
the microphone and on the reverberation time of the room. We can express the DRR
using Eq. 2.53 and Eq. 2.56 as:

DRR = 10 log10

(
QR

16πD2

)
, (4.8)

where Q is the directivity factor, R is the room constant (given by Eq. 2.57), and D is
the source-microphone distance. Note that the room constant is inversely proportional
to the reverberation time.

Early to Total Sound Energy Ratio

The earliest attempt to define an objective criterion of what may be called the dis-
tinctness of sound, is called definition (originally Deutlichkeit) or early to total sound
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energy ratio:

D =
Ee

Et
= 10 log10


ne∑

n=0
h2(n)

∞∑
n=0

h2(n)

 [dB], (4.9)

where nefs is usually set to 50 or 80 ms. The time (in milliseconds) is often used as a
subscript, i.e., in case nefs = 50 ms the early to total sound energy ratio is denoted
by D50.

Early to Late reverberation Ratio

Another objective criterion is called the Early to Late reverberation Ratio (ELR) or
Clarity Index (originally Klarheitsmaß) and is defined as:

C =
Ee

El
= 10 log10


ne∑

n=0
h2(n)

∞∑
n=ne+1

h2(n)

 [dB], (4.10)

where nefs is usually set to 50 or 80 ms. The time (in milliseconds) is often used as a
subscript, i.e., in case nefs = 50 ms the ELR is denoted by C50.

4.5 Analysis

In this section frequently used intrusive quality measures are analysed. In Section 1.3
it was shown that the reverberation time and spectral deviation provide useful in-
formation related to the reverberant speech quality and intelligibility. Rather than
studying the relation between the objective measures and subjective test results, we
have studied the relation between the objective measure and some basic objective
measures derived from the AIR, e.g., reverberation time and spectral deviation.

The speech fragment used in the experiments consists of male and female speech
(fs = 16 kHz) taken from the TIMIT database [4], and is 40 seconds long. The
reverberant speech fragments are obtained by convolving the anechoic speech signal
with an AIR that was generated using the image method (see Appendix A).

4.5.1 Segmental Signal to Reverberation Ratio

In Figs. 4.3(a) and 4.3(b) the segmental SRR is shown for different DRR values, for
a reverberation time of 300 and 600 ms, respectively. It can clearly be seen that there
is an almost linear relation between the the segmental SRR and the DRR. The offset
between the two values is caused by the frame-by-frame processing of the segmental
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Figure 4.3 Segmental SRR versus the DRR for (a) RT60 = 300 ms, and (b) RT60 =
600 ms.

SRR, and depends on the signal and on the reverberation time. For a stationary signal
the segmental SRR and DRR are equal. As with the segmental SNR and the global
SNR it is expected that the correlation between the segmental SRR and the subjective
speech quality is larger than the correlation between the DRR and the subjective
speech quality. Note that most of the reverberation is masked when the instantaneous
segmental SRR is large. In those frames where the instantaneous segmental SRR is
low the reverberation will be clearly audible. Therefore, it is expected that the mean
segmental SRR correlates much better with the subjective speech quality than the
DRR.

In Fig. 4.4(a) the spectral deviation, which is defined as the standard deviation of
the energy spectrum of the AIR [16], is shown for different DRR values (obtained
using different reverberation times and source-microphone distances). The results are
consistent with those obtained by Jetzt in [16], and the average maximum value of the
spectral deviation is consistent with the theoretical maximum of 5.57 dB derived by
Schroeder [74]. In Fig. 4.4(b) the spectral deviation is shown for different segmental
SRR values. It can clearly be seen that the shape of the function is similar to the shape
obtained using the DRR. However, due to the ‘error’ caused by the frame-by-frame
processing of the segmental SRR there is a slight offset which mainly depends on the
reverberation time.

In Fig. 4.5 the relation between the reverberation time and the segmental SRR is shown
at for distance of 0.5 and 2 m. The segmental SRR is monotonically decreasing with
the reverberation time and is almost completely independent of the source-microphone
distance D.
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Figure 4.4 DRR and Segmental SRR versus the spectral deviation.
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Figure 4.5 Segmental SRR versus the reverberation time.

4.5.2 Bark Spectral Distortion and Log Spectral Distance

The relation between the Bark Spectral Distortion and the spectral deviation, and the
reverberation time, is shown in Figs. 4.6(a) and 4.6(b), respectively. For Fig. 4.6(a) the
BSD values were calculated using different reverberation times and source-microphone
distances. The results demonstrate that only very low BSD values correspond to a
decrease in spectral deviation. Hence, a decrease in BSD does not necessarily mean
that the spectral deviation is decreased. The relation between the BSD and the re-
verberation time depends on the distance D between the source and the microphone,
as depicted in Fig. 4.6(b). For D = 0.5 m there is an almost linear relation between
the two values. However, for D = 2 m the relation is non-linear. It should be noted
that similar relations were found between the Log Spectral Distance (norm-1) and the
spectral deviation and reverberation time.
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Figure 4.6 Bark Spectral Distortion versus (a) the spectral deviation and (b) the
reverberation time.

4.5.3 Reverberation Decay Tail

The relation between the recently proposed Reverberation Decay Tail RDT measure
and the reverberation time, and the source-microphone distance, is shown in Figs.
4.7(a) and 4.7(b), respectively. The results shown in Fig. 4.7(a) clearly indicate an
almost linear relation between the RDT and the reverberation time. The RDT measure
is proportional to the average absolute decay tail energy Aavg in Eq. 4.6. Since the
average absolute decay tail energy is proportional toD2 (like the reverberation energy),
the RDT measure should be proportional to D2. Fig. 4.7(b) shows that this relation is
approximately true. The relation between the RDT measure and the spectral deviation
for RT60 = 300 ms, and RT60 = 600 ms is shown in Fig. 4.8. From these results it can
be seen that the RDT measure does depend on the amount of colouration, which is
determined by the spectral deviation. It should be noted that the RDT measure was
developed to be independent of the coloration effect. However, Wen et al. considered
a different kind of colouration in [186], in which colouration was introduced due to a
strong early reflection, which causes a strong modulation in the power spectrum of
the AIR.

4.5.4 PESQ

The relation between the PESQ score and the spectral deviation, and the reverberation
time, is shown in Figs. 4.9(a) and 4.9(b), respectively. The PESQ score is inversely
proportional to the reverberation time and increases for small source-microphone dis-
tances, i.e., for higher DRR. Due to the large variations in spectral deviation for a
single score the PESQ score does not reveal much information with respect to the
spectral deviation. Note that the PESQ score was not developed to determine the
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Figure 4.7 Reverberation Decay Tail versus (a) the reverberation time and (b) the
source-microphone distance.
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Figure 4.8 Reverberation Decay Tail versus the spectral deviation.

speech quality in a reverberant environment. Since it is sensitive to other distortions
that are perceptually important we use it as an additional measure.

4.5.5 Modulation Spectrum

The full-band modulation spectrum of a 40 seconds anechoic and reverberant speech
fragment are depicted in Figs. 4.10 and 4.11, respectively. As mentioned in Sec-
tion 4.4.1 the modulation spectrum exhibits strong fluctuations, i.e., a large mod-
ulation index, between 3 and 5 Hz. This example demonstrated that, even for a
reverberation time of 100 ms, the modulation index has decreased due to the rever-
beration. According to Steeneken and Houtgast [182] the decreased modulation index
indicates a decreased speech intelligibility.
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Figure 4.9 PESQ score versus (a) the spectral deviation and (b) the reverberation
time.
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Figure 4.10 Full-band modulation spectrum for the anechoic and the reverberant
speech fragment.
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Figure 4.11 Sub-band modulation spectrum for (a) the anechoic and (b) the rever-
berant (RT60 = 100 ms, D = 0.25 m) speech fragment.

4.5.6 Discussion

In case dereverberation is achieved by means of reverberation cancellation, as defined
in Chapter 3, it is possible to calculate the total transfer function that describes the
system between the source and processed signal. Hence, intrusive channel-based mea-
sures can be used to evaluate the dereverberation performance of the dereverberation
technique. However, in case dereverberation is achieved by means of reverberation
suppression the intrusive channel-based measures can not always be used. Many of
the reverberation suppression techniques apply a time-variant and non-linear opera-
tion to the reverberant signal. This makes it impossible to calculate a single transfer
function which describes the system between the source and processed signal. In the
latter case other intrusive or non-intrusive objective measures can be used to evaluate
the performance.

The segmental SRR is a very useful quantitative objective measure that exhibits an
almost linear relation with the DRR which can be calculated directly from the AIR.
It was shown that the segmental SRR depends on both the spectral deviation and
reverberation time.

The BSD measure is less sensitive to changes in the reverberation time than the seg-
mental SRR. Although the BSD measure does not reveal much information about the
reverberation time and spectral deviation it can be used to determine the ‘similarity’
between the processed signal and the anechoic signal. The relation of the LSD (with
norm-1) measure with the reverberation time and the spectral deviation is similar to
that of the BSD measure. The advantage of the LSD measure is that it can be easily
be evaluated for a single time frame and exhibits a lower computational complexity
than the BSD measure.

The relation between the RDT measure and the reverberation time is very strong.
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The relation with the spectral deviation is similar to the segmental SRR. It should
be noted that the RDT measure gives only a global indication and does not reveal
any information about the speech quality. Let us for example assume that the Rever-
beration Decay Tail measure indicates an improvement from 600 to 50, which would
indicate a significant decrease in reverberant energy. However, this improvement does
not provide any information about the overall sound quality of the signal under test,
because even a completely silent signal would result in a RDT value of zero. Therefore,
it should always be used in combination with an other quality measure, e.g., the LSD,
BSD, or PESQ measure.

The PESQ measure is not designed to designed to determine the quality of reverberant
speech. It was shown that the PESQ score only decreases slightly for increasing
reverberation time. However, the PESQ measure is sensitive to other distortions that
are perceptually important. In this dissertation it is therefore used to determine the
speech quality when additional interferences, such as noise and echo, are considered.

Finally the effect of reverberation on the modulation spectrum was studied. The
fact that the modulation index decreases due to reverberation, or increases by the
dereverberation technique, can also be seen from a simple waveform representation.
Furthermore, the modulation index does not reveal detailed information concerning
the quality of the reverberant or processed speech, and therefore is of less interest
compared to other quality measures.

4.6 Conclusions

In this chapter some frequently used objective speech quality measures that are useful
to determine the dereverberation quality were discussed and analysed. Additionally,
a novel time-frequency representation was proposed to visualize a reverberant speech
signal.

Research has shown that the reverberation time and the spectral deviation are im-
portant perceptual factors that determine the quality of reverberant speech (see Sec-
tion 1.3). Therefore, it is important to understand the relation of different objective
measures with respect to these perceptual factors. Furthermore, an objective measure
is required which indicates the overall quality of the dereverberated signal.

In Table 4.2 we have summarized how the intrusive objective measures that were
analysed and discussed in Section 4.5 are related to the colouration, reverberation
time, and overall speech quality. The signs are used to indicate how strong the relation
between the perceptual factors and the objective measures are. The results depicted
in Table 4.2 indicate that there is no objective measure available which is mainly
influenced by the colouration, i.e., spectral deviation, and thus remains a topic for
further research.
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Objective Measure Colouration Reverberation Time Overall Speech Quality
segmental SRR + + +
BSD − − ++
LSD − − +
RDT + ++ −−
PESQ −− − ++

Table 4.2 The relation between some important perceptual factors and the tested
intrusive objective measures (++ = strong, . . ., −− = weak)

In Chapter 5 and 7 the segmental SRR, LSD (norm-1), BSD and PESQ will mainly be
used to evaluate the performance of the proposed dereverberation techniques. In case
the suppression of more than one interference is evaluated, for example background
noise and late reverberation, we prefer to use the term segmental Signal to Interference
Ratio rather than the segmental SRR or segmental SNR.



Chapter 5

Single- and Multi-Microphone
Dereverberation

5.1 Introduction

In speech communication systems, such as voice-controlled systems, hands-free mobile
telephones, and hearing aids, the received microphone signals are degraded by room
reverberation, background noise, and other interferences.

Reverberation is the process of multi-path propagation of an acoustic sound from its
source to one or more microphones. The received signal generally consists of a direct
sound, reflections that arrive shortly after the direct sound (commonly called early
reverberation), and reflections that arrive after the early reflections (commonly called
late reverberation). The manner in which the received signal is affected by reverbera-
tion is characterized by the Acoustic Transfer Function (ATF), which is defined as the
frequency response of the system relating the sound source to the sound pressure at
the receiver. Reverberant speech can be described as sounding distant with noticeable
echo and colouration. The colouration can be characterized by the spectral deviation,
which is defined as the standard deviation of the energy spectrum of the Acoustic
Impulse Response (AIR) [16]. These detrimental perceptual effects generally increase
with increasing distance between the source and receiver. For example, reverberation
has a negligible effect in telephony systems with traditional handsets. However, in
hands-free systems, reverberation affects the quality and intelligibility of speech and is
a significant problem for both telecommunications and speech recognition applications.

Reverberation is highly dependent on the physical properties of the enclosed space as
well as on the location of the source and the listener within the space [7]. It would
be convenient to assume that reverberation solely reduces intelligibility [8], but this
assumption is incorrect. In the development of techniques that enhance the quality and
intelligibility of reverberant speech, it is important to understand which reverberation

95
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effects are detrimental.

Allen [15] reported a formula to predict the quality of reverberant speech. The main
result is given by the equation

P = Pmax − σRT60, (5.1)

where P is the subjective preference in some arbitrary units, Pmax is the maximum
possible preference, σ is the spectral deviation in decibels, and RT60 is the rever-
beration time in seconds. According to this formula, decreasing either the spectral
deviation or the reverberation time results in an improvement in speech quality.

In continuous utterances, speech offsets, i.e., sudden transitions from continuous speech
sound to silence, are relatively rare in the wideband signal. However, they are more
common in the narrowband signals which arise through frequency analysis in the au-
ditory periphery. Speech offsets and onsets can appear at the output of the auditory
filters during a continuous utterance where the sound’s spectrum changes, i.e., at spec-
tral transitions [187]. The detrimental effects of reverberation on speech intelligibility
have been attributed to two types of masking. Nábělek et al. [20] found evidence
of overlap-masking, whereby a preceding phoneme can mask a subsequent segment,
and of a self-masking of cues within consonants that have time-varying characteristics.
It is understood that overlap-masking is primarily caused by late reverberation and
self-masking is primarily caused by early reverberation. A more elaborate discussion
of these masking types can be found in Section 1.3.2.

Reduction of the detrimental effects of reflections is evidently of considerable practical
importance. In this chapter we investigate the application of acoustic signal processing
techniques to the enhancement of the quality of speech that is distorted in a reverber-
ant acoustic environment. Novel single- and multi-microphone speech dereverberation
algorithms are developed that aim at the suppression of late reverberation, i.e., at
estimation of the early speech component. This is done via so-called spectral enhance-
ment techniques that require a specific measure of the late reverberant signal. This
measure, called spectral variance, can be estimated directly from the received (possi-
bly noisy) reverberant signal(s) using a statistical reverberation model and a limited
amount of a priori knowledge about the acoustic channel(s) between the source and
the receiver(s). Furthermore, in any practical situation additional interference such as
sensor or computer fan noise will be present. Therefore, the joint suppression of late
reverberation and other interferences will be discussed.

In [24] a single-microphone speech dereverberation technique based on spectral sub-
traction was introduced to reduce the effect of overlap-masking in a noise-free envi-
ronment. The described technique estimates the short-term Power Spectral Density
(PSD) of late reverberation based on a statistical reverberation model. The magnitude
subtraction technique used by Lebart et al. in [24] can introduce noticeable distortions
in the signal. Therefore, the use of a more advanced spectral enhancement technique
will be investigated.

In our work an existing single-channel statistical reverberation model serves as a start-
ing point. The model is characterized by one parameter that depends on the acoustic
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characteristics of the environment. In Chapter 6 it is shown that the spectral variance
estimator that is based on this model, can only be used when the source-microphone
distance is smaller than the so-called critical distance. This is, crudely speaking, the
distance where the direct sound power is equal to the total reflective power. A general-
ization of the statistical reverberation model in which the direct sound is incorporated
is developed. This model requires one additional parameter that is related to the ratio
between the direct sound energy and the sound energy of all reflections. The gener-
alized model is used to derive a novel spectral variance estimator. Compared to the
existing estimator the novel estimator improves the dereverberation performance when
the source-microphone distance is smaller than the critical distance. In this chapter
it is assumed that an estimate of the so-called late reverberant spectral variance is
available.

Single-microphone systems only exploit the spectral diversity and the temporal diver-
sity of the received signal. Reverberation, of course, also induces spatial diversity. To
additionally exploit this diversity, multiple microphones must be used, and their out-
puts must be combined by a suitable spatial processor as described in Section 3.2.5.
An example of such a spatial processor is the delay and sum beamformer. It is not a
priori evident whether spectral enhancement is best done before or after the spatial
processor. For this reason we investigate both possibilities, as well as a merge of the
spatial processor and the spectral enhancement technique. An advantage of the latter
option is that the spectral variance estimator can be further improved.

The structure of this chapter is as follows. In Section 5.2 of this chapter the problem
is first formulated. Two spectral enhancement techniques are described in Section 5.3.
In Section 5.4 three different multi-microphone techniques are proposed and discussed.
The performance for different reverberation times using synthetic and measured AIRs
is discussed in Section 5.5, where the delay and sum beamformer is used as a reference.
Finally, conclusions are provided in Section 5.6.

5.2 Problem Formulation

Reverberation is the process of multi-path propagation of an acoustic signal s(n) from
its source to one or more microphones, where n denotes the discrete time index. The
observed signal at the mth microphone can be written as

x(rm, n) = z(rm, n) + v(rm, n), (5.2)

where rm denotes the position of the mth microphone, z(rm, n) the reverberant signal,
and v(rm, n) background noise. The reverberant signal can be expressed as

z(rm, n) =
Lh−1∑
j=0

hj(rm, rs, n)s(n− j) (5.3)

where hj(rm, rs, n) denotes the jth coefficient of the impulse response of the acoustic
channel from the source to mth microphone, and Lh denotes the length of the impulse
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response. The position of the source is denoted by rs. In vector notation the impulse
response is denoted by h(rm, rs, n) = [h0(rm, rs, n), . . . hLh−1(rm, rs, n)]T .

The aim of dereverberation is to form ŝ(n), an estimate of s(n), from {x(rm, n) | m =
0, . . . ,M − 1}. This is a blind problem since neither the signal s(n) nor the acoustic
impulse responses {h(rm, rs, n) | m = 0, . . . ,M−1} are available. Furthermore, typical
acoustic impulse responses are time-varying with several thousand coefficients, making
the estimation extremely difficult. It should be noted that for increasing source-
microphone distances the Direct to Reverberation Ratio (DRR) decreases, and the
reverberation becomes dominant (see Section 2.7). In this situation dereverberation
becomes very important and challenging. From the discussion in the introduction and
in Section 1.3 it becomes clear that the intelligibility of the reverberant speech can be
improved by reducing the amount of late reverberation. Hence, it is not necessarily to
completely dereverberate the received signal.

Since the goal is to reduce late reverberation the AIR is split into two segments, he(n)
and hl(n), so that

hj(n) =


he,j(n), 0 ≤ j < Nl;
hl,j(n), Nl ≤ j ≤ Lh − 1;
0 otherwise.

(5.4)

The parameter Nl can be chosen depending on the application or subjective preference.
Usually Nl is chosen such that he(n) consists of the direct signal and a few early
refections and hl(n) consists of all later reflections, and hence Nl/fs ranges from 40
to 80 ms, where fs denotes the sampling frequency. Eq. 5.2 can be rewritten using
Eq. 5.4:

x(rm, n) =
Nl−1∑
j=0

hj(rm, rs, n)s(n− j)︸ ︷︷ ︸
ze(rm,n)

+
Lh−1∑
j=Nl

hj(rm, rs, n)s(n− j)︸ ︷︷ ︸
zl(rm,n)

+v(rm, n). (5.5)

The signal ze(rm, n) is commonly called the early speech component.

In the chapter, novel single- and multi-microphone speech dereverberation algorithms
are developed that aim at the suppression of the late reverberant signal zl(n) and the
background noise v(n), i.e., at estimation of the early speech component ze(n).

An overview of the developed single-microphone dereverberation algorithm using spec-
tral enhancement, including the Time-Frequency (TF) analysis and synthesis, is de-
picted in Fig. 5.1. Compared to the algorithm proposed by Lebart et al. in [24] this
algorithm also includes the estimation and reduction of noise.

The observed signal x(n), is transformed into the time-frequency domain by applying
the short-time Fourier transform (STFT). Specifically,

X(l, k) =
K−1∑
n=0

x(n+ lR)w(n)e−ι 2πk
K n (5.6)
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Figure 5.1 Flow diagram of the developed single-microphone dereverberation algo-
rithm.

where ι =
√
−1, l is the time frame index (l = 0, 1, . . . ), k is the frequency-bin index

(k = 0, 1, . . . ,K−1), w(n) is an analysis window of size K (e.g., a Hamming window),
and R is the frame rate (number of samples separating two successive frames).

First the signal X(l, k) is used to estimate the noise spectral variance λv(l, k) =
E{|V (l, k)|2}, where V (l, k) is defined as the STFT of the noise signal v(n). The
noise spectral variance can be obtained using power spectral density estimation dur-
ing noise only periods, or by using a minimum statistics approach [188, 189, 190].
Secondly, the late reverberant spectral variance is estimated, which is defined as
λzl(l, k) = E{|Zl(l, k)|2}, where Zl(l, k) denotes the STFT of the signal component
zl(n). The estimation of λzl(l, k) will be described Chapter 6. Due to the non-
stationarity of the source and due to the statistical properties of the AIR we can
assume that the early and late reflections are statistically independent (see Chap-
ter 6). Therefore, we can suppress the late reverberant signal by treating it as an
additive noise term.

Numerous techniques for the enhancement of noisy speech degraded by statistically in-
dependent additive noise have been proposed in the literature. An elaborate discussion
will be provided in Section 5.3 where two post-filters will be proposed to suppress the
late reverberant signal and the background noise. The post-filter estimates the STFT
Ze(l, k) of the early speech signal ze(n), and requires an estimate of the late rever-
berated spectral variance λ̂zl(l, k) and the noise spectral variance λ̂v(l, k). The early
speech spectrum Ze(l, k) is constructed by applying a time and frequency dependent
gain function G(l, k) to X(l, k), i.e.,

Ẑe(l, k) = G(l, k)X(l, k). (5.7)

Since the speech signal ze(n) is assumed real, once we estimate {Ze(l, k) | k =
1, . . . ,K/2}, the spectral coefficients for K/2 < k ≤ K − 1 are obtained by Ẑe(l, k) =
Ẑ∗e (l,K − k), where ∗ denotes complex conjugation. The DC component Ẑe(l, 0) is
set to zero. Given an estimate Ẑe(l, k) for the STFT of the early speech signal, an
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estimate for the early speech signal is obtained by applying the inverse STFT,

ẑe(n) =
∑

l

K−1∑
k=0

Ẑe(l, k)w̃(n− lR)eι 2π
K (n−lR)k. (5.8)

where w̃(n) is a synthesis window that is bi-orthogonal to the analysis window w(n)
[191]. The inverse STFT is efficiently implemented by using the weighted overlap-add
method [192].

5.3 Spectral Enhancement

In this section we will further elaborate on the spectral enhancement techniques are
used to estimate the early speech component.

Spectral enhancement of noisy speech has been a challenging problem for many re-
searchers for over thirty years, and is still an active research area, see for example
[193, 194, 195] and references therein. Only recently these techniques have been used
for speech dereverberation [24, 196]. Spectral enhancement of noisy speech is often for-
mulated as estimation of speech spectral components from a speech signal degraded
by statistically independent additive noise. In this section we consider spectral en-
hancement methods for single microphone setups. The situation of single microphone
setups is particularly difficult under non-stationary noise and low Signal to Noise Ratio
(SNR) conditions, since no reference signal is available for the estimation of the noise.

One of the earlier methods, and perhaps the most well-known method, is spectral
subtraction [197, 198]. According to this method, an estimate of the short-term power
spectral density of the clean signal is obtained by subtracting an estimate of the power
spectral density of the background noise from the short-term power spectral density
of the degraded signal. The square root of the resulting estimate is considered an
estimate of the spectral magnitude of the speech signal. Subsequently, an estimate for
the signal is obtained by combining the spectral magnitude estimate with the complex
exponential of the phase of the noisy signal. This method generally results in random
narrow-band fluctuations in the residual noise, also known as musical tones, which are
annoying and disturbing to the perception of the enhanced signal. Many variations
have been developed to cope with musical tones [197, 199, 200, 201, 202], including
spectral subtraction techniques based on masking properties of the human auditory
system [203, 204]. The spectral subtraction makes minimal assumptions about the
signal and noise, and when carefully implemented, it produces enhanced signals that
may be acceptable for certain applications.

Statistical methods [205, 206, 207, 208, 209] are often designed to minimize the ex-
pected value of some distortion measure between the clean and estimated signals. This
method requires reliable statistical models for the speech and noise signals, a percep-
tually meaningful distortion measure, and an efficient signal estimator. A statistical
speech model and perceptually meaningful distortion measure, which are the most ap-
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propriate for spectral enhancement, have not yet been determined. Hence, the variety
of statistical methods for spectral enhancement mainly differ in the statistical model
[205, 207, 208], distortion measure [210, 211, 212], and the particular implementation
of the spectral enhancement algorithm [195].

Spectral enhancement based on Hidden Markov Processes (HMP) tries to circumvent
the assumption of specific distributions for the speech and noise processes [213, 214,
215, 216]. The probability distributions of the two processes are first estimated from
long training sequences of anechoic speech and noise samples, and then used jointly
with a given distortion measure to derive an estimator for the speech signal. The
HMP-based speech enhancement relies on the type of training data [217, 218]. It
works best with the trained types of noise, but often worse with other type of noise.
Furthermore, improved performance generally entails more complex models and higher
computational requirements. While hidden Markov models have been successfully
applied to automatic recognition of anechoic speech signals [219], they were not found
to be sufficiently refined models for speech enhancement applications [194].

Subspace methods [220, 221, 222, 223] attempt to decompose the vector space of the
noisy signal into a signal-plus-noise subspace and a noise subspace. Spectral enhance-
ment is performed by removing the noise subspace and estimating the speech signal
from the remaining subspace. The signal subspace decomposition can be achieved by
either using the Karhunen-Loeve transform (KLT) via eigenvalue decomposition of a
Toeplitz covariance estimate of the noisy vector [220, 222], or by using the singular
value decomposition of a data matrix [224, 225]. Linear estimation in the signal-
plus-noise subspace is performed with the goal of minimizing signal distortion while
masking the residual noise by the signal.

5.3.1 Spectral Subtraction

Lebart et al. proposed to use spectral subtraction for speech dereverberation of noise-
free speech in [24]. In this section we will briefly describe this procedure. Additionally,
we include the ability to suppress background noise.

The spectral subtraction technique can be related to the estimation of a short-time
spectral attenuation factor. Since the early spectral, late reverberant spectral, and
noise spectral components are assumed to be statistically independent, the short-time
spectral attenuation factor is adjusted as a function of the a posteriori Signal to
Interference Ratio (SIR) for each time and frequency. The a posteriori SIR is defined
as

γ(l, k) =
|X(l, k)|2

λzl(l, k) + λv(l, k)
. (5.9)

where λzl(l, k) = E{|Zl(l, k)|2} denotes the late reverberant spectral variance, and
λv(l, k) = E{|V (l, k)|2} denotes the noise spectral variance which can be obtained us-
ing power spectral density estimation during noise only periods, or by using a minimum
statistics approach [188, 189, 190]. We have used the Improved Minima Controlled Re-
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cursive Averaging (IMCRA) algorithm proposed by Cohen [190] to obtain an estimate
of the noise spectral variance λv(l, k) directly from X(l, k).

The short-time spectral attenuation factor can be defined as [197, 226]

G(l, k) =

(
1−

(
1

γ(l, k)

)β1
)β2

. (5.10)

Methods like magnitude subtraction (β1 = 1/2, β2 = 1), power subtraction (β1 = 1,
β2 = 1/2) and Wiener estimation (β1 = 1, β2 = 1) are special cases of Eq. 5.10.

Similar to the findings in [24] we concluded that magnitude subtraction gives better
performance compared to power subtraction and Wiener estimation. This results in
the following gain function

G(l, k) = 1− 1√
γ(l, k)

. (5.11)

However, in all frames it is possible that for some frequencies the estimated amplitude

spectrum
√
λ̂zl(l, k) + λ̂v(l, k) of the interference is larger than the instantaneous am-

plitude |X(l, k)| of the received spectrum. Since this could lead to negative estimates
for the amplitude of the early speech spectrum Ze(l, k), the gain function G(l, k) is usu-
ally put to zero (i.e., half-wave rectification). However, because of the non-stationary
character of the speech signal, this non-linear rectification leads to a specific kind
of residual noise which consists of short tones with randomly distributed frequencies.
Different techniques have been proposed to eliminate this annoying residual noise, e.g.,
by averaging the (instantaneous) noisy speech spectrum over a number of frames, or
by using non-linear spectral subtraction techniques [227].

Here, the residual noise problem is alleviated using two standard modifications. The
first modification consists of replacing the a posteriori SIR in Eq. 5.11 by the a priori
SIR ξ(l, k) plus one, i.e., γ(l, k) = ξ(l, k) + 1. The a priori SIR is defined as

ξ(l, k) =
E{|Ze(l, k)|2}

λzl(l, k) + λv(l, k)
, (5.12)

where E{|Ze(l, k)|2} denotes the early speech spectral variance which is not available
in practice. Ephraim and Malah [205] proposed a very useful estimation method for
the a priori SIR, which is known as the decision-directed estimation method. The a
priori SIR can be substituted by the following expression:

ξ(l, k) = η
|Ẑe(l − 1, k)|2

λ̂zl(l − 1, k) + λ̂v(l − 1, k)
+ (1− η) max {γ(l, k)− 1, 0} . (5.13)

The first term, |Ẑe(l−1,k)|2

λ̂zl (l−1,k)+λ̂v(l−1,k)
, represents the a priori SIR resulting from the

processing of the previous frame. The second term, max {γ(l, k)− 1, 0}, is a maximum
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likelihood estimate for the a priori SIR, based entirely on the current frame. The
parameter η (0 ≤ η ≤ 1) denotes a weighting factor that controls the trade-off between
the interference reduction and the transient distortion brought into the signal [205]. A
larger value of η results in a greater reduction of the residual noise, but at the expense
of attenuated speech onsets and audible modifications of transient components. As a
compromise, a value 0.98 of η was determined by simulations and informal listening
tests for the purpose of noise reduction [205]. The second modification of the standard
gain function consists of using a gain floor (Gmin) which constrains the minimum value
of the gain function. The gain floor also gives us the possibility to control the maximum
amount of interference reduction. The gain floor is usually considered to be a constant
value. However, from a perceptual point of view it is desired to have a constant residual
background noise level. Therefore the gain floor is made signal dependent by using

G̃min(l, k) = Gmin
λv(l, k)

λzl(l, k) + λv(l, k)
. (5.14)

The derivation, and a more elaborate discussion, of this modification can be found in
Appendix B. Applying above modifications to the standard gain function in Eq. 5.11
results in the following gain function

G(l, k) = max

{
1− 1√

ξ(l, k) + 1
, G̃min(l, k)

}
. (5.15)

5.3.2 OM-LSA Estimator

In this section we propose to use a more advanced spectral enhancement technique
based on statistical signal modelling. The Optimally-Modified Log Spectral Amplitude
estimator is used to obtain an estimate of the desired spectral component Ze(l, k).
The minimum mean-square error Log Spectral Amplitude (LSA) estimator proposed
by Ephraim and Malah [205] minimizes

E
{(

log(A(l, k))− log(Â(l, k))
)2
}
, (5.16)

where A(l, k) = |Ze(l, k)| denotes the spectral speech amplitude, and Â(l, k) is its
optimal estimator. Assuming spectral coefficients are conditionally independent given
their variances [208], the LSA estimator is defined as

Â(l, k) = exp (E{log(A(l, k))|Ze(l, k)}) . (5.17)

The LSA gain function, based on a Gaussian statistical model, is given by

GLSA(l, k) =
ξ(l, k)

1 + ξ(l, k)
exp

(
1
2

∫ ∞

ζ(l,k)

e−t

t
dt

)
, (5.18)

where

ξ(l, k) =
E{|Ze(l, k)|2}

λzl(l, k) + λv(l, k)
, (5.19)
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γ(l, k) =
|X(l, k)|2

λzl(l, k) + λv(l, k)
, (5.20)

and

ζ(l, k) =
ξ(l, k)

1 + ξ(l, k)
γ(l, k). (5.21)

The Optimally-Modified Log Spectral Amplitude (OM-LSA) spectral gain function,
which minimizes the mean-square error of the log-spectra, is obtained as a weighted
geometric mean of the hypothetical gains associated with the speech presence un-
certainty [228]. Given two hypotheses, H0(l, k) and H1(l, k), which indicate speech
absence and speech presence, respectively, we have

H0(l, k) : X(l, k) = Zl(l, k) + V (l, k),
H1(l, k) : X(l, k) = Ze(l, k) + Zl(l, k) + V (l, k).

(5.22)

Based on a Gaussian statistical model, the speech presence probability is given by

p(l, k) =
{

1 +
q(l, k)

1− q(l, k)
(1 + ξ(l, k)) exp (−ζ(l, k))

}−1

, (5.23)

where q(l, k) is the a priori signal absence probability [228], which will be discussed
on page 105.

The OM-LSA gain function is given by,

GOM−LSA(l, k) = {GH1(l, k)}p(l,k) {GH0(l, k)}1−p(l,k), (5.24)

with GH1(l, k) = GLSA(l, k) and GH0(l, k) = Gmin. The lower-bound constraint for
the gain when the signal is absent is denoted by Gmin, and specifies the maximum
amount of reduction in those frames.

In our case the lower-bound constraint does not result in the desired result since the
late reverberant signal can still be audible. Our goal is to suppress the late reverberant
signal down to the noise floor, given by Gmin V (l, k), where V (l, k) denotes the STFT
of the noise signal v(n). In Appendix B we derive GH0(l, k) that meets this goal, i.e.,

GH0(l, k) = Gmin
λv(l, k)

λzl(l, k) + λv(l, k)
. (5.25)

A priori SIR estimators

Many researchers believe that the main advantage of the LSA estimator is related
to the decision-directed estimator, proposed by Ephraim and Malah [205]. Other
estimators like the causal recursive estimator, and non-causal recursive estimator,
were recently proposed by Cohen [208]. Compared to the decision-directed a priori
SIR estimator the non-causal a priori SIR estimator is more reliable during speech
onsets, and hence reduces distortion in these periods.
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Rather than using one a priori Signal to Interference Ratio it is possible to calculate
one value for each interference. By doing this, one gains control over the interference
reduction level, and the a priori SIR estimation approach, of interference. Note that in
some cases it might be desirable to reduce one of the interferences at the cost of larger
speech distortion, while other interferences are reduced less to avoid distortion. Due
to the separation we can control the tradeoff between noise reduction and distortion
of each of the interferences separately. A more elaborate discussion can be found in
Appendix B. In this appendix we show how the decision-directed estimator, and the
causal and non-causal recursive estimators, can be used to estimate the individual a
priori SIRs. We also show how these values can be combined to obtain the total a
priori SIR ξ(l, k). It should be noted that each a priori SIR could be estimated using
a different estimator.

A priori Signal Absence Probability

In this section we propose an efficient estimator for the a priori signal absence prob-
ability q(l, k) that exploits spatial information (M > 2). This estimator uses a soft-
decision approach to compute four parameters. Three parameters, i.e., Plocal(l, k),
Pglobal(l, k), and Pframe(l), are proposed by Cohen in [228], and are based on the time-
frequency distribution of the estimated a priori SIR, ξ(l, k). These parameters exploit
the strong correlation of speech presence in neighbouring frequency bins of consecutive
frames. To further improve the a priori signal absence probability we propose to use a
fourth parameter that exploits spatial information. Since a strong coherency between
the microphone signals will indicate the presence of a direct signal, we propose to
relate our fourth parameter to the Mean Square Coherence (MSC) of two microphone
signals. By using the MSC we mimic the binaural overlap-masking release (see Sec-
tion 1.3) that is used by the human auditory system. To use the MSC its value needs
to be related to the probability Pspatial(l, k). Since the MSC is already normalized its
value lies between zero and one. To improve the estimation we first smooth the MSC
in time and frequency, before the MSC value is related to Pspatial(l, k).

The MSC is defined as

ΦMSC(l, k) ,
S{X21(l, k)}

S{X1(l, k)}S{X2(l, k)}
, (5.26)

where X21(l, k) = X2(l, k)X∗
1 (l, k), and the operator S denotes smoothing in time, i.e.,

S{Y (l, k)} = ηsS{Y (l − 1, k)}+ (1− ηs)|Y (l, k)|2, (5.27)

where η (0 ≤ ηs ≤ 1) is the smoothing parameter. The MSC is further smoothed over
different frequencies using

Φ̃MSC(l, k) =
wmsc∑

i=−wmsc

biΦMSC(l, k + i) (5.28)

where b is a normalized window function (
∑wmsc

i=−wmsc
bi = 1) that determines the fre-

quency smoothing.
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The spatial speech presence probability Pspatial(l, k) is related to Eq. 5.26 by

Pspatial(l, k) =


0, Φ̃MSC(l, k) ≤ Φmin;
1, Φ̃MSC(l, k) ≥ Φmax;
Φ̃MSC(l,k)−Φmin

Φmax−Φmin
, Φmin ≤ Φ̃MSC(l, k) ≤ Φmax,

(5.29)

where Φmin and Φmax are the minimum and maximum threshold values for Φ̃MSC(l, k),
respectively. The proposed a priori speech absence probability is given by

q̂(l, k) = 1− Plocal(l, k)Pglobal(l, k)Pspatial(l, k)Pframe(l). (5.30)

In case M > 2 one could average the MSC over different microphones pairs to improve
the estimation procedure even further. The spatially average MSC is given by

Φ̄MSC(l, k) =
2!(M − 2)!

M !

M−1∑
i=0

M−1∑
j=i+1

S{Xji(l, k)}
S{Xi(l, k)}S{Xj(l, k)}

, (5.31)

and can then be used in Eq. 5.28. Note that for M microphones there are
(
M
2

)
=

M !
2!(M−2)! possible combinations.

5.4 Proposed Multi-Microphone Systems

Single-microphone systems only exploit the spectral diversity and the temporal diver-
sity of the received signal. Reverberation, of course, also induces spatial diversity. To
be able to additionally exploit this diversity multiple microphones must be used, and
their outputs must be combined by a suitable spatial processor such as the so-called
delay and sum beamformer. It is not a priori evident whether spectral enhancement
is best done before or after the spatial processor. For this reason we investigate both
possibilities, as well as a merge of the spatial processor and the spectral enhancement
technique. An advantage of the latter option is that the spectral variance estimator
can be further improved. In this section the multi-microphone systems are proposed
and the pros and cons of each system are discussed.

5.4.1 Spatial Processor with Post-Processor

In this section we propose a multi-microphone system that consists of a spatial pro-
cessor and post-processor. The post-processor consists of one of the developed single-
microphone spectral enhancement techniques. The structure of the proposed system
is depicted in Fig. 5.2. Here {x(rm, n) | m = 0, . . . ,M − 1} denote the noisy mi-
crophone signals, y(n) the output of the spatial processor, and ŝ(n) the estimated
source signal. The reverberation reduction performance of such a system will depend
on the performance of the spatial processor and the post-processor, and the effect
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Spatial

Processor

ŝ(n)y(n)..
. Post-Processor

x(r0, n)

x(rM−1, n)

Figure 5.2 Multi-microphone speech dereverberation system which consists of a spa-
tial processor and a single-microphone dereverberation post-processor.

of the spatial processor on the acoustic channel. Note that for noise reduction such
a structure has been frequently used [143, 229, 230, 144, 145] to enhance the noise
reduction performance of the spatial processor.

A possible spatial processor that could be used is, for example, the Transfer Function
Generalized Sidelobe Canceller (TF-GSC) (see Section 3.2.5, page 65). In theory the
total transfer function, which describes the system between one reference microphone
and the output of the TF-GSC, is equal one. Hence, reverberation is not reduced
by the spatial processor, and the total transfer function which describes the system
between the source and the output of the spatial processor is equal to the reference
transfer function, i.e., no reverberation is reduced by the TF-GSC. The advantage of
the TF-GSC is that dereverberation can be performed in a possibly adverse noise envi-
ronment, since the TF-GSC is able to suppress coherent non-stationary noise sources.
In case the TF-GSC is used in conjunction with the post-processor the dereverberation
performance is limited by the post-processor.

An alternative spatial processor is the delay and sum beamformer. In Section 3.2.5
we have seen that this beamformer can improve the DRR of the signal. Therefore,
the DRR at the output of the spatial processor can generally be larger than 0 dB. In
the proposed structure the output of the spatial processor is further enhanced using
the post-processor. Therefore, the total transfer that describes the system between
the source and the output of the spatial processor could be completely different from
the transfer function that describes the system between the source and a single micro-
phone. Informal listening test indicated that when the output of the delay and sum
beamformer was used by the post-processor some audible distortions were introduced.
Therefore, we will now analyse the total transfer function that describes the system
between the source and the output of the delay and sum beamformer. Let us consider
the output of the delay and sum beamformer in the frequency domain:

Y (ω) =
1
M

M−1∑
m=0

X(rm;ω)e−ιωτm

=
1
M

M−1∑
m=0

H(rm, rs;ω)S(ω)e−ιωτm

= H̄(ω)S(ω), (5.32)

where H(rm, rs;ω) denotes the acoustic transfer function that describes the system
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between the source and the mth microphone, H̄(ω) is the total transfer function, and
τm is propagation delay of the direct signal from the source to the mth microphone.
Using Statistical Room Acoustics (SRA) theory (as introduced in Section 2.6) it can
be shown that the expected energy density of the total transfer H̄(ω) can be expressed
as:

Eθ

{
|H̄(ω)|2

}
=

1
M2

M−1∑
m=0

Eθ

{
|H(rm, rs;ω)|2

}

+
M−1∑
m=0

M−1∑
n=0
n 6=m

Eθ {H(rm, rs;ω)H∗(rn, rs;ω)} e−ιω(τm−τn)

 , (5.33)

where Eθ {·} denotes the spatial expectation. It follows that

Eθ

{
|H(rm, rs;ω)|2

}
=

1
16π2D2

m

+
1− ᾱ

πᾱS
, (5.34)

and

Eθ {H(rm, rs;ω)H∗(rn, rs;ω)} =
eιk′(Dm−Dn)

16π2DmDn
+
(

1− ᾱ

πᾱS

)
sin (k′‖rm − rn‖)
k′‖rm − rn‖

. (5.35)

where k′ = ω/c is the wave number, and c is the sound velocity. Let us assume that
the delay and sum beamformer is perfectly steered in the direction of the source, i.e.,
τm = Dm/c. The expected energy density of the total transfer H̄(ω) can then be
expressed as:

Eθ

{
|H̄(ω)|2

}
=

1
M2

M−1∑
m=0

M−1∑
n=0

1
16π2DmDn

+
1
M

(
1− ᾱ

πᾱS

)

+
1
M2

(
1− ᾱ

πᾱS

)M−1∑
m=0

M−1∑
n=0
n 6=m

sin (k′‖rm − rn‖)
k′‖rm − rn‖

cos(k′(Dm −Dn)), (5.36)

Note that the first two terms in Eq. 5.36 are frequency independent and that the last
term in Eq. 5.36 results from the spatial correlation between the channels. The last
term becomes large when the receivers are closely spaced, i.e., ‖rm − rn‖ → 0, and is
likely the origin of the audible distortions in the signal ŝ(n).

Our main goal is to exploit the reverberation reduction performance of both the spa-
tial processor and the post-processor. However, the spatial processor might have an
undesired influence on the total transfer function that describes the system between
the source and the output of the spatial processor. As an example we have seen that
the delay and sum beamformer can introduce ‘distortions’ due to the spatial correla-
tion between the acoustic channels. These distortions can violate the assumptions on
which the late reverberant spectral variance estimator is based, and hence deteriorate
the performance of the post-processor.
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ŝ(n)

x̃(rM−1, n)x(rM−1, n)
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Pre-Processor

Pre-Processor

Figure 5.3 Multi-microphone speech dereverberation system using several single-
microphone dereverberation pre-processors.

5.4.2 Pre-Processor with Spatial Processor

In the previous section we have seen that the spatial processor can have an unde-
sired influence on the signal that is used by the post-processor. By using the same
post-processor prior to the spatial processor, i.e., as a pre-processor, we eliminate
the influence of the spatial processor on the post-processor. The alternative multi-
microphone system thus consists of a single-microphone dereverberation pre-processor
for each microphone, followed by a spatial processor, as depicted in Fig. 5.3. Here
x(rm, n) and x̃(rm, n) denote the mth noisy microphone signal and pre-processed sig-
nal, respectively. The pre-processed signals are processed by the spatial processor to
obtain an estimate of the source signal ŝ(n). It should be noted that the complexity
has increased significantly, since we now need M pre-processors compared to one post-
processor. The proposed structure can have many advantages. In Section 3.2.5 we have
already noticed that many traditional adaptive spatial processors become ineffective
in reverberant environments. Due to the reverberation reduction these problems can
be partially solved. Furthermore, the spatial processor can be used to reduce early
reflections which are unaffected by the pre-processor. A possible disadvantage of this
systems is related to the fact that the pre-processor introduces non-linear distortions
in the signal. In case an adaptive spatial processor is used such distortions can influ-
ence the adaptation of the spatial processor. In Section 6.5 we will develop a possible
technique to estimate the late reverberant spectral variance in a noisy environment.
This estimator can be used when an estimate of the interference is available. Unfortu-
nately it is likely to fail in an adverse noise environment, where highly coherent and/or
non-coherent non-stationary interferences are present.

5.4.3 Joint Multi-Microphone Dereverberation

The final system is the joint multi-microphone dereverberation system, as depicted in
Fig. 5.4, where X(l, k) = [X(r0, l, k), . . . , X(rM−1, l, k)]T . In this system the spatial
processor and spectral enhancement techniques have been combined. Furthermore, a
novel spatial processor was used that does not introduce the problems discussed in
the first multi-microphone system. Additionally, all microphone signals are used to
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Post-Filter

X(l, k) Y (l, k) Ŝ(l, k)
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λ̂zl (l, k)

Figure 5.4 Joint multi-microphone speech dereverberation system.

estimate the late reverberant spectral variance.

In Section 5.4.1 we have showed that the spatial processor can have an undesired
influence on the total transfer function that describes the system between the source
and the input of the post-processor. As an example we have showed that delay and
sum beamformer introduces a spatial correlation term (see Eq. 5.36). To avoid the
introduction of this spatial correlation term we propose the following spatial processor:

Y (ω) = Q(ω)eιφdsb(ω) (5.37)

where

Q(ω) =

(
1
M

M−1∑
m=0

|X(rm;ω)e−ιωτm |2
) 1

2

(5.38)

denotes the amplitude spectrum, and

φdsb(ω) = arg

{
1
M

M−1∑
m=0

X(rm;ω)e−ιωτm

}
(5.39)

denotes the phase spectrum of Y (ω).

Eq. 5.37 can be expressed as

Y (ω) = H̃(ω)S(ω), (5.40)

where H̃(ω) denotes the total transfer function of the proposed spatial processor.
Let us assume that the array is perfectly steered in the direction of the source, i.e.,
τm = Dm/c. In case the source is in far-field the waves can be modelled as plane
waves. Hence the amplitudes of the signals are identical and only the phase differs
[130]. Since the phase spectrum of Y (ω) is equivalent to that of the delay and sum
beamformer, i.e., arg{H̃(ω)} = arg{H̄(ω)}, the directivity pattern of the proposed
spatial processor is equivalent to that of the delay and sum beamformer.
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We will now compare the expected energy density of the proposed spatial processor
with that of the delay and sum beamformer in Eq. 5.36. The expected energy density
of H̃(ω) can be expressed as:

Eθ

{
|H̃(ω)|2

}
=

1
M

M−1∑
m=0

1
16π2D2

m

+
1
M

(
1− ᾱ

πᾱS

)
. (5.41)

By averaging the power spectra of received microphone signals rather than there com-
plex spectra we avoid the spatial correlation terms. Furthermore, due to spatial aver-
aging we reduce the spectral deviation, of the transfer function H̃(ω). According to
Eq. 5.1 we can expect that this can further enhance the subjective speech quality.

5.4.4 Discussion

In the previous sections we proposed three possible multi-microphone speech derever-
beration systems. In terms of the computational complexity the first multi-microphone
system, i.e., spatial processor with post-processor, is most efficient. In terms of rever-
beration reduction and possible distortions this method might not be the best choice.
In case the microphones are closely spaced the spatial correlation among the acoustic
channels introduce undesired components at the output of the spatial processor. The
second and third system are both very appealing, and the eventual choice for a specific
system will in practice depend on the available processing power and the environmen-
tal conditions. It should be noted that in an adverse noise environment the noise has
a much larger impact on the speech intelligibility than the late reverberant energy (see
for example Eq. 1.2). This means that in such a situation dereverberation might not
be the first priority.

5.5 Experiments and Results

In this section we present and discuss the results that were obtained using a single mi-
crophone, and multiple microphones. We will compare the results of the three multi-
microphone dereverberation system. The first system consists of a delay and sum
beamformer followed by a single-microphone speech dereverberation post-processor
and will be denoted by SP-SMD (Spatial Processor - Single Microphone Dereverbera-
tion). The second system, denoted by SMD-SP (Single Microphone Dereverberation -
Spatial Processor), consists of a pre-processor for each microphone signal and a delay
and sum beamformer. The final system, denoted by MMD (Multi-Microphone Dere-
verberation), consists of the proposed spatial processor (Eq. 5.37) and a post-processor
that uses the spatially averaged late reverberant spectral variance. The reverberant
signals were generated using synthetic and measured acoustic impulse responses. As
a reference we evaluated the performance of a standard delay and sum beamformer
(DSB).
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Figure 5.5 Experimental setup with a uniform linear microphone array.

The reverberant microphone signals are obtained by convolving 40 seconds (male and
female) speech data from the TIMIT speech database [4] with different AIRs. The
experimental setup is depicted in Figure 5.5. A number of microphones were uniformly
spaced on a straight line, with inner microphone spacing Di = 5 cm. The source-array
distanceD is defined as the distance between the source and the center of the array, and
ranges from 1 to 3 m. The dimensions of the room are 5 m x 6 m x 4 m (length x width
x height). The synthetic AIRs are constructed using the image method for modelling
small room acoustics [83], modified to accommodate fractional sample delays according
to [231], with reverberation times from 250 to 650 milliseconds. The real AIRs were
measured in an office room with dimensions 7.3 m x 6.2 m x 3.2 m (length x width
x height) using the Maximum Length Sequence (MLS) technique that is described
in Section 2.11. The reverberation time of the office room was 0.529 seconds. The
parameters that were used for these experiments are shown in Table 5.1. All a priori
SIRs are estimated using the decision-directed estimator (Eq. 5.19).

fs = 8000 Hz Tl = 48 ms GdB
min = 18 dB βdB = 9 dB

η = 0.95 b = Hanning window wmsc = 9 Φmin = 0.2
Φmax = 0.65 ηs = 0.35

Table 5.1 Parameters used for these experiments.



5.5 Experiments and Results 113

5.5.1 Reverberation Suppression

Using synthetic AIRs

In this section we evaluated the performance of the developed multi-microphone dere-
verberation systems using 3, 5 and 7 microphones. The results obtained using a single
microphone are shown as a comparison. In Figs. 5.6 and 5.7 the segmental Signal to
Reverberation Ratio (SRR), Bark Spectral Distortion (BSD) and Perceptual Evalua-
tion of Speech Quality (PESQ) score are depicted for D = 1 m and RT60 = 0.25 s,
and for D = 3 m and RT60 = 0.5 s, respectively. The results depicted for M = 0 were
obtained from the unprocessed reverberant signal (center microphone). The dotted
lines represent the results that were obtained using the delay and sum beamformer.

The segmental SRR that was obtained by the proposed systems is much higher than
the segmental SRR that was obtained by the delay and sum beamformer. The speech
distortion in terms of the Bark spectral distortion is equal or lower than the speech
distortion of the delay and sum beamformer for D = 1 m and RT60 = 0.25 s. For
D = 3 m and RT60 = 0.5 s, there is slightly more distortion. From these results we also
see that the segmental SRRs and PESQ scores increase, and the BSDs decrease, when
more microphones are used. The performances of these systems in terms of segmental
SRR, BSD and PESQ scores are very comparable. Informal listening tests indicated
an audible distortion in the output of the SP-SMD system, which was not audible
in the other systems. This distortion is most likely caused by the spatial correlation
between the acoustic channels, as described in Section 5.4.1.

Both the spectral subtraction technique and the OM-LSA estimation technique, per-
form very well. At first one might prefer the spectral subtraction technique since it
achieves higher segmental SRRs. However, since the spectral subtraction technique
results in higher BSDs compared to the OM-LSA estimation technique, the results are
not necessarily better. In general we can say that, compared to the spectral subtrac-
tion technique, the OM-LSA estimation technique obtains a lower segmental SRR and
a lower BSD.

Using measured AIRs

In this section we have evaluated the performance of the developed multi-microphone
dereverberation systems for 3, 5 and 7 microphones using real AIRs. The results
obtained using a single microphone are shown as a comparison. The results for D =
1 m and D = 3 m are shown in Figs. 5.8 and 5.9, respectively. The results depicted for
M = 0 were obtained from the unprocessed reverberant signal (center microphone).
The dotted lines represent the results that were obtained using the delay and sum
beamformer. The results obtained using the measured AIRs are similar to those
obtained using the synthetic AIRs. In general the OM-LSA estimation technique
results in a lower BSD and a lower segmental SRR. However, at a distance of 3 m the
OM-LSA estimation technique introduces slightly more distortion, i.e., lower PESQ
scores and BSD values, compared to the spectral subtraction technique.
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Figure 5.6 Objective measures obtained for the four systems, i.e., the spatial processor
with post-processor (SP-SMD), the pre-processors with spatial processor (SMD-SP),
the joint multi-microphone dereverberation system (MMD), and the delay and sum
beamformer (DSB). The post-processor and pre-processors are based on (a-c-d) spectral
subtraction, and (b-d-f) the OM-LSA estimator. The reverberant signals were created
using synthetic AIRs with a reverberation time of 250 ms. The source-array distance
was 1 m and Tl was set to 48 ms.
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Figure 5.7 Objective measures obtained for the four systems, i.e., the spatial processor
with post-processor (SP-SMD), the pre-processors with spatial processor (SMD-SP),
the joint multi-microphone dereverberation system (MMD), and the delay and sum
beamformer (DSB). The post-processor and pre-processors are based on (a-c-d) spectral
subtraction, and (b-d-f) the OM-LSA estimator. The reverberant signals were created
using synthetic AIRs with a reverberation time of 500 ms. The source-array distance
was 3 m and Tl was set to 48 ms.
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Figure 5.8 Objective measures obtained for the four systems, i.e., the spatial processor
with post-processor (SP-SMD), the pre-processors with spatial processor (SMD-SP),
the joint multi-microphone dereverberation system (MMD), and the delay and sum
beamformer (DSB). The post-processor and pre-processors are based on (a-c-d) spectral
subtraction, and (b-d-f) the OM-LSA estimator. The reverberant signals were created
using measured AIRs with a reverberation time of 529 ms. The source-array distance
was 1 m and Tl was set to 48 ms.
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Figure 5.9 Objective measures obtained for the four systems, i.e., the spatial processor
with post-processor (SP-SMD), the pre-processors with spatial processor (SMD-SP),
the joint multi-microphone dereverberation system (MMD), and the delay and sum
beamformer (DSB). The post-processor and pre-processors are based on (a-c-d) spectral
subtraction, and (b-d-f) the OM-LSA estimator. The reverberant signals were created
using measured AIRs with a reverberation time of 529 ms. The source-array distance
was 3 m and Tl was set to 48 ms.
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5.5.2 Reverberation and Noise Suppression

In this section we have evaluated the performance of the developed single-microphone
dereverberation techniques in the presence of noise.

We have first evaluated the performance using synthetic AIRs with RT60 = 0.5 s. The
segmental SNR of the microphone signal ranges from 10 dB till 30 dB. In Figs. 5.10
and 5.11 the segmental SIR and BSD are depicted for D = 0.5 m and D = 3 m,
respectively. The segmental SIRs and BSDs were calculated using the reverberant
microphone signal (unprocessed (UP)), the signal that was obtained after noise sup-
pression (NS), and the signal that was obtained after joint reverberation and noise
suppression (RS+NS). We can clearly see the increase in segmental SIR when joint
reverberation and noise suppression is applied. Furthermore, the BSD obtained using
the OM-LSA estimation technique is much lower than the BSD obtained using the
spectral subtraction technique, while the segmental SIR is slightly lower.

We now evaluate the performance using a real AIR that was measured in an office
room (RT60 = 0.529 s). In Figs. 5.12 and 5.13 the segmental SIRs and BSDs are
shown for D = 1 m and D = 3 m, respectively. The BSD that was obtained by the
OM-LSA estimation technique was much lower than the BSD that was obtained by
the spectral subtraction technique. Again a significant increase in segmental SIR is
achieved when joint reverberation and noise suppression is applied.

As an example a female speech signal corrupted by reverberation and noise (segmental
SNR was 21 dB and 12.7 dB) was enhanced using the spectral subtraction technique
and the OM-LSA estimation technique. The spectrogram and waveform of the direct
signal, reverberant signal, early speech signal, microphone signal, and processed signals
(spectral subtraction technique and OM-LSA estimation technique) are shown in Figs.
5.14 and 5.15. One can clearly see that signal that results from the spectral subtraction
technique is more distorted than the signal that results from the OM-LSA estimation
technique, e.g., at frequencies above 3 kHz the speech that results from the spectral
subtraction technique is almost completely suppressed.

5.6 Conclusions

In this chapter we have described how late reverberation and background noise can be
suppressed using single- and multi-microphones and a spectral enhancement technique.
Two known spectral enhancement techniques, viz., spectral subtraction and the OM-
LSA estimator have been used. Additional modifications of the spectral enhancement
techniques were developed to enhance the performance when background noise and
late reverberation are suppressed.

Three multi-microphone speech enhancement systems were proposed. The first system
consists of a spatial processor and a post-processor, and has a very low computational
complexity. The performance in terms of segmental SRR, BSD, and PESQ score is
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Figure 5.10 The segmental SIRs and BSDs obtained from the unprocessed (UP)
reverberant microphone signal, the signal that was obtained after noise suppression
(NS), and the signal that was obtained after joint reverberation and noise suppression
(RS+NS). The results are shown for (a-c) the spectral subtraction technique and (b-d)
the OM-LSA estimation technique, using a synthetic AIR and one microphone. The
source-microphone distance was 0.5 m, the reverberation time 500 ms, and Tl was set
to 48 ms.
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Figure 5.11 The segmental SIRs and BSDs obtained from the unprocessed (UP)
reverberant microphone signal, the signal that was obtained after noise suppression
(NS), and the signal that was obtained after joint reverberation and noise suppression
(RS+NS). The results are shown for (a-c) the spectral subtraction technique and (b-d)
the OM-LSA estimation technique, using a synthetic AIR and one microphone. The
source-microphone distance was 2 m, the reverberation time 500 ms, and Tl was set to
48 ms.
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Figure 5.12 The segmental SIRs and BSDs obtained from the unprocessed (UP)
reverberant microphone signal, the signal that was obtained after noise suppression
(NS), and the signal that was obtained after joint reverberation and noise suppression
(RS+NS). The results are shown for (a-c) the spectral subtraction technique and (b-d)
the OM-LSA estimation technique, using a measured AIR and one microphone. The
source-microphone distance was 1 m, the reverberation time 529 ms, and Tl was set to
48 ms.
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Figure 5.13 The segmental SIRs and BSDs obtained from the unprocessed (UP)
reverberant microphone signal, the signal that was obtained after noise suppression
(NS), and the signal that was obtained after joint reverberation and noise suppression
(RS+NS). The results are shown for (a-c) the spectral subtraction technique and (b-d)
the OM-LSA estimation technique, using a measured AIR and one microphone. The
source-microphone distance was 3 m, the reverberation time 529 ms, and Tl was set to
48 ms.
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(a) Direct speech signal.
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(b) Reverberant speech signal.
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(c) Early speech signal (ze(n)).
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(d) Microphone signal with SNRseg = 21 dB.
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(e) Spectral Subtraction
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Figure 5.14 Spectrograms and waveforms of the direct, reverberant, early, micro-
phone (SNRseg = 21 dB), and enhanced speech signal. The enhanced speech was ob-
tained using joint reverberation and noise suppression using (c) the spectral subtraction
technique, and (d) the OM-LSA estimation technique. A measured AIR with a reverber-
ation time of 529 ms was used to generate the reverberant signal. The source-microphone
distance was 1 m and Tl was set to 48 ms.
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(a) Direct speech signal.
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(b) Reverberant speech signal.
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(c) Early speech signal.
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(d) Microphone signal with SNRseg = 12.7 dB.
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(e) Spectral Subtraction
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(f) OM-LSA

Figure 5.15 Spectrograms and waveforms of the direct, reverberant, early, micro-
phone (SNRseg = 12.7 dB), and enhanced speech signal. The enhanced speech was
obtained using joint reverberation and noise suppression using (c) the spectral subtrac-
tion technique, and (d) the OM-LSA estimation technique. A measured AIR with a
reverberation time of 529 ms was used to generate the reverberant signal. The source-
microphone distance was 1 m and Tl was set to 48 ms.
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very good. However, in conjunction with the delay and sum beamformer this system
introduces some audible distortions due to the spatial correlation between the acoustic
channels. The second system consists of multiple pre-processors (one for each micro-
phone) and a spatial processor, and has a much higher computational complexity than
the first system. The overall performance of this system is very good. The third and
final system uses a novel spatial processor. The output of this spatial processor is
enhanced using a spatially averaged estimate of the late reverberant spectral variance.
This system has a complexity that is larger than the first system but lower than the
second system. The segmental SRRs and BSDs that were obtained using the third
system are slightly worse compared to the second and first system. However, there
are no audible distortions like in the first system. Furthermore, in [30] we evaluated
three multi-microphone speech dereverberation techniques using subjective listening
tests. The first dereverberation technique is a standard delay and sum beamfomer,
the second technique is a Linear Prediction based enhancement technique proposed by
Gaubitch et al. in [110], and the third is an early version of the spectral subtraction
based dereverberation technique described in Chapter 5. The subjective listening test
was performed according to the guidelines of International Telecommunications Union
(ITU-T) Recommendation Series-P for subjective testing [178, 232]. Using the listen-
ing tests, we have estimated the subjective perception of colouration, reverberation
decay tail effect, and the overall speech quality. A total of 26 normal hearing subjects
was subjected to 64 speech files, with a male and a female talker for eight acoustic se-
tups (different distances and reverberation times), and speech processed with the three
dereverberation algorithms. Calibration speech examples were given to assist listeners
in identifying colouration and reverberation decay tail effects. Compared to the re-
ceived reverberant microphone signal the results for the spectral enhancement based
technique indicated that the colouration was approximately equal, the reverberation
decay tail effect was reduced, and the overall speech quality was improved. Based on
the intelligibility tests performed by Allen [15] we expect that the intelligibility of the
processed signal has been improved.

Results demonstrate that high reverberation suppression can be achieved with low
speech distortion over a wide range of source-microphone distances and reverberation
times.
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Chapter 6

Late Reverberant Spectral Variance
Estimation

6.1 Introduction

In speech communication systems, such as voice-controlled systems, hands-free mobile
telephones, and hearing aids, the received microphone signals are degraded by room
reverberation, background noise, and other interferences.

Reverberation is the process of multi-path propagation of an acoustic sound from its
source to one or more microphones. The received signal generally consists of a direct
sound, reflections that arrive shortly after the direct sound (commonly called early
reverberation), and reflections that arrive after the early reflections (commonly called
late reverberation). Reverberant speech can be described as sounding distant with no-
ticeable echo and colouration. These detrimental perceptual effects generally increase
with increasing distance between the source and microphone. From the discussion
in Section 1.3 and 1.4 it has become clear that the late reverberation is the main
cause of these detrimental effects. The combination of the direct sound and the early
reverberation are sometimes referred to as the early speech component.

Reduction of the detrimental effects of reflections is evidently of considerable practi-
cal importance, and is the focus of this dissertation. In Chapter 5 dereverberation
algorithms, i.e., signal processing algorithms that reduce the detrimental effects of
reflections have been developed. The developed novel single- and multi-microphone
speech dereverberation algorithms aim at the suppression of late reverberation, i.e., at
estimation of the early speech component. This is done via so-called spectral enhance-
ment techniques that require a specific measure of the late reverberant signal. This
measure, called spectral variance, needs to be estimated directly from the received
(possibly noisy) reverberant signal(s). In this chapter we derive such an estimator
using a statistical reverberation model that requires a limited amount of a priori
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knowledge about the acoustic channel(s) between the source and the microphone(s).

In this chapter an existing single-channel statistical reverberation model that was pro-
posed by Polack [63], serves as a starting point. The model is characterized by a
parameter that depends on the reverberation time RT60 of the environment. Detailed
information about the reverberation time can be found in Section 2.8. In this chapter
it is shown that the spectral variance estimator that is based on Polack’s model, can
only be used when the source-microphone distance is larger than the critical distance.
This is the distance where the direct path energy is equal to the total reflective energy,
i.e., early plus late reflective energy. A generalization of the statistical reverberation
model in which the direct sound is incorporated is developed. This model requires one
additional parameter, denoted by κ, which is related to the ratio between the direct
path energy and the sound energy of all reflections. The generalized model is used to
derive a novel spectral variance estimator, for the so-called late reverberant spectral
variance. When the novel estimator rather than the existing estimator is used for dere-
verberation and the source-microphone distance is smaller than the critical distance,
the dereverberation performance is significantly increased. It will be shown that an
estimate of the parameter κ can be obtained blindly. Under the assumption that the
enclosed space is ergodic, which means that the resulting sound field is diffuse, dif-
ferent realizations of this stochastic reverberation process can be obtained by varying
either the position of the microphone or the position of the source. Therefore, we can
replace the ensemble average that is used in the derivation of the spectral variance
estimator by spatial averaging. Since spatial averaging can be performed by using
multiple microphones, we can use them to improve the late reverberant spectral vari-
ance estimation. Experimental results demonstrate the performance of the spectral
variance estimator. Furthermore, we analyse how sensitive the estimators are with
respect to errors in the two parameters RT60 and κ.

The structure of this chapter is as follows. In Section 6.2 the problem is formulated.
In Section 6.3 we will first discuss Polack’s statistical model, and introduce the gen-
eralized statistical model. Both models are used to derive a late reverberant spectral
variance estimator in Section 6.4. In Section 6.5 it will be shown how the late rever-
berant spectral variance can be estimated from a noisy observation using additional
processing. A more elaborate discussion on the (blind) estimation of the required pa-
rameters RT60 and κ can be found in Section 6.6. Simulation results will be shown in
Section 6.7, and demonstrate the feasibility of the two estimators and the sensitivity
with respect to estimation errors of the required parameters.

6.2 Problem Formulation

The reverberant signal results from the convolution of the anechoic speech signal s(t)
and the causal time-invariant Acoustic Impulse Response (AIR). The AIR function is
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denoted by h(t), such that

z(t) =
∫ t

−∞
s(θ)h(t− θ) dθ. (6.1)

Since our goal is to suppress late reverberation the AIR is divided into two segments,
he(t) and hl(t) so that

h(t) =


he(t), for 0 ≤ t < Tl;
hl(t), for t ≥ Tl;
0, otherwise.

(6.2)

The parameter Tl can be controlled depending on the application or subjective pref-
erence. Usually Tl is chosen such that he(t) consists of the direct path and a few early
reflections and hl(t) consists of all later reflections, and hence ranges from 40 to 80
ms.

Eq. 6.1 can be rewritten using Eq. 6.2:

z(t) =
∫ t

−∞
s(θ)he(t− θ) dθ︸ ︷︷ ︸

ze(t)

+
∫ t

−∞
s(θ)hl(t− θ) dθ︸ ︷︷ ︸

zl(t)

. (6.3)

Our main purpose is to obtain an estimate of the late reverberant spectral variance
λzl(l, k), which is defined as

λzl(l, k) = E{|Zl(l, k)|2}, (6.4)

where E{·} denotes mathematical expectation, and Zl(l, k) denotes the discrete short-
time Fourier transform (STFT) of zl(t).

6.3 Statistical Reverberation Models

In this section Polack’s statistical reverberation model is discussed, and a generalized
statistical reverberation model is proposed. It will be show that Polack’s statisti-
cal model is closely related to the energy balance equation which was described in
Section 2.7.2.

Since the acoustic behaviour in real rooms is too complex to model explicitly, Statis-
tical Room Acoustics (SRA) is often used. SRA provides a statistical description of
the transfer function that describes the system between the source and microphone
in terms of a few key quantities, e.g., source-microphone distance, room volume, and
reverberation time. The crucial assumption of SRA is that the distribution of ampli-
tudes and phases of individual plane waves, which sum up to produce sound pressure
at some point in a room, is so close to random that the sound field is fairly uniformly
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distributed throughout the room volume. A more elaborate discussion about SRA can
be found in Section 2.6.

The validity of this model is subject to the following conditions that are assumed to
hold: [41, 2, 66]

i) The dimensions of the room are relatively large compared to the wavelength.

ii) The average spacing of the resonance frequencies (commonly called modes) of
the room must be smaller than one third of their bandwidth. In a room with
volume V (in m3), and reverberation time RT60 (in seconds), which is defined
as the time for the reverberation level to decay to 60 dB below the initial level,
this condition is fulfilled for frequencies that exceed the Schroeder frequency:
fg = 2000

√
RT60/V .

iii) The source and the microphones are located in the interior of the room, at least
a half-wavelength away from the walls.

6.3.1 Existing Statistical Reverberation Models

Moorer [70] noted the auditive resemblance between a concert hall impulse response
and a white noise signal multiplied by an exponentially decaying envelope, and re-
ported that such a synthetic response can produce a natural sounding reverberation
effect (by convolution with anechoic signals).

Polack [63] developed a time-domain model complementing Schroeder’s frequency do-
main model. Polack modelled the AIR as a realization of a non-stationary stochastic
process, according to

h(t) =

{
b(t)e−δ̄t, for t ≥ 0;
0, otherwise,

(6.5)

where b(t) is a white zero-mean Gaussian stationary noise signal, and the average
damping constant δ̄ is linked to the reverberation time RT60 through

δ̄ =
3 loge(10)

RT60
. [2.37]

In contrast to Polack’s statistical model in Eq. 6.5 the average damping constant δ̄
is frequency dependent due to the frequency dependent reflection coefficients of walls
and other objects, and the frequency dependent absorption coefficient of air [41]. We
will take this dependency into account by using a different model in each sub-band k,
i.e.,

h(t, k) =

{
b(t, k)e−δ̄(k)t, for t ≥ 0;
0, otherwise,

(6.6)
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where b(t, k) is a white zero–mean Gaussian stationary noise signal, and the aver-
age damping constant δ̄(k) in the kth sub-band is linked to the frequency dependent
reverberation time RT60(k) through

δ̄(k) =
3 loge(10)
RT60(k)

. (6.7)

For the derivation of the late reverberant spectral variance estimator the full-band
model in Eq. 6.5 will be used. Since the sub-bands are assumed to be statistically
independent, and the estimation will be performed for each sub-band k, the incorpo-
ration of δ̄(k) will be straightforward.

In the early nineties, Polack [72] concluded that the reverberation process is statistical
when the number of simultaneous echo arrivals reaches a limit of about 10. In this case
the echo density is high enough, such that the space can be considered to be in a fully
diffused or mixed state. The essential requirement is ergodicity, which requires that
any given echo trajectory in the space will eventually reach all points. The ergodicity
is determined by the shape of the enclosure and the surface reflection properties. It
should be noted that non-ergodic shapes will exhibit much longer mixing times and
may not even have an exponential decay. Nevertheless, while it may not be true that
all acoustic environments can be modelled using this stochastic model, it is sufficiently
accurate for most spaces. Kuttruff [41] concluded that the model is valid in case the
distance between the source and the measurement point is greater than the critical
distance. The critical distance indicates the distance at which the direct path energy
equals the energy of the early and late reflections, i.e., the Direct to Reverberation
Ratio (DRR) equals 0 dB. In Section 2.7.1 we have shown that for an omnidirectional
source the critical distance is defined as

Dh = 0.1
√

V

πRT60
[m]. [2.64]

This implies that Polack’s statistical model is only valid when the DRR is less than 0
dB, i.e., the source-microphone distance needs to be larger than the critical distance.

The energy envelope of the AIR can be expressed as

Eh{h2(t)} = σ2e−2δ̄t, (6.8)

where σ2 denotes the variance of b(t) and Eh{·} denotes ensemble averaging over
h, i.e., over different realizations of the stochastic process in Eq. 6.5. Under the
assumption that our space is ergodic we may evaluate the ensemble average in Eq. 6.8
by spatial averaging so that different realizations of this stochastic process are obtained
by varying either the position of the receiver or the source [233]. Note that the same
stochastic process will be observed, for all allowable positions (in terms of the third
SRA condition), provided that the time origin be defined with respect to the signal
emitted by the source, and not with respect to the arrival time of the direct sound at
the receiver.
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6.3.2 Generalized Statistical Reverberation Model

Polack’s statistical model has been found extremely helpful to derive an estimator for
the late reverberant spectral variance in case the DRR is smaller than 0 dB [24, 33],
i.e., in case the source-microphone distance is larger than the critical distance. In case
the DRR is larger than 0 dB, which indicates that the source-microphone distance
is smaller than the critical distance, the late reverberant spectral variance is over-
estimated, which will result in severe spectral distortion of the dereverberated signal.
In this section a generalized statistical reverberation model is proposed which is used to
derive a novel spectral variance estimator. Furthermore, like Polack’s statistical model
the proposed statistical model could also be used to create artificial reverberation.

The AIR h(t), can be split into two segments, hd(t) and hr(t):

h(t) =


hd(t), for 0 ≤ t < Tr;
hr(t), for t ≥ Tr;
0, otherwise.

(6.9)

The value Tr is chosen such that hd(t) contains the direct path, and that hr(t) consists
of all later reflections. We will later define the parameter Tr according to the frame rate
of the time-frequency transform. In practice the direct path is completely deterministic
and could be modelled using a Dirac pulse. Unfortunately this would preclude us from
creating a statistical model. To be able to model the energy related to the direct path
the following model is proposed:

hd(t) =

{
bd(t)e−δ̄t, for 0 ≤ t < Tr;
0, otherwise,

(6.10)

where bd(t) is a white zero–mean Gaussian stationary noise signal and δ̄ is linked to
the reverberation time RT60 through Eq. 2.37. The reverberant component hr(t) is
described using the following model:

hr(t) =

{
br(t)e−δ̄t, for t ≥ Tr;
0, otherwise,

(6.11)

where br(t) is a white zero–mean Gaussian stationary noise signal. Under the SRA con-
ditions the direct and reverberant component of the AIR are uncorrelated [2]. There-
fore, it is reasonable to assume that bd(t) and br(t) are uncorrelated, i.e., E{bd(t)br(t+
τ)} = 0.

The energy envelope of h(t) can be expressed as

Eh{h2(t)} =


σ2

de−2δ̄t, for 0 ≤ t < Tr;
σ2

r e−2δ̄t, for t ≥ Tr;
0, otherwise,

(6.12)



6.3 Statistical Reverberation Models 133

where σ2
d and σ2

r denote the variance of bd(t) and br(t), respectively. When σ2
d < σ2

r ,
the contribution of the direct path can be ignored. Therefore, it is assumed that
σ2

d ≥ σ2
r .

Note that the proposed model is equivalent to Polack’s statistical model in case σ2
d =

σ2
r .

6.3.3 Relation with Energy Balance Equation

As discussed in Section 6.3.1 Polack’s statistical model is only valid when the source-
microphone distance is larger than the critical distance. We will now prove that
the reverberant energy density that can be predicted by Polack’s model is related to
the fundamental differential equation governing the growth of the reverberant energy
density in a room, which was discussed in Section 2.7.2 and is also known as the energy
balance equation. This relation also proves that the influence of the direct path energy
has not been taken into account by Polack.

The energy balance equation is given by

4Ws(t)
cA

= τ
dEr(t)

dt
+ Er(t), [2.69]

whereWs denotes the power of the source in Watt, Er(t) the reverberant energy density
in J/m3, τ the decay constant, c the sound velocity in m/s, and A the equivalent
absorption area of the room. Under the assumption that Ws(t) = 0 for t ≤ 0, the
general solution for this differential equation is

Er(t) =
1
τ

e−t/τ

∫ t

0

eθ/τW (θ) dθ, (6.13)

with W (t) = 4Ws(t)
cA .

Proof of Eq. 6.13. First 4Ws(t)
cA in Eq. 2.69 is replaced by W (t) and both sides are

divide by τ :
1
τ
W (t) =

dEr(t)
dt

+
1
τ
Er(t). (6.14)

Secondly, using the integrating factor et/τ and the fact that

d
(
et/τEr(t)

)
dt

= et/τ

(
dEr(t)

dt
+

1
τ
Er(t)

)
(6.15)

Eq. 6.14 can be written as

d
(
et/τEr(t)

)
dt

=
1
τ

et/τW (t). (6.16)
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Now the left and right hand side can be integrated, such that

et/τEr(t) =
1
τ

∫ t

0

eθ/τW (θ) dθ + C

Er(t) = e−t/τ

(
1
τ

∫ t

0

eθ/τW (θ) dθ + C

)
. (6.17)

Let us consider a zero-mean source signal s(t), with variance σ2
s(t) = E

{
s2(t)

}
. The

variance of the reverberant signal is defined as σ2
z(t) = E

{
z2(t)

}
, using Eq. 6.1 and

6.5 it follows that

σ2
z(t) = E

{∫ t

0

s(θ)h(t− θ) dθ
∫ t

0

s(θ′)h(t− θ′) dθ′
}

=
∫ t

0

E
{
s2(θ)

}
E
{
h2(t− θ)

}
dθ

= σ2e−2δ̄t

∫ t

0

e2δ̄θσ2
s(θ) dθ. (6.18)

Since the time-constant τ is related to the average damping constant by 1/τ = 2δ̄ (c.f.
[41]) Eq. 6.18 can be written as

σ2
z(t) = σ2e−t/τ

∫ t

0

eθ/τσ2
s(θ) dθ. (6.19)

For σ2
s(θ) = W (θ) it is clear that σ2

z(t) is proportional to Er(t) given by Eq. 6.13.

6.4 Late Reverberant Spectral Variance Estimator

In this section two estimators for the late reverberant spectral variance are derived
using Polack’s statistical model and the proposed generalized statistical model.

6.4.1 Estimator based on Polack’s Statistical Model

The auto-correlation of the reverberant signal z at time t and lag τ for a fixed source-
microphone configuration is defined as

rzz(t, t+ τ) = Ez{z(t)z(t+ τ)}, (6.20)

where Ez{·} denotes ensemble averaging with respect to z. For one realization of h we
have

rzz(t, t+ τ ;h) =

t∫
−∞

t+τ∫
−∞

Es{s(θ)s(θ′)}h(t− θ)h(t+ τ − θ′) dθdθ′, (6.21)
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where Es{·} denotes ensemble averaging with respect to s. Since there is no physical
relation between the stochastic processes h and s, these processes can be assumed to
be statistical independent. The spatially averaged auto-correlation is

rzz(t, t+ τ) = Eh{rzz(t, t+ τ ;h)}

=

t∫
−∞

t+τ∫
−∞

Es{s(θ)s(θ′)}Eh{h(t− θ)h(t+ τ − θ′)} dθdθ′. (6.22)

Using Eq. 6.5 and the fact that b(t) consists of a zero-mean white Gaussian noise
signal, it follows that

Eh{h(t− θ)h(t+ τ − θ′)} = σ2e−2δ̄teδ̄(θ+θ′−τ)δ(θ − θ′ + τ), (6.23)

where δ(·) denotes the Dirac function. Accordingly,

rzz(t, t+ τ) = e−2δ̄t

∫ t

−∞
Es{s(θ)s(θ + τ)} σ2e2δ̄θ dθ

= e−2δ̄t

∫ t

t−Tl

Es{s(θ)s(θ + τ)} σ2e2δ̄θ dθ

+ e−2δ̄t

∫ t−Tl

−∞
Es{s(θ)s(θ + τ)} σ2e2δ̄θ dθ.

(6.24)

The auto-correlation at time t can be divided into two terms, as shown in Eq. 6.24.
The first term depends on the direct signal between time t − Tl and t, whereas the
second depends on the late reverberant signal and is responsible for overlap-masking.
Let us consider the spatially averaged auto-correlation at time t− Tl

rzz(t− Tl, t− Tl + τ) = e−2δ̄(t−Tl)

∫ t−Tl

−∞
Es{s(θ)s(θ + τ)} σ2e2δ̄θ dθ. (6.25)

Now the auto-correlation at time t can be expressed as

rzz(t, t+ τ) = rzeze(t, t+ τ) + rzlzl(t, t+ τ), (6.26)

with

rzeze(t, t+ τ) = e−2δ̄t

∫ t

t−Tl

Es{s(θ)s(θ + τ)} σ2e2δ̄θ dθ, (6.27)

rzlzl(t, t+ τ) = e−2δ̄Tlrzz(t− Tl, t− Tl + τ). (6.28)

In practice the signals can be considered as stationary over periods of time that are
short compared to the reverberation time RT60. This is justified by the fact that the
exponential decay is very slow, and that speech is quasi-stationary. Let Ts be the
time span over which the speech signal can be considered stationary, which is usually
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around 20-40 ms [99]. Under the assumption that Ts ≤ Tl � RT60, the counterparts
of Eq. 6.26 and Eq. 6.28 in terms of the short-term power spectral densities are:

Pzz(t, f) = Pzeze(t, f) + Pzlzl(t, f), (6.29)

Pzlzl(t, f) = e−2δ̄TlPzz(t− Tl, f). (6.30)

In the STFT domain we then have:

λz(l, k) = λze(l, k) + λzl(l, k), (6.31)

λzl(l, k) = e−2δ̄Tlλz(l −Nl, k), (6.32)

whereNl = Tlfs
R , R denotes the frame rate in samples of the STFT, and fs the sampling

frequency.

The frequency dependency of the average damping constant δ̄ can now be introduced
by replacing δ̄ in Eq. 6.32 by δ̄(k), i.e.,

λzl(l, k) = e−2δ̄(k)Tlλz(l −Nl, k). (6.33)

The spectral variance of the received microphone signal λz(l, k) is estimated by using
an exponentially weighted moving-average filter, also known as a first-order low-pass
filter, with filter-constant ηd

z (k) (0 ≤ ηd
z (k) < 1), i.e.,

λ̂z(l, k) = ηd
z (k)λ̂z(l − 1, k) + (1− ηd

z (k))|Z(l, k)|2. (6.34)

The low-pass filtering is required to get a smoother estimate of the spectral vari-
ance, which can be interpreted as an estimate of energy in the room measured at the
corresponding microphone position. If the filter-constant is too large, such that too
much smoothing is applied, the spectral variance is over-estimated during the free-
decay, which occurs when the source has become silent. It can be shown that the
filter-constant ηd

z (k) is related to the time-constant τz(k) of the filter by:

ηd
z (k) =

τz(k)
τz(k) + R

fs

. (6.35)

Let us assume that the reverberation time RT60(k) of the room has been estimated,
then the average damping constant δ̄(k) can be calculated using Eq. 6.7. The corre-
sponding decay constant τ(k) of the room is then given by 1/2δ̄(k) (see Chapter 2).
To ensure that no over-estimation can occur we require that τz(k) ≤ τ(k). The upper-
bound for the filter-constant ηd

z (k) is thus related to the average damping constant
δ̄(k) given by:

ηd
z (k) =

1
2δ̄(k)

1
2δ̄(k)

+ R
fs

. (6.36)

Simulation results and informal listening tests have suggested that in practice ηd
z (k)

should be chosen slightly higher than the upper-bound. Apparently a slight over-
estimation, and hence suppression, yields better results than a small amount of residual
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late reverberation. Unfortunately the proposed filter-constant is often too high to
accurately track onsets in the reverberant speech signal. Since the filter-constant value
cannot be lowered we propose to use two filter-constant values, such that the tracking
abilities are improved. In case the received power spectrum |Z(l, k)|2 is smaller than,
or equal to, λ̂z(l − 1, k) the value ηd

z (k) is used. In any other case the filter-constant
ηa

z(k) (0 ≤ ηa
z(k) < ηd

z (k)) is chosen. The filter-constant is now signal dependent, i.e.,

ηz(l, k) =

{
ηd

z (k), for |Z(l, k)|2 ≤ λ̂z(l − 1, k);
ηa

z(k), otherwise.
(6.37)

The spectral variance λ̂z(l, k) is then calculated using ηz(l, k):

λ̂z(l, k) = ηz(l, k)λ̂z(l − 1, k) + (1− ηz(l, k))|Z(l, k)|2. (6.38)

Finally the late reverberant spectral variance λzl(l, k) can be estimated by substituting
λ̂z(l, k), which is given by Eq. 6.38, in Eq. 6.33.

6.4.2 Estimator based on the Generalized Statistical Model

Using Eq. 6.9 the received signal z(t) is expressed as

z(t) =
∫ t

−∞
s(θ)h(t− θ) dθ

=
∫ t

t−Tr

s(θ)hd(t− θ) dθ +
∫ t−Tr

−∞
s(θ)hr(t− θ) dθ. (6.39)

The auto-correlation rzz(t, t+τ) = Ez{z(t)z(t+τ)} of the reverberant signal z at time
t and lag τ for a fixed source-microphone configuration, i.e., one realization of h, is

rzz(t, t+ τ ;h) =

t∫
t−Tr

t+τ∫
t−Tr+τ

Es{s(θ)s(θ′)}hd(t− θ)hd(t+ τ − θ′) dθdθ′

+

t−Tr∫
−∞

t−Tr+τ∫
−∞

Es{s(θ)s(θ′)}hr(t− θ)hr(t+ τ − θ′) dθdθ′.

(6.40)

Using Eq. 6.11 it follows that

Eh{hd(t− θ)hd(t+ τ − θ′)} = σ2
d e−2δ̄teδ̄(θ+θ′−τ)δ(θ − θ′ + τ), (6.41)

and
Eh{hr(t− θ)hr(t+ τ − θ′)} = σ2

r e−2δ̄teδ̄(θ+θ′−τ)δ(θ − θ′ + τ). (6.42)

Note that E{bd(t)br(t+ τ)} = 0 implies that E{hd(t)hr(t+ τ)} = 0.
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The spatially averaged auto-correlation of Eq. 6.40 is

rzz(t, t+ τ) = Eh{rzz(t, t+ τ ;h)}
= rzdzd(t, t+ τ) + rzrzr(t, t+ τ), (6.43)

with

rzdzd(t, t+ τ) = σ2
d e−2δ̄t

∫ t

t−Tr

E{s(θ)s(θ + τ)}e2δ̄θ dθ, (6.44)

and

rzrzr(t, t+ τ) = σ2
r e−2δ̄t

∫ t−Tr

−∞
E{s(θ)s(θ + τ)}e2δ̄θ dθ

= σ2
r e−2δ̄t

∫ t−Tr

t−2Tr

E{s(θ)s(θ + τ)}e2δ̄θ dθ

+ σ2
r e−2δ̄t

∫ t−2Tr

−∞
E{s(θ)s(θ + τ)}e2δ̄θ dθ.

(6.45)

The first term in Eq. 6.43 depends on the direct signal between time t−Tr and t, and
the second depends on the reverberant signal.

Let us consider the spatially averaged auto-correlation at time t− Tr:

rzz(t− Tr, t− Tr + τ) = rzdzd(t− Tr, t− Tr + τ) + rzrzr(t− Tr, t− Tr + τ), (6.46)

with

rzdzd(t− Tr, t− Tr + τ) = σ2
d e−2δ̄(t−Tr)

∫ t−Tr

t−2Tr

E{s(θ)s(θ + τ)}e2δ̄θ dθ, (6.47)

and

rzrzr(t− Tr, t− Tr + τ) = σ2
r e−2δ̄(t−Tr)

∫ t−2Tr

−∞
E{s(θ)s(θ + τ)}e2δ̄θ dθ. (6.48)

The term rzrzr(t, t+ τ) in Eq. 6.45 can be expressed as

rzrzr(t, t+ τ) = κ e−2δ̄Trrzdzd(t− Tr, t− Tr + τ)

+ e−2δ̄Tr rzrzr(t− Tr, t− Tr + τ), (6.49)

with κ = σ2
r /σ

2
d. Here κ ≤ 1, since it is assumed that σ2

d ≥ σ2
r . Eq. 6.49 can be

rewritten using Eq. 6.46:

rzrzr(t, t+ τ) = e−2δ̄Tr (1− κ) rzrzr(t− Tr, t− Tr + τ)

+ κ e−2δ̄Tr rzz(t− Tr, t− Tr + τ). (6.50)

The late reverberant component can now be obtained using

rzlzl(t, t+ τ) = e−2δ̄(Tl−Tr)rzrzr(t− Tl + Tr, t− Tl + Tr + τ). (6.51)
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Note that for κ = 1, i.e., σ2
d = σ2

r , Eq. 6.50 and 6.51 result in Eq. 6.28.

Under the same assumptions as in Section 6.4.1, the counterpart of Eq. 6.51 in terms
of the short-term power spectral densities is:

Pzlzl(t, f) = e−2δ̄(Tl−Tr)Pzrzr(t− Tl + Tr, f), (6.52)

where

Pzrzr(t, f) = e−2δ̄Tr (1− κ)Pzrzr(t− Tr, f) + κ e−2δ̄TrPzz(t− Tr, f). (6.53)

We now define Trfs equal to the frame rate R of the STFT. In the STFT domain
Eq. 6.52 is then given by

λzl(l, k) = e−2δ̄(Tl− R
fs )λzr(l −Nl + 1, k), (6.54)

and Eq. 6.53 by

λzr(l, k) = e−2δ̄ R
fs (1− κ)λzr(l − 1, k) + κ e−2δ̄ R

fs λz(l − 1, k). (6.55)

Remember that Tl is chosen such that Nl = Tlfs
R is an integer value.

When taking the frequency dependency of κ and δ̄ into account we obtain

λzl(l, k) = e−2δ̄(k)(Tl− R
fs )λzr(l −Nl + 1, k), (6.56)

and

λzr(l, k) = e−2δ̄(k) R
fs (1− κ(k))λzr(l − 1, k) + κ(k) e−2δ̄(k) R

fs λz(l − 1, k). (6.57)

Finally, the late reverberant spectral variance λzl(l, k) can be estimated given λ̂z(l, k),
κ̂(k), and ˆ̄δ(k), by calculating Eq. 6.56 and 6.57.

The parameter ˆ̄δ can be calculated given an estimate of the reverberation time RT60,
which can be estimated directly from the AIR using Schroeder’s method (see Sec-
tion 2.8). However, until now we did not discuss how the parameter κ can be obtained,
or to which physical quantity it is related. It will now be shown that the ratio σ2

r /σ
2
d

is related to the DRR, which is defined as

Ed

Er
=

∫ Tr

0
h2(t) dt∫∞

Tr
h2(t) dt

. (6.58)

It should be noted that the DRR can be estimated directly from the AIR using Eq. 4.7.
However, the AIR is not known a priori in many practical situations. The blind
estimation of κ and RT60 will be discussed in Section 6.6. In general the DRR is
frequency dependent, c.f. [41], hence κ is frequency dependent. Therefore, κ can be
calculated in different sub-bands to improve the accuracy of the model. Using the
model in Eq. 6.6 the direct and reverberant energy can be expressed as

Ed(k) =
∫ Tr

0

σ2
d(k)e−2δ̄(k)t dt =

σ2
d(k)

2δ̄(k)

(
1− e−2δ̄(k)Tr

)
(6.59)
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and

Er(k) =
∫ ∞

Tr

σ2
r (k)e−2δ̄(k)t dt =

σ2
r (k)

2δ̄(k)
e−2δ̄(k)Tr , (6.60)

respectively. Where σ2
d(k) and σ2

r (k) denote the variances of bd(t, k) and br(t, k),
respectively. Now the parameter κ(k) can be expressed in terms of Ed(k) and Er(k):

κ(k) =
σ2

r (k)
σ2

d(k)
=

1− e−2δ̄(k)Tr

e−2δ̄(k)Tr

Er(k)
Ed(k)

. (6.61)

Furthermore, we should keep in mind that the DRR, and thus κ, depends on the
distance between the source and microphone. Therefore, spatial averaging can only
be performed over those microphone signals that have the same source-microphone
distance.

6.5 Estimation in a Noisy Environment

In practice the microphone signal generally consists of the reverberant signal and an
ambient noise term v(t), i.e.,

x(t) = z(t) + v(t) (6.62)

=
∫ t

−∞
s(θ)h(t− θ) dθ + v(t).

In Section 5.3 we developed a method which allows joint reverberation and noise
reduction under the assumption that an unbiased estimate of the late reverberant
spectral variance is available. However, in case the noisy signal x(t) is used directly a
fraction of the noise will be part of our estimated late reverberant spectral variance,
i.e., the estimate will be biased.

In Section 6.5.1 it is shown how an unbiased estimate can be obtained using an ad-
ditional pre-processing step. Additionally, it will be shown in Section 6.5.2 that this
bias can be predicted in case the noise characteristics are time-invariant.

6.5.1 Unbiased Estimation

In terms of the discrete STFT Eq. 6.62 can be expressed as

X(l, k) = Z(l, k) + V (l, k). (6.63)

For the estimation of the late reverberant spectral variance λzl
(l, k), an estimate of the

power spectrum |Z(l, k)|2 is required. The power spectrum of the reverberant spectral
component Z(l, k) can be estimated by minimizing

E
{(

A(l, k)− |Ẑ(l, k)|2
)2
}
, (6.64)
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where A(l, k) = |Z(l, k)|2, and Ẑ(l, k) = GSP(l, k)X(l, k). As shown in [234] this leads
to the following spectral gain function

GSP(l, k) =

√
ξSP(l, k)

1 + ξSP(l, k)

(
1

γSP(l, k)
+

ξSP(l, k)
1 + ξSP(l, k)

)
, (6.65)

where

ξSP(l, k) =
λz(l, k)
λv(l, k)

(6.66)

and

γSP(l, k) =
|X(l, k)|2

λv(l, k)
, (6.67)

denote the a priori and a posteriori Signal to Interference Ratios (SIR), respectively.
It should be noted that λz(l, k) is not known a priori. However, the a priori SIR can be
estimated using the decision-directed estimator proposed by Ephraim and Malah [210],
or by the causal or non-causal recursive estimators proposed by Cohen [208] (also see
Appendix B for more details on the causal and non-causal a priori SIR estimators). An
estimate of the noise spectral variance λv(l, k) is obtained using the Improved Minima
Controlled Recursive Averaging (IMCRA) approach [190]. The estimate Â(l, k) of the
power spectrum |Z(l, k)|2 is then given by:

Â(l, k) = (GSP(l, k))2 |X(l, k)|2. (6.68)

An unbiased estimate of the reverberant speech spectral variance λz(l, k) can now
be obtained by substituting |Z(l, k)|2 in Eq. 6.38 by Â(l, k). The estimate λ̂z(l, k)
can then be used in Eq. 6.57 to estimate the reverberant spectral variance λzr(l, k).
Subsequently, λ̂zr(l, k) can be used in Eq. 6.56 to estimate the late reverberant spectral
variance λzl(l, k).

6.5.2 Bias Estimation and Correction

It will now be shown that the bias can be predicted in case the noise is time-invariant.
When the bias has been predicted it can be used to apply a correction to the estimated
late reverberant spectral variance λzl(l, k)

1, as shown in Fig. 6.1. This correction will
circumvent any over-subtraction of the noise by the post-filter G(l, k). Although the
proposed modification reduces the overall complexity of our system it should be noted
that the unbiased estimator in Section 6.5.1 is more general, and can also be used
when dealing with non-stationary interferences (see for example Chapter 7).

In case the noise is assumed to be time-invariant the complexity of our system can
be reduced by omitting the estimation step that was proposed in Section 6.5.1. Let
us assume that the noise spectral variance λv(l, k) is not suppressed prior to the

1Note that a correction could also be applied to the noise spectral variance. Thereby, reducing
the noise spectral variance λv(l, k) with the noise that is already included in λxl (l, k).
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Late Reverberant

Energy Estimator

Estimator

Noise λ̂v(l, k)

Post-Filter

G(l, k)

X(l, k) Ŝ(l, k)

λ̂zl (l, k)

Correction
Bias

λ̂xl(l, k)

Figure 6.1 Joint reverberation and noise reduction with bias correction.

estimation of the late reverberant spectral variance. Assuming that the reverberant
signal and noise are uncorrelated, and λv(l, k) = ε(k), we have

λx(l, k) = λz(l, k) + ε(k), (6.69)

where ε(k) denotes the frequency dependent bias. To study the effect of this bias on
our estimator we first recast Eq. 6.53 in a non-recursive manner:2

λxr(l, k) = e−2δ̄ R
fs (1− κ)λxr(l − 1, k) + κ e−2δ̄ R

fs λx(l − 1, k)

=
∞∑

j=1

λx(l − j − 1, k)
(
κ(1− κ)e−4δ̄ R

fs

)j

+ κe−2δ̄ R
fs λx(l − 1, k), (6.70)

where λxr(l, k) is the late reverberant spectral variance that is obtained from λx(l, k).
Now Eq. 6.69 is substituted in Eq. 6.70. After rearranging the terms this results in

λxr(l, k) =
∞∑

j=1

λx(l − j − 1, k)
(
κ(1− κ)e−4δ̄ R

fs

)j

+ κe−2δ̄ R
fs λz(l − 1, k)

+
∞∑

j=1

ε(k)
(
κ(1− κ)e−4δ̄ R

fs

)j

+ κe−2δ̄ R
fs ε(k). (6.71)

The spectral variance λxr(l, k) can be expressed as

λxr(l, k) = λzr(l, k) + εzr(k), (6.72)

where εzr(k) denotes the bias in λxr(l, k). The infinite geometrical series in the last
term of Eq. 6.71 can be expanded, i.e,

∞∑
j=1

ε(k)
(
κ(1− κ)e−4δ̄ R

fs

)j

= ε(k)
κ(1− κ)e−4δ̄ R

fs

1− κ(1− κ)e−4δ̄ R
fs

. (6.73)

2The frequency dependency of δ̄ and κ has been omitted to simply the notation.
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We can see that the noise will bias the estimated spectral variance of the reverberant
speech λzr(l, k), i.e.,

εzr(k) = ε(k)

(
κ(1− κ)e−4δ̄ R

fs

1− κ(1− κ)e−4δ̄ R
fs

+ κe−2δ̄ R
fs

)
. (6.74)

The spectral variance of the late reverberant signal component λxl(l, k) is calculated
using Eq. 6.56, i.e.,

λxl(l, k) = e−2δ̄(Tl− R
fs

)λxr(l −Nl + 1, k). (6.75)

It can easily be verified that λxl(l, k) = λzl(l, k)+εzl(k), where εzl(k) denoted the bias
in λxl(l, k) which is given by

εzl(k) = ε(k)e−2δ̄(Tl− R
fs

)

(
κ(1− κ)e−4δ̄ R

fs

1− κ(1− κ)e−4δ̄ R
fs

+ κe−2δ̄ R
fs

)
. (6.76)

It should be noted that in case κ = 1 Eq. 6.76 reduces to

εzl(k) = ε(k)e−2δ̄Tl . (6.77)

Finally, the correction can be applied to the estimated late reverberant spectral vari-
ance λ̂xl(l, k), i.e.,

λ̂zl(l, k) = λ̂xl(l, k)− λ̂v(l, k)e−2δ̄(Tl− R
fs

)

(
κ(1− κ)e−4δ̄ R

fs

1− κ(1− κ)e−4δ̄ R
fs

+ κe−2δ̄ R
fs

)
, (6.78)

where λ̂zl(l, k) denotes the corrected late reverberant spectral variance.

6.6 Reverberation Time and DRR Estimator

In order to estimate the late reverberant spectral variance an estimate the reverbera-
tion time RT60 of the room, and the parameter κ is required. In Section 6.4.2 it was
already shown that the parameter κ is related to the DRR.

Partially blind methods to estimate the reverberation time have been developed in
which the characteristics of the room are ‘learnt’ using neural network approaches
[235]. Another method uses a segmentation procedure for detecting gaps in the sig-
nals, and tracks the sound decay curve [24, 196]. Recently, a blind method has been
proposed by Ratnam et al. based on a maximum-likelihood estimation procedure [236].
Most of these methods can also be applied to sub-band signals in order to estimate
the frequency dependent reverberation time. In some applications, e.g., echo cancel-
lation, one could estimate the reverberation time using the estimate echo path (see
Chapter 7). It is reasonable to assume that the reverberation time is approximately
constant in the room. For some applications, e.g, audio or video-conferencing where a
fix setup is used the reverberation could also be obtained using a calibration process.
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To the best of our knowledge there are no blind estimation procedures available to
acquire an estimate the DRR. In many practical situations the distance between the
source and the microphone will vary. Since the DRR depends on the distance between
the source and the microphone it is important that the parameter κ can be estimated
online. Remember that the parameter κ was introduced to prevent over-estimation
of the reverberant spectral variance λ̂zr(l, k). In case κ is too large the spectral vari-
ance λ̂zr(l, k) could become larger than |Z(l, k)|2, which indicates that over-estimation
has occurred. Therefore, the value of κ should be lowered. Furthermore, during the
free-decay, which occurs after an offset of the source signal, λ̂zr(l, k) should be ap-
proximately equal to |Z(l, k)|2. Estimation of κ could therefore be performed after a
speech offset. Unfortunately, the detection of speech offsets is rather difficult. From
the above discussion is has become clear that κ should at least fulfill the following
condition: |Z(l, k)|2 − λ̂zr(l, k) ≥ 0.

We propose to estimate the parameter κ adaptively. When speech is detected and
|Z(l, k)|2 − λ̂zr(l, k) < 0 the value of κ is lowered, when |Z(l, k)|2 − λ̂zr(l, k) > 0 the
value of κ is raised slowly. When |Z(l, k)|2− λ̂zr(l, k) = 0 the value of κ is assumed to
be correct. This update scheme can be implemented as follows:

κ̂(l + 1) =


κ̂(l) + µκ

(
1−

∑K
2 −1

k=0 λ̂zr(l, k)∑K
2 −1

k=0 |Z(l, k)|2

)
, speech present;

κ̂(l), otherwise,

(6.79)

where µκ (0 < µ < 1) denotes the step-size. After each update step κ̂(l + 1, k) is
constrained, such that 0 < κ̂(l + 1) ≤ 1. Experimental results that demonstrate the
feasibility of the proposed estimator can be found in Section 6.7.

6.7 Simulation Results

In this section we evaluate the accuracy of the two late reverberant spectral variance
estimators that are developed in this chapter.

The speech fragment used in our experiments consists of male and female speech
(fs = 16 kHz) taken from the TIMIT database [4], and is 40 seconds long. The
reverberant speech fragments are obtained by convolving the anechoic speech signal
with an AIR that was generated using the image method (see Appendix A).

The accuracy of the estimators is determined by the Log Spectral Distance between
λzl and λ̂zl , and is calculated using

LSD =
2
KL

∑
l

K
2 −1∑
k=0

∣∣∣L{λzl(l, k)} − L{λ̂zl(l, k)}
∣∣∣ [dB], (6.80)

where L denotes the number of frame, and L{λ(l, k)} , max{10 log10(λ), δ} is the log
spectrum confined to about 50 dB dynamic range (δ = maxl,k{10 log10(λ)} − 50).
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Figure 6.2 The LSD for a range of source-microphone distances.

6.7.1 Estimation in a Noise-Free Environment

The first experiment is related to the estimation of the late reverberant spectral vari-
ance from a noise-free observation using a single microphone. For evaluation purposes
we used the (full-band) reverberation time which was measured directly from the AIRs
using Schroeder’s method [76]. The damping constant δ̄ can then be calculated using
Eq. 2.37. The DRR was calculated from the same AIR using Eq. 6.58. The parameter
κ was calculated using Eq. 6.61. It should be noted that this procedure only gives an
approximate value of RT60 and κ.

In Fig. 6.2 the Log Spectral Distortion (LSD) at various distances (D = 0.25, 0.5, . . . ,
3 m) is shown for both estimators, and a reverberation time of 0.3 and 0.6 s. The
critical distance (as defined in Eq. 2.59) was 1.17 and 0.82 m for a reverberation time
of 0.3 and 0.6 s, respectively. It can clearly been seen that for a source-microphone
distance smaller than the critical distance the proposed estimator, which is based on
the generalized model, results in a smaller LSD compared to the estimator, which is
based on Polack’s model.

In Fig. 6.3 the LSD is shown for different reverberation times (RT60 = 0.2, 0.3, . . . , 1 s),
and a source-microphone distance of 0.5 and 2 m. For both source-microphone dis-
tances the LSD decreases when the reverberation time increases. The increase in re-
verberation time increases the echo density (see Eq. 2.33), and hence the randomness
of the AIR. For a source-microphone distance of 0.5 m the proposed late reverberant
spectral variance estimator performs much better than the estimator that is based on
Polack’s statistical reverberation model.

In Fig. 6.4 the LSD is shown for Tl = 16, 32, . . . , 128 ms, RT60 = 0.3 s, and a source-
microphone distance of 0.5 and 2 m. When using the estimator that is based on
Polack’s statistical model the LSD slightly decreases for increasing values of Tl, and
D = 0.5 m. When the generalized estimator is used the LSD increases for increasing
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Figure 6.3 The LSD for reverberation times between 0.2 s and 1 s.
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Figure 6.4 The LSD for different values of Tl.

values of Tl for D = 0.5 and 2 m. The results demonstrate that the accuracy of the late
reverberant spectral variance estimator reduces for larger values of Tl. It is understood
that small model mismatches, e.g., errors in RT60 and κ, have a larger influence on
the estimation when Tl increases.

In the foregoing experiments the reverberation time RT60 and κ were measured using
the AIR, resulting in an ‘optimal’ value of κ. Since the AIR is not known a priori
in practice RT60 and κ are unknown. In the literature various solutions have been
proposed to estimate the reverberation time blindly, as discussed in Section 6.6. In
the following experiment we assume that the reverberation time (RT60 = 0.4 s) is
known, whereas κ is estimated adaptively using the method developed in Section 6.6.
The source-receiver distance was set to 0.5 m and Tl = 48 ms. The instantaneous LSD
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Figure 6.5 a) The instantaneous LSD using κ = 1, optimal κ and adaptive κ, b) the
spectral variance for k = 24 of λzl , λ̂zl using κ = 1, λ̂zl using the optimal κ and λ̂zl

using the adaptive κ.

between λzl and λ̂zl is shown in Fig. 6.5(a). The late reverberant spectral variance λ̂zl

was obtained using κ = 1, the optimal κ obtained from the AIR and the adaptive κ
that was obtained using Eq. 6.79 with µκ = 0.01. The initial value of κ was set to 0.01.
It can be seen that the instantaneous LSD that was obtained using κ = 1, i.e., using
Polack’s model, is much larger than the instantaneous LSD that was obtained using the
generalized model. Furthermore, the instantaneous LSD obtained using the adaptive
κ slowly converges to the instantaneous LSD that was obtained using the optimal κ.
In Fig. 6.5(b) we have shown the ‘true’ and three estimated late reverberant spectral
variances for a single frequency bin (k = 24). The estimated spectral variances were
obtained using κ = 1, the ‘optimal’ κ and the adaptive κ. It can clearly be seen
that the late reverberant spectral variance is over-estimated when κ = 1. However,
the late reverberant spectral variance that was obtained using the adaptive κ slowly
converges to the late reverberant spectral variance that was obtained using the optimal
κ. This experiment demonstrates the possibility of estimating κ blindly in case the
reverberation time is know.

6.7.2 Estimation in a Noisy Environment

In this section we have studied the estimation of the late reverberant spectral variance
in case background noise is present. The additive noise v(n) was speech-like noise,
taken from the NOISEX-92 database [237]. The spectral variance of the noise was
estimated from the noisy microphone signal x(n) using the IMCRA approach [190].

In Fig. 6.6 the LSD is shown that is obtained for different segmental Signal to Noise
Ratio (SNR) values using the standard estimation and the noisy observation x(n), the
unbiased estimation as described in Section 6.5, and the standard estimation using the
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Figure 6.6 The LSD between the optimal spectral variance and the estimated spectral
variance that was obtained using the biased and unbiased estimator (RT60 = 0.3 s,
D = 0.5 m).

noise-free signal z(n) (baseline). The results demonstrate that the unbiased estimator
reduces the deviation caused by the background noise.

6.7.3 Estimation using Multiple Microphones

We will now analyse the LSD when multiple microphones are used. For this evaluation
we used the spatially averaged (full-band) reverberation time which was measured
directly from the AIRs using Schroeder’s method [76]. The damping constant δ̄ can
then be calculated using Eq. 2.37. The DRR was calculated from the same AIRs
using Eq. 6.58. First an estimate of κ was calculated for each source-microphone pair
using Eq. 6.61. Finally, the results were averaged over all source-microphone pairs. It
should be noted that this procedure only gives an approximate value for κ, and that
the spacial averaging may only be performed in case the source-microphone distances
are approximately equal. In this case the microphones were positioned around the
source at equal distance.

The LSD obtained for M = 1, 3, . . . , 9 microphones at a distance of 0.5 and 2 m is
shown in Fig. 6.7. The results demonstrate that the LSD obtained using both late
reverberant spectral variance estimators decreases for increasing number of micro-
phones. It should be noted that the largest improvement in LSD is achieved when
three or five microphones are used instead of one. Furthermore, we can see that at a
distance of 0.5 m the LSDs obtained using Polack’s model are larger than the LSDs
obtained using the generalized model. At a distance of 2 m the LSDs obtained using
Polack’s model and the generalized model are similar.
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Figure 6.7 LSD obtained using multiple microphones.

6.7.4 Parameter Estimation Errors

The proposed late reverberant spectral variance estimator requires an estimate of
RT60 and κ. In general these parameters can not be acquired perfectly, for example
due to background noise or changes in the room, or in the position of the source or
the microphone. The sensitivity to RT60 and κ were studied by introducing errors
ranging from −50% till +50% (εRT60 = 0.5, 0.6, . . . , 1.5), and from −80% till +80%
(εκ = 0.2, 0.1, . . . , 1.8), respectively. In this experiment only one microphone signal
was used.

The LSD that was obtained using R̂T 60 = εRT60RT60 is shown in Fig. 6.8(a). The
results demonstrate that minimum distortion is achieved for the ‘correct’ RT60 value
when the generalized estimator is used. For the estimator that is based on Polack’s
model the minimum LSD that was obtained for εRT60 ≈ 0.625, and suggest that
for distances smaller than the critical distance an improvement is expected when a
correction is applied to the reverberation time. It can be shown that the correction is
related to the DRR. Although this correction can decrease the average LSD it should
be noted that correcting the reverberation time results in an under-estimation during
the free-decay, which occurs after an speech offset. Especially in these periods the
improvement of the proposed generalized estimator is much larger, since it uses the
correct reverberation time. The LSD that was obtained using κ̂ = εκκ is shown in
Fig. 6.8(b). Since the estimator that is based on Polack’s model is not a function of κ
the LSD is not affected by the changes in κ. The LSD results that were acquired using
the proposed late reverberant spectral variance estimator are also shown in Fig. 6.9
as a function of εRT60 and εκ.
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Figure 6.8 LSD with errors in (a) RT60 and (b) κ.
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Figure 6.9 3D plot of the LSD values obtained using the generalized spectral variance
estimator with errors in RT60 and κ (RT60 = 0.3 s, D = 0.5 m, M = 1).

6.8 Conclusions

In this chapter we have described Polack’s statistical reverberation model, and proved
that it arcuately models the reverberant energy density which is described by the
energy balance equation. It was shown that the energy envelope of the AIR can be
obtained by spatial averaging. Additionally, a generalized statistical reverberation
model was developed, which can be used to take the energy of the direct path into
account. The proposed generalization is important in case the source-microphone
distance is smaller than the critical distance. Two estimators were derived for the late
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reverberant spectral variance. The first is based on Polack’s statistical model and the
second is based on the generalized statistical reverberation model.

The estimation of the late reverberant spectral variance is based on a noise-free obser-
vation of the signal. The influence of noise on the estimation procedure was discussed,
and a method to acquire an unbiased estimate of the late reverberant spectral variance
was proposed. Furthermore, it was shown that, for time-invariant noise sources, the
bias is related to the noise spectral variance and can be calculated directly from the
estimation model parameters. A correction can then be applied to the estimated late
reverberant spectral variance to avoid over-estimation.

Simulation results demonstrated the feasibility of the developed late reverberant spec-
tral variance estimators.
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Chapter 7

Joint Dereverberation and Residual
Echo Suppression

7.1 Introduction

Hands-free devices, such as a mobile telephone, are one of the most important and
well-known applications for acoustic echo cancellation systems [238]. The acoustic
echo cancellation system allows the possibility to conveniently use a hands-free device
while maintaining a high user satisfaction in terms of speech distortion and acoustic
echo attenuation. Furthermore, in driving cars the hands-free functionality if often
required by law.

Hands-free devices are often used in a noisy enclosed environment. Therefore, the mi-
crophone will not only receive the desired sound (commonly called near-end sound) but
also reverberation and background noise. These distortions degrade the fidelity and in-
telligibility of speech and the recognition performance of automatic speech recognition
systems.

7.1.1 Problem Statement

A conventional acoustic echo canceller and Loudspeaker Enclosure Microphone (LEM)
system are depicted in Fig. 7.1. The microphone signal is denoted by y(n), where n
denotes the discrete time index. The microphone signal y(n) consists of a reverberant
speech component z(n), an acoustic echo d(n), and a noise component v(n). The
reverberant near-end speech component is given by

z(n) =
La−1∑
j=0

aj(n)s(n− j), (7.1)
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+ + a(n)

h(n)

v(n)

d̂(n) d(n)

LEM system

x(n)

ŝ(n)

e(n)

− z(n) s(n)y(n)

ĥ(n)

Post Processor

AEC

Figure 7.1 Conventional acoustic echo canceller with post-processor.

where aj(n) denotes the jth coefficient of the Acoustic Impulse Response (AIR) that
describes the system between the near-end source and the microphone at time n, La

is the length of the AIR, and s(n) denotes the anechoic speech signal. The acoustic
echo is

d(n) =
Lh−1∑
j=0

hj(n)x(n− j), (7.2)

where hj(n) denotes the jth coefficient of the acoustic echo path at time n, Lh is the
length of the acoustic echo path, and x(n) denotes the far-end speech signal.

The ultimate goal is to obtain an estimate ẑd(n) of the direct speech signal zd(n),
which is a delayed and attenuated version of s(n). However, most systems try to
estimate the reverberant speech signal z(n) or the noisy reverberant speech signal
z(n) + v(n). In this chapter we show how an estimate of the dereverberated near-end
speech signal can be obtained.

The error signal of the acoustic echo canceller is given by

e(n) = y(n)− d̂(n)

= z(n) + d(n) + v(n)− d̂(n)
= z(n) + er(n) + v(n),

(7.3)

where d̂(n) denotes the estimated echo signal, and er(n) = d(n) − d̂(n) denotes the
residual echo signal .
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In general the residual echo signal er(n) will not be zero. Three main reasons are
stated here: [239, 240]

1) The length of the acoustic echo path h(n) = [h0(n), . . . , hLh−1(n)]T is approxi-
mately defined by RT60fs, where fs denotes the sampling frequency, and RT60

denotes the reverberation time in seconds. Due to practical reasons, e.g., com-
plexity, slow convergence of long adaptive filters, and robustness, the length of
the estimate ĥ(n) has to be limited to a certain length, LAEP. Thus, the amount
of echo resulting from the unmodelled part of the echo path cannot be removed.

2) The adaptation is not ideal, i.e., the system mismatch vector

∆(n) = h′(n)− ĥ(n), (7.4)

where h′(n) = [h0(n), . . . , hLAEP−1(n)]T is a truncated version of h(n), is not
zero.

3) The echo may contain some components that are non-linear with respect to x(n).
Since the model is linear, these components cannot be handled correctly. This
non-linearity has a twofold influence. First, it contributes to the residual echo.
Secondly, it influences the convergence of the adaptive filter, which may lead to
even larger residual echo components.

A measure to express the effect of the echo cancellation is the Echo Return Loss
Enhancement (ERLE): [239]

ERLE = 10 log10

 E
{
d2(n)

}
E
{(

d(n)− d̂(n)
)2
}
 , (7.5)

where E{·} denotes mathematical expectation. The maximum achievable ERLE is
thus determined by the amount of residual echo.

Under the assumption that the acoustic echo path h(n) is exponentially decaying,
Breining et al. [241] showed that the maximum ERLE is given by

ERLEmax = 60
LAEP

fsRT60
dB, (7.6)

where LAEP denotes the length of the estimated acoustic echo path, which is usually
smaller than the length of the true echo path Lh. The reverberation time is defined as
the time necessary for a 60 dB decay of the sound energy after switching off the sound
source. It should be noted that this result is only valid in case the distance between
the loudspeaker and the microphone is larger than the critical distance as defined in
Eq. 2.59.
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7.1.2 Review of previous work

In this section we give a short review of related previous work. An extensive review
can be found in [238, 242, 239].

In the 1960s voice-controlled switching systems have been developed to suppress the
acoustic echo of the far-end speaker. These systems strongly suppress the hands-free
microphone signal whenever the far-end signal is detected. The main drawback of this
technique is that it leads to an unacceptable half-duplex connection between the two
ends of the communication system [243]. Furthermore, due to this technique the back-
ground noise is also strongly suppressed, and the remaining background noise sounds
very unnatural. Therefore, voice-controlled switches are nowadays implemented in
conjunction with comfort noise injection.

The acoustic echo cancellation problem is usually solved by using an adaptive filter in
parallel to the acoustic echo path [238, 241, 242, 239]. The adaptive filter is used to
generate a signal that is a replica of the acoustic echo signal. An estimate of the near-
end speech signal is then obtained by subtracting the estimated acoustic echo signal,
i.e., the output of the adaptive filter, from the microphone signal. Highly sophisti-
cated control mechanisms have been proposed for fast and robust adaptation of the
adaptive filter coefficients in realistic acoustic environments [239, 240]. As mentioned
in the previous section there is always a residual echo after the echo canceller, and
it is widely accepted that echo cancellers alone will not be able to deliver a sufficient
echo attenuation [242, 239, 240, 244]. Turbin et al. compared three post-filtering
techniques to reduce the residual echo and concluded that the spectral subtraction
technique, which is commonly used for noise reduction, was the most efficient [245].
In a reverberant environment there can be a large amount of late residual echo due the
deficient length of the adaptive filter. In [244] Enzner proposed a recursive estimator
for the short-term Power Spectral Density (PSD) of the late residual echo signal using
an estimate of the reverberation time of the room. The reverberation time can be es-
timated directly from the estimated echo path. The estimated short-term PSD of the
late residual echo signal is then suppressed using a spectral enhancement technique.

Hands-free devices are often used in a noisy environment. In some applications like
hands-free terminal devices, noise reduction becomes necessary due to the relatively
large distance between the microphone and the mouth of the speaker. The first at-
tempts to develop a combined echo and noise reduction system can be attributed to
Grenier et al. [246, 247] and to Yasukawa [248]. Both employ more than one micro-
phone. A survey of these systems can be found in [239, 249]. In [250] Gustafsson et al.
proposed two post-filters for residual echo and noise reduction. The first post-filter was
based on the Log Spectral Amplitude estimator [205] and was extended to attenuate
multiple interferences. The second post-filter was psychoacoustically motivated.

Martin and Vary proposed a system for joint acoustic echo cancellation, dereverbera-
tion, and noise reduction using two microphones [251]. A similar system was developed
by Dörbecker and Ernst in [252]. In both papers dereverberation was performed by
exploiting the coherence between the two microphones. This approach was proposed
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first by Allen et al. in [253]. Bloom [125] found that this dereverberation approach had
no statistically significant effect on intelligibility, even though the measured average
reverberation time and the perceived reverberation time were considerably reduced by
the processing.

Until now there were no single microphone solutions for the suppression of reverbera-
tion, acoustic echo, and background noise.

7.1.3 Scope and organization

In this chapter we propose a complete single microphone system that is capable of
suppressing late reverberation of the near-end speech signal, acoustic echo and back-
ground noise, with a small amount of speech distortion. We focus on the residual echo
caused by under-modelling of the acoustic echo path. Detailed information can be
found in Section 7.2.

In our approach the acoustic echo path is divided into three non-overlapping parts.
The first part, which contains the direct path and a few early reflections, is cancelled
using a regular adaptive filter. The length of this adaptive filter is relatively short,
resulting in fast adaptation and tracking of the filter coefficients. The second and third
parts of the acoustic echo path result in the residual echo signal, which is suppressed
by the developed post-filter. The second part of the acoustic echo path contains a
few early reflections and some late reflections. The residual echo signal related to
the second part of the acoustic echo path is estimated using a second adaptive filter
and is suppressed by the post-filter. To increase the robustness of the residual echo
suppression, we will use the short-term PSD of the output of the second adaptive
filter rather than the complete signal. An important room characteristic, namely the
reverberation time, is obtained from the second adaptive filter. The tail part, i.e.,
third part, of the acoustic echo path has a much simpler and continuous structure
than the previous parts. The short-term PSD of the residual echo related to the tail
of the acoustic echo path is estimated using a statistical reverberation model and
the estimated reverberation time. A detailed description of the two residual echo
estimators and the estimation of the room characteristics can be found in Section 7.3.

In Section 7.4 we show how an estimate of the late reverberant spectral variance of
the near-end speech signal is obtained using a statistical reverberation model. In this
section we provide an alternative derivation of the late reverberant spectral variance
estimator with so-called direct path compensation. The obtained estimator is equal to
the estimator derived from the generalized statistical reverberation model developed
in Section 6.3.2. The estimated late reverberant spectral variance is used by the post-
filter to dereverberate the near-end speech signal.

A single post-filter is then applied to the error signal e(n) to obtain an estimate of
the dereverberated near-end speech signal. Detailed information about the post-filter
is provided in Section 7.5.
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Figure 7.2 Schematic representation of the acoustic echo path h(n).

Experimental results are presented in Section 7.6. Finally, discussions and conclusions
are presented in Sections 7.7 and 7.8, respectively.

7.2 Proposed Solution

We propose to divide the impulse response of the acoustic echo path h(n) into three
parts, he(n), hm(n) and hl(n) (see Fig. 7.2) such that

hj(n) =


he,j(n), 0 ≤ j < N1;
hm,j−N1(n), N1 ≤ j < N2;
hl,j−N2(n), N2 ≤ j ≤ Lh − 1;
0, otherwise,

(7.7)

where j denotes the coefficient index, and Lh denotes the length of the acoustic echo
path. The values N1 and N2, in samples, are chosen such that he(n) consists of
the direct path and a few early reflections, hm(n) consists of a few early and late
reflections (i.e., mixed reflections), and hl(n) consists of all later reflections (i.e., late
reverberation). N1/fs usually ranges from 32 to 64 ms, depending on the distance
between the loudspeaker and the microphone, and N2/fs is usually larger than 128
ms.

The AIR from the near-end source to the microphone is divided into two parts (see
Fig. 7.3) such that

aj(n) =


ae,j(n), 0 ≤ j < Nl;
al,j(n), Nl ≤ j ≤ La − 1;
0, otherwise,

(7.8)

where La denotes the length of the AIR, Nl is chosen such that ae(n) consists of the
direct path and a few early reflections, and al(n) consists of all later reflections, i.e.,
late reverberation. Nl/fs usually ranges from 40 to 80 ms.
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Figure 7.3 Schematic representation of the acoustic impulse response a(n).

The observed microphone signal is given by

y(n) = z(n) + d(n) + v(n)

=
Nl−1∑
j=0

aj(n)s(n− j) +
La−1∑
j=Nr

aj(n)s(n− j) + d(n) + v(n)

= ze(n) + zl(n) + d(n) + v(n),

(7.9)

where ze(n) is the desired near-end speech component, and zl(n) denotes the late
reverberant near-end speech component. Note that ze(n) is affected only by the early
reflections. In Section 7.4 we will explain why it is sufficient to estimate ze(n) rather
than s(n).

The proposed system with post-processor is depicted in Fig. 7.4. The Acoustic Echo
Canceller (AEC) and post-processor are discussed in the following sub-sections. The
developed algorithm is summarized in Alg. 1.

7.2.1 Acoustic Echo Cancellation (AEC)

An adaptive filter is used to cancel the echo signal related to the first part of the
acoustic echo path, i.e., he(n). It should be noted that one could introduce an artifi-
cial delay in the system to compensate for the delay introduced by the loudspeaker-
microphone distance. This artificial delay can for example be determined in case the
loudspeaker-microphone distance is known, which is often the case for hands-free tele-
phones. By doing this the length of the adaptive filter can be reduced. As an example
we use a standard Normalized Least Mean Square (NLMS) algorithm to estimate
he(n), where ĥe(n) = [ĥe,0(n), ĥe,1(n), . . . , ĥe,Le−1(n)]T . The length of the adaptive
filter is Le = N1. The update equation for the NLMS algorithm is given by

ĥe(n+ 1) = ĥe(n) + µ(n)
x(n)e(n)

xT (n)x(n) + δNLMS
, (7.10)

where µ(n) (0 < µ < 2) denotes the step-size, δNLMS (δNLMS > 0) the regularization
factor, and x(n) = [x(n), . . . , x(n − Le + 1)]T the far-end speech signal. Note that
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ĥ
m

(n)

z −
N

1

d̂
m

(n)

−

STFT

λ̂
d
m (l,k)

IM
C

R
A

λ̂
v (l,k)

P
ost

F
ilter

and
L
R

evE
E

stim
ator

F
ig

u
re

7
.4

P
ro

p
o
sed

a
co

u
stic

ech
o

ca
n
celler

w
ith

p
o
st-p

ro
cesso

r.
T

h
e

stru
ctu

re
o
f

th
e

p
o
st-fi

lter
a
n
d

L
a
te

R
ev

erb
era

n
t

E
n
erg

y
(L

R
ev

E
)

estim
a
to

r
ca

n
b
e

fo
u
n
d

in
F
ig

.
7
.6

.



7.2 Proposed Solution 161

Algorithm 1 Summary of the developed algorithm.

1) Acoustic Echo Cancellation: Update the adaptive filter ĥe(n) and calculate
d̂e(n).

2) Estimate Early Residual Echo: Update the adaptive filter ĥm(n) and calcu-
late d̂m(n).

3) Estimate Reverberation Time: Estimate RT60(n) using Eq. 7.22.

4) Calculate STFT transform: Calculate the STFT of e(n) = y(n) − d̂e(n),
d̂m(n), and x(n).

5) Estimate Background Noise: Estimate λv(l, k) using [190].

6) Estimate Late Residual Echo: Calculate c̃(l, k) using (7.33) and λ̂dl(l, k)
using (7.35).

7) Estimate Late Reverberant Energy: Calculate GSP(l, k) using Eq. 7.38-
7.41. Estimate λz(l, k) using Eq. 7.42, and calculate λ̂zl(l, k) using Eq. 7.51 and
7.53.

8) Perform Post-Filtering:

(a) Calculate the a posteriori SIR using Eq. 7.58 and the individual a priori
SIR using Eq. 7.72-7.73 with ϑ ∈ {zl, er, v}, the total a priori Signal to
Interference Ratio (SIR) can then be calculated using Eq. 7.74-7.75.

(b) Calculate the speech presence probability using Eq. 7.61.

(c) Calculate the gain function GOM−LSA(l, k) using Eq. 7.56, Eq. 7.67,
Eq. 7.61, and Eq. 7.63.

(d) Calculate Ẑe(l, k) using Eq. 7.15.

9) Calculate inverse STFT transform: Calculate the output ẑe(n) by applying
the inverse STFT to Ẑe(l, k).

other, more advanced, algorithms can be used, i.g., Recursive Least Squares (RLS) or
Affine Projection (AP), see for example [239] and the references therein. Since the first
part of the acoustic echo path is sparse, one might use the Improved Proportionate
NLMS (IPNLMS) algorithm proposed by Benesty and Gay [254].

Double-talk occurs during periods when the far-end speaker and the near-end speaker
are simultaneously talking and can seriously affect the convergence and tracking ability
of the adaptive filter. Double-talk detectors and optimal step-size control methods
have been proposed to alleviate this problem [255, 239, 256]. These methods are
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beyond the scope of this chapter. Here we choose the step-size µ(n) as follows,

µ(n) =

{
0, during double-talk;
µ, otherwise,

(7.11)

where the double-talk periods are detected manually.

The estimated echo signal can be calculated using

d̂e(n) =
Le−1∑
j=0

ĥe,j(n)x(n− j). (7.12)

7.2.2 Post-Processor

The post-processor contains four estimators and a post-filter. Two estimators are
related to the residual echo, i.e., early residual echo and late residual echo (see Sec-
tion 7.3). The third estimator is used to estimate the noise spectral variance. We use
the Improved Minima Controlled Recursive Averaging (IMCRA) algorithm proposed
by Cohen [190] to obtain an estimate of the noise spectral variance in each time frame
and frequency bin directly from e(n). The fourth estimator (see Section 7.4) is related
to the late reverberant energy of the near-end speech signal, and requires the estimated
short-term PSD of the residual echo and background noise. This estimate is used to
dereverberate the near-end speech signal z(n).

The post-processor also contains a single post-filter, which is applied to the error signal
e(n), to obtain an estimate of the near-end speech component ze(n).

Using Eq. 7.9 we can rewrite the error signal, defined in Eq. 7.3, as

e(n) = ze(n) + zl(n) + er(n) + v(n). (7.13)

Using the short-time Fourier transform (STFT), we have in the time-frequency domain

E(l, k) = Ze(l, k) + Zl(l, k) + Er(l, k) + V (l, k), (7.14)

where k represents the frequency bin, and l the time frame.

The spectral speech component Ẑe(l, k) is estimated by applying a spectral gain func-
tion GOM−LSA, see Section 7.5, to each spectral component E(l, k), i.e.,

Ẑe(l, k) = GOM−LSA(l, k) E(l, k). (7.15)

The dereverberated near-end speech signal ẑe(n) can be obtained using the inverse
STFT and the weighted overlap-add method.
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7.3 Residual Echo Estimation

The residual echo signal is divided into two parts, which are related to hm(n) and
hl(n), respectively. In Fig. 7.5 a typical Acoustic Impulse Response and its Energy
Decay Curve (EDC) are depicted. The EDC is obtained by backward integration of
the squared AIR, as proposed by Schroeder in [76], and is normalized with respect to
the total energy of the AIR. The second part of the acoustic echo path, i.e., hm(n),
consists of early reflections and a few late reflections. This part is estimated using
a second adaptive filter. It should be noted that early reflections appear as separate
delayed impulses in the acoustic echo path, whilst late reflections appear as a contin-
uum. The short-term PSD of the output of the adaptive filter is used to suppress the
corresponding residual echo signal. The tail, i.e., third part, of the acoustic echo path
is related to hl(n) and has a much simpler structure than the second part.

Small position changes and movements in the room can have a large influence on the
acoustic echo path. These momentary mismatches between the exact and estimated
acoustic echo path can result in speech distortions during double-talk and a momentary
increase of residual echo. However, the power spectrum of the acoustic echo path is
less sensitive to small position changes and movements in the room than the complete
acoustic echo path. Therefore, we propose to use the short-term PSD of the output
of the second adaptive filter to suppress the related residual echo.

In the following sub-sections we describe how the short-term PSDs of the residual
echo, related to hm(n) and hl(n), are estimated.

7.3.1 Early Residual Echo (ERE)

A second adaptive filter of length Lm = N2 − N1 is denoted by ĥm(n), and is used
to estimate hm(n). As an example we used a standard NLMS algorithm. Since this
adaptive filter is used to estimate a distinct part of the acoustic echo path, which
has different characteristics than he, the filter coefficient updates might be chosen
differently. It should be noted that some a priori knowledge of the AIR can be used
to increase the robustness and the convergence, see for example [257]. Also note that
the second adaptive filter is placed in series with the first adaptive filter. Compared
to a parallel solution or equivalent partitioned adaptive filters we have two separate
error signals such that the step-size can be controlled separately, e.g., depending on
the Signal to Noise Ratio (SNR). The estimated echo signal d̂m(n) is determined by

d̂m(n) =
Lm−1∑
j=0

ĥm,j(n)xm(n− j), (7.16)

where xm(n) = x(n−N1).
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The STFT of d̂m(n) is defined as

D̂m(l, k) =
Lw−1∑
n=0

w(n)d̂m(mR+ n)e−ι 2πk
K n for k = {0, . . . ,K − 1}, (7.17)

where ι =
√
−1, w(n) is the analysis window, e.g., a Hamming window, with length

Lw, K represents the length of the DFT, and R denotes the frame rate, which is
defined as the length of the analysis window minus the length of the window overlap.
The estimated short-term PSD related to the early residual echo is given by

λ̂dm(l, k) =
∣∣∣D̂m(l, k)

∣∣∣2 . (7.18)

This estimate will be used in the post-filter to suppress the early residual echo.

7.3.2 Late Residual Echo (LRE)

In [244] Enzner proposed a recursive estimator for the short-term PSD of the late
residual echo. In Fig. 7.5 it can clearly be seen that the tail of the AIR exhibits an
exponential decay, and the tail of the EDC exhibits a linear decay. The recursive
estimator exploits the fact that the exponential decay rate is directly related to the
reverberation time of the room, which can be estimated using the estimated echo path.
Additionally, the estimator requires a second parameter that specifies the initial power
of the late residual echo.

In this section we derive an essentially equivalent recursive estimator starting in the
time-domain rather than directly in the frequency domain as in [244]. Enzner used the
entire estimated echo path to estimate the required parameters, viz., the reverberation
time and the initial power, which are both assumed to be frequency independent. It
should, however, be noted that these parameters are usually frequency dependent
[41]. Furthermore, in many applications the distance between the loudspeaker and
the microphone is small, which results in a strong direct echo. Since the presence
of either a delay or a strong direct echo results in an erroneous estimate of both
the reverberation time and the initial power (c.f. [258]) we propose to use the filter
coefficients of the second adaptive filter to estimate the reverberation time. To improve
the regularity of the decay ramp, and thus the estimation, we apply a linear curve fit to
the smoothed decay envelope, i.e., the EDC, rather than a direct fit to the log-envelope
of the estimated echo path as proposed in [244].

Note that we can assume that the reverberation time in the room is independent of
the position in the room [41]. Therefore, we can use the estimated reverberation time
for the dereverberation of the near-end speech signal.

Using a statistical reverberation model and the estimated reverberation time we can
estimate the spectral variance of the residual echo related to hl(n). First, we deter-
mine the reverberation time using the filter coefficients of ĥm(n). Second, we estimate



7.3 Residual Echo Estimation 165

Acoustic Impulse Response

Time [s]

A
m

p
li
tu

d
e

Energy Decay Curve

Time [s]

E
n
er

gy
[d

B
]

N1

N1 N2

N2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

-40

-30

-20

-10

0

10

-0.5

-0.25

0

0.25

0.5

Figure 7.5 Typical Acoustic Impulse Response and related Energy Decay Curve.

the spectral variance of the residual echo related to ĥl(n) based on a statistical rever-
beration model and the estimated reverberation time.

Parameter Estimation

We propose to estimate the reverberation time directly from ĥm(n). Similar to
Schroeder’s method (see Section 2.8 for more details) we first calculate the EDC of
ĥm(n). Secondly, a straight line is fitted to part of the EDC values to obtain the
slope of the EDC. It should be noted that the last EDC values are not useful due
to the finite length of ĥm(n) and due to the final misalignment of the adaptive filter
coefficients. Therefore, we use only a dynamic rage of 20 dB1 to determine the slope
of the EDC. Finally, the reverberation time is updated using an adaptive scheme. A
detailed description can be found in Alg. 2.

In general, the reverberation time is frequency dependent due to frequency dependent
reflection coefficients of walls and other objects and the frequency dependent absorp-
tion coefficient of air [41]. Instead of applying the above procedure to ĥm(n), we
can apply the above procedure to a band-pass filtered version of ĥm(n). We used six
1-octave band filters to acquire a higher frequency resolution. The six reverberation
time values are interpolated and extrapolated to obtain an estimate of R̂T60(u, k) for
each frequency bin, where u , nREDC and REDC denotes the estimation rate of the
EDC. In the sequel the time index u is omitted for simplification.

1It might be necessary to decrease the dynamic range when Lm is small or the reverberation time
is long.
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Algorithm 2 Estimation of the reverberation time using ĥm(n).

1) Calculate the Energy Decay Curve of ĥm(u), where u equals nREDC and REDC

denotes the estimation rate, using

EDC(u, n) = 20 log10

Lm−1∑
j=n

(
ĥm,j(u)

)2

 for 0 ≤ n ≤ Lm − 1.

2) A straight line is fitted to part of the EDC data points, using a least squares
approach. The regression coefficient at time u, denoted by q(u), of the line is
obtained by minimizing the following cost function:

J(p(u), q(u)) =
ne∑

n=ns

(EDC(u, n)− (p(u) + q(u) n))2 , (7.19)

where ns (0 ≤ ns < Lm − 1) and ne (ns < ne ≤ Lm − 1) denote the start-time
and end-time of EDC values that are used, respectively. A good choice for ns

and ne is given by

ns = arg min
n

∣∣∣∣EDC(u, n)
EDC(u, 0)

+ 5
∣∣∣∣ (7.20)

and

ne = arg min
n

∣∣∣∣EDC(u, n)
EDC(u, 0)

+ 25
∣∣∣∣ , (7.21)

respectively.

3) The reverberation time R̂T60(u) can now be calculated using

R̂T60(u) = R̂T60(u− 1) + µRT60

(
60

q(u)fs
− R̂T60(u− 1)

)
, (7.22)

where µRT60 denotes the adaptation step-size.

Late Residual Echo Estimation

The remaining late residual error due to under-modelling of h(n) is related to the tail
of the acoustic echo path. In the sequel we assume that Lh = ∞. The late residual
echo dl(n) is given by

dl(n) =
∞∑

j=0

hl,j(n)xl(n− j), (7.23)

where xl(n) = x(n−N2).

The short-term PSD of dl(n) is defined as

λdl(l, k) , E
{
|Dl(l, k)|2

}
. (7.24)
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In the STFT domain we can approximate Dl(l, k) by

Dl(l, k) ≈
∞∑

i=0

Hl,i(l, k) X
(
l − i− N2

R
, k

)
, (7.25)

where Hl,i(l, k) is related to the STFT of hl(mR), and i denotes the frame index of
Hl(l, k). Note that N2 should be chosen such that N2/R is an integer value.

Using Eq. 7.24, Eq. 7.25, and the assumption that

E{Hl,i(l, k)Hl,i+τ (l, k)} = 0 ∀τ 6= 0 ∀l, (7.26)

we can express λdl(l, k) as

λdl(l, k) ≈ E

{ ∞∑
i=0

|Hl,i(l, k)|2
∣∣∣∣X (l − i− N2

R
, k

)∣∣∣∣2
}

≈
∞∑

i=0

E
{
|Hl,i(l, k)|2

}
E

{∣∣∣∣X (l − i− N2

R
, k

)∣∣∣∣2
}
.

(7.27)

The energy envelope of Hl,i(l, k) is given by

E{|Hl,i(l, k)|2} = c(l − i, k) e−2δ̄(k) R
fs

i, (7.28)

where c(l − i, k) denotes the initial power in the kth sub-band at time (l − i)R. The
exponential decay rate δ̄(k) is related to the frequency dependent reverberation time
RT60(k) through

δ̄(k) ,
3 ln(10)
RT60(k)

. (7.29)

Using Eq. 7.28, and the fact that λx(l, k) = E{|X(l, k)|2}, we can rewrite Eq. 7.27 as

λdl(l, k) ≈
∞∑

i=0

c(l − i, k) e−2δ̄(k) R
fs

i λx

(
l − i− N2

R
, k

)

≈
l∑

i′=−∞
c(i′, k) e−2δ̄(k) R

fs (l−i′) λx

(
i′ − N2

R
, k

)
≈ e−2δ̄(k) R

fs λdl(l − 1, k) + c(l, k) λx

(
l − N2

R
, k

)
.

(7.30)

The initial power c(l, k) can be calculated using the following expression

c(l, k) =

∣∣∣∣∣∣
Lw−1∑
j=0

ĥl,j(lR)e−ι 2πk
K j

∣∣∣∣∣∣
2

for k = {0, . . . ,K − 1}. (7.31)
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Since ĥl(n) is not available, we use the last Lw coefficients of ĥm(n) and extrapolate
the energy using the estimated decay. We then obtain an estimate of c(l, k) by

ĉ(l, k) = e−2δ̄(k) Lw
fs

∣∣∣∣∣∣
Lw−1∑
j=0

ĥm,Lm−Lw+j(mR)e−ι 2πk
K j

∣∣∣∣∣∣
2

for k = {0, . . . ,K−1}. (7.32)

The estimated initial power ĉ(l, k) might contain some spectral zeros, which can easily
be removed by smoothing ĉ(l, k) along the frequency axis using

c̃(l, k) =
w∑

i=−w

biĉ(l, k + i), (7.33)

where b is a normalized window function (
∑w

i=−w bi = 1) that determines the frequency
smoothing. The initial power c̃(l, k) can then be used in (7.35) to estimate λdl(l, k).
Note that c̃(l, k) can be updated at a lower rate to reduce the complexity of the late
residual echo estimator.

An alternative method to estimate the initial power c(l, k) is to minimize

E
{(
|E(l, k)− D̂m(l, k)|2 − λ̂dl (l, k; c(l, k))

)2
}
, (7.34)

with respect to c(l, k).

Using the estimated reverberation time R̂T60(k) and Eq. 7.29 we obtain an estimate
of the exponential decay rate δ̄(k). Using the initial power c̃(l, k) we can now estimate
the short-term PSD λdl(l, k) using

λ̂dl(l, k) = e−2δ̄(k) R
fs λ̂dl(l − 1, k) + c̃(l, k) λ̂x

(
l − N2

R
, k

)
, (7.35)

where λ̂x(l, k) can be calculated using

λ̂x(l, k) = ηxλ̂x(l − 1, k) + (1− ηx)|X(l, k)|2, (7.36)

where ηx (0 ≤ ηx < 1) denotes the smoothing parameter.

7.4 Late Reverberant Energy Estimation

In this section we explain how the Late Reverberant Energy (LRevE) of the near-end
speech signal z(n) is estimated. Suppression of the late reverberant energy will par-
tially dereverberate the near-end speech signal. Since the first part of the acoustic
impulse response a(n), i.e., ae(n), remains unaltered we do not equalize the spectral
colouration caused by the early reflections. As discussed in Section 1.3 we can in-
crease the speech quality and intelligibility by reducing the energy related to the late
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reflections. It should be noted that early reflections may even contribute to the speech
quality and intelligibility.

There are two main issues that have to be dealt with. First, we require an estimate
of the spectral variance of the reverberant signal Z(l, k) for the estimation of the late
reverberant energy (Section 7.4.1). Second, we need to compensate for the energy
contribution of the direct path, as explained in Section 7.4.2.

7.4.1 Reverberant Energy Estimation

The spectral variance of the reverberant spectral component Z(l, k), i.e., λz(l, k), is
estimated by minimizing

E
{(

A(l, k)− |Ẑ(l, k)|2
)2
}
, (7.37)

where A(l, k) = |Z(l, k)|2 and Ẑ(l, k) = GSP(l, k)E(l, k).

As shown in [234] this leads to the following spectral gain function

GSP(l, k) =

√
ξSP(l, k)

1 + ξSP(l, k)

(
1

γSP(l, k)
+

ξSP(l, k)
1 + ξSP(l, k)

)
, (7.38)

where

ξSP(l, k) =
λz(l, k)

λer
(l, k) + λv(l, k)

(7.39)

and

γSP(l, k) =
|E(l, k)|2

λer
(l, k) + λv(l, k)

, (7.40)

denote the a priori and a posteriori Signal to Interference Ratios (SIR), respec-
tively. The a priori SIR is estimated using the decision-directed estimator proposed
by Ephraim and Malah [210]. Estimates of the spectral variance of the noise in the
error signal e(n), i.e., λv(l, k), are obtained using the IMCRA approach [190]. An
estimate of the residual echo spectral variance is given by

λ̂er (l, k) = λ̂dm(l, k) + λ̂dl(l, k). (7.41)

An estimate of the power spectrum of the reverberant signal z(n) is then obtained by:

Â(l, k) = (GSP(l, k))2 |E(l, k)|2. (7.42)

The power spectrum spectral Â(l, k) is then smoothed over time using a first-order
low-pass filter, as described in Chapter 6, Section 6.4, to obtain an estimate of the
late reverberant spectral variance λzl(l, k).
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7.4.2 Direct Path Compensation

In Section 6.4 we have shown that, using Polack’s statistical room impulse response
model [63], the late reverberant spectral variance can be estimated directly from the
spectral variance of the reverberant signal using

λ̂zl(l, k) = α
Nl
R (k)λ̂z

(
l − Nl

R
, k

)
, (7.43)

where α(k) = e−2δ̄(k) R
fs (0 ≤ α(k) < 1) and δ̄(k) is given by Eq. 7.29. The value Nl

should be chosen such that Nl
R is an integer value, where R denotes the frame rate of

the STFT.

In Section 6.3 we have shown that the late reverberant spectral variance estimator
that was derived using Polack’s statistical reverberation model can only be used when
the energy of the direct path is small compared to the reverberant energy. However,
in many practical situations, the source is close to the microphone, and the contribu-
tion of the energy related to the direct path cannot be neglected. To alleviate this
problem we have developed a novel estimator based on a generalized statistical model
(see Section 6.4). We will now present an alternative derivation of this estimator to
compensate for the energy related to the direct path.

The energy envelope of the acoustic impulse response in the kth sub-band can be
modelled as

Ãk(z) = Ed(k) + Er(k)R̃k(z), (7.44)

where Ed(k) and Er(k) are related to the amount of direct and reverberant energy in
the kth sub-band, respectively, and R̃k(z) denotes the normalized energy envelope of
the reverberant part of the acoustic impulse response, which starts at l = 1, i.e.,

R̃k(z) =
1− α(k)
α(k)

∞∑
m=1

(α(k))m z−m, (7.45)

such that
1− α(k)
α(k)

∞∑
m=1

(α(k))m = 1. (7.46)

By expanding the series in Eq. 7.45 we obtain

R̃k(z) =
1− α(k)
α(k)

α(k)z−1

1− α(k)z−1
. (7.47)

To eliminate the contribution of the energy of the direct path in λ̂z(l, k), we propose
to apply the following filter to λ̂z(l, k),

Fk(z) =
Er(k)R̃k(z)

Ed(k) + Er(k)R̃k(z)
. (7.48)
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We now define κ(k), which is inversely proportional to the direct to reverberant energy
ratio in the kth sub-band, as

κ(k) ,
1− α(k)
α(k)

Er(k)
Ed(k)

. (7.49)

Using the normalized energy envelope R̃k(z), as defined in Eq. 7.47, Eq. 7.48 and
Eq. 7.49 we obtain

Fk(z) =
α(k)κ(k)z−1

1− α(k) (1− κ(k)) z−1
. (7.50)

Using the difference equation related to the filter in Eq. 7.50 we obtain an estimate of
the reverberant energy with compensation of the direct path energy, i.e.,

λ̂′z(l, k) = α(k) (1− κ(k)) λ̂′z(l − 1, k) + α(k)κ(k)λ̂z(l − 1, k). (7.51)

We require that 0 < κ(k) ≤ 1 to ensure the stability of the filter since α(k) (1− κ(k))
should always be larger than, or equal to, zero. This requirement is also reasonable
from a physical point of view since only the source can increase reverberation energy
in the room, i.e., the contribution of λ̂′z(l − 1, k) to λ̂′z(l, k) should always by smaller
than, or equal to, α(k). In case Ed(k) � Er(k), i.e., κ(k) is small, λ̂′z(l, k) mainly
depends on α(k)λ̂′z(l−1, k). In case Ed(k) � Er(k) we reach the upper bound of κ(k),
i.e., κ(k) = 1, and λ̂′z(l, k) is equal to

λ̂′z(l, k) = α(k)λ̂z(l − 1, k). (7.52)

We now replace λ̂z(l, k) in Eq. 7.43 by the spectral variance with direct path compen-
sation, i.e., λ̂′z(l, k), to obtain the late reverberant energy λ̂zl(l, k), i.e.,

λ̂zl(l, k) = α
Nl
R −1(k)λ̂′z

(
l − Nl

R
+ 1, k

)
. (7.53)

In this chapter we assume that κ(k) is known a priori. In practice κ(k) could be
estimated adaptively using the method proposed in Section 6.6.

7.5 Post-Filter

At this point we have obtained estimates of the spectral variance of all interferences,
i.e., late reverberation of the near-end speech signal, residual echo, and background
noise. In this section we develop a single post-filter, i.e., spectral gain function, based
on the Optimally-Modified Log Spectral Amplitude (OM-LSA) estimator proposed by
Cohen [228]. The spectral gain function is applied to the spectrum of the error signal
e(n), in order to suppress all interferences. The spectral gain function, which depends
on both time and frequency, is a function of the a posteriori and a priori SIRs. The a
posteriori SIRs can be estimated directly given the ‘noisy’ observation and an estimate
of the spectral variance of each interference. The estimation of the a priori SIR is
slightly more complicated and is discussed in Section 7.5.2.
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Figure 7.6 Post-Filter and Late Reverberant Energy (LRevE) Estimator.

7.5.1 Modified OM-LSA Estimator

We used a modified version of the Optimally-Modified Log Spectral Amplitude esti-
mator to obtain an estimate of the desired spectral component Ze(l, k). In Appendix
B we have developed a similar modification for one non-stationary and one stationary
interference. In this chapter we extend this idea to three interferences and apply it
to a specific application. The Log Spectral Amplitude (LSA) estimator proposed by
Ephraim and Malah [205] minimizes

E
{(

log(A(l, k))− log(Â(l, k))
)2
}
, (7.54)

where A(l, k) = |Ze(l, k)| denotes the spectral speech amplitude, and Â(l, k) is its
optimal estimator. Assuming spectral coefficients are conditionally independent given
their variances [208], the LSA estimator is defined as

Â(l, k) = exp (E{log(A(l, k))|E(l, k)}) . (7.55)

The LSA gain function is given by

GLSA(l, k) =
ξ(l, k)

1 + ξ(l, k)
exp

(
1
2

∫ ∞

ζ(l,k)

e−t

t
dt

)
, (7.56)

where

ξ(l, k) =
λze(l, k)

λzl(l, k) + λer
(l, k) + λv(l, k)

, (7.57)

γ(l, k) =
|E(l, k)|2

λzl(l, k) + λer
(l, k) + λv(l, k)

, (7.58)

and

ζ(l, k) =
ξ(l, k)

1 + ξ(l, k)
γ(l, k). (7.59)
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The OM-LSA spectral gain function, which minimizes the mean-square error of the
log-spectra, is obtained as a weighted geometric mean of the hypothetical gains asso-
ciated with the speech presence uncertainty [228]. Given two hypotheses, H0(l, k) and
H1(l, k), which indicate speech absence and speech presence, respectively, we have

H0(l, k) : E(l, k) = Zl(l, k) + Er(l, k) + V (l, k),
H1(l, k) : E(l, k) = Ze(l, k) + Zl(l, k) + Er(l, k) + V (l, k),

(7.60)

where Er(l, k) = Dm(l, k)+Dl(l, k). Based on a Gaussian statistical model, the speech
presence probability is given by

p(l, k) =
{

1 +
q(l, k)

1− q(l, k)
(1 + ξ(l, k)) exp (−ζ(l, k))

}−1

, (7.61)

where q(l, k) is the a priori signal absence probability. In [228] an efficient estimator
for q(l, k) is proposed. This estimator uses a soft-decision approach to compute three
parameters, i.e., Plocal(l, k), Pglobal(l, k), and Pframe(l), which and are based on the
time-frequency distribution of the estimated a priori SIR, ξ(l, k). These parameters
exploit the strong correlation of speech presence in neighbouring frequency bins of
consecutive frames. The estimated a priori signal absence probability q̂(l, k) is then
given by

q̂(l, k) = 1− Plocal(l, k)Pglobal(l, k)Pframe(l). (7.62)

The OM-LSA gain function is given by,

GOM−LSA(l, k) = {GH1(l, k)}p(l,k) {GH0(l, k)}1−p(l,k), (7.63)

with GH1(l, k) = GLSA(l, k) and GH0(l, k) = Gmin. The lower-bound constraint for
the gain when the signal is absent is denoted by Gmin, and specifies the maximum
amount of reduction in those frames.

In our case the lower-bound constraint does not result in the desired result since the
late reverberant signal and residual echo can still be audible. Our goal is to suppress
the late reverberant signal and the residual echo down to the noise floor, given by
Gmin V (l, k). We apply GH0(l, k) to those time-frequency frames where the desired
signal is assumed to be absent, i.e., the hypothesis H0(l, k) is assumed to be true, such
that

Ẑe(l, k) = GH0(l, k) (Zl(l, k) + Er(l, k) + V (l, k)) . (7.64)

The desired solution for Ẑe(l, k) is

Ẑe(l, k) = Gmin(l, k) V (l, k). (7.65)

Assuming that all interferences are uncorrelated, minimizing

E
{
|GH0(l, k) (Zl(l, k) + Er(l, k) + V (l, k))−Gmin(l, k) V (l, k)|2

}
(7.66)

results in

GH0(l, k) = Gmin
λ̂v(l, k)

λ̂zl(l, k) + λ̂er
(l, k) + λ̂v(l, k)

. (7.67)
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7.5.2 A priori SIR estimator

Many researchers believe that the main advantage of the LSA estimator is related to
the decision-directed estimator, proposed by Ephraim and Malah [205]. Rather than
using one a priori Signal to Interference Ratio it is possible to calculate one value
for each interference. By doing this, one gains control over the interference reduction
level, and the a priori SIR estimation approach, of each interference. Note that in
some cases it might be desirable to reduce one of the interferences at the cost of larger
speech distortion, while other interferences are reduced less to avoid distortion. Due
to the separation we can control the tradeoff between noise reduction and distortion
of each of the interferences separately. Gustafsson et al. also used separate a priori
SIRs in [250, 259] for two interferences, i.e., background noise and residual echo. In
this section we show how the decision-directed estimator can be used to estimate the
individual a priori SIRs, and we propose a slightly different way of combining them. It
should be noted that each a priori SIR could be estimated using a different approach,
e.g., the non-causal a priori SIR estimator proposed by Cohen in [208]. Note that the
non-causal a priori SIR estimator can reduce distortion in speech onsets compared to
the decision-directed estimator.

The a priori SIR in Eq. 7.57 can be written as

1
ξ(l, k)

=
1

ξzl(l, k)
+

1
ξer

(l, k)
+

1
ξv(l, k)

, (7.68)

with

ξϑ(l, k) =
λze(l, k)
λϑ(l, k)

, (7.69)

where ϑ ∈ {zl, er, v}.

The decision-directed estimator is given by

ξ̂(l, k) = max

{
η
Â2(l − 1, k)
λ(l − 1, k)

+ (1− η)ψ(l, k), ξmin

}
, (7.70)

where ψ(l, k) = γ(l, k)− 1 is the instantaneous SIR, γ(l, k) is the a posteriori SIR as
defined in Eq. 7.58,

λ(l′, k) , λzl(l
′, k) + λer

(l′, k) + λv(l′, k), (7.71)

and ξmin is a lower-bound constraint on the a priori SIR. The weighting factor η (0 ≤
η < 1) controls the tradeoff between the amount of noise reduction and distortion.
The a priori SIR ξϑ(l, k), as defined in Eq. 7.69, can be obtained using the following
expression

ξ̂ϑ(l, k) = max

{
ηϑ
Â2(l − 1, k)
λϑ(l − 1, k)

+ (1− ηϑ)ψϑ(l, k), ξmin,ϑ

}
, (7.72)
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where

ψϑ(l, k) =
λ(l, k)
λϑ(l, k)

ψ(l, k)

=
|E(l, k)|2 − λ(l, k)

λϑ(l, k)
,

(7.73)

and ξmin,ϑ is the lower-bound constraint on the a priori SIR ξϑ(l, k).

In case the near-end speech signal is very small, and the late reverberant and/or
residual echo signals are very small, the a priori SIRs ξzl(l, k) and/or ξer (l, k) may be
unreliable since λze(l, k) and λzl(l, k) and/or λer (l, k) are close to zero. In the sequel
we assume that there is always a certain amount of background noise. We propose to
calculate ξ(l, k) using only the most important and reliable a priori SIRs as follows2

ξ(l, k) =

{
ξv, 10 log10

(
λv

λzl+λer

)
> βdB;

ξ′, otherwise,
(7.74)

and

ξ′(l, k) =


ξer ξv

ξer +ξv
, 10 log10

(
λer

λzl

)
> βdB;

ξzlξv

ξzl+ξv
, 10 log10

(
λzl
λer

)
> βdB;

ξzlξvξer

ξvξer +ξzlξer +ξzlξv
, otherwise,

(7.75)

where the threshold βdB specifies the level difference in dB. In case the noise level is
βdB higher than the level of residual echo and late reverberation (in dB), the total
a priori SIR, ξ(l, k), will be equal to ξv(l, k). Otherwise ξ(l, k) will be calculated
depending on the level difference between λzl(l, k) and λer

(l, k) using Eq. 7.75. In
case the level of residual echo is βdB larger than the level of late reverberation, ξ(l, k)
will depend on both ξv(l, k) and ξer (l, k). In case the opposite is true, ξ(l, k) will
depend on both ξv(l, k) and ξzl(l, k). In any other case ξv(l, k) will be calculated using
all a priori SIRs.

7.6 Experimental Results

In this section we present experimental results of our system. In the subsequent sub-
sections we evaluate the residual echo suppression, the robustness with respect to
echo path changes, and dereverberation performance. In Section 7.6.4 we evaluate the
performance of the complete system during double-talk.

The experimental setup is depicted in Fig. 7.7. The room dimensions were 5 m x 4 m
x 3 m (length x width x height). The distance between the near-end speaker and the
microphone (rs) was 1 m, the distance between the loudspeaker and microphone (rl)
was 0.5 m. The AIRs a(n) and h(n) were generated using the room impulse response

2The time and frequency indices at the right-hand side have been omitted.
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x(n)
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y(n) s(n)

Figure 7.7 Experimental setup.

generator described in Appendix A. The first 250 ms of the AIRs are depicted in
Fig. 7.8. The wall absorption coefficients were chosen such that the reverberation
time is approximately 500 milliseconds. The microphone signal y(n) was generated
using Eq. 7.9. The analysis window w(n) of the Short-Time Fourier Transform was a
256 point Hamming window, i.e., Lw = 256, and the overlap between two successive
frames was set to 75%, i.e., R = 0.25 Lw. The remaining parameter settings are shown
in Table 7.1. The additive noise v(n) was speech-like noise, taken from the NOISEX-92
database [237].
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Figure 7.8 Acoustic impulse responses (a) h(n) and (b) a(n).



7.6 Experimental Results 177

fs = 8000 Hz N1 = 0.064 fs N2 = 0.128 fs Nl = 0.048 fs
GdB

min = 18 dB βdB = 9 dB w=3

Table 7.1 Parameters used for these experiments.

7.6.1 Residual Echo Suppression

The echo cancellation performance, and more specifically the improvement due to the
residual echo suppression of the post-processor, was evaluated using the Echo Return
Loss Enhancement. The ERLE achieved by the first adaptive filter was calculated
using

ERLE(l) =

lR′+L′−1∑
n=lR′

d2(n)

lR′+L′−1∑
n=lR′

(
d(n)− d̂e(n)

)2
, (7.76)

where L′ = 0.032 fs is the frame length and R′ = L′

4 is the frame rate. To evaluate
the total echo suppression, i.e., with post-processor, we calculated the ERLE using
Eq. 7.76 and replaced d(n)− d̂e(n) by z(n)− ẑe(n), where the latter term denotes the
residual echo at the output of the post-filter. This experiment was conducted without
noise, and the post-filter was configured such that no reverberation was reduced, i.e.,
λzl(l, k) = 0 ∀l ∀k. The microphone signal y(n), the error signal e(n), and the ERLE
with and without post-processor are shown in Fig. 7.9. We can see that the ERLE
has significantly increased when the post-processor is used.

7.6.2 Robustness

We evaluate the robustness of the system with respect to changes in the echo path
when the far-end speech signal was active. Two types of changes were applied to the
acoustic echo path. First, we rotated the loudspeaker over 15 degrees in the x-y plane
with respect to the microphone (at 3.5 seconds). Second, we decreased the microphone-
loudspeaker distance by 5 cm (at 6.1 seconds). We compared the performance of our
system with a standard AEC, i.e., without post-processor, and an adaptive filter of
length N2. The time at which the position changes is marked with a dash-dotted
line. The microphone signal y(n), the error signal e(n) of the standard AEC, and the
ERLEs are shown in Fig. 7.10. Despite the fact that the ERLE drops in all cases, we
can clearly see that the drop at 3.5 seconds is smaller for the proposed system. At
6.1 seconds we can see that the output signal of the developed system is less than the
error signal of the standard AEC. These results indicate that the proposed system is
more robust than the standard AEC. It should also be noted that the late residual
echo estimator, which is very robust to changes in the room, does not require any
re-convergence time, i.e., when the reverberation time has been estimated.
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(c) Echo Return Loss Enhancement w.r.t. e(n) and ẑe(n).

Figure 7.9 Echo suppression performance.

7.6.3 Dereverberation

The dereverberation performance has been evaluated using the segmental SIR, Log
Spectral Distortion (LSD), Bark Spectral Distortion (BSD), and PESQ. The Direct to
Reverberation Ratio κ(k) was obtained from the Energy Decay Curve of the acoustic
impulse response a(n). An estimate of the reverberation time (R̂T60(k)) was obtained
using the procedure described in Section 7.3.2. After convergence of the adaptive
filters RT60 was 493 ms. The parameter Nl was set to 0.048 fs.
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(c) Echo Return Loss Enhancement w.r.t. e(n) and ẑe(n).

Figure 7.10 Echo suppression performance w.r.t. echo path changes

The instantaneous SIR of the lth frame is defined as

SIR(l) = 10 log10


lR′+L′−1∑

n=lR′
z2
e (n)

lR′+L−1∑
n=lR′

(ze(n)− υ(n))2

 [dB], (7.77)

where υ ∈ {y, ẑe}. The segmental SIR, denoted by SIRseg, is defined as the average
instantaneous SIR over the set of frames where the near-end speech is active.

The LSD between ze(n), i.e., the anechoic signal convolved with the acoustic impulse
response ae(n), and the dereverberated signal is used as a measure of distortion. The
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SNRseg Unprocessed Processed (NR) Processed (RR+NR)

SIRseg

5 dB -0.53 dB 3.26 dB 4.09 dB
10 dB 1.73 dB 4.34 dB 5.66 dB
25 dB 4.82 dB 5.26 dB 7.57 dB

LSD
5 dB 7.62 dB 3.51 dB 3.38 dB

10 dB 5.47 dB 3.05 dB 2.75 dB
25 dB 2.96 dB 2.78 dB 2.05 dB

BSD
5 dB 0.0594 0.0538 0.0382

10 dB 0.0478 0.0467 0.0286
25 dB 0.0442 0.0441 0.0245

PESQ
5 dB 1.87 2.37 2.42

10 dB 2.18 2.15 2.67
25 dB 2.54 2.57 2.89

Table 7.2 Segmental SIR, LSD, BSD, and PESQ for different segmental Signal to
Noise Ratios (RT60 ≈ 0.5 s).

distance in the lth frame is calculated using

LSD(l) =
1
K

K−1∑
k=0

∣∣∣∣10 log10

(
Z ′e(l, k)
Υ′(l, k)

)∣∣∣∣ [dB], (7.78)

where Υ ∈ {Y, Ẑe}, K denotes the number of frequency bins, and

P ′(l, k) , max{|P (l, k)|2, δ} (7.79)

is the spectral power where P ∈ {Ze,Υ}, clipped such that the log-spectrum dynamic
range is confined to about 50 dB, i.e., δ = 10−50/10 maxl,k{|P (l, k)|2}. Finally, the
LSD is defined as the average distance over all frames.

The BSD and Perceptual Evaluation of Speech Quality (PESQ) scores were calculated
by comparing ze(n) with y(n) and ẑe(n), respectively. Both perceptually motivated
objective measures are described in Chapter 4.

We tested the dereverberation performance under different segmental Signal to Noise
Ratios. The segmental SNR value is determined by averaging the instantaneous SNR
of those frames where the near-end speech is active. To show the improvement related
to the dereverberation process we evaluated the objective measures with and with-
out reverberation reduction. The results under different segmental SNRs, with Noise
Reduction (NR), and with Reverberation Reduction and Noise Reduction (RR+NR),
are shown in Table 7.2. The results show a consistent improvement in segmental SIR,
LSD, BSD and PESQ values.

The instantaneous SIR and LSD results obtained with a segmental SNR of 25 dB to-
gether with the anechoic, reverberant and processed signals are presented in Fig. 7.11.
Since the Signal to Noise Ratio is relatively high, the instantaneous Signal to In-
terference Ratio mainly relates to the amount of reverberation, such that the SIR
improvement relates to the reverberation reduction. Especially in those areas where
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κ̂(k)
0.9 · κ(k) κ(k) 1.1 · κ(k)

SIRseg 7.52 dB 7.57 dB 7.62 dB
LSD 2.05 dB 2.05 dB 2.05 dB
BSD 0.0250 0.0245 0.0241

PESQ 2.88 2.89 2.90

Table 7.3 Segmental SIR, LSD, BSD and PESQ, segmental SNR = 5 dB, and κ̂(k) =
{0.9 · κ(k), κ(k), 1.1 · κ(k)}.

SNRseg Unprocessed Processed (RR+NR)

SIRseg

5 dB -3.70 dB 3.51 dB
10 dB -3.08 dB 4.60 dB
25 dB -2.66 dB 5.79 dB

LSD
5 dB 10.95 dB 2.69 dB

10 dB 9.88 dB 2.16 dB
25 dB 9.04 dB 1.82 dB

BSD
5 dB 0.7840 0.0978

10 dB 0.7908 0.0660
25 dB 0.7942 0.0485

PESQ
5 dB 0.85 1.95

10 dB 0.94 1.82
25 dB 1.61 2.34

Table 7.4 Segmental SIR, LSD, BSD, and PESQ for different segmental Signal to
Noise Ratios during double-talk (RT60 ≈ 0.5 s).

the instantaneous SIR of the unprocessed signal is low the instantaneous SIR and LSD
are increased and decreased, respectively. During speech onsets some speech distortion
(negative improvement) may occur due to the decision-directed a priori SIR estima-
tion (see Section 7.5.2). The spectrograms and waveforms of the near-end speech
signal z(n), ze(n), and the processed signal ẑe(n) are shown in Fig. 7.12. From these
plots it can be clearly seen that the smearing in time due to the reverberation has
been reduced significantly.

In practice the direct to reverberant energy ratio κ(k) needs to be estimated online. To
evaluate the robustness with respect to errors in κ(k) we introduced an error of ±10%.
The SIRseg and LSD using the perturbated values of κ(k) are shown in Table 7.3. From
this experiment we can see that the performance of the developed algorithm is not
very sensitive to errors in the parameter κ(k).

7.6.4 Joint Suppression Performance

We evaluated the performance during double-talk using the segmental SIR, LSD, BSD,
and PESQ at three different segmental SNR values. The results are presented in Ta-
ble 7.4. The results show a significant improvement in terms of all objective measures.
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Figure 7.11 Dereverberation performance of the system during near-end speech pe-
riod (RT60 ≈ 0.5 s).
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Figure 7.12 Spectrogram and waveform of (a-b) the reverberant near-end speech
signal z(n), (c-d) the near-end speech signal ze(n), and (e-f) the dereverberated near-
end speech signal ẑe(n) (segmental SNR = 25 dB, RT60 ≈ 0.5 s).

The spectrograms of the microphone signal, near-end speech signal and the estimated
signal ẑe(n) for a segmental SNR of 25 dB, and 5 dB are, respectively, shown in Figs.
7.13 and 7.14. The spectrograms clearly show how well the interferences are suppressed
during double-talk.

7.7 Discussion

The lengths of the two adaptive filters can be controlled using the parameters N1 and
N2. The choice will in general be related to the application, acoustic environment
and the desired complexity and robustness. In some cases it even might be desired to
make N1 zero, which results in a complete spectral acoustic echo canceller. In other
cases, where N1 covers the direct path and early reflections, e.g., in a small enclosed
space, N2 can be chosen equal to N1, such that the second adaptive filter is omitted,
and only the late residual echo estimator is used.

We have used a standard Normalized Least Mean Squares algorithm to update the
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Figure 7.13 Spectrograms of (a) the microphone signal y(n), (b) the near-end speech
signal ze(n), (c) the reverberant near-end speech signal z(n), and (d) the estimated
signal ẑe(n), during double-talk (segmental SNR = 25 dB, RT60 ≈ 0.5 s).

adaptive filters. Due to the choices of N1 and N2, the lengths of the adaptive filters are
deficient. In case the far-end signal x(n) is not spectrally white, the filter coefficients
are biased [260, 261]. However, the filter coefficients that are mostly affected, are in
the tail region of ĥe(n) and ĥm(n). Accordingly, this problem can be partially solved
by increasing the values of N1 and N2, and calculating the output using the original
N1 and N2 − N1 coefficients of the filters. Alternatively, one could use a, possibly
adaptive, pre-whitening filter [241], or other adaptive algorithm like AP or RLS.

The amount of reverberation reduction can be controlled using ξmin,zl and the param-
eter Nl. It should be noted that in case the source-microphone distance is smaller than
the critical distance, such that κ(k) < 1, the time Nl/fs can be reduced to around
8-16 ms, i.e., one or two frames, while keeping the amount of speech distortion low.

An estimate of the reverberation time is required for the late residual echo estimation
and late reverberant energy estimation. In some applications, e.g., conference systems,
this parameter may be determined using a calibration step. We developed a method
to estimate the reverberation time online using the estimated filter ĥm, assuming that
the convergence of the filter ĥm is sufficient. Instantaneous divergence of the filter
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Figure 7.14 Spectrograms of (a) the microphone signal y(n), (b) the near-end speech
signal ze(n), (c) the reverberant near-end speech signal z(n), and (d) the estimated
signal ẑe(n), during double-talk (segmental SNR = 5 dB, RT60 ≈ 0.5 s).

coefficients, e.g., due to false double-talk detection or echo path changes, does not
significantly influence the estimation of the reverberation time due to its relatively
slow update mechanism. In case the filter coefficients cannot convergence, for example
due to background noise, the estimated reverberation time will be inaccurate. It should
be noted that under-estimation of the reverberation time will reduce the performance
of the system in terms of late residual echo and reverberation suppression. However,
under-estimation will not introduce any additional distortion.

Acoustic echo cancellation solutions that are capable of handling both the residual
echo and background noise are often implemented in the STFT domain and usually
require two STFTs and one inverse STFT. The increase in complexity of the proposed
system compared to former solutions is small since the estimation of the reverberation
time and the late reverberant energy only requires a few extra operations. It should be
noted that the current implementation requires three STFTs and one inverse STFT.
However, the number of STFTs can be reduced to two by implementing the adaptive
filters ĥe(n) and ĥm(n) in the STFT domain.
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7.8 Conclusions

In this chapter we have developed a novel post-processor which is designed to efficiently
reduce reverberation of the near-end speech signal, residual echo and background noise.
We proposed to divide the acoustic echo path into three distinct parts, each of which
is handled in a different way. The late residual echo is reduced in a unique and
efficient way by exploiting the exponential decay of the acoustic echo path. The
exponential decay, which is related to the reverberation time of the room, is identified
from the estimated acoustic echo path. The estimated reverberation time is also used
for dereverberation of the near-end speech signal. A single post-filter based on the
Optimally-Modified Log Spectral Estimator is applied to the error signal of the acoustic
echo canceller to obtain an estimate of the dereverberated near-end speech signal.
Experimental results demonstrate the high performance of the proposed system, and
its robustness to small position changes of the loudspeaker in the room.



Chapter 8

Conclusions and Further Research

The objective of the work presented in this dissertation is to investigate the applica-
tion of spectral enhancement techniques to suppress late reverberation, residual echo
and background noise. In the previous chapters, novel single- and multi-microphone
techniques have been introduced to achieve these objectives. This chapter summarizes
the obtained results and highlights the contribution of the present work.

8.1 Conclusions

In typical speech communication systems, such as hands-free mobile telephones, video-
conferencing, voice-controlled systems, hearing aids and cochlear implants, the re-
ceived microphone signals are corrupted by room reverberation, background noise,
and far-end echo signals. This signal degradation may lead to total unintelligibility
of speech and decreases the performance of automatic speech recognition systems.
Hence, high performance acoustic signal processing techniques are required.

In this dissertation several single- and multi-microphone speech dereverberation tech-
niques based on spectral enhancement were developed. It was shown that quantifiable
properties, e.g., the reverberation time and direct to reverberation ratio, can be used to
dereverberate the received microphone signals. We will now summarize the obtained
results and highlight the main contributions of the individual chapters.

In Chapter 2 we have provided some fundamental prerequisites on room acoustics.
The theory described in this chapter was used throughout this dissertation.

An extensive literature survey covering a variety of speech dereverberation techniques
that were developed in the last three decades has been presented in Chapter 3. We
categorized the reverberation reduction techniques depending on whether or not the
acoustic impulse response needs to be estimated. We then obtain two main categories,
i.e., Reverberation Suppression and Reverberation Cancellation. Techniques within
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these categories can be divided into smaller sub-categories depending on either the
amount of prior knowledge about either the source or the acoustic channel that is
utilized.

In Chapter 4 we have discussed and evaluated objective measures to determine the
quality of the dereverberated signal. It was shown that the segmental Signal to Re-
verberation Ratio and Reverberation Decay Tail are very useful quantitative objective
measures, which have an almost linear relation with the reverberation time. Unfortu-
nately there are currently no objective measures available to evaluate the change in
colouration independently from the reverberation time. Furthermore, a novel time-
frequency representation of a reverberant speech signal was proposed. Compared to
the standard spectrogram the proposed representation clearly indicates which time-
frequency components have a low Direct to Reverberation Ratio, i.e., which time-
frequency components are affected most by reverberation.

Three multi-microphone speech dereverberation systems have been developed in Chap-
ter 5. Two spectral enhancement techniques were used to enhance the observed,
possibly noisy, reverberant speech signal. The first technique is based on spectral sub-
traction, and the second technique is based on the Optimally-Modified Log Spectral
Amplitude (OM-LSA) estimator. Several modifications of the OM-LSA estimator were
developed to increase its performance. The developed multi-microphone speech dere-
verberation systems exhibit a low computational complexity and are robust to small
changes in the room characteristics. Results obtained using synthetic and measured
acoustic impulse responses showed a significant reverberation reduction with little or
no speech distortion.

In Chapter 6 we have discussed Polack’s statistical reverberation model, which can
be used to estimate the late reverberant spectral variance directly from the received
microphone signal. We showed that Polack’s statistical reverberation model is closely
related to the physical energy balance in an ideal diffuse environment. Polack’s rever-
beration model is based on the implicit assumption that the reverberant component is
dominant, and hence, that the source-microphone distance is larger than the critical
distance. We proposed a generalized statistical reverberation model which was used
to derive a novel late reverberant spectral variance estimator. The derived estimator
can be used over a wide range of source-microphone distances. We showed that the
proposed estimator is biased when background noise is present. An unbiased estimator
was developed which can be used in case an estimate of the noise spectral variance is
available. In case the noise is time-invariant, or slowly time-varying, the bias can be
calculated explicitly from the estimate noise spectral variance. The bias can then be
subtracted from the estimated late reverberant spectral variance. Compared to the
unbiased estimator this simple correction reduces the computational complexity of the
system.

A novel post-processor for an acoustic echo cancellation system was developed in
Chapter 7. The post-processor can be used to suppress reverberation, residual echo,
and background noise. The system is unique in the following ways. Firstly, it uses
an advanced spectral enhancement technique, viz., the OM-LSA estimation technique.
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This technique is used to suppress late reverberation of the near-end speech signal,
residual echo, and background noise. We have developed several modifications of the
OM-LSA estimation technique. The first modification provides a stationary residual
noise level while suppressing multiple interferences. The second modification increases
the ability to control the estimation procedure of each interference. Secondly, we di-
vided the echo path into three parts (direct path, early and late). While the echo
signal that results from the direct path is cancelled using a classical acoustic echo
canceller technique, the echo signal which results from the second and third part are
suppressed using the developed spectral enhancement technique. The third part, i.e.,
late reverberant part, is estimated using the model described in Chapter 6. The dere-
verberation of the near-end speech signal is based on the techniques developed in
Chapters 5 and 6. The late reverberant spectral variance estimator requires an esti-
mate of the reverberation time. However, blind estimation of the reverberation time
can be very problematic. In this case we used the estimated echo path to estimate the
reverberation time of the room. Experimental results convincingly demonstrate the
benefits of the proposed system for suppressing late reverberation, residual echo and
background noise. The system has a low computational complexity, a highly mod-
ular structure, can be seamlessly integrated into existing hands-free communication
systems, and affords a significant increase of the listening comfort and speech quality.

Synthetic room impulse responses are often created using the image method developed
by Allen and Berkley. In Appendix A this method is explained, and an efficient
Matlabr implementation in the form of a MEX-function is provided. This function
can be used to simultaneously calculate multiple impulse responses, i.e., from one
source to multiple microphones. Various improvements are made to incorporate the
directivity of the microphone and to ensure proper inter-microphone phase relations,
which are very important in the case of Single-Input Multi-Output (SIMO) and Multi-
Input Multi-Output (MIMO) systems. Some extra features were added which allow
the design of less complex room impulse responses.

The optimal modified Log Spectral Amplitude estimator is often used for noise reduc-
tion. In Appendix B we provide an extension to this estimator to be able to deal
with multiple interferences, more specifically to deal with one non-stationary and one
stationary interference. Three methods to estimate the a priori Signal to Interference
Ratio are discussed, viz., decision-directed, causal and non-causal recursive estimation.

Currently state-of-the-art noise reduction techniques are widely used in telecommu-
nication and consumer equipment such as video-conferencing, hands-free mobile tele-
phony and voice-controlled systems, hearing aids and cochlear implants. However,
until now dereverberation techniques are rarely included because there are no prac-
tical and robust techniques available. Therefore, dereverberation techniques are of
great interest to the high-tech industry and their costumers. The results obtained
using the single- and multi-microphone speech dereverberation techniques developed
in this dissertation show that a substantial amount of reverberation reduction can be
achieved with little a priori information about the acoustic channel. Due to the low
complexity and robustness of these techniques we believe that they can and will be
used in future applications, like hands-free devices and hearing-aids.
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8.2 Suggestions for further research

In this section we will provide several suggestions for further research.

The developed generalized late reverberant spectral variance estimator requires a lim-
ited amount of a priori information about the acoustic channel. As discussed in
Chapter 6 and 7 this information can be obtained in some applications, e.g., hands-free
mobile devices. In some applications this might be difficult, and the use of calibration
procedures that need to be performed by the costumer should be avoided. There-
fore, it is of great importance to further improve the possibilities to blindly estimate
the required parameters, such as the reverberation time and the direct to reverberation
ratio.

Throughout this work we mainly used objective measures to evaluate the perfor-
mance of the developed dereverberation algorithms. In [30] we evaluated three multi-
microphone speech dereverberation techniques using subjective listening tests. The
first dereverberation technique is a standard delay and sum beamfomer, the second
technique is a Linear Prediction based enhancement technique proposed by Gaubitch et
al. in [110], and the third is an early version of the spectral subtraction based derever-
beration technique described in Chapter 5. The subjective listening test was performed
according to the guidelines of International Telecommunications Union (ITU-T) Rec-
ommendation Series-P for subjective testing [178, 232]. Using the listening tests, we
have estimated the subjective perception of colouration, reverberation decay tail effect,
and the overall speech quality. A total of 26 normal hearing subjects was subjected to
64 speech files, with a male and a female talker for eight acoustic setups (different dis-
tances and reverberation times), and speech processed with the three dereverberation
algorithms. Calibration speech examples were given to assist listeners in identifying
colouration and reverberation decay tail effects. Compared to the received reverberant
microphone signal the results for the spectral enhancement based technique indicated
that the colouration was approximately equal, the reverberation decay tail effect was
reduced, and the overall speech quality was improved. Based on the intelligibility tests
performed by Allen [15] we expect that the intelligibility of the processed signal has
been improved. However, further investigation and verification of the speech intelligi-
bility is of great importance to further assess, improve, and increase the utilization, of
these and other dereverberation methods.

In Chapter 5 we have discussed three multi-microphone dereverberation systems.
We showed that the combination of spatial processing and a dereverberation post-
processor can be very problematic due to the spatial correlation between the acoustic
channels. However, spatial processing algorithms can be useful to suppress early re-
flections. Further research might be conducted to investigate other possibilities to
suppress late reverberation in such a case. A first attempt was made in [38] using a
dual microphone system. Here a reference signal was constructed by blocking the di-
rect speech signal. This reference signal was then used to estimate the late reverberant
energy adaptively. A post-filter was used to enhance the output of a delay and sum
beamformer. Future research could focus on the extension to multiple microphones,
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which allows better estimation of the residual reverberant energy and suppression of
the early reflections. Furthermore, more realistic situations where additional interfer-
ences are present could be investigated.

Currently, the reverberation models are described in the time domain. Certain ap-
proximations are made when the late reverberant spectral variance estimator is trans-
formed to the short-time Fourier transform (STFT) domain. To avoid this, it would
be of interest to develop a multi-channel statistical model in the STFT domain, and
to derive a late reverberant spectral variance estimator according to this model.

In this work we have processed all signals in the STFT domain. Many spectral enhance-
ment techniques showed a subjective improvement when processing was performed in a
perceptual domain, e.g., using non-uniform frequency bands. As an example, process-
ing could be performed in the Bark spectral domain, which is often used in hearing-aid
devices. Hence, it would be of interest to investigate the performance and applicability
of other time-frequency transforms.

The late reverberant spectral variance estimators derived in Chapter 6 are based on
the fact that the envelope of the acoustic impulse response has an exponential decay.
Although this assumption is true for many enclosed spaces a generalization might
be of interest. In some situations we are dealing with so-called coupled rooms (for
example when there is an opening between two enclosed spaces). In case the coupled
rooms exhibit a different decay rate in each room, the total decay consists of a sum
of exponential decays [262]. Hence, it would be of interest to derive a late reverberant
spectral variance estimator for non-exponentially decaying envelopes.

In Chapter 7 we have developed a post-processor for a Single-Input Single-Output
(SISO) acoustic echo cancellation system. In Chapter 5 we already saw that mul-
tiple microphone can be used to increase the reverberation reduction and the de-
crease speech distortion compared to a single microphone. Furthermore, using multi-
microphones the noise reduction can be increased. Therefore, it is of interest to extend
the post-processor to SIMO and MIMO acoustic echo cancellation systems.

The late reverberant spectral variance estimator is based on forward estimation, i.e.,
only the observed microphone signals are used to estimate the late reverberant spectral
variance. It should be noted that the first speech signals that are received by the mi-
crophone are free of reverberation (assuming that the room is ‘in rest’. Therefore this
signal could be used to ‘clean’ future samples. Hence backward or forward-backward
estimators might be used to estimated the late reverberant spectral variance.
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kurtosis subband adaptive filtering,” in Proc. of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP’01), 2001, vol. 6, pp. 3701–3074.

[106] N. Mitianoudis M. Tonelli and M.E. Davies, “Maximum Likelihood approach to blind
audio de-reverberation,” in Proc. of the 7th International Conference on Digital Audio
Effects (DAFX’04), Naples, Italy, Oct. 2004, pp. 1–6.

[107] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis, Wiley-
Interscience, 2001.

[108] M. Tonelli, M.G. Jafari, and M.E. Davies, “A multi-channel Maximum Likelihood
approach to de-reverberation,” in Proc. of the European Signal Processing Conference
(EUSIPCO’06), Florence, Italy, Sept. 2006.

[109] B. Yegnanarayana, “Speech enhancement using excitation source information,” in
Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP’02), 2002, vol. 1, pp. 541–544.

[110] N.D. Gaubitch, P.A. Naylor, and D.B. Ward, “Multi-microphone speech dereverber-
ation using spatio-temporal averaging,” in Proc. of the European Signal Processing
Conference (EUSIPCO’04), Vienna, Austria, Sept. 2004, pp. 809–812.

[111] N.D. Gaubitch, P.A. Naylor, and D. Ward, “On the use of linear prediction for dere-
verberation of speech,” in Proc. of the International Workshop on Acoustic Echo and
Noise Control (IWAENC’03), Kyoto, Japan, 2003, pp. 99–102.

[112] T. Houtgast and H. Steeneken, “A review of the MTF concept in room acoustics and its
use for estimating speech intelligibility in auditoria,” Journal of the Acoustical Society
of America, vol. 77, no. 3, pp. 1069–1077, 1985.

[113] D.A. Berkley and O.M.M. Mitchell, “Removing reverberative echo components in
speech signals,” U.S. Patent No. 4166924, 1979.

[114] T. Langhans and H. Strube, “Speech enhancement by nonlinear multiband envelope
filtering,” in Proc. of the IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’82), 1982, vol. 7, pp. 156–159.

[115] M.R. Schroeder, “Modulation transfer functions: Definition and measurement,” Acus-
tica, vol. 49, pp. 179–182, 1981.



200 Bibliography

[116] H.G. Hirsch, Signal Processing IV: Theories and Applications, chapter Automatic
Speech Recognition in Rooms, pp. 1177–1180, Elsevier Saence Publishers B.V. (North
Holland), EURASIP, 1988.

[117] C. Avendano and H. Hermansky, “Study on the dereverberation of speech based on
temporal envelope filtering,” in Proc. of the fourth International Conference on Spoken
Language Processing (ICSLP’96), 1996, vol. 2, pp. 889–892.

[118] J. Mourjopoulos and J.K. Hammond, “Modelling and enhancement of reverberant
speech using an envelope convolution method,” in Proc. of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP’83), 1983, pp. 1144–
1147.

[119] S. Hirobayashi, H. Nomura, T. Koike, and M. Tohyama, “Speech waveform recovery
from a reverberant speech signal using inverse filtering of power envelope transfer func-
tion,” IEEE Trans. of the Institute of Electronics Information and Communication
Engineers, vol. J81–A, no. 10, pp. 1323–1330, 1998.

[120] K. Sakata M. Unoki, M. Furukawa and M. Akagi, “An improved method based on the
mtf concept for restoring the power envelope from a reverberant signal,” Acoustical
Science and Technology, vol. 25, no. 4, pp. 232–242, 2004.

[121] K. Sakata M. Unoki, M. Furukawa and M. Akagi, “A speech dereverberation method
based on mtf concept in power envelope restoration,” Acoustical Science and Technol-
ogy, vol. 25, no. 4, pp. 243–254, 2004.

[122] J.B. Allen, D.A. Berkley, and J. Blauert, “Multimicrophone Signal-Processing Tech-
nique to Remove Room Reverberation from Speech Signals,” Journal of the Acoustical
Society of America, vol. 62, no. 4, pp. 912–915, 1977.
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[155] M. Gürelli and C. Nikias, “EVAM: An Eigenvector-Based Algorithm for Multichannel
Blind Deconvolution of Input Colored Signals,” IEEE Trans. Signal Processing, vol.
43, no. 1, pp. 134–149, 1995.

[156] S. Gannot and M. Moonen, “Subspace Methods for Multi-Microphone Speech Derever-
beration,” in Proc. of the International Workshop on Acoustic Echo and Noise Control
(IWAENC’01), Darmstadt, Germany, 2001.

[157] S. Gannot and M. Moonen, “Subspace Methods for Multimicrophone Speech Dere-
verberation,” EURASIP Journal on Applied Signal Processing, vol. 2003, no. 11, pp.
1074–1090, 2003.

[158] M. Triki and D.T.M. Slock, “Blind dereverberation of quasi-periodic sources based on
multichannel linear prediction,” in Proc. of the International Workshop on Acoustic
Echo and Noise Control (IWAENC’05), Eindhoven, Netherlands, Sept. 2005.

[159] M. Triki and D.T.M. Slock, “Delay and predict equalization for blind speech derever-
beration,” in Proc. of the 31st IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP’06), Toulouse, France, May 2006, vol. 5, pp. 97–100.

[160] M. Triki and D.T.M. Slock, “Iterated delay and predict equalization for blind speech
dereverberation,” in Proc. of the International Workshop on Acoustic Echo and Noise
Control (IWAENC’06), Paris, France, Sept. 2006.

[161] M. Miyoshi, “Estimating AR parameter-sets for linear-recurrent signals in convolutive
mixtures,” in Proc. of the ICA’03, 2003, pp. 585–589.

[162] M. Delcroix, T. Hikichi, and M. Miyoshi, “Dereverberation of speech signals based on
linear prediction,” in Proc. of the 8th International Conference on Spoken Language
Processing ICSLP’04, Jeju Island, Korea, Oct. 2004, vol. 2, pp. 877–881.

[163] M. Delcroix, T. Hikichi, and M. Miyoshi, “Blind dereverberation algorithm for speech
signals based on multi-channel linear prediction,” Acoustical Science and Technology,
vol. 26, no. 5, pp. 432–439, 2005.

[164] M. Delcroix, T. Hikichi, and M. Miyoshi, “Precise dereverberation using multichannel
linear prediction,” IEEE Trans. Audio, Speech, Language Processing, vol. 15, no. 2, pp.
430–440, 2006.



Bibliography 203

[165] H. Wang and F. Itakura, “An Approach to Dereverberation Using Multi-microphone
Sub-band Envelope Estimation,” in Proc. of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP’91), 1991, vol. 2, pp. 953–956.

[166] T.F. Quatieri, Discrete-Time Speech Signal Processing, NJ: Prentice Hall, 2002.

[167] M. Delcroix, T. Hikichi, and M. Miyoshi, “On the use of lime dereverberation algorithm
in an acoustic environment with a noise source,” in Proc. of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP’06), 2006, vol. 1, pp.
825–828.
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Appendix A

Room Impulse Response Generator

Many people who are working in the field of acoustic signal processing reach a point
where they want to simulate room acoustics. The image method, which was developed
by Allen and Berkley in 1979, is probably one of the methods most commonly used in
the acoustic signal processing community. Therefore it will be discussed in more detail.
A mex-function, which can be used in Matlabr, has been created to generate multi-
channel Room Impulse Responses using the image method. This function enables the
users to control the reflection order, room dimension, and microphone directivity.

A.1 Allen and Berkley’s Image Method

The image model (Section A.1.1) can be used to simulate the reverberation in a room
for a given source and microphone location. The system is treated as an Linear Time-
Invariant (LTI) system whose impulse response consists of a set of delayed impulses
of gradually decreasing amplitudes. Allen and Berkley developed an efficient method
[83], using the image model, to compute a Finite Impulse Response (FIR) for rect-
angular rooms. This method and some additional refinements will we explained in
Section A.1.2.

A.1.1 Image model

Fig. A.1 shows a sound source S located near a rigid reflecting wall. At destination D
two signals arrive, one from the direct path and a second one from the reflection. The
path length of the direct path can be directly calculated from the known locations
of the source and the destination. Also shown is an image of the source, S′, located
behind the wall at a distance equal to the distance of the source from the wall. Because
of symmetry, the triangle SRS′ is isosceles and therefore the path length SR+RD is
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Figure A.1 Direct path and one path involving one reflection obtained using a first
level image.
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Figure A.2 Path involving two reflections obtained using two levels of images.

the same as S′D. To compute the path length of the reflected path, we can construct
an image source and compute the distance between destination and image source.
Also, the fact that we are computing the distance using an image means that there
was one reflection in the path. Fig. A.2 shows a path involving two reflections. The
length of this path can be obtained from the length of S′′D. In Fig. A.3 the length of a
path involving three reflections is obtained from the length of S′′′D. These figures can
also be extended to three dimensions to take into account reflections from the ceiling
and the floor. In general the path lengths (and thus the delays) of reflections can be
obtained by computing the distance between the source images and the destination.
The strength of the reflection can be obtained from the path length and the number
of reflections involved in the path. The number of reflections involved in the path is
equal to the level of images that was used to compute the path.
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Figure A.3 Path involving three reflections obtained using three levels of images.

A.1.2 Image method

Consider a rectangular room with length, width and height given by Lx, Ly and Lz.
Let the sound source be at a location represented by the vector rs = [xs ys zs] and let
the microphone be at a location represented by the vector r = [x y z]. Both vectors
are with respect to the origin, which is located at one of the corners of the room. The
vector joining the microphone to any of the first level images can be written as

Rp = [xs − x+ 2qx ys − y + 2jy zs − z + 2kz]. (A.1)

Each of the elements in the triplet p = (q, j, k) can take on values 0 or 1, which
means that there are 8 different combinations, (0, 0, 0) to (1, 1, 1). The eight possible
combinations are part of a set P. When the value of p is 1 in any dimension, then an
image of the source in that direction is considered. To consider images of any level,
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we add the vector Ru to Rp where

Ru = 2[nLx lLy mLz]. (A.2)

Each of the elements of the triplet u = (n, l,m) takes on values between -N and +N,
depending on the maximum level of images that we would like to consider. We define a
set U which contains all (2N+1)3 combinations. For a given N , this method computes
8(2N + 1)3 different paths.

The distance between any source image and the microphone can be written as

D = ‖Ru + Rp‖ , (A.3)

where ‖·‖ denotes the Euclidian norm. The time delay of arrival of the reflected sound
ray corresponding to any image source can be expressed as

tTDOA =
‖Ru + Rp‖

c
, (A.4)

where c denotes the sound velocity in meters per second.

Using the Free Space Green’s function Eq. 2.12 we can express the transfer function
from any image source to the microphone as

H(r, rs;ω) =
e−ι ω

c ‖Ru+Rp‖

4π ‖Ru + Rp‖
, (A.5)

where ι =
√
−1. In case of rigid walls, the acoustic transfer function from the source

to the receiver can be expressed as [83]

H(r, rs;ω) =
∑
p∈P

∑
u∈U

e−ι ω
c ‖Ru+Rp‖

4π ‖Ru + Rp‖
. (A.6)

By taking the inverse Fourier transform of Eq. A.6 we obtain the acoustic impulse
response h(r, rs, t), i.e.,

h(r, rs, t) =
∑
p∈P

∑
u∈U

δ
(
t− ‖Ru+Rp‖

c

)
4π ‖Ru + Rp‖

. (A.7)

Note that Eq. A.7 is the exact solution to the wave equation in a rectangular, rigid-
wall, room, and can be derived by calculating the inverse Fourier transform from the
solution given by Eq. 2.14 [83].

Under certain assumptions (see [83] for more details) the impulse response in case of
non-rigid walls can be derived. The impulse response for this source and microphone
location can then be written as [83]

h(r, rs, t) =
∑
p∈P

∑
u∈U

β|n−q|
x1

β|n|x2
β|l−j|

y1
β|l|y2

β|m−k|
z1

β|m|
z2

δ
(
t− ‖Ru+Rp‖

c

)
4π ‖Ru + Rp‖

, (A.8)
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Figure A.4 Comparison of the shifted (dashed line) and low-pass impulse (solid line)
method using a fractional delay of 4.8 samples.

where the quantities βx1 , βx2 , βy1 , βy2 , βz1 , and βz2 are the reflection coefficients of
the six walls.

Once the impulse response has been computed this way, the source signal can be con-
volved with the impulse response to simulate the signal picked up by the microphone.

An important consideration while simulating the discrete version of this impulse re-
sponse using a computer is that the delays given by Eq. A.4 do not always fall at
sampling instants. This distortion can be ignored in many applications. However, for
multiple microphone systems that depend on inter-microphone phase relations, correct
simulation of arrival time relationships is critical. One way to reduce this problem is
to compute the discrete impulse response at a much higher sampling frequency, deci-
mate the impulse response to the original sampling frequency, and convolve the source
signal with it. Peterson suggested another modification to the image method [231].
In this approach, each impulse in Eq. A.8 is replaced by the impulse response of a
Hanning-windowed ideal low pass filter of the form

hlp(t) =

{
1
2

(
1 + cos

(
2πt
Tw

))
sinc (2πFct) , −Tw

2 < t < Tw

2 ;

0, otherwise,
, (A.9)

where Tw is the width (in time) of the impulse response and Fc is the cut-off frequency
of the low-pass filter. All Acoustic Impulse Responses (AIR) used in this dissertation
are generated using Tw = 0.008fs and Fc = 1. Each impulse in Eq. A.8 is replaced by
hlp(t) centred at the true delay. By doing this, true delays of arrival of the reflected
signals are simulated accurately even at the original low sampling frequency. A com-
parison of both methods, using a delay of 4.8 samples, is depicted in Fig. A.4. Squares
indicate sample values produced by Allen and Berkley’s shifted impulse method and
circles indicate sample values produced by Peterson’s low-pass impulse method. The
solid line shows the central portion of the continuous-time low-pass impulse function.

The other consideration while simulating reverberation for a room is the duration of
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reverberation or the reverberation time. Formally, the reverberation time is defined
as the time required for the intensities of reflected sound rays to be down 60 dB from
the direct path sound ray. An empirical formula, known as Sabin-Franklin’s formula
[263] can be used to relate the reverberation time RT60 by,

RT60 =
24 ln(10) V

c
∑6

i=1 Si(1− β2
i )
, (A.10)

where βi and Si denote the reflection coefficient and the surface of the ith wall. The
volume of the room is denoted by V .

A.2 Implementation

The image method as discussed in the previous section has been implemented as a
Matlabr mex-function and was written in C++. The resulting Dynamic-Link-Library
(DLL) can easily be used within Matlabr as a standard Matlabr function. The C++
implementation is much faster than the equivalent Matlabr implementation. The
source-code can be found in Section A.4.

The function rir generator is defined as follows:

function [h, beta] = rir_generator(c, fs, r, s, L, beta, nsample,
mtype, order, dim, orientation,
hp_filter);

Input parameters:
Parameter Description
c sound velocity in m/s.
fs sampling frequency in Hz.
r M x 3 matrix specifying the (x,y,z) coordinates of the receiver(s) in

m.
s 1 x 3 vector specifying the (x,y,z) coordinates of the source in m.
L 1 x 3 vector specifying the room dimensions (x,y,z) in m.
beta 1 x 6 vector specifying the reflection coefficients

[βx1 βx2 βy1 βy2 βz1 βz2 ] or beta = Reverberation Time (RT60) in
seconds.
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Optional input parameters:
Parameter Description Default value
nsample number of samples to calculate. RT60fs
mtype type of microphone that is used [‘omnidirectional’,

‘subcardioid’, ‘cardioid’, ‘hypercardioid’, ‘bidirec-
tional’].

‘omnidirectional’

order reflection order. -1
dim room dimension (2 or 3). 3
orientation specifies the angle (in rad) in which the micro-

phone is pointed.
0

hp filter use ‘false’ to disable high-pass filter. ‘true’

Output parameters:
Parameter Description
h M x nsample matrix containing the calculated room impulse

response(s).
beta In case a reverberation time is specified as an input parameter the

corresponding reflection coefficient is returned.

Multi-Channel Support In case more than one receiver position is specified the
function rir generator will calculate all AIRs at once.

Reverberation Time versus Reflection Coefficients The reflection coefficients
in Eq. A.8 can be specified using the parameter ’beta’. In case ’beta’ consists of
one element the program assumes a reverberation time (in seconds) is specified.
The corresponding average reflection coefficient is calculated using Eq. A.10 and
will be returned using the output parameter ‘beta’.

Reflection Order and Room Dimension In order to control the complexity of the
generated AIR one can control the maximum reflection order using the parameter
‘order ’. In case the order is chosen ‘-1’ (default value) the maximum amount of
reflections, given the desired length of the AIR, is calculated. The dimension of
the room can be set using the parameter ‘dim’. This value can either be 2 or 3
(default value).

Microphone Directivity The microphone’s directionality, or polar pattern, can also
be taken into account. Different kinds of polar patterns are implemented and
can be chosen using the parameter ‘mtype’. The signal attenuation A(θ), where
θ denotes the direction of arrival, is calculated using the following standard
formula:

A(θ) = P + PG cos (θ) . (A.11)

The polar pattern is controlled by P and PG, see Table A.1. The resulting po-
lar patterns for the Omnidirectional, Cardioid, Hypercardioid and Bidirectional
microphone are depicted in Fig. A.5.
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Figure A.5 Polar plots of four different microphone polar patterns.

Directivity Pattern P PG
Omnidirectional 1 0
Subcardioid 0.75 0.25
Cardioid 0.5 0.5
Hypercardioid 0.25 0.75
Bidirectional 0.25 0.75

Table A.1 Supported polar patterns and corresponding values for P and PG.

The angle in which the microphone is pointing can be adjusted with the pa-
rameter ‘orientation’. By default the microphone points towards the positive
x-axis. Note that the microphone’s directionality only takes the azimuth of the
received reflection into account. The elevation of the received reflection does not
influence the attenuation.
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A.3 Examples

In this section some basic and more complex examples are presented in the form of a
Matlabr script.

c = 340; % Sound v e l o c i t y (m/ s )
f s = 16000; % Samp l e f r e q u e n c y ( s a m p l e s / s )
r = [2 1 .5 2 ] ; % R e c e i v e r p o s i t i o n [ x y z ] (m)
s = [2 3 .5 2 ] ; % So u r c e p o s i t i o n [ x y z ] (m)
L = [5 4 6 ] ; % Room d i m e n s i o n s [ x y z ] (m)
beta = 0 . 4 ; % R e v e r b e r a t i o n t im e ( s )
n = 4096; % Number o f s a m p l e s

h = r i r g e n e r a t o r ( c , f s , r , s , L , beta , n ) ;

Example A.1 Simple example to generate one AIR.

n [samples]

500 1000 1500 2000 2500 3000 3500 4000
-0.01

0

0.01

0.02

0.03

0.04

Figure A.6 Output of Example A.1.

c = 340; % Sound v e l o c i t y (m/ s )
f s = 16000; % Samp l e f r e q u e n c y ( s a m p l e s / s )
r = [2 1 .5 2 ] ; % R e c e i v e r p o s i t i o n [ x y z ] (m)
s = [2 3 .5 2 ] ; % So u r c e p o s i t i o n [ x y z ] (m)
L = [5 4 6 ] ; % Room d i m e n s i o n s [ x y z ] (m)
beta = 0 . 4 ; % R e v e r b e r a t i o n t im e ( s )
n = 1024; % Number o f s a m p l e s
mtype = ‘ omnid i r ec t iona l ’ ; % Type o f m i c r o p h o n e
order = 2 ; % R e f l e c t i o n o r d e r
dim = 3 ; % Room d im e n s i o n
o r i e n t a t i on =0; % Mi c r o p h o n e o r i e n t a t i o n ( r a d )
h p f i l t e r =1; % En a b l e h i g h−p a s s f i l t e r

h = r i r g e n e r a t o r ( c , f s , r , s , L , beta , n , mtype , order , dim , o r i en ta t i on , h p f i l t e r ) ;

Example A.2 Generate one AIR.
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n [samples]

100 200 300 400 500 600 700 800 900 1000
-0.01

0

0.01

0.02

0.03

0.04

Figure A.7 Output of Example A.2.

c = 340; % Sound v e l o c i t y (m/ s )
f s = 16000; % Samp l e f r e q u e n c y ( s a m p l e s / s )
r = [2 1 .5 2 ; 1 1 .5 2 ] ; % R e c e i v e r p o s i t i o n s [ x 1 y 1 z 1 ; x 2 y 2 z 2 ] (m)
s = [2 3 .5 2 ] ; % So u r c e p o s i t i o n [ x y z ] (m)
L = [5 4 6 ] ; % Room d i m e n s i o n s [ x y z ] (m)
beta = 0 . 4 ; % R e v e r b e r a t i o n t im e ( s )
n = 4096; % Number o f s a m p l e s
mtype = ‘ omnid i rec t iona l ’ ; % Type o f m i c r o p h o n e
order = −1; % −1 e q u a l s maximum r e f l e c t i o n o r d e r !
dim = 3 ; % Room d im e n s i o n
o r i e n t a t i on = 0 ; % Mi c r o p h o n e o r i e n t a t i o n ( r a d )
h p f i l t e r = 1 ; % En a b l e h i g h−p a s s f i l t e r

h = r i r g e n e r a t o r ( c , f s , r , s , L , beta , n , mtype , order , dim , o r i en ta t i on , h p f i l t e r ) ;

Example A.3 Generate multiple AIRs.

c = 340; % Sound v e l o c i t y (m/ s )
f s = 16000; % Samp l e f r e q u e n c y ( s a m p l e s / s )
r = [2 1 .5 2 ] ; % R e c e i v e r p o s i t i o n [ x y z ] (m)
s = [2 3 .5 2 ] ; % So u r c e p o s i t i o n [ x y z ] (m)
L = [5 4 6 ] ; % Room d i m e n s i o n s [ x y z ] (m)
n = 4096; % Number o f s a m p l e s
beta = 0 . 4 ; % R e v e r b e r a t i o n t im e ( s )
mtype = ‘ hypercard io id ’ ; % Type o f m i c r o p h o n e
order = −1; % −1 e q u a l s maximum r e f l e c t i o n o r d e r !
dim = 3 ; % Room d im e n s i o n
o r i e n t a t i on = pi /2 ; % Mi c r o p h o n e o r i e n t a t i o n ( r a d )
h p f i l t e r = 1 ; % En a b l e h i g h−p a s s f i l t e r

h = r i r g e n e r a t o r ( c , f s , r , s , L , beta , n , mtype , order , dim , o r i en ta t i on , h p f i l t e r ) ;

Example A.4 Generate one AIR using a hypercardioid microphone.

n [samples]

500 1000 1500 2000 2500 3000 3500 4000
-0.01

0

0.01

0.02

0.03

0.04

Figure A.8 Output of Example A.4.
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A reverberant signal can now be created by filtering the anechoic signal with the
generated AIR.
r e v e r b e r an t s i g na l = f i l t e r (h , 1 , c l e a n s i g n a l ) ;

Example A.5 Generate reverberant signal.

A.4 Source Code

/∗
Program : Room I m p u l s e R e s p o n s e G e n e r a t o r

D e s c r i p t i o n : F u n c t i o n f o r s i m u l a t i n g t h e i m p u l s e r e s p o n s e o f a s p e c i f i e d
room u s i n g t h e imag e me t hod [ 1 , 2 ] .

[ 1 ] J . B . A l l e n and D .A . B e r k l e y ,
Image me t hod f o r e f f i c i e n t l y s i m u l a t i n g sm a l l−room A c o u s t i c s ,
J o u r n a l A c o u s t i c S o c i e t y o f Amer ica , 6 5 ( 4 ) , A p r i l 1 9 7 9 , p 9 4 3 .

[ 2 ] P .M. P e t e r s o n ,
S i m u l a t i n g t h e r e s p o n s e o f m u l t i p l e m i c r o p h o n e s t o a s i n g l e
a c o u s t i c s o u r c e i n a r e v e r b e r a n t room , J o u r n a l A c o u s t i c
S o c i e t y o f Amer ica , 8 0 ( 5 ) , November 1 9 8 6 .

Au t h o r : i r . E .A . P . H a b e t s ( e . a . p . h a b e t s @ t u e . n l )

V e r s i o n : 1 . 7 . 2 0 0 6 0 5 3 1

H i s t o r y : 1 . 0 . 2 0 0 3 0 6 0 6 I n i t i a l v e r s i o n
1 . 1 . 2 0 0 4 0 8 0 3 + M i c r o p h o n e d i r e c t i v i t y

+ Imp r o v e d p h a s e a c c u r a c y [ 2 ]
1 . 2 . 2 0 0 4 0 3 1 2 + R e f l e c t i o n o r d e r
1 . 3 . 2 0 0 5 0 9 3 0 + R e v e r b e r a t i o n Time
1 . 4 . 2 0 0 5 1 1 1 4 + S u p p o r t s m u l t i−c h a n n e l s
1 . 5 . 2 0 0 5 1 1 1 6 + High−p a s s f i l t e r [ 1 ]

+ M i c r o p h o n e d i r e c t i v i t y c o n t r o l
1 . 6 . 2 0 0 6 0 3 2 7 + Minor im p r o v em e n t s
1 . 7 . 2 0 0 6 0 5 3 1 + Minor im p r o v em e n t s

C o p y r i g h t (C) 2003−2006 T e c h n i s c h e U n i v e r s i t y E i n dho v en , The N e t h e r l a n d s .

T h i s p r o g r am i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and / o r m o d i f y
i t u n d e r t h e t e rm s o f t h e GNU Ge n e r a l P u b l i c L i c e n s e a s p u b l i s h e d b y
t h e F r e e S o f t w a r e F o u n d a t i o n ; e i t h e r v e r s i o n 2 o f t h e L i c e n s e , o r
( a t y o u r o p t i o n ) any l a t e r v e r s i o n .

T h i s p r o g r am i s d i s t r i b u t e d i n t h e h o p e t h a t i t w i l l b e u s e f u l ,
b u t WITHOUT ANY WARRANTY; w i t h o u t e v e n t h e i m p l i e d w a r r a n t y o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . S e e t h e
GNU Ge n e r a l P u b l i c L i c e n s e f o r more d e t a i l s .

You s h o u l d h a v e r e c e i v e d a c o p y o f t h e GNU Ge n e r a l P u b l i c L i c e n s e
a l o n g w i t h t h i s p r o g r am ; i f no t , w r i t e t o t h e F r e e S o f t w a r e
F oun d a t i o n , I n c . , 51 F r a n k l i n St , F i f t h F l o o r , Bo s t on , MA 02110−1301 USA
∗/

#define USE MATH DEFINES

#include ”matrix . h”
#include ”mex . h”
#include ”math . h”
#include <memory . h>

#define ROUND(x) ( ( x)>=0?( long ) ( ( x )+0 . 5 ) : ( long ) ( ( x )−0.5))

double s i n c (double x )
{

i f (x == 0)
return ( 1 . ) ;

else
return ( s i n (x )/x ) ;

}

double sim microphone (double x , double y , double angle , char∗ mtype )
{

double a , r e f l t h e t a , P, PG;

r e f l t h e t a = atan2 (y , x ) − angle ;

// P o l a r P a t t e r n P PG
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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// O m n i d i r e c t i o n a l 1 0
// S u b c a r d i o i d 0 . 7 5 0 . 2 5
// C a r d i o i d 0 . 5 0 . 5
// H y p e r c a r d i o i d 0 . 2 5 0 . 7 5
// B i d i r e c t i o n a l 0 1

switch (mtype [ 0 ] )
{
case ’ o ’ :

P = 1 ;
PG = 0;
break ;

case ’ s ’ :
P = 0 . 7 5 ;
PG = 0 . 2 5 ;
break ;

case ’ c ’ :
P = 0 . 5 ;
PG = 0 . 5 ;
break ;

case ’h ’ :
P = 0 . 2 5 ;
PG = 0 . 7 5 ;
break ;

case ’b ’ :
P = 0 ;
PG = 1;
break ;

default :
P = 1 ;
PG = 0;
break ;

} ;

a = P + PG ∗ cos ( r e f l t h e t a ) ;

return a ;
}

void mexFunction ( int nlhs , mxArray ∗plhs [ ] , int nrhs , const mxArray ∗prhs [ ] )
{

i f ( nrhs == 0)
{

mexPrintf ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n”
” | Room Impulse Response Generator |\n”
” | |\n”
” | Function f o r s imulat ing the impulse response o f a s p e c i f i e d |\n”
” | room using the image method [ 1 , 2 ] . |\n”
” | |\n”
” | Author : Emanuel A.P. Habets ( e . a . p . habets@tue . n l ) |\n”
” | |\n”
” | Version : 1 .7 .20060531 |\n”
” | |\n”
” | Copyright (C) 2003−2006 Technische Un ive r s i ty Eindhoven , |\n”
” | The Nether lands . |\n”
” | |\n”
” | [ 1 ] J .B. Al len and D.A. Berkley , |\n”
” | Image method f o r e f f i c i e n t l y s imulat ing small−room Acoust ics , | \ n”
” | Journal Acoust ic Soc i e ty o f America , |\n”
” | 65(4) , Apr i l 1979 , p 943 . |\n”
” | |\n”
” | [ 2 ] P .M. Peterson , |\n”
” | Simulat ing the response o f mul t ip l e microphones to a s i n g l e |\n”
” | acou s t i c source in a reverberant room , Journal Acoust ic |\n”
” | Soc i e ty o f America , 80(5) , November 1986. |\n”
” | |\n”
”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n\n”
” funct i on [ h , beta ] = r i r g e n e r a t o r ( c , f s , r , s , L , beta , nsample , mtype , ”
” order , dim , o r i en ta t i on , h p f i l t e r ) ;\ n\n”
” Input parameters :\n”
” c = sound v e l o c i t y in m/ s .\n”
” f s = sampling frequency in Hz .\n”
” r = M x 3 array s p e c i f y i n g the (x , y , z ) coo rd ina te s o f the r e c e i v e r ( s ) in m.\n”
” s = 1 x 3 vector s p e c i f y i n g the (x , y , z ) coo rd ina te s o f the source in m.\n”
” L = 1 x 3 vector s p e c i f y i n g the room dimensions (x , y , z ) in m.\n”
” beta = 1 x 6 vector s p e c i f y i n g the r e f l e c t i o n c o e f f i c i e n t s ”
” [ beta x1 beta x2 beta y1 beta y2\n”
” beta z1 beta z2 ] or c = Reverberat ion Time (T 60 ) in seconds .\n”
” nsample = number o f samples to ca l cu l a t e , d e f au l t i s T 60∗ f s .\n”
” mtype = [ omnid i r ec t iona l , subcard io id , card io id , hypercard io id , b i d i r e c t i o n a l ] , ”
” de f au l t i s omn id i r e c t i ona l .\n”
” order = r e f l e c t i o n order , d e f au l t i s −1, i . e . maximum order ) .\ n”
” dim = room dimension (2 or 3) , d e f au l t i s 3 .\n”
” o r i e n t a t i on = s p e c i f i e s the angle ( in rad ) in which the microphone i s pointed , ”
” de f au l t i s 0 .\n”
” h p f i l t e r = use ’ f a l s e ’ to d i s ab l e high−pass f i l t e r , the high−pass f i l t e r i s ”
” enabled by de f au l t .\n\n”
”Output parameters :\n”
” h = M x nsample matrix conta in ing the ca l cu l a t ed room impulse response ( s ) .\ n”
” beta = In case a r eve rbe ra t i on time i s s p e c i f i e d as an input parameter the ”
” corresponding r e f l e c t i o n c o e f f i c i e n t i s returned .\n\n” ) ;

return ;
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}
else
{

mexPrintf ( ”Room Impulse Response Generator ( Vers ion 1 .7 .20060531) by Emanuel Habets\n”
”Copyright (C) 2003−2006 Technische Un ive r s i ty Eindhoven , The Nether lands .\n” ) ;

}

// Chec k f o r p r o p e r number o f a r g um e n t s
i f ( nrhs < 6)

mexErrMsgTxt ( ”Error : There are at l e a s t s i x input parameters r equ i r ed . ” ) ;
i f ( nrhs > 12)

mexErrMsgTxt ( ”Error : Too many input arguments . ” ) ;
i f ( n lhs > 2)

mexErrMsgTxt ( ”Error : Too many output arguments . ” ) ;

// Chec k f o r p r o p e r a r g um e n t s
i f ( ! (mxGetN( prhs [0])==1) | | ! mxIsDouble ( prhs [ 0 ] ) | | mxIsComplex ( prhs [ 0 ] ) )

mexErrMsgTxt ( ” Inva l i d input aruments ! ” ) ;
i f ( ! (mxGetN( prhs [1])==1) | | ! mxIsDouble ( prhs [ 1 ] ) | | mxIsComplex ( prhs [ 1 ] ) )

mexErrMsgTxt ( ” Inva l i d input aruments ! ” ) ;
i f ( ! (mxGetN( prhs [2])==3) | | ! mxIsDouble ( prhs [ 2 ] ) | | mxIsComplex ( prhs [ 2 ] ) )

mexErrMsgTxt ( ” Inva l i d input aruments ! ” ) ;
i f ( ! (mxGetN( prhs [3])==3) | | ! mxIsDouble ( prhs [ 3 ] ) | | mxIsComplex ( prhs [ 3 ] ) )

mexErrMsgTxt ( ” Inva l i d input aruments ! ” ) ;
i f ( ! (mxGetN( prhs [4])==3) | | ! mxIsDouble ( prhs [ 4 ] ) | | mxIsComplex ( prhs [ 4 ] ) )

mexErrMsgTxt ( ” Inva l i d input aruments ! ” ) ;
i f ( ! (mxGetN( prhs [5])==6 | | mxGetN( prhs [5])==1) | | ! mxIsDouble ( prhs [ 5 ] ) | | mxIsComplex ( prhs [ 5 ] ) )

mexErrMsgTxt ( ” Inva l i d input aruments ! ” ) ;

// Load p a r a m e t e r s
double c = mxGetScalar ( prhs [ 0 ] ) ;
double f s = mxGetScalar ( prhs [ 1 ] ) ;
const double∗ r r = mxGetPr( prhs [ 2 ] ) ;
int nr o f m i c s = ( int ) mxGetM( prhs [ 2 ] ) ;
const double∗ s s = mxGetPr( prhs [ 3 ] ) ;
const double∗ LL = mxGetPr( prhs [ 4 ] ) ;
double∗ cc ;
int nsamples ;
char∗ mtype ;
int order ;
int dim ;
double angle ;
int h p f i l t e r ;
double TR;

plhs [ 1 ] = mxCreateDoubleMatrix (1 , 1 , mxREAL) ;
double∗ beta = mxGetPr( p lhs [ 1 ] ) ;
beta [ 0 ] = 0 ;

// R e f l e c t i o n c o e f f i c i e n t s o r R e v e r b e r a t i o n Time ?
i f (mxGetN( prhs [5])==1)
{

double V = LL [ 0 ]∗LL [ 1 ]∗LL [ 2 ] ;
double S = 2∗(LL [ 0 ]∗LL[2]+LL [ 1 ]∗LL[2]+LL [ 0 ]∗LL [ 1 ] ) ;
TR = mxGetScalar ( prhs [ 5 ] ) ;
double a l f a = 24∗V∗ l og ( 1 0 . 0 ) / ( c∗S∗TR) ;
i f ( a l f a >= 1)

mexErrMsgTxt ( ”Error : The r e f l e c t i o n c o e f f i c i e n t s can not be ca l cu l a t ed us ing the current ”
”room parameters , i . e . room s i z e and r eve rbe ra t i on time .\n Please ”
” s p e c i f y the r e f l e c t i o n c o e f f i c i e n t s or change the room parameters . ” ) ;

beta [ 0 ] = sqr t (1− a l f a ) ;
cc = new double [ 6 ] ;
for ( int i =0; i <6; i++)

cc [ i ] = beta [ 0 ] ;
}
else
{

cc = mxGetPr( prhs [ 5 ] ) ;
}

// High−p a s s f i l t e r ( o p t i o n a l )
i f ( nrhs > 11 && mxIsEmpty ( prhs [ 1 1 ] ) == f a l s e )
{

h p f i l t e r = ( int ) mxGetScalar ( prhs [ 1 1 ] ) ;
}
else
{

h p f i l t e r = 1 ;
}

// M i c r o p h o n e o r i e n t a t i o n ( o p t i o n a l )
i f ( nrhs > 10 && mxIsEmpty ( prhs [ 1 0 ] ) == f a l s e )
{

angle = (double ) mxGetScalar ( prhs [ 1 0 ] ) ;
}
else
{

angle = 0 ;
}

// Room D imen s i o n ( o p t i o n a l )
i f ( nrhs > 9 && mxIsEmpty ( prhs [ 9 ] ) == f a l s e )
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{
dim = ( int ) mxGetScalar ( prhs [ 9 ] ) ;
i f (dim != 2 && dim != 3)

mexErrMsgTxt ( ” Inva l i d input aruments ! ” ) ;
}
else
{

dim = 3 ;
}

// R e f l e c t i o n o r d e r ( o p t i o n a l )
i f ( nrhs > 8 && mxIsEmpty( prhs [ 8 ] ) == f a l s e )
{

order = ( int ) mxGetScalar ( prhs [ 8 ] ) ;
i f ( order < −1)

mexErrMsgTxt ( ” Inva l i d input aruments ! ” ) ;
}
else
{

order = −1;
}

// Type o f m i c r o p h o n e ( o p t i o n a l )
i f ( nrhs > 7 && mxIsEmpty( prhs [ 7 ] ) == f a l s e )
{

mtype = new char [mxGetN( prhs [ 7 ] )+ 1 ] ;
mxGetString ( prhs [ 7 ] , mtype , mxGetN( prhs [ 7 ] )+1 ) ;

}
else
{

mtype = new char [ 1 ] ;
mtype [ 0 ] = ’ o ’ ;

}

// Number o f s a m p l e s ( o p t i o n a l )
i f ( nrhs > 6 && mxIsEmpty( prhs [ 6 ] ) == f a l s e )
{

nsamples = ( int ) mxGetScalar ( prhs [ 6 ] ) ;
}
else
{

i f (mxGetN( prhs [5 ]) >1)
{

double V = LL [ 0 ]∗LL [ 1 ]∗LL [ 2 ] ;
double S = 2∗(LL [ 0 ]∗LL[2]+LL [ 1 ]∗LL[2]+LL [ 0 ]∗LL [ 1 ] ) ;
double alpha = ((1−pow( cc [0] ,2))+(1−pow( cc [ 1 ] , 2 ) ) )∗LL [ 0 ]∗LL [ 2 ] +

((1−pow( cc [2] ,2))+(1−pow( cc [ 3 ] , 2 ) ) )∗LL [ 1 ]∗LL [ 2 ] +
((1−pow( cc [4] ,2))+(1−pow( cc [ 5 ] , 2 ) ) )∗LL [ 0 ]∗LL [ 1 ] ;

TR = 24∗ l og (10 .0 )∗V/( c∗alpha ) ;
i f (TR < 0 . 1 )

TR = 0 . 128 ;
}
nsamples = ( int ) (TR ∗ f s ) ;

}

// C r e a t e o u t p u t v e c t o r
plhs [ 0 ] = mxCreateDoubleMatrix ( nr o f mic s , nsamples , mxREAL) ;
double∗ imp = mxGetPr( p lhs [ 0 ] ) ;

// Temporary v a r i a b l e s and c o n s t a n t s ( h i g h−p a s s f i l t e r )
const double W = 2∗M PI∗100/ f s ;
const double R1 = exp(−W) ;
const double R2 = R1 ;
const double B1 = 2∗R1∗ cos (W) ;
const double B2 = −R1 ∗ R1 ;
const double A1 = −(1+R2 ) ;
const double A2 = R2 ;
double X0 , Y0 , Y1 , Y2 ;

// Temporary v a r i a b l e s and c o n s t a n t s ( image−method )
const double Fc = 1 ;
const int Tw = 2 ∗ ROUND(0.004∗ f s ) ;
const double cTs = c/ f s ;
double∗ hanning window = new double [Tw+1];
double∗ LPI = new double [Tw+1] ;
double∗ r = new double [ 3 ] ;
double∗ s = new double [ 3 ] ;
double∗ L = new double [ 3 ] ;
double∗ beta = new double [ 6 ] ;
double kwnsample = pow(( double ) nsamples , 2 ) ;
double hu [ 6 ] ;
double r e f l [ 3 ] ;
double d i s t ;
double l l ;
double s t r ength ;
int pos , f d i s t ;
int n1 , n2 , n3 ;
int q , j , k ;
int m, l , n ;
int t ;

for ( int i = 0 ; i < 6 ; i++)
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{
i f (dim == 2 && i > 3)

beta [ i ] = 0 ;
else

beta [ i ] = cc [ i ] ;
}

s [ 0 ] = ss [ 0 ] / cTs ; s [ 1 ] = ss [ 1 ] / cTs ; s [ 2 ] = ss [ 2 ] / cTs ;
L [ 0 ] = LL [ 0 ] / cTs ; L [ 1 ] = LL [ 1 ] / cTs ; L [ 2 ] = LL [ 2 ] / cTs ;

// Hann ing w indow
for ( t = −Tw/2 ; t <= Tw/2 ; t++)
{

hanning window [ t + Tw/2] = 0 .5 ∗ (1 + cos (2∗M PI∗ t /Tw) ) ;
}

for ( int mic nr = 0 ; mic nr < nr o f m i c s ; mic nr++)
{

// [ x 1 x 2 . . . x N y 1 y 2 . . . y N z 1 z 2 . . . z N ]
r [ 0 ] = r r [ mic nr + 0∗ nr o f m i c s ] / cTs ;
r [ 1 ] = r r [ mic nr + 1∗ nr o f m i c s ] / cTs ;
r [ 2 ] = r r [ mic nr + 2∗ nr o f m i c s ] / cTs ;

n1 = ROUND(( nsamples /(2∗L [ 0 ] ) ) + 2 ) ;
n2 = 0 ;
n3 = 0 ;

// G e n e r a t e room i m p u l s e r e s p o n s e
for (q = 0 ; q < 2 ; q++)
{

hu [ 0 ] = s [ 0 ] − r [ 0 ] + 2∗q∗ r [ 0 ] ;

for ( j = 0 ; j < 2 ; j++)
{

hu [ 1 ] = s [ 1 ] − r [ 1 ] + 2∗ j ∗ r [ 1 ] ;

for (k = 0 ; k < 2 ; k++)
{

hu [ 2 ] = s [ 2 ] − r [ 2 ] + 2∗k∗ r [ 2 ] ;

for (n = −n1 ; n <= n1 ; n++)
{

l l = kwnsample − pow(2∗n∗L [ 0 ] , 2 ) ;
i f ( l l <= 0)

n2 = 2 ;
else

n2 = ROUND( sqr t ( l l )/(2∗L [ 1 ] ) + 2 ) ;

hu [ 3 ] = hu [ 0 ] + 2∗n∗L [ 0 ] ;

r e f l [ 0 ] = pow( beta [ 0 ] , abs (n ) ) ∗ pow( beta [ 1 ] , abs (n+q ) ) ;

for ( l = −n2 ; l <= n2 ; l++)
{

l l = kwnsample − pow(2∗n∗L [ 0 ] , 2) − pow(2∗ l ∗L [ 1 ] , 2 ) ;
i f ( l l <= 0)

n3 = 2 ;
else

n3 = ROUND( sqr t ( l l )/(2∗L [ 2 ] ) + 2 ) ;

hu [ 4 ] = hu [ 1 ] + 2∗ l ∗L [ 1 ] ;

r e f l [ 1 ] = pow( beta [ 2 ] , abs ( l ) ) ∗ pow( beta [ 3 ] , abs ( l+j ) ) ;

for (m = −n3 ; m <= n3 ; m++)
{

hu [ 5 ] = hu [ 2 ] + 2∗m∗L [ 2 ] ;

r e f l [ 2 ] = pow( beta [ 4 ] , abs (m)) ∗ pow( beta [ 5 ] , abs (m+k ) ) ;

d i s t = sqr t (pow(hu [ 3 ] , 2) + pow(hu [ 4 ] , 2) + pow(hu [ 5 ] , 2 ) ) ;

f d i s t = ( int ) f l o o r ( d i s t ) ;
i f ( abs (2∗n+q)+abs (2∗ l+j )+abs (2∗m+k) <= order | | order == −1)
{

i f ( f d i s t +(Tw/2) <= nsamples )
{

s t r ength = sim microphone (hu [ 3 ] , hu [ 4 ] , angle , mtype )
∗ r e f l [ 0 ]∗ r e f l [ 1 ]∗ r e f l [ 2 ] / ( 4∗M PI∗ d i s t ∗cTs ) ;

for ( t = 0 ; t < Tw+1 ; t++)
LPI [ t ] = hanning window [ t ] ∗ Fc ∗ s i n c (M PI∗Fc∗( t−(d i s t−f d i s t )−(Tw/2 ) ) ) ;

pos = fd i s t −(Tw/2 ) ;
i f ( pos > 0)

for ( t = 0 ; t < Tw+1 ; t++)
imp [ mic nr + nr o f m i c s ∗( pos+t ) ] = imp [ mic nr + nr o f m i c s ∗( pos+t ) ]

+ st rength ∗ LPI [ t ] ;
else

for ( t = −pos ; t < Tw+1 ; t++)
imp [ mic nr + nr o f m i c s ∗( pos+t ) ] = imp [ mic nr + nr o f m i c s ∗( pos+t ) ]

+ st rength ∗ LPI [ t ] ;
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}
}

}
}

}
}

}
}

// ’ O r i g i n a l ’ h i g h−p a s s f i l t e r a s p r o p o s e d b y A l l e n and B e r k l e y .
i f ( h p f i l t e r == 1)
{

Y0 = 0 ;
Y1 = 0 ;
Y2 = 0 ;
for ( int idx = 0 ; idx < nsamples ; idx++)
{

X0 = imp [ mic nr+nr o f m i c s ∗ idx ] ;
Y2 = Y1 ;
Y1 = Y0 ;
Y0 = B1∗Y1 + B2∗Y2 + X0 ;
imp [ mic nr+nr o f m i c s ∗ idx ] = Y0 + A1∗Y1 + A2∗Y2 ;

}
}

}
}



Appendix B

OM-LSA Estimator for Multiple
Interferences

In this appendix we present an algorithm for robust speech enhancement based on an
Optimally-Modified Log Spectral Amplitude (OM-LSA) estimator for multiple inter-
ferences. In the original OM-LSA one interference was taken into account. However,
there are many situations where multiple interferences are present. Since the human
ear is more sensitive to a small amount of residual non-stationary interference than to
a stationary interference we would like to reduce the non-stationary interference signal
down to the residual noise level of the stationary interference. Possible applications
for the developed algorithm are joint speech dereverberation and noise reduction, and
joint residual echo suppression and noise reduction. Additionally, we present three
possible methods to estimate the a priori Signal to Interference Ratio of each of the
interferences.

B.1 Introduction

Spectral enhancement has received a lot of attention in the last three decades, espe-
cially for single channel noise reduction. Recently, researchers have started to use these
techniques for residual echo suppression [264, 250] and speech dereverberation [34]. In
practical systems one may encounter more than one interference simultaneously.

In [250] Gustafsson et al. proposed two post-filters for residual echo and noise reduc-
tion. The first post-filter is based on the Log Spectral Amplitude estimator [205] and
was extended to attenuate multiple interferences, the second post-filter was psychoa-
coustically motivated.

In this appendix we present an Optimally-Modified Log Spectral Amplitude (OM-
LSA) estimator for multiple interferences. The OM-LSA spectral gain function, which

227
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minimizes the mean-square error of the log-spectra, is obtained as a weighted geometric
mean of the hypothetical gains associated with the speech presence uncertainty. In the
original OM-LSA, proposed by Cohen [228], one interference was taken into account.
There are many applications in which we are dealing with one non-stationary and one
stationary interference. Since the human ear is more sensitive to a small amount of
residual non-stationary interference than to a stationary interference we would like to
reduce the non-stationary interference signal down to the residual noise level of the
stationary interference, such that the final residual non-stationary interference will be
masked by the residual stationary interference. Possible applications for the proposed
algorithm are joint speech dereverberation and noise reduction, and joint residual echo
suppression and noise reduction. The OM-LSA spectral gain function is a function of
the a priori and a posteriori Signal to Interference Ratios (SIR). In this appendix we
additionally present three possible methods to estimate the a priori SIR of each of the
interferences.

The outline of this appendix is as follows. The problem statement can be found
in Section B.2. A brief review of the OM-LSA estimator and a modification of the
spectral gain function is provided in Section B.3. In Section B.4 we will discuss three
methods to estimate the a priori SIR for each of the interferences.

B.2 Problem Statement

Let x(n), r(n) and d(n) denote the clean speech signal and two uncorrelated additive
interference signals, respectively,

y(n) = x(n) + r(n) + d(n).

It should be noted that in case r(n) and d(n) are statistically independent Gaussian
random variables they can be considered as one interference. The variance of the total
interference is then equal to the sum of the separate variances. However, in case r(n)
and d(n) are, for example, a non-stationary and a stationary interference, and the
(maximum) amount of desirable reduction is different, their separation is preferred.
The OM-LSA spectral gain function, which depends on both time and frequency, is
a function of the a priori and a posteriori Signal to Interference Ratios, which are
denoted by ξ(l, k) and γ(l, k), respectively. In this appendix time frames are denoted
by the index l, and frequency bins are denoted by the index k. We show that one can
gain control of the noise reduction level for each interference by associating a separate
a priori SIR with each interference.

The estimated short-time Fourier transform (STFT) of the clean speech, X̂(l, k), is
obtained by applying the spectral gain function, GOM-LSA, to each noisy spectral
component:

X̂(l, k) = GOM-LSA(l, k)Y (l, k).

The estimated clean speech signal can be obtained using the inverse STFT and a
weighted overlap-add method.
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In the sequel we assume that an estimate of the spectral variance of each interference is
available at all times. In many applications, such as speech dereverberation or residual
echo suppression, it is reasonable to assume that the spectral variance of the non-
stationary interference can be estimated (c.f. [264, 250, 34]). The spectral variance of
the stationary interference can be estimated, for example, using the Improved Minima
Controlled Recursive Averaging (IMCRA) method proposed by Cohen.

B.3 OM-LSA Estimator

The Log Spectral Amplitude (LSA) estimator proposed by Ephraim and Malah [205]
minimizes

E
{(

log(A(l, k))− log(Â(l, k))
)2
}
, (B.1)

where A(l, k) = |X(l, k)| denotes the spectral speech amplitude, and Â(l, k) is its
optimal estimator. Assuming statistical independent spectral components, the LSA
estimator is defined as

Â(l, k) = exp (E{log(A(l, k))|Y (l, k)}) . (B.2)

The LSA gain function is given by

GLSA(l, k) =
ξ(l, k)

1 + ξ(l, k)
exp

(
1
2

∫ ∞

ζ(l,k)

e−t

t
dt

)
, (B.3)

where
1

ξ(l, k)
=

1
ξr(l, k)

+
1

ξd(l, k)
, (B.4)

ξr(l, k) =
λx(l, k)
λr(l, k)

, ξd(l, k) =
λx(l, k)
λd(l, k)

, (B.5)

γ(l, k) =
|Y (l, k)|2

λr(l, k) + λd(l, k)
, (B.6)

ζ(l, k) =
ξ(l, k)

1 + ξ(l, k)
γ(l, k), (B.7)

λx(l, k) = E{|X(l, k)|2}, (B.8)

and
λd(l, k) = E{|D(l, k)|2}, and λr(l, k) = E{|R(l, k)|2}. (B.9)

The OM-LSA spectral gain function, which minimizes the mean-square error of the
log-spectra, is obtained as a weighted geometric mean of the hypothetical gains asso-
ciated with the speech presence uncertainty [228]. Given two hypotheses, H0(l, k) and
H1(l, k), which indicate speech absence and presence, respectively, we have

H0(l, k) : Y (l, k) = R(l, k) +D(l, k),
H1(l, k) : Y (l, k) = X(l, k) +R(l, k) +D(l, k).

(B.10)
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Based on a Gaussian statistical model, the speech presence probability is given by

p(l, k) =
{

1 +
q(l, k)

1− q(l, k)
(1 + ξ(l, k)) exp (−ζ(l, k))

}−1

, (B.11)

where q(l, k) is the a priori speech absence probability [228].

The OM-LSA gain function is given by,

GOM-LSA(l, k) = {GH1(l, k)}p(l,k) {GH0(l, k)}1−p(l,k), (B.12)

with GH1(l, k) = GLSA(l, k) and GH0(l, k) = Gmin. The lower-bound constraint for
the gain when the signal is absent is denoted by Gmin, and specifies the maximum
amount of noise reduction in noise only frames.

In our case the lower-bound constraint does not result in the desired result because
r(n) can still be clearly audible. To alleviate this problem we propose the following
modification of GH0 . Our goal is to suppress the non-stationary interference down to
the noise floor, given by Gmin D(l, k). We apply GH0(l, k) to those time-frequency
frames where the desired signal is assumed to be absent, i.e. hypothesis H0(l, k) is
assumed to be true, such that

X̂(l, k) = GH0(l, k) (R(l, k) +D(l, k)) . (B.13)

The desired solution for X̂(l, k) is

X̂(l, k) = Gmin(l, k) D(l, k). (B.14)

Assuming that the interferences are uncorrelated, minimizing

E
{
|GH0(l, k) (R(l, k) +D(l, k))−Gmin(l, k) D(l, k)|2

}
(B.15)

results in the desired solution for GH0(l, k),

GH0(l, k) = Gmin
λd(l, k)

λd(l, k) + λr(l, k)
. (B.16)

The a posteriori SIRs can be directly estimated given the noisy observation and an
estimate of the spectral variance of each interference. The estimation of the a priori
SIR is slightly more complicated and will be discussed in the next section.

B.4 A priori SIR estimator for Multiple Interfer-
ences

Many researchers believe that the main advantage of the LSA estimator is related to
the decision-directed estimator, proposed by Ephraim and Malah [205]. In this section
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we show how the decision-directed estimator can be used for estimating ξr(l, k) and
ξd(l, k). We also present a causal and non-causal recursive estimation procedure for
the a priori SIRs using the same reasoning as in [208].

The total a priori SIR can be calculated using Eq. B.4. However, in case the desired
speech signal x(n) and the non-stationary interference signal r(n) are very small, the
a priori SIR ξr(l, k) may be unreliable since λx(l, k) and λr(l, k) are close to zero.
Hence, the total a priori SIR may be unreliable as well. In the following we assume
that there is always a certain amount of background noise, i.e., λd(l, k) 6= 0. To
alleviate the foregoing problem we propose to calculate ξ(l, k) using only the most
important and reliable a priori SIRs as follows

ξ(l, k) =


ξd, 10 log10

(
λd(l,k)
λr(l,k)

)
> βdB;

ξd(l, k)ξr(l, k)
ξd(l, k) + ξr(l, k)

, otherwise,
(B.17)

where the threshold βdB specifies the level difference between λd(l, k) and λr(l, k) in
dB.

B.4.1 Decision Directed

The decision-directed estimator is given by

ξ̂DD(l, k) = max
{
η Â2(l−1,k)

λ(l−1,k) + (1− η)ψ(l, k), ξmin

}
,

where ψ(l, k) = γ(l, k) − 1 is the instantaneous SIR, λ(l, k) = λr(l, k) + λd(l, k), and
ξmin is a lower-bound constraint on the a priori SIR. The weighting factor η (0 ≤ η ≤
1) controls the tradeoff between the amount of noise reduction and distortion (e.g.,
musical tones). To estimate ξv(l, k), where v ∈ {r, d}, we propose to use the following
expression

ξ̂DD
v (l, k) = max

{
ηv

Â2(l−1,k)
λv(l−1,k) + (1− ηv)ψv(l, k), ξmin,v

}
,

where

ψv(l, k) =
λ(l, k)
λv(l, k)

ψ(l, k)

=
λr(l, k) + λd(l, k)

λv(l, k)
(γ(l, k)− 1)

=
|Y (l, k)|2 − λr(l, k)− λd(l, k)

λv(l, k)

=
|Y (l, k)|2 − λ(l, k)

λv(l, k)
.

(B.18)
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B.4.2 Causal Recursive Estimator

In this section we propose a causal conditional estimator

ξv(l|l, k) ,
λx(l|l, k)
λv(l, k)

, (B.19)

where v ∈ {r, d} and λx(l|l, k) , E{A2(l, k)|Y ([0, . . . , l], k)}, for the a priori SIRs
given the noisy measurements up to frame l. The estimators are derived following the
footsteps in [208]. Each estimator combines two steps, a ‘propagation’ step and an
‘update’ step, following the rational of the Kalman smoother, to recursively predict
and update the estimate for λx(l, k) as new data arrives.

Suppose we are given an estimate λ̂x(l|l−1, k), which is conditioned on the noisy mea-
surements up to frame l− 1, and a new noisy spectral component Y (l, k) is observed.
Then, the estimate for λx(l, k), can be updated by computing the conditional variance
of X(l, k) given Y (l, k) and λ̂x(l|l − 1, k)

λ̂x(l|l, k) = E
{
A2(l, k)|λ̂x(l|l − 1, k), Y (l, k)

}
. (B.20)

The result is [208]

λ̂x(l|l, k) =
ξ̂(l|l − 1, k)

1 + ξ̂(l|l − 1, k)

(
1

γ(l, k)
+

ξ̂(l|l − 1, k)

1 + ξ̂(l|l − 1, k)

)
|Y (l, k)|2. (B.21)

The ‘update’ step for ξ̂v is now obtained by dividing both sides by λv(l, k), i.e.,

ξ̂v(l|l, k) = max

{
ξ̂(l|l − 1, k)

1 + ξ̂(l|l − 1, k)

(
1

γ(l, k)
+

ξ̂(l|l − 1, k)

1 + ξ̂(l|l − 1, k)

)
|Y (l, k)|2

λv(l, k)
, ξmin,v

}

= max

{
ξ̂(l|l − 1, k)

1 + ξ̂(l|l − 1, k)

(
λ(l, k)
λv(l, k)

+ γv(l, k)
ξ̂(l|l − 1, k)

1 + ξ̂(l|l − 1, k)

)
, ξmin,v

}
.

(B.22)

Computation of the ‘update’ step for the a priori SIR given the past noisy speech
components up to frame l − 1 requires the estimate

ξ̂(l|l − 1, k) ,
λ̂x(l|l − 1, k)
λ(l − 1, k)

, (B.23)

where
λ̂x(l|l − 1, k) = (1− β)λ̂x(l − 1|l − 1, k) + βÂ2(l − 1, k), (B.24)

and β (0 ≤ β ≤ 1) is related to the degree of non-stationarity of the random process
{λx(l, k)|l = 0, 1, . . .}. Dividing both sides of Eq. B.24 by λ(l − 1, k), we obtain the
‘propagation’ step

ξ̂(l|l − 1, k) = (1− β)ξ̂(l − 1|l − 1, k) + β
Â2(l − 1, k)
λ(l − 1, k)

, (B.25)
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where ξ̂(l− 1|l− 1, k) is calculated similar to ξ(l, k) in Eq. B.17 using ξ̂d(l− 1|l− 1, k)
and ξ̂r(l − 1|l − 1, k).

B.4.3 Non-Casual Recursive Estimator

In this section we propose a non-causal conditional estimator

ξv(l|l + L, k) ,
λx(l|l + L, k)
λv(l, k)

, (B.26)

where v ∈ {r, d} and λx(l|l + L, k) , E{A2(l, k)|Y ([0, . . . , l + L], k)}, for the a priori
SIRs given the noisy measurements up to frame l + L. The non-causal estimator
combines two steps, a ‘propagation’ step and an ‘update’ step, following the rationale
of Kalman filtering, to recursively predict and update the estimate for λx(l, k) as new
data arrives. The non-causal estimator also employs future spectral measurements in
the process to better predict the spectral variance of the clean speech.

Let λ′x(l|l+L, k) , E{A2(l, k)|Y ([0, . . . , l−1, l+1, . . . , l+L], k)} denote the conditional
spectral variance of X(l, k) given the noisy measurements up to frame l+L excluding
the noisy measurement at frame l. Let λx(l|[l + 1, . . . , l + L], k) , E{A2(l, k)|Y ([l +
1, . . . , l+L], k)} denote the conditional spectral variance ofX(l, k) given the subsequent
noisy measurements Y ([l + 1, . . . , l + L], k).

The estimate for λx(l, k) given λ′x(l|l + L, k) and Y (l, k) can be updated by

λ̂x(l|l + L, k) = E
{
A2(l, k)|λ′x(l|l + L, k), Y (l, k)

}
=

ξ̂′(l|l + L, k)

1 + ξ̂′(l|l + L, k)

(
1

γ(l, k)
+

ξ̂′(l|l + L, k)

1 + ξ̂′(l|l + L, k)

)
|Y (l, k)|2,

(B.27)

where

ξ̂′(l|l + L, k) ,
λ̂′x(l|l + L, k)
λ(l − 1, k)

(B.28)

is the a priori SIR given the noisy speech components up to frame l + L, excluding
frame l [208].

The ‘backward estimation’ and ‘backward-forward propagation’ are exactly the same
as in [208] and are presented here for completeness. The ‘backward estimation’ is given
by

ξ̂(l|[l + 1, . . . , l + L], k) =

{
1
L

∑L
n=1 γ(l + n, k)− ε, if non-negative;

0, otherwise,
(B.29)

where ε (ε ≥ 1) is the over-subtraction factor. The ‘backward-forward propagation’ is
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calculated using

ξ̂′(l|l + L, k) = β
Â2(l − 1, k)
λ(l − 1, k)

+ (1− β)
[
β′ξ̂(l − 1|l + L− 1, k) + (1− β′)ξ̂(l|[l + 1, . . . , l + L], k)

]
, (B.30)

where β (0 ≤ β ≤ 1) is related to the stationarity of the random process λx, β′ (0 ≤
β′ ≤ 1) is associated with the reliability of the estimate ξ(l|[l + 1, l + L], k), and
ξ̂(l−1|l+L−1, k) is calculated similar to ξ(l, k) in Eq. B.17 using ξ̂d(l−1|l+L−1, k)
and ξ̂r(l − 1|l + L− 1, k).

Dividing both sides in Eq. B.27 by λv(l, k), and applying a lower-bound constraint
ξmin,v, results in the ‘update’ step, i.e.,

ξ̂v(l|l + L, k) = max

{
ξ̂′(l|l + L, k)

1 + ξ̂′(l|l + L, k)(
1

γ(l, k)
+

ξ̂′(l|l + L, k)

1 + ξ̂′(l|l + L, k)

)
|Y (l, k)|2

λv(l, k)
, ξmin,v

}
. (B.31)



Index

a priori SIR estimator, 230
casual recursive, 232
decision directed, 231
non-casual recursive, 233

acoustic echo canceller, 153
acoustic echo path, 154
acoustic impulse response, 5

direct path, 4
early reflections, 4
inversion, 71
late reflections, 4
measurement, 49

acoustic transfer function, 25
all-pole model, 30
all-zero model, 29
common pole-zero model, 31
excess-phase, 45–46
pole-zero decomposition, 28
pole-zero model, 27
theoretical pole order, 31

anechoic signal, 2

colouration, 9
critical distance, 40

delay and sum beamformer, 62
direct sound, 3

early reverberation, 4
early speech component, 3

Green’s function, 25
free space, 26

Helmholtz equation, 25

image method, 213

late reverberation, 4

maximum length sequence, 49
MINT, 72
modulation index, 58

objective measures, 78–86
Bark Spectral Distortion, 82
Direct to Reverberation Ratio, 85
Early to Late reverberation Ratio, 86
Early to Total Sound Energy Ratio,

85
Log Spectral Distortion, 81
Modulation Spectrum, 81
PESQ, 83
Reverberation Decay Tail, 83
Segmental Signal to Reverberation Ra-

tio, 80
OM-LSA estimator, 103, 229
overlap-masking, 10

precedence effect, 4

residual echo, 154
reverberation cancellation, 53, 66

blind deconvolution, 68
HERB, 70
homomorphic deconvolution, 70

reverberation distance, 41
reverberation suppression, 53, 54

explicit speech modelling, 54
LP residual enhancement, 55
spatial processing, 61
spectral enhancement, 60
temporal envelope filtering, 58

reverberation time, 5, 44–45
room modes, 26
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Sabine’s equation, 40
Schroeder frequency, 23
self-masking, 10
simulating room acoustics, 46

ray-based, 48
wave-based, 47

sound field, 37
direct sound, 39
energy balance, 42
reverberant sound, 39
sound decay, 43
sound growth, 42
steady-state, 42

spatial processing, see reverberation sup-
pression

spectral deviation, 5, 44
spectral subtraction, 101
statistical reverberation model

generalized model, 132
Polack’s model, 130

statistical room acoustics, 32
frequency-domain model, 33
time-domain model, 36

subjective measures, 77–78

wave equation, 24
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