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Abstract »

In this paper, we study the following game: We consider two players
whom we shall call the defense and the offense respectively. There are
n properties Ty, ..., T, with values v4, ..., v, on which values both
players agree. The offense has total resources normalized to 1 while
the defense has total resources A; the interesting case is £ > 1. The
process of the game is that the defense first apportions its total resource
among the properties T; and then, with full knowledge of this assign-
ment, the offense divides its unit resource among the same properties.
If the defense assigns 4; and the offense assigns a; at T;, the offense wins v;
if and only if a@; > k;. The problem is to spread the defense’s resource %
in such a way that the total value of the properties taken by the offense
under the offense’s best strategy is minimized, i.e., (21, A2, ..., %)
must be such that

max >
artagt ... +ag=1 {i|a;>hs}

is minimal under the constraints Ay + A, + ...+ k, < h, each
h; = 0. We shall prove that the problem is equivalent to a problem
in the theory of linear equations. From this it will follow that for every n
there is a finite set of defenses (A4, %2, . . ., A, such that whatever 4 is,
and whatever vy, v, ..., v, are, an optimal strategy is in the set. We
shall also show how such a set may be constructed.

1. Introduction

In 1965-66 the authors studied an asymmetric game which had an interesting
combinatorial structure; except for an internal Bell Laboratories memorandum
the work never reached publication. However, it turns out to be closely related
to Shapley’s balanced sets of coalitions for a multi-person game 7) and thus to
the notion of the core. We therefore present our earlier results, fortified by an
important counterexample due to N. G. de Bruijn which has clarified the struc-
ture considerably. We are particularly grateful also to L. S. Shapley ) for a
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number of references; we have not, however, attempted to connect our problem
in detail with the flourishing theory of n-person games.

We consider two players, whom we shall call defense and offense rather than
first and second player in order to emphasize the asymmetry. There are # prop-
erties Ty, ..., T, with values v;, ..., v, on which values both players agree.
The offense has total resources normalized to 1 while the defense has total
resources /1; the interesting case is 2 > 1.

The process of the game is that the defense first apportions its total resource 4
among the properties T; and then, with full knowledge of this assignment, the
offense divides its unit resource among the same properties. If the defense
assigns /; and the offense assigns a; at T, the offense wins v; if and only if
a; > h;. The problem is to spread the defense’s resource % in such a way that
the total value of the properties taken by the offense under the offense’s best
strategy is minimized, i.e., (%, A, ..., /,) must be such that

max Y oy
ajtazt ... tay=1 {i | ai>n}

is minimal under the constraints A, + A, + ... - h, < h, each Ak, =0.
Remember that we assume the offense to be designed with full knowledge of
the defense, that is, of (&, . . ., A,). We shall prove that the problem is equiv-
alent to a problem in the theory of linear equations. From this it will follow
that for every » there is a finite set of defenses (%, #,, . . ., h,) such that what-
ever 4 is, and whatever vy, v,, ..., v, are, an optimal strategy is in the set.
We shall also show how such a set may be constructed.

In the present mathematical model, no 7} needs to be defended with strength
> 1 to protect it from the offense. More generally, among all defenses for
which the total property value which is lost is the same, it is sufficient to con-
sider those with minimal 4. If for a T; the defense is O then it is sure to be lost.
We shall call a defense “essential for n” it 0 < h, <1 fori=1,2, ..., n.
In general, a defense for # properties will have the form (1, 1, ..., 1, Ay, &,,
ce s 1, 0,0, ..., 0) where (hy, h,, . . ., h,) is essential for k properties, k£ > 0.

2. The main theorem

We consider a set T :== {T', ..., T,} of n properties. Let (%, ..., 4,) be
any defense,

h:=Y h;
i=1

With each nonempty subset S C T we shall associate an equation or an in-
equality and we shall order these in a special way described below. For the
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given defense (4, ..., A,) and for any S C T there are three possibilities,
namely

AV
p—

2 b

TjeS

First we consider all subsets S for which

X h=1

T;esS

and with each we associate the equation

ZXj:]..

T;eS

In this way we obtain a system of linear equations of which (%4, ..., #4,) ap-
parently is a solution. Let / be the number of these equations. From this
system of equations we pick a maximal collection of linearly independent
equations. In the following we shall use k& (X <) to denote the number of
these equations, number the corresponding sets SC T as S, S5, ..., S; and
write the k equations as

z 8ijx.i=1, (izl,...,k), (1)
Jj=1

where ¢,; = 1 if T;€ S; and ¢;; = 0 if 7, ¢ S;. The remaining equations and
the corresponding subsets of T are numbered with indices k + 1,k +2,..., L
Hence each of the equations

Yoeyx;=1, (=k+1,...,D @
Jj=1
is linearly dependent on the set of equations (1). Next we consider subsets

S ¢ T for which

> ;> 1.

T;eS

With each of these we associate an inequality

x; > 1.
sze:s ’ ; 3)

Again (A, ..., h,) satisfies all the inequalities obtained in this way. The sub-
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sets S now under consideration are then numbered S,.;, ..., S, and the
inequalities are written as

Yoeyx;>1,  (=I1+1,...,m) )
i=1

Finally we look at the subsets S C T for which

Y hy<1.

TjesS

Continuing the process started above we number these subsets Sy.q, ..., S,
where » = 2" — 1 and write the inequalities as

Zeijxj<1, (i=m—{—1,...,7‘). (5)

Jj=1

In the following, when describing a defense, we refer to (1) to (5) and use
the symbols k, [ and m as defined above.

Definitions

A defense (hy, ..., h,) is said to be saturated if, in (1), k = n; that is
(g, .. ., hy,) is the solution of a set of » linearly independent equations of the
form (1).

A defense (b, ..., &) is said to dominate (hy, ..., h,) if

@ vscr[zh,.>1:zh;,>,1]
TjeS TjeS
and
(@) S h <Y B,
i=1 j=1

both hold. If a defense is dominated only by itself we shall call it undominated.
If, for two defenses (%, ..., k,) and (&', ..., k),

Vscrl:sgn< > hy— 1) = sgn( > hj'—1>:|
TjeS TjeS

the two defenses are called eguivalent *). Notice that two equivalent defenses
need not have the same total A.

*) sgn0 = 0.
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Our first main result is the following.

Theorem 1

For every defense (hy, . .., h,) there exists a saturated defense (hy', ..., h,')
which dominates (hy, .. ., hy).
Proof. Let us assume that there exists a defense (%, ..., A,) for which the
conclusion is false, i.e., there is no saturated defense which dominates
(hy, ..., hy). Then there exists such a defense with minimal n, n > 2. First
we shall show that such a defense is essential for n. For if, say, A, were 0 or 1,
we could then consider the set T\{T,} with the defense (A, ..., h,_;). Since
n was minimal there is a dominating saturated defense (4,’, ..., k,_,") for
T\{T,}. If we adjoin to this defense the previously removed 4, for property T,
we have a dominating saturated defense on T. This last assertion is not trivial
and the reader should take the time to convince himself, thus familiarizing
himself with our way of using (1) to (5) to describe defenses. We may now
assume that the defense (%4, . . ., A,) is essential for n. If it is itself saturated,
we are finished. If not, then, for this defense, k¥ < n, and the system (1) deter-
mines an (n — k)-dimensional subspace D of Euclidean »-space. If we impose
the additional constraints (4) and (5), and the further conditions

0<x <1, i=1,2,...,n, 6)

we define a convex subset H of D. H is not empty, since (%, ..., h,) € H;
since the inequalities (4), (5) and (6) are strict, we know by continuity that
contains other points as well. In some nonempty portion of the boundary of H,

For if the equation

is linearly dependent on (1), then

.
1]
-
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is linearly independent of (1), then it is possible to proceed from (4, ..., 4,)
towards the boundary of H so that

M =

Xi

i=1

decreases. At any such boundary point, at least one of the inequalities in (4),
(5) and (6) must be an equality. If one of (4) or (5) became an equality, then
this equality would have to be linearly independent of the set (1), for otherwise
2 g;; x; in that inequality could not change in value. Thus, at such a boundary
point, &£ would increase. At a boundary point at which (6) were to become an
equality, we would have an equivalent defense which is not essential for n, and
this case has already been covered in the previous paragraph.

Thus in all cases, there is either a dominating saturated defense, or a
dominating defense with larger k. This process can be continued until ¥ = #,
and the theorem is proved. []

We have thus proved that we can restrict ourselves to saturated defenses.
But every saturated defense (%, A, ..., h,) is the solution of z linearly
independent equations

n
Zeinjzl, i:l,z,...,n,
J=1

where each ¢;; i3 0 or 1. There are, moreover, obviously at most (3"~1) such

systems, and hence only a finite number of saturated defenses for # properties.
The exact number of such defenses as a function of # is unknown. The number

for n = 1 to 5 respectively has been found to be 1, 2, 4, 9, and 26, where two

defenses obtainable from each other by permutation are counted only once.
Let

Yoeux;=1, i=1,2,...,k,
i=1

be a set of equations of form (1). Let R; (j =1, 2, ..., n) be the subset of these
equations in which &;; = 1 rather than 0.

The set of R; is a balanced set in the sense of Shapley, e.g. ref. 7, and the
x; are their weights. The collection of saturated defenses corresponds in this
way to the collection of minimal balanced sets 7). This correspondence was, to
our knowledge, first utilized by Graver 4). Complementation of balanced sets
has its analog in a transformation of saturated defenses described in the next
section.
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3. (0-1) determinants

Consider a matrix D = (d;;) where all d;; are 0 or 1. We shall use the sym-
bol D to denote the determinant of this matrix. Let x{, X5, ..., X, be the
solution of the system

Y d;&=D (i=1,...,n). )
j=1

In this paper we are interested only in those (0, 1)-matrices for which x,
..., x, are all > 0 but in the following two lemmas we do not use this. We
define a complementation of a matrix as replacing all zeros by ones and all ones
by zeros in a specified collection of columns. Let D (jy, ja, . - ., ji) denote the
result of complementing the columns ji, j,, .. ., jr and let D {(jy, ja, . ., Ju)
be the determinant of this matrix.

Lemma 1. D (jy, Jar -+ o Ji) = (D1 (x5, + x5, + ... + x5, — D).
Proof. By Cramer’s rule

D + D(j) = x;.
Furthermore
D(jlajZ, .. -,jk—lajk) + D(jl:jZ’ .. ':jk—Zajk) _l_
+ D(jlajZa .. wjk—l) + D(jujz: .. ~>jk—2) =0

because it is the determinant of a matrix with two columns consisting only of
ones. The lemma now immediately follows by induction on k.

Lemma 2. If D* = (d,j*) = D (jy, Ja» « - -» Ju) then the solution of

Y drE=DF (=12 ...,0n
ji=1
is
Ej:(—l)kxj if j¢(j15j23 ""jk)a

= (—l)k—l xj lf jG (jl: j29 . ':jk)-
Proof. Apply Cramer’s rule and then lemma 1. []

Consequence. We can now find saturated defenses by starting with (0, 1)-
matrices with nonzero determinant, solving the corresponding set of equations

Zdijsj:D (i:1=29"'=n)9
J=1

and complementing the columns corresponding to the negative x; (or alterna-
tively those corresponding to the positive x,) in the solution. If (x,*, x,*,..., x,*)
is the solution of the equations corresponding to the matrix D¥ thus obtained,
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( )

is a saturated defense.
Remark. If (hy, h,, ..., h,) is a saturated defense and

X, *

D*

x,*

D*

x.*

g

> 5 v

S:Zhl>1

i=1

hl hZ hn )
s—1"s—1" "7 s—1

is also a saturated defense. It is found by complementing all columns of D
(cf. lemmas 1 and 2). This means that in constructing all defenses one could
make the restriction that

then

D =

hl>2

i=1
(because either s or s/(s —1) = 2).
For numerical purposes this is not an efficient way to list all saturated

defenses, given n. A more efficient way is described below.

Definition. Consider the set of (0, 1)-matrices D = (d;;) for which the sys-
tem (7) has a solution (x;, x,, ..., x,) with all x; > 0. For each of these D
we define D := D/ged (x4, x5, . . ., X,). This is obviously an integer. Let M,
be the maximum of D over the set. Then any saturated defense for n proper-
ties consists of rationals with a common denominator < M,.

As it is sufficient to list all essential defenses in compiling a list of defenses
one can proceed as follows. Let m be any integer, n <C m < N (we shall bound
N in a moment) and partition m into n positive integers. If

m=n+k=p +p+...+pa
is one of these partitionings, and p, > p, > ... > p, then

(pl/da Pz/ds RIS | pn/d)

with p; <d < M, may be a saturated defense. This is the case if there are
n linearly independent equations (1) for which (p,/d, p./d, ..., p,/d) is the
solution. This is often not so and therefore quite a lot of these potential de-
fenses are excluded.

Example. m =5=2-4+1+41-1,d=3. Since %, {, 1, 1) is the solution of
the 4 independent equations

Xy FXo=x;+X3=x%; +Xa =%, + X3 + x4 =1
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we have found a saturated defense. For a total defensive strength > #/2 there
is no essential defense except (4, %, . . ., %) so we can stop the above construc-
tion at N = [{ n M,], where [x] denotes the greatest integer < x.

4. The value of M,

The number M, defined in sec. 3 is interesting in itself. Little is known about
the growth of M, as n increases. Clearly, by Hadamard’s inequality, M, < n"?,
but this is undoubtedly a very loose estimate. In the set of (0, 1)-matrices used
to define M, there are elements with a very large determinant namely of the
order of magnitude n"*1/22-" (cf, ref. 6, p. 107 and other estimates in
refs 1, 2 and 3), but for these ged (x;, x5, . . ., X,) is also large and hence the
corresponding D small. Forn = 2, 3, 4, 5, 6, we found M, =1, 2, 3, 5,9, i.e,,
for n < 6 we have M,, = 1 4 [2"~3]. We now show that this is a lower bound
for all n. To do this we restrict ourselves to (0, 1)-matrices D = (d;;) for which
the solution (x;, X,, . . ., x,) of (7) has the property that all x; are > 0 and
ged (x4, Xa, ..., X,) = 1. In this subset D = D.

Theorem 2
M,>1+2"3 forn>3.

Proof. For n even (= 4) let D, = (d;;™) be a (0, 1)-matrix with determinant D,
with the following properties:

(@ D,=2""3+1;

(b) if (x4, xa, ..., X,) is the solution of the system

Y d,;™ & =D, (i=1,...,n),
=1

then x, +x, 4+ ...+ Xp_p =273, x,_, =2""%, x,=2""*4 1 (note
that ged (x;, x5, ..., X,) = 1);
(c) D, has the form
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Define D, as follows:

I1...1001

Dn-l-i L= 0

o

From the last column subtract the preceding two columns and then expand
D, . ; by the first row. This gives

n—2
Dpyy= Y (D)1 (=)= x, + D, = 2""2 - 1

i=1

and the solution of
n+1

Z dij(n+1) Ej — Jn-2 + 1
i=1
is
(%1, 2x5, .« oy 2%, 5, 2%, 11, 2, — 1, 1),

which is easily checked by substitution. At the end of this proof we will have
shown that a D, with properties (a), (b), (c) exists for all even n >> 4. The
preceding step of the proof then implies that M, > 1 + 2"3 for odd n > 5.
Next define D, ," as follows:

7.
Dn+2 =

Dn+1 1

Expanding by the first row we have
Dn+2' = _Dn+1 + Dn+1*
where D, ; and D, ,* have complementary last columns, i.e., by lemma 1,

Dpiy == 2+ D+ (11— 2+ 1)) =—2 + 1.
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The solution of
nt+2

Z dij(n+2) §j — on—1 + 1

Jj=1
is
x X -3 -
(2}61, 2-”25 e 2xn—2: 2'xn—l - 1) 2—"n - 1: 2 _]_ 15 2¢ 3)3

which is again easily checked by substitution. If we define D, , by interchanging
the last two columns of D, ,’ then D, , satisfies conditions (a), (b) and (c).
Theorem 2 is now proved by induction if we give an example for » = 4 and
n = 3. For n = 4 the example is

0011
0101
D. = 1001
1110
For n = 3 we have
101
110]=2. Ol
011

Remark. The inequality in theorem 2 cannot be replaced by equality. This is
shown by the following example:

1110000
1101001
1100110
D;=11011010|=18.
1010111
0111100
0111011

The set of equations associated with the preceding D is

X+ x, + x5 = 18,
x; + x, + x4 + x7 = 18,
Xy + %, +x5+x¢ - =18,
X1 + X3 + x4 + X = 18,
X1 + X3 + x5 + xg + x7 =18,

Xy + X3+ x4+ X5 =18,

X3 4 X3+ x4 + x6 + x7 = 18.
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The solution is (x4, ..., x7) = (7, 6, 5, 4, 3, 2, 1). The balanced-set form of
this example is due to Jacqueline Shalhevet in 1968. Dy = 38 can now be
constructed by an ingenious idea due to Peleg °). We observe each equation
contains either x,, x¢, or both. Let us now add xg = / to each equation which
contains only one of x, and x¢, and let x, and x¢ also be augmented by /.
Then 18 is increased by 2/; an additional equation x, + x5 + x5 = 18 + 2/
implies 8 + 3/ = 18 + 2/, [ = 10, so that 18 is increased to 18 4 2/ = 38.
Shapley ) has also obtained the relation

1
Dpyy 22D, (1 ——>._
‘ n

5. A complete analysis for n =5

We begin with table 1.

TABLE 1

Essential saturated defenses for n << 5

n partition defenses
3 1+1+1=3 (%9252)
4 I14+1+1+1=4 (%)292:2)( %'% )

2+14+141=5

(%s 3 35 3)

5 1+1+1+1+1:5 %a%}%s%s%; %’%—’%’%,%)9(%9%1%9%’%)
24+14+14+1+1=6 (?s?a?a?3§, %;43%:21-3%

3+l+1+1+1:7 (4313?:29’47)
24241 +141=7
3+2+1+1+1=8 (5957%95,5)

3+2+2+1+1:9 %9%9%3?5%a(§3%3%’%5%)

11 1 1

(39 37%7 3> 3) 25 25 4> 4:2) (95, %'9 5> 5)

We may now study the case of 5 properties in detail, and obtain a complete
list of possible defenses and the range of / for which each defense must be con-
sidered. Assume v, > v, > v; > v, == vs5, and that the offense always takes
the highest value it can obtain. A list of all defenses for # = 5 may be derived
from all essential defenses for » < 5 by adding 1’s and 0’s. Each defense needs
to be considered from the lowest 4 for which it is possible up to the lowest A
for a better defense, that is, one that is guaranteed to protect more property
value. For instance, (%, , 3, 3, 0) has 4 = 2. Therefore a defense that protects
T, to T, equally in such a way that the offense can get only 7, and has not
defended T at all, is possible for # > 2, and guarantees that the offense gets
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no more than v; 4+ vs. For 2 < A < 2-5 there is no better way to defend the
properties. At h = 2-5 the defenses (1,4, 4,%,0) and (4,34, 4, 1,1 become
possitle, each of which guarantees the defense better success (loss of only
v, + v5 and v,, respectively). Notice that in the preceding examples, the order
of the v; uniquely determines which T; the offense will attack. For some
saturated defenses, this is not the case. For instance with 2z = 1'4, ¢, , 1,1, 1)
allows the offense his choice of v, + v, or v, -+ vz + v,4, and either total value
may be higher. Only saturated defenses of the form

where some of the k; may vanish, are “pure” in the sense that they lead to
unique determination of the T; which the offense will attack. Figure 1 (see the

10

S

08

071

s

Fig. 1. Fraction of total property value saved by the defense. Drawn curve: all saturated
defenses; dashed curve: only pure defenses. Property values: (17, 12, 8, 7, 6).

end of this section for details) shows, for a particular set of v;, the difference
between considering all strategies and only “pure” strategies (for which the
theory is easy).

From table I we may now compile the corresponding complete list of un-
dominated strategies for n = 5, together with the total / required, and the
properties which will be taken. An entry such as “12 or 134” means that the
defense, although undominated, is not pure: the offense will obtain either
v, + v, or v, + v + v, at its discretion.
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TABLE 1II
Saturated defenses for n = 5
defense necessary & = 2/, (v, > I;zoim::e;k:: > vs)
(1 0,0,0,0) 1 2345
1,4, 4, %,% 1-25 123
(35 %, %a % lé 125
544, 5) 14 12 or 134
(4,43, 0,0) 1-5 145
A 1-5 12 or 234
s 444 1-6 13 or 234
G5H»430 16 15 or 235
L5543 16 12
2,1 %, %, H 175 1 or 234
(7, T Z, z, 211; 1'75 13 or 345
55549 18 14 or 23 or 245
(1,1,0,0,0) 2 345
3} %330 2 15
%a %5 %s %a% 2 1or23
2,4, %, %, D 2-25 1 or 24
(1= 3> 3: 3, % 2:}’ 23
(3, 3 3‘, 3, % 2'3 1or34
(15 2 29 %a O) 2-5 25
345333 2:5 1
L3+53 26 2 or 34
(1,1,1,0,0) 3 45
L4459 3 2
1LLE45D 35 3
1,1,1,1,0) 4 5
(1,1,1,1L, 1) 5 none

Using table II we may now make a plot of all the saturated defenses which
must be considered for any given value of 4. For instance, (3, 4, 3, 4, 0), which
requires i > 1+ 3 and gives the offense 125, is poorer than (%, 4, 2, 0, 0), which
requires 2 > 15 and gives the offense 145. However, (1,4, 1, 4, 0) is not
poorer than any strategy between these two in table II, and hence must be
considered for 1-3< h < 1'5.

The plot allows us to find all defenses that must be considered for a given
range of A. For instance, if 1-4 <{ h < 1-5, then the defense has the choice of
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giving the offense either 2345, or 125, or the offense’s choice of 12 or 134,
The corresponding strategies, namely (1,0,0,0,0), or (4, 4,3,0), or
21, L 1), are found in table II.

1hor23
or 245
—

130r 345!

1 ]

‘7 or 234!

221 23 5
|

12or 120r 1301, or Tor Tor ‘

134 234 234115 or 235 ! 23 24 ¢ 34’ 1

‘5 125123
1 1 |

345 14515 @

23 251 ' us

1

P 12345

[ ) 1 i 1]
P ! H I I 11
[ t t 11 1 [
I : ¢ ¢ 1 [
[ t ] ()

I

I
1 ! ]
¥ | |
I ; ! '
1413% 15 16 16418 2 22523 25% 3
125 14 175 26 35
—> Defensive force h

Fig. 2. Properties lost by saturated defenses; n = 3.

Using the plot of fig. 2 the effectiveness of various total defensive strengths
was studied for a particular set of 5 properties. In the chosen example, the v;
are given by (17, 12, 8,7, 6), so that the total value of all properties is 50.
Figure 1 shows the proportion of total value saved by the best appropriate
defense as a function of total defensive strength 4. The dashed curve gives the
best that can be done by pure defenses alone, and shows the value of the more
compilicated defenses.

6. Undominated defenses

In the case of 5 properties, each of the saturated defenses is actually the
unique best defense for some set of values (v, ..., v,) and some %, in the
sense that no other defense could equal its effectiveness. It is an immediate
consequence of theorem 1 that a defense which has this property, i.e. it is un-
dominated, is a saturated defense. On the other hand a saturated defense is not
necessarily an undominated defense as is shown by the following examples,
which are alternate versions of an example due to N. G. de Bruijn:

(@ %4441 4D and 3,4, 4, 1,4, 1) are both saturated (both with total
strength h= 3) The first one is dominated by the second one.

(b) (3, 3, 22,140 Wlth h =1 is saturated but dominated by (4,4, 4,4,
1,4, %) with 2=

We remark that in any saturated defense (44, 45, ..., A,), any element A,
can be repeated an arbitrary number of times (say s) thus leading to a saturated
defense on # + s — 1 properties. If %, is not of the form m~* (me N) or 0,
then this saturated defense will in fact be dominated if s is sufficiently large.
This is our understanding of De Bruijn’s example.
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7. Concluding remarks

For the benefit of any readers who might develop a further interest in the
problem, it is perhaps worth recording two other conjectures suggested by our
work that turn out to be false:

(a) Any saturated defense contains repeated values of #;.
Counterexample: (%, 3, 5, & 3 &» 1y)» of the example for D, at the
end of sec. 4.

(b) Any saturated defense written with lowest common denominator D must
contain the element 1/D.
Counterexample: (&, 5 3 i 5 & % &> -

At present the authors are studying the similar problem for the situation that
the offense does not have knowledge of the assignment of the defense. The dif-
ference in values of the two games will give some indication of the value of
“inside information”. For example, it is not hard to show that if » = 2 and
8 < h < 2 the expected value of properties taken by the offense is

vy v, (v + v)7 0,

whereas in the game we have treated the offense gets v,. Thus the value of
the offense’s advance knowledge of the defense is v,2 (v; + v,)~ 1.

Finally, we note that, mutatis mutandis, our results also apply to the fol-
lowing game with defense-last-move: Defense has total strength /# =1, offense
total strength b >1, defense divides forces after seeing how offense has
chosen to divide forces, properties lost if b; > ;. In this game, the saturated
offenses correspond to the saturated defenses we have studied, and sets of
properties lost are the complements of the sets we have found.
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