
Generating Sound and Effective Memory Debuggers

Yan Wang Iulian Neamtiu Rajiv Gupta
Department of Computer Science and Engineering

University of California, Riverside, CA, USA
{wangy,neamtiu,gupta}@cs.ucr.edu

Abstract
We present a new approach for constructing debuggers based on
declarative specification of bug conditions and root causes, and au-
tomatic generation of debugger code. We illustrate our approach on
several classes of bugs, memory or otherwise. For each bug class,
bug conditions and their root cause are specified declaratively, in
First-order logic, using 1 to 4 predicates. We employ a low-level
operational semantics and abstract traces to permit concise bug
specification and prove soundness. To facilitate locating bugs, we
introduce a new concept of value propagation chains that reduce
programmer burden by narrowing the fault to a handful of executed
instructions (1 to 16 in our experiments). We employ automatic
translation to generate the debugger implementation, which runs
on top of the Pin infrastructure. Experiments with using our system
on 7 versions of 4 real-world programs show that our approach is
expressive, effective at finding bugs and their causes, and efficient.
We believe that, using our approach, other kinds of declaratively-
specified, provably-correct, auto-generated debuggers can be con-
structed with little effort.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Debugging aids, Monitors; D.3.1 [Formal Definitions and
Theory]: Semantics

General Terms Languages, Reliability, Theory, Verification

Keywords Debugging; Fault Localization; Logic Specification;
Operational Semantics; Runtime Monitoring

1. Introduction
Debugging is a tedious and time-consuming process for software
developers. Debugging-related tasks (i.e., understanding and lo-
cating bugs, and correcting programs) can take up to 70% of the
total time of software development and maintenance [18]. There-
fore, providing effective debugging tools is essential for improving
productivity. To assist in the debugging task, both general-purpose
debuggers [10, 15, 18, 37], and specialized tools targeting mem-
ory bugs (e.g., buffer overflows [6, 25], dangling pointer derefer-
ences [5], and memory leaks [29, 36]) have been developed.

These current debugging approaches have several shortcomings
which are more pronounced in the context of memory-related bugs.
First, detection of memory-related bugs is tedious using general-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISMM’13, June 20–21, 2013, Seattle, Washington, USA.
Copyright c© 2013 ACM 978-1-4503-2100-6/13/06. . . $10.00

purpose debuggers, so programmers have to use tools tailored to
specific kinds of bugs; however, to use the appropriate tool the pro-
grammer needs to first know what kind of bug is present in the
program. Second, when faulty code is encountered during execu-
tion, its impact on program execution might be observed much later
(e.g., due to a program crash or incorrect output), making it hard
to locate the faulty code. Third, debuggers are also written by hu-
mans, which has two main disadvantages: (a) adding support for
new kinds of bugs entails a significant development effort, and (b)
lack of formal verification in debugger construction makes debug-
gers themselves prone to bugs, which limits their effectiveness.

We propose a novel approach to constructing debuggers that
addresses the above challenges, and provide an illustration and
evaluation on memory-related bugs. We allow bugs1 and their root
causes to be specified declaratively, using just 1 to 4 predicates, and
then use automated translation to generate an actual debugger that
works for arbitrary C programs running on the x86 platform. We
have proved that bug detection is sound with respect to a low-level
operational semantics, i.e., bug detectors fire prior to the machine
entering an error state. Our work introduces several novel concepts
and techniques, described next.

Declarative debugger specification. In our approach, bugs are
specified via detection rules, i.e., error conditions that indicate the
presence of a fault, defined as First-order logic predicates on ab-
stract states. In Section 2 we show how bug specifications can be
easily written. Using detection rules as input, we employ automated
translation to generate the debugger implementation; thanks to this
translation process, explained in Section 4.1, from 8 lines of speci-
fication about 3,300 lines of C code are generated automatically.

Debugger soundness. We use a core imperative calculus that
models the C language with just a few syntactic forms (Section 3.1)
to help with specification and establishing correctness. We define
an operational semantics (Section 3.2) which models program exe-
cution as transitions between abstract states Σ; abstract states form
the basis for specifying debuggers in a very concise yet effective
way. Next, we define error states for several memory bugs, and use
the operational semantics (which contains transitions to legal or er-
ror states) to prove that the detectors are sound (Section 3.3).

Value propagation chains. In addition to bug detection rules,
our specifications also contain locator rules, which define value
propagation chains pointing to the root cause of the bug. These
chains drastically simplify the process of detecting and locating
the root cause of memory bugs: for the real-world programs we
have applied our approach to, users have to examine just 1 to 16
instructions (Section 5.2).

Section 4 describes our implementation and online debugger
usage. After a debugging session starts, a monitoring component
maps the actual execution to the abstract machine state. The detec-

1 We define a bug to be a class of faults, for example, a double-free bug
refers to all double-free faults present in the program.

51

tors generated from the bug specification perform online bug de-
tection, i.e., while the program is running. Note that we detect bugs
before they actually manifest, when the abstract machine is about to
enter an error state—this prevents faults from silently propagating
and accumulating. Moreover, when a fault is detected, we suspend
the execution using a breakpoint, so that developers can examine
the state and, with help from bug locators, get to the bug’s root
cause. Our approach works for arbitrary C programs. The task of
monitoring is carried out by an automatically-generated Pin tool.

Experiments with using our system to detect actual bugs in
real-world programs show that it is expressive, effective at finding
bugs, and has acceptable performance overhead (Section 5).

Prior efforts in this area include memory bug detectors, algorith-
mic debugging, and monitoring-oriented programming; we provide
a comparison with related work in Section 6. However, to the best
of our knowledge, our work is the first to combine a concise, declar-
ative debugger specification style with automatic generation of bug
detectors and locators, while providing a correctness proof.

Our approach has the following advantages:

1. Generality. As we show in Section 2, bug specifications consist
of 1 to 4 predicates per bug. Thus, specifications are easy
to understand, scrutinize, and extend. Formal definitions of
program semantics and error states show that bug detection
based on these bug specifications is correct.

2. Flexibility. Instead of using specialized tools for different kinds
of bugs, the user generates a single debugger that still distin-
guishes among many different kinds of bugs. Moreover, bug
detectors can be switched on and off as the program runs.

3. Effectiveness. Bug detectors continuously evaluate error condi-
tions and the user is informed of the error condition (type of
bug) encountered before it manifests, e.g., via program crash.
Bug locators then spring into action, to indicate the value chains
in the execution history that are the root causes of the bug,
which allow bugs to be found by examining just a handful of
instructions (1 to 16), a small fraction of the instructions that
would have to be examined when using dynamic slicing.

2. Bug Specification
Figure 1 provides an overview of our approach. As the program
executes, its execution is continuously monitored and x86 instruc-
tions are mapped to low-level operational semantics states Σ (de-
scribed in Section 3.2). For most memory bugs, programmers use
an abstraction of the semantics (execution trace σ and redex e), to
write bug specifications; the full semantics is available to specify
more complicated bugs. Bug detectors and bug locators are gen-
erated automatically from specifications. During debugging, detec-
tors examine the current state to determine when an error condition
is about to become true, i.e., the abstract machine is about to en-
ter an error state. When that is the case, locators associated with
that error condition report the error and its root cause (location)
to the programmer. Our debugger is able to simultaneously detect
multiple kinds of bugs, as illustrated by the stacked detectors and
locators in the figure.

We now present the user’s perspective to our approach. Speci-
fication is the only stage where the user needs to be creatively in-
volved, as the rest of the process is automatic, thanks to code gen-
eration. We first describe the specification process (Section 2.1).
Next, we illustrate how our approach is used in practice for mem-
ory bugs (Section 2.2) and other kinds of bugs (Section 2.3). Later
on (Section 5.2), we demonstrate the effectiveness of our approach
by comparing it with traditional debugging and slicing techniques.

Bug$Detector$

Σn#2% Σn#1% Σn% Error%

Error$$
state%

Opera0onal$
seman0cs%

Bug$Locator$

Σm%

Root$causes%

…%

σm,em%
%

σn#2,en#2%
%

σn#1,en#1%
%

σn,en%
%

Trace,$redex%

Bug$specifica0on$

Genera1on%

Genera1on%

Figure 1. Overview of bug specification, detection and location.

2.1 Specifying Debuggers via Rules
Traces and redexes. To simplify specification, for most mem-
ory bugs, the programmers can describe bugs by just referring to
traces σ and redexes e. The trace σ records the execution of rele-
vant memory operation events—write for memory writes, malloc
for allocation, free for deallocation—which are germane to mem-
ory bugs. Redexes e indicate the expression to be reduced next,
such as function entry/exit, allocation/deallocation, memory reads
and writes; when e is a memory operation, it contains a location
r signifying the pointer to be operated on, e.g., freed, read from,
or written to. The scarcity of syntactic forms for redexes and ex-
ecution trace events provide a simple yet powerful framework for
specifying C memory bugs.

Rules. To specify a bug kind, the user writes a rule (triple):
<detection point, bug condition, value propagation>. The
first two components, detection point and bug condition, spec-
ify a bug detector, while the third component, value propagation,
specifies a bug locator. Figure 2 shows how detection points, bug
conditions and bug locators are put together to form rules and spec-
ify six actual classes of memory bugs. We now proceed to defining
each component of a rule.

Detection points specify the reductions where bug detection
should be performed, as shown below.

Detection point Next reduction e Semantics
deref r r ∗r memory read
deref w r r := v memory write
deref r ∗r/r := v memory access
free r free r deallocation
call z v z v function call
ret z v ret z e function return

The programmer only needs to specify the detection point (left
column). Our debugger will then evaluate the bug condition when
the operational semantics’s next reduction is e (middle column).
For example, if the programmer wants to write a detector that fires
whenever memory is read, she can use deref r r as a detection
point. Detection points which can match multiple reduction rules,
coupled with the simple syntax of our calculus, make for brief yet
effective specification; for example, using a single detection point,
deref r, the user will at once capture the myriad ways pointers can
be dereferenced in C.
Bug conditions are First-order logic predicates which allow
memory bugs to be specified in a concise, declarative manner, by
referring to the detection point and the trace σ. First, in Figure 2
(bottom) we define some auxiliary predicates that allow more con-
cise definitions for bug detectors. Allocated(r) checks whether
pointer r has been allocated. The low-level semantics contains
mappings of the form r 7→ (bid, i), i.e., from pointer r to the block
bid and index i it points to; Bid(r) returns r’s block in this map-
ping. Therefore, Allocated(r) is true if the block r is currently
pointing into a block bid that according to the trace σ has previ-

52

Rules Detection point Bug condition Value propagation

[UNMATCHED-FREE] detect〈σ; free r〉 : ¬Allocated(r) ∨ r 6= Begin(r) V PC(r)

[DOUBLE-FREE] detect〈σ; free r〉 : Allocated(r) ∧ Freed(r, r1) V PC(r), V PC(r1)

[DANGLING-POINTER-DEREF] detect〈σ; deref r〉 : Allocated(r) ∧ Freed(r, r1) V PC(r), V PC(r1)

[NULL-POINTER-DEREF] detect〈σ; deref r〉 : r = NULL V PC(r)

[HEAP-BUFFER-OVERFLOW] detect〈σ; deref r〉 : Allocated(r) ∧ ¬Freed(r,) ∧ (r < Begin(r) ∨ r ≥ End(r)) V PC(r)

[UNINITIALIZED-READ] detect〈σ; deref r r〉 : ¬FindLast(,write, r, ,)

Auxiliary predicates Allocated(r)
.
= ∃ (,malloc, , bid) ∈ σ : bid = Bid(r)

Freed(r, r1)
.
= ∃ (, free, r1, bid) ∈ σ : bid = Bid(r)

Figure 2. Bug detection rules and auxiliary predicates.

ously been allocated, i.e., it contains a malloc event for this bid; ‘ ’
is the standard wildcard pattern. Freed(r, r1) is true if the block
bid that r is currently pointing into has been freed, i.e., the trace σ
contains a free event for this bid. Note that free’s argument r1, the
pointer used to free the memory block, is not necessarily equal to
r, as r could be pointing in the middle of the block while r1 is the
base of the block (cf. Section 3.2).

With the auxiliary predicates at hand, we define First-order
logic conditions on the abstract domain, as illustrated in the bug
condition part of Figure 2. Note that FindLast(ts, event) is a
built-in function that traverses the trace backwards and finds the
last matching event according to given signature. For example,
a dangling pointer dereference bug occurs when we attempt to
dereference r whose block has been freed before; this specification
appears formally in rule [DANGLING-POINTER-DEREF], i.e., the
bug is detected when the redex is ∗r or r := v and the predicate
Allocated(r)∧Freed(r, r1) is true. Note that r1 is a free variable
here and its value is bound to the pointer which is used to free this
block for the first time.

Bug locators. The last component of each rule specifies value
propagation chains (VPC) which help construct bug locators. The
VPC of variable v in a program state Σ is the transitive closure of
value propagation edges ending at Σ for variable v. The VPC is
computed by backward traversal of value propagation edges end-
ing at Σ for variable v. Note that dynamic slicing does not distin-
guish data dependences introduced by computing values from de-
pendences introduced by propagating existing values. Value propa-
gation edges capture the latter—a small subset of dynamic slices.

For each bug kind, the VPC specifies how the value involved in
the bug manifestation relates to the bug’s root cause. For example,
in [DOUBLE-FREE], the root cause of the bug can be found by
tracing the propagation of r (the pointer we are trying to free) and
r1 (the pointer that performed the first free). In [NULL-POINTER-
DEREF], it suffices to follow the propagation of the current pointer
r which at some point became NULL.

2.2 Memory Debuggers in Practice
We now provide a comprehensive account of how our approach
helps specify, detect and locate the root causes of memory bugs
using three examples of actual bugs in real-world programs.

Double-free. Attempting to free an already-freed pointer is a very
common bug. In Figure 2, the rule [DOUBLE-FREE] contains the
specification for the bug: when the redex is free r and the predicates
Allocated(r) and Freed(r, r1) are both true, we conclude that r
has already been freed.

The real-world program Tidy-34132 contains a double-free
memory bug which manifests itself when the input HTML file con-
tains a malformed font element, e.g., < font color =“green”<
?font >. The relevant source code for this bug is presented in the
left column of Figure 3. The program constructs a node structure

for each element (e.g., font) in the HTML file. An element may
contain multiple attributes corresponding to the attributes field of
the node structure, which is a pointer to the attribute structure. The
program pushes a deep copy of the node structure onto the stack
when encountering an inline element (i.e., font in our test case) by
calling PushInline (line 057). The deep copy is created by duplicat-
ing the dynamically allocated structure pointed to by each field in
the node structure as well as fields of fields recursively. For exam-
ple, the program duplicates the node’s attributes fields and fields
of the attributes structures, as shown in line 092. However, the
programmer makes a shallow copy of the php field in the attribute
structure by mistake in line 033 because of a missing statement,
as shown in line 039. All the copies of node structure pushed onto
the stack by PushInline will be subsequently popped out in func-
tion PopInline (line 097), where all the allocated regions will be
freed recursively. In some situations, due to the shallow copy, the
php field of some node structures will contain dangling pointers. If
some element in the HTML file is empty and can be pruned out,
the program removes the node from the markup tree and discards
it by calling TrimEmptyElement (line 309), which eventually calls
DiscardElement at line 316. Node deletion is just a reverse process
of node deep copy—it will free all the dynamically-allocated mem-
ory regions in the node structure in a recursive fashion, including
the structures pointed to by the php fields. When providing certain
HTML files as input, the program crashes when it tries to trim the
empty font element because the php field of the attributes field of
the font element has been freed in PopInline.

The second column of Figure 3 shows the events added to our
trace σ during execution (irrelevant events are omitted). As we can
see, the bug condition specified in rule [DOUBLE-FREE] is satisfied
because σ contains events malloc, n, 1H , and free, ptr, 1H (1H is
the heap block id), indicating that block 1H has been allocated and
then freed, which makes Allocated(r) ∧ Freed(r, r1) true.

The root cause of the double-free bug is the shallow copy in line
033, and the fix (line 039 in istack.c) calls for far more program
comprehension (why, when and how the two different pointers
wrongly point to the same heap block) than just the positions of
the two free calls (line 136 in parser.c), which is the best bug report
that current automatic debugging tools (e.g., Valgrind) can achieve.
With the help of our bug locators, programmers need to examine
just 16 instructions to figure out how and when the two pointers
used in free point to the same memory region by following the value
propagation chains for the two pointers (the two pointers can be the
same in some situations, in which case the two value propagation
chains are exactly the same). We show the value propagation chains
for this execution in the third column of Figure 3; in our actual
implementation, this value chain is presented to the user. Note
that the value of the pointer ptr used in the free function is first
generated in function malloc and propagates to pointer p in function
MemAlloc, and so on. The right child of node attrs→ php is
exactly the place where the shallow copy comes from (shallow copy

53

C code Relevant events added
to the trace σ

savedir.c:
76: char * savedir (const char *dir){

DIR *dirp;
85: dirp = opendir (dir);
86: if (dirp == NULL)
87: return NULL;
129: ...}
increment.c:
173: get directory contents (char *path){...
180: char *dirp = savedir (path); ...
205: for (entry = dirp; entrylen =
206: strlen (entry))!= 0; //crash
207: entry +=entrylen +1)

write, dirp, , savedir retval
write, entry, , dirp
write, str, , entry

bug detected at strlen(str)

Value Propagation Chain

Figure 4. Detecting, and locating the root cause of, a NULL
pointer dereference bug in Tar-1.13.25.

from attrs → php to newattrs → php). Hence, with the help
of our bug locators, programmers can quickly understand the root
cause and fix the bug.

NULL pointer dereference. In Figure 2, the rule [NULL-POINTER-
DEREF] is used to express and check for NULL pointer derefer-
ence bugs. The real-world program Tar-1.13.25 contains a NULL
pointer dereference bug which causes a crash when the user tries
to do an incremental backup of a directory without having read ac-
cess permissions to it. A source code excerpt containing the bug is
shown in the first column of Figure 4. If the user does not have read
access to the specified directories, the function opendir will return
a NULL pointer. This causes the program to crash at line 206 when
passing this pointer to function strlen.

With the help of our debugger, programmers can figure out
the bug type, and get significant insight about the failure via bug
locators. The trace of an execution which triggers this bug is shown
on the right side of Figure 4. The NULL pointer bug detector will
detect this bug when the NULL pointer is dereferenced in strlen.
The value propagation chain of the NULL pointer, shown on the
bottom of Figure 4, indicates where the NULL pointer originates
(line 87 in savedir.c) and how it propagates to the crash point.

Unmatched free. Attempting to free an illegal pointer is a very
common bug. In Figure 2, the rule [UNMATCHED-FREE] contains
the declarative specification for the bug: whenever the evaluation
reaches a point where the next expression is free r, if at least one
of two conditions is met, the rule fires. IfAllocated(r) is false, the
program tries to free something that has not been allocated in the
first place. If r 6= Begin(r), the program attempts to free a pointer
that has been allocated, but instead of pointing to the malloc’d block
(i.e., the base), r points somewhere in the middle of the block.

The real-world Python interpreter Cpython-870c0ef7e8a2, con-
tains an unmatched free bug (freeing something that has not been
allocated) that leads to a crash. The bug manifests when the
type. getattribute function is misused (e.g., type. getattribute (str,
int)) in the input Python program. The type. getattribute (typeName,
attrName) function finds the attribute associated with attrName in
typeName’s attribute list. However, passing a type name, e.g., int,
as attribute name crashes the program.

A source code excerpt containing the bug is shown in the first
column of Figure 5. Encountering a type. getattribute (typeName,
attrName) statement, the Python interpreter invokes the type getattro
function at line 2483 to find the attribute associated with name in
type’s attribute list at line 2517. When no attribute is found, an er-

C code Relevant events
added to trace σ

unicodeobject.c:
1353: PyUnicode Ready(PyObject *unicode){...
1389: PyUnicode CONVERT BYTES(...)
1405: free((PyASCIIObject*)unicode→wstr);
1479: ...}
typeobject.c:
2483: type getattro(type, PyObject* name){
/*the following statements are missing in buggy code*/
2488: if (!PyUnicode Check(name)) {...
2492: return NULL;}
2517: attribute = PyType Lookup(type, name);
2551: PyErr Format(PyExc AttributeError,
2552: ”type object ’%.50s’ has no attribute ’%U’”,
2553: type→tp name, name);

write, ptr, ,
unicode→wstr

bug detected
at free(ptr)

Value Propagation Chain

Figure 5. Detecting, and locating the root cause of, an unmatched
free bug in Cpython-870c0ef7e8a2.

ror message will be printed at line 2551 by calling PyErr Format;
PyErr Format will eventually call PyUnicode Ready to prepare an
Unicode string and print it. PyUnicode Ready converts the Uni-
code string stored in unicode→wstr buffer, and then finally frees
the buffer. However, the programmer has wrongly assumed that the
name object at line 2483 must be an object of type PyUnicodeOb-
ject or subclass of it (e.g., PyASCIIObject), and has forgotten to
add a type check at line 2488. When a type name is passed as
the attribute name, the unicode at line 1405 is an object of type
PyTypeObject, rather than PyASCIIObject. Thus, the programmer
thinks free is invoked on PyASCIIObject’s wstr field when in fact it
is invoked on PyTypeObject’s tp itemsize field.

The second column shows the relevant events added to σ. As
we can see, there is no event malloc, n, to make Allocated(r)
true. The value propagation chain of ptr (bottom of figure), shows
how the wrong value of ptr is propagated from unicode→ wstr,
which is a global variable and initialized before the execution of
main (by the program loader), rather than dynamically allocated.

2.3 Other Classes of Bugs
While the core of our work is centered around the six classes of
memory bugs we have just presented, programmers can use our
approach to easily specify debuggers for other classes of bugs. We
now proceed to briefly discuss examples of such classes; the bug
specifications are presented in Figure 6.

Memory leaks. The rule [POSSIBLE-LEAK] specifies possible
leaks as follows: if main is about to exit while the heap H con-
tains one or more blocks that have not been freed, i.e., the heap
domain is not empty, the rule fires.

With rule [DEFINITE-LEAK], we report leakages if, at the end
of program execution, the heap H contains some blocks that no
pointer in P points to. In other words, if there is no live pointer
pointing to a block, we report the block as a definite leak.

The rule [LEAK-IN-TS] can be used to detect leaks in trans-
actions. For simplicity, we assume that the scope of a transaction
spans the entire body of a function denoted by metavariable ts. The
programmer can easily specify that all the blocks allocated inside
the transaction (body of ts) should be freed at the end of the trans-
action. We report leaks if, when function ts returns, the heapH con-
tains some blocks which are allocated inside this function and have
not been freed yet. Note that FindLast(k, call, ts,) matches the
latest event which calls function ts, and the free variable k is bound

54

C code Relevant events added to the trace σ Value Propagation Chain

istack.c:
025: AttVal *DupAttrs(TidyDocImpl* doc, AttVal *attrs) {
032: newattrs = NewAttribute();
033: *newattrs = *attrs;
034: newattrs→ next = DupAttrs(doc, attrs→ next); ...

/*the following statement is missing in buggy code*/
039: newattrs→ php=attrs→ php? \

CloneNode(doc, attrs→ php):NULL;
041:}
057: void PushInline(TidyDocImpl* doc, Node *node) {...
092: istack→ attributes =

DupAttrs(doc, node→ attributes);
094:}
097: void PopInline(TidyDocImpl* doc, Node *node) {...
147: while (istack→attributes){ ...
151: FreeAttribute(doc, av); }
parser.c:
128: Node*

DiscardElement(TidyDocImpl* doc, Node *element){
132: if (element){...
136: FreeNode(doc, element); }
140:}
309: Node *

TrimEmptyElement(TidyDocImpl* doc,Node *element){
311: if(CanPrune(doc, element)){...
316: return DiscardElement(doc, element);}

malloc, n, 1H
write, p, , return value of malloc
write, node, , p
write, node, , node
write, php, , node
write, ∗php, , php
write, attrs→ php, , ∗php
write, newattrs→ php, , attrs→ php
write, node, , newattrs→ php
write,mem, , node
write, ptr, ,mem
free, ptr, 1H
write, node, , attrs→ php
write,mem, , node
write, ptr, ,mem

bug detected at free(ptr)

Figure 3. Detecting, and locating the root cause of, a double-free bug in Tidy-34132.

to the timestamp for this event. T ime(bid) > k checks whether
this block is allocated inside this function (or transaction).

Garbage collector bugs. [GC-BUG] illustrates how to specify one
of the basic correctness properties for garbage collector implemen-
tations, that the alive bits are set correctly. Consider, for example,
a mark-and-sweep garbage collector that uses the least significant
bit of each allocated block to mark the block as alive/reachable
(bit = 1) or not-alive (bit = 0). We can check whether the alive bits
are set correctly at the end of a GC cycle before resetting them
(bit = 0), as shown in rule [GC-BUG]: all blocks in H are marked
as alive and all blocks in F are marked as freed.

3. Formalism
We now present our formalism: a core imperative calculus that
models the execution and memory operations of C programs. We
introduce this calculus for two reasons: (1) it drastically simplifies
programmer’s task of expressing bugs in C programs, by reducing
the language to a few syntactic constructs and the dynamic seman-
tics to a handful of abstract state transitions, and (2) it helps prove
soundness.2

3.1 Syntax
We adopt a syntax that is minimalist, yet expressive enough to
capture a wide variety of bugs, and powerful enough to model
the actual execution. The syntax is shown in Figure 7. A program
consists of a list of top-level definitions d. Definitions can be main,
whose body is e, global variables g initialized with value v, and
functions f with argument x (which is a tuple in the case of
multiple-argument functions) and body e.

Expressions e can take several syntactic forms: values v, ex-
plained shortly; variable names x (which represent local variables
or function arguments, but not global variables); let bindings; stack

2 Soundness refers to detectors being correct with respect to the operational
semantics to help catch specification errors; it does not imply that we
certify the correctness of auto-generated and manually-written code for the
Pin-based implementation, which operates on the entire x86 instruction set.

Definitions d ::= main e
| var g = v in d
| fun f(x) = e in d

Expressions e ::= v | x | let x = v in e
| let x = salloc n in e
| e; e | e e | ret z e
| if0 e then e else e
| malloc n | free r
| ∗ e | e := e | e+p e | e+ e

Values v ::= n | z | r
Global symbols f, g, z ∈ GSym
Indexes i, j ::= n
Pointers r ∈ Loc
Integers n
Variables x

Figure 7. Syntax.

allocations let x = salloc n in e, where variable x is either a lo-
cal variable or a function argument, n is its size (derived from the
x’s storage size), and e is an optional initializer; sequencing e; e
and function application e e; function return ret z e; condition-
als if0 e then e else e; malloc n, allocating n bytes in the heap;
free r, deallocating a heap block; pointer dereference ∗ e; assign-
ment e := e; pointer arithmetic e+p e, and integer arithmetic e+e.
Values v can be integers n, global symbols z, or pointers r. Indexes,
e.g., i, j, are integers and are used to specify the offset of a pointer
in a memory block. Pointers r range over locations Loc, and are
used as keys in a pointer map, as described next; note that we do
not assume a specific type (e.g., integer, long) for pointers, as it is
not relevant for defining the abstract machine.

3.2 Operational Semantics
The operational semantics consists of state and reduction rules. The
semantics is small-step, and evaluation rules have the form:

〈H;F ;S;P ; k;σ; f ; e〉 −→ 〈H ′;F ′;S′;P ′; k′;σ′; f ′; e′〉
which means expression e reduces in one step to expression e′, and
in the process of reduction, the heap H changes to H ′, the freed

55

Rules Detection point Bug condition

[POSSIBLE-LEAK] detect〈H;σ; ret main v〉 : dom(H) 6= ∅
[DEFINITE-LEAK] detect〈H;P ;σ; ret main v〉 : ∃ bid ∈ H : ¬(∃ r 7→ (bid,) ∈ P)

[LEAK-IN-TS] detect〈H;σ; ret ts v〉 : ∃ bid ∈ H : FindLast(k, call, ts,) ∧ T ime(bid) > k

[GC-BUG] detect〈H;F ;σ; ret gc v〉 : ¬((∀ bid ∈ H : IsAlive(bid)) ∧ (∀ bid ∈ F : ¬IsAlive(bid)))

Auxiliary predicates IsAlive(bid)
.
= bid & 0x1 = 1

Figure 6. Bug detection rules and auxiliary predicates for other classes of bugs.

blocks set F changes to F ′, the stack S changes to S
′
, the pointer

map P changes to P ′, the timestamp changes from k to k′, the
trace changes from σ to σ′ and the value origin f changes to f ′.
We now provide definitions for state elements and then present the
reduction rules.

Definitions. In Figure 8 we present the semantics and some aux-
iliary definitions. In our memory model, memory blocks b of size
n are allocated in the heap via malloc n or on the stack via
salloc n. Block id’s bid are keys in the domain of the heap or
the stack; we denote their domain Bid, and represent elements in
Bid as 1H , 2H , 3H , . . . (which indicates heap-allocated blocks)
and 1S , 2S , 3S , . . . (which indicates stack-allocated blocks). Mem-
ory blocks are manually deallocated from the heap via free r and
automatically from the stack when a function returns (the redex is
ret z v). All the deallocated heap and stack blocks are stored in
F—the “freed” set—as (bid, h) and (bid, s) respectively. Block
contents b are represented at byte granularity, i.e., v0, . . . , vn−1 ;

a freshly-allocated block is not initialized, and is marked as junk .
The heap H contains mappings from block id’s bid to tuples
(b, n, k); tuples represent the block contents b, the block size n
and the timestamp k when the block was created. A stack frame S
consists of mappings bid 7→ (b, n, k), just like the heap. The stack
S is a sequence of stack frames.

We keep a pointer map P with entries r 7→ (bid, n), that is,
a map from references to block id bid and offset n. Timestamps
k are integers, incremented after each step. The trace σ records
timed events ν, i.e., (timestamp, event) pairs. Events ν can be
memory writes write, r, v, f which indicate that value v, whose
origin was f , was written to location r; if -conditions n == n′

which indicate that the value of the if guard n was n′, allocations
malloc, n, bid, deallocations free, r, bid, function calls call, z, v
and function return ret, z, v. At each step we keep a value origin
f that tracks where the last value v comes from: a constant, a
global variable, or the prior step(s), as explained shortly. Runtime
expressions e are the expressions defined in Figure 7.

We use several notational shorthands to simplify the definition
of the rules; they are shown in the top-middle part of Figure 8.
Given a pointer r, we can look it up in the heap H or stack
S, extract its bid and index i, and contents v0, . . . , vn−1 . We
now explain the shorthands: Bid(r) is the block id; Idx(r) is the
pointer’s offset; Begin(r) is the beginning address of a block r
refers to; End(r) is the end address of a block; Size(r) is the size
of the block; T ime(bid) is the timestamp at which the block was
allocated; Block(r) is the whole block contents; V alue(r) is the
value stored in the memory unit pointed to by r.

Several other shorthands are defined in the top-right part of
Figure 8 as follows: “bid fresh” means the bid is not in the
domain of H , F , and S, and bid has never been used before;
popStack(S, F) is used to deallocate all the blocks in the stack
S, i.e., for all bid ∈ dom(S), add (bid, s) to F .

We define a notion of the origin of a value v, denoted orig(v, f),
as follows: given a prior origin f , if v is a constant n, then the ori-

gin of value v is gen (value v is newly generated here); if v is a
variable z, then the origin of value v is z (value v is propagated
from variable z); otherwise, the origin of value v is f , i.e., the prior
origin, indicating it is the result of a prior computation. This ori-
gin information is instrumental for constructing bug locators, as it
helps track value propagation and hence bug root causes.

We use evaluation contexts E to indicate where evaluation is to
take place next; they are modeled after expressions, and allow us to
keep reduction rule definitions simple.

Evaluation rules. Further down in Figure 8 we show the reduc-
tion rules. The rule [LET] is standard: when reducing let x = v in e,
we perform the substitution e[x/v]. The rule [LET-SALLOC] is used
to model the introduction of local variables and function arguments;
it is a bit more complicated, as it does several things: first it allo-
cates a new block bid of size n on the stack, initialized to junk, then
it picks a fresh r and makes it point to the newly allocated block bid
and index 0, and finally substitutes all occurrences of x with r. The
allocation rule, [MALLOC], is similar: we model allocating n bytes
by picking a fresh bid, adding the mapping [bid 7→ (junk , n, k)

to the heap, creating a fresh pointer r that points to the newly-
allocated block at offset 0, recording the event (k,malloc, n, bid)
in the trace σ, and updating the f to gen, meaning r is newly
generated at this step. The deallocation rule, [FREE], works as fol-
lows: we first identify the bid that r points to, and then remove the
bid 7→ (b, n, k1) mapping from the heap, and add the (bid, h) tuple
to F ; we record the event by adding (k, free, r, bid) to the trace.

The function call rule, [CALL], works as follows: create an
empty stack frame S and push it onto the stack, then rewrite z v to
be let x = salloc n in (x := v; e), which means we allocate a new
block for the function argument x on the stack, and set up the next
reductions to assign (propagate) the value v to x, and then evaluate
the function body e; we record the call by adding (k, call, z, v) to
the trace, and propagate v’s origin; we assume each function body e
contains a return expression ret z e′. The converse rule, [RETURN],
applies when the next expression is a return marker; it pops the
current frame S off the stack, deallocates all the blocks allocated in
S before, record the return by adding (k, ret, z, v) to the trace, and
updates the f to orig(v, f).

Dereferencing, modeled by the rule [READ], entails returning
the value pointed to by r, and updating the f to be r, denoting
that the origin of value v comes from r. When assigning value v
to the location pointed to by r (which resides at block id bid and
index i), modeled by the rule [ASSIGN], we change the mapping
in the heap or stack (whichever r points to) to b′, that is the block
contents value at index i is replaced by v; we also record the write
by adding (k,write, r, v, orig(v, f)) to the trace, and record the
assignment-induced value propagation by setting f to orig(v, f).

Integer arithmetic ([INT-OP]) does the calculation, and updates
the f to gen to mark the fact that n3 is newly generated here; ac-
tually this rule is only necessary for purposes of value propagation,
as most components of Σ remain unchanged. Pointer arithmetic
([PTR-ARITH]) is a bit more convoluted: we first find out bid and
i—the block id and index associated with r, create a fresh r2 that

56

Definitions
Block id bid ∈ Bid
Block contents b ::= v0, . . . , vn−1

Heap H ::= ∅
| bid 7→ (b, n, k), H

Freed blocks F ::= ∅ | (bid, h), F
| (bid, s), F

Stack frame S ::= ∅
| bid 7→ (b, n, k), S

Stack S ::= ∅ | S, S
Pointers P ::= ∅ | r 7→ (bid, i), P
Timestamp k ::= n
Events ev ::= write, r, v, f

| n == n′

| malloc, n, bid
| free, r, bid
| call, z, v
| ret, z, v

Timed events ν ::= (k, ev)
Traces σ ::= ∅ | ν ∪ σ
Value origin f ::= gen | z | r
Expressions e ::= ...

Shorthands
Given P [r 7→ (bid, i)]
Bid(r)

.
= bid

Idx(r)
.
= i

Given H[bid 7→ (b, n, k)] ∨ S[bid 7→ (b, n, k)]
and P [r 7→ (bid, i)], b = v0, . . . , vn−1

Begin(r)
.
= bid

End(r)
.
= bid+ n

Size(r)
.
= n

Time(bid)
.
= k

Block(r)
.
= b

Given H[bid 7→ (b, n, k)] ∨ S[bid 7→ (b, n, k)]
and P [r 7→ (bid, i)], b = v0, . . . , vn−1

and Begin(r) ≤ r < End(r)
V alue(r)

.
= vi

Shorthands (contd.)
bid fresh

.
= bid /∈ Dom(H)∧

bid /∈ Dom(F)∧
bid /∈ Dom(S)

popStack(S, F)
.
= F ∪
(∪
bid∈dom(S)

(bid, s))

orig(v, f)
.
=

 gen, if v is a const. n
z, if, v is a gvar. z
f, otherwise

Evaluation contexts
E ::= [] | let x = E in e

| E e | v E | ret z E
| E; e | v; E
| malloc E | salloc n E
| free E
| E := e | r := E | ∗E
| E+p e | r +p E
| E+ e | n+ E
| if0 E then e else e

Evaluation
[LET] 〈H;F ;S;P ; k;σ; f ; let x = v in e〉 −→ 〈H;F ;S;P ; k + 1;σ; f ; e[x/v]〉

[LET-SALLOC] 〈H;F ;S, S;P ; k;σ; f ; let x = salloc n in e〉 −→ r /∈ Dom(P)

〈H;F ;S, S[bid 7→ (junk , n, k)];P [r 7→ (bid, 0)]; k + 1;σ; f ; e[x/r]〉 ∧ bid fresh

[MALLOC] 〈H;F ;S;P ; k;σ; f ;malloc n〉 −→ r /∈ Dom(P)

〈H[bid 7→ (junk , n, k)];F ;S;P [r 7→ (bid, 0)]; k + 1;σ, (k,malloc, n, bid); gen; r〉 ∧ bid fresh

[FREE] 〈H] bid 7→ (b, n, k1);F ;S;P [r 7→ (bid, 0)]; k;σ; f ; free r〉 −→
〈H;F ∪ (bid, h);S;P ; k + 1;σ, (k, free, r, bid); f ; 0〉

[CALL] 〈H;F ;S;P ; k;σ; f ; z v〉 −→
〈H;F ;S, S;P ; k + 1;σ, (k, call, z, v); orig(v, f); let x = salloc n in (x := v; e)〉 z = λx.e, S = ∅

[RETURN] 〈H;F ;S, S;P ; k;σ; f ; ret z e〉 −→ F ′ = popStack(S, F)
〈H;F ′;S;P ; k + 1;σ, (k, ret, z, v); orig(v, f); v〉

[READ] 〈H;F ;S;P ; k;σ; f ; ∗r〉 −→ 〈H;F ;S;P ; k + 1;σ; r; v〉 V alue(r) = v ∧ v 6= junk

[ASSIGN] 〈H[bid 7→ (b, n, k1];F ;S[bid 7→ (b, n, k1];P [r 7→ (bid, i)]; k;σ; f ; r := v〉 −→ b′ = b[i 7→ v]
〈H[bid 7→ (b′, n, k1];F ;S[bid 7→ (b′, n, k1];P ; k + 1;
σ, (k,write, r, v, orig(v, f)); orig(v, f); v〉 ∧ v 6= junk

[INT-OP] 〈H;F ;S;P ; k;σ; f ;n1 + n2〉 −→ 〈H;F ;S;P ; k + 1;σ; gen;n3〉 n3 = n1 + n2

[PTR-ARITH] 〈H;F ;S;P ; k;σ; f ; r +p n〉 −→ Bid(r) = bid,
〈H;F ;S;P [r2 7→ (bid, i+ n)]; k + 1;σ; gen; r2〉 Idx(r) = i, r2 /∈ Dom(P)

[IF-T] 〈H;F ;S;P ; k;σ; f ; if0 n then e1 else e2〉 −→
〈H;F ;S;P ; k + 1;σ, (k, n == 0); f ; e1〉 n = 0

[IF-F] 〈H;F ;S;P ; k;σ; f ; if0 n′ then e1 else e2〉 −→
〈H;F ;S;P ; k + 1;σ, (k, n == n′); f ; e2〉 n′ 6= 0

[CONG] 〈H;F ;S;P ; k;σ; f ;E[e]〉 −→ 〈H′;F ′;S′;P ′; k′;σ′; f ′;E[e′]〉 〈H;F ;S;P ; k;σ; f ; e〉 −→
〈H′;F ′;S′;P ′; k′;σ′; f ′; e′〉

Error rules
[BUG-UNMATCHED-FREE] 〈H;F ;S;P [r 7→ (bid, j)]; k;σ; f ; free r〉 −→ Error (bid /∈ Dom(H)

∧(bid, h) /∈ Dom(F))
∨ r 6= Begin(r)

[BUG-DOUBLE-FREE] 〈H;F ;S;P [r 7→ (bid, 0)]; k;σ; f ; free r〉 −→ Error (bid, h) ∈ Dom(F)

[BUG-DANG-PTR-DEREF] 〈H;F ;S;P [r 7→ (bid, j)]; k;σ; f ; ∗r〉 −→ Error (bid, h) ∈ Dom(F)

[BUG-DANG-PTR-DEREF2] 〈H;F ;S;P [r 7→ (bid, j)]; k;σ; f ; r := v〉 −→ Error (bid, h) ∈ Dom(F)

[BUG-NULL-PTR-DEREF] 〈H;F ;S;P ; k;σ; f ; ∗r〉 −→ Error r = NULL

[BUG-NULL-PTR-DEREF2] 〈H;F ;S;P ; k;σ; f ; r := v〉 −→ Error r = NULL

[BUG-OVERFLOW] 〈H;F ;S;P [r 7→ (bid, j)]; k;σ; f ; ∗r〉 −→ Error bid ∈ Dom(H)∧
(r < Begin(r) ∨ r ≥ End(r))

[BUG-OVERFLOW2] 〈H;F ;S;P [r 7→ (bid, j)]; k;σ; f ; r := v〉 −→ Error bid ∈ Dom(H)∧
(r < Begin(r) ∨ r ≥ End(r))

[BUG-UNINITIALIZED] 〈H;F ;S;P ; k;σ; f ; ∗r〉 −→ Error V alue(r) = junk

Figure 8. Operational semantics (abstract machine states and reductions).

57

now points to block bid and index i+ n and add it to P and finally
update the f to gen, to record that r2 is newly generated here.

The conditional rules [IF-T] and [IF-F] are standard, though we
record the predicate value and timestamp, i.e., (k, n == 0) and
(k, n! = n′), respectively, into the trace; predicate values serve as
a further programmer aid. The congruence rule, [CONG], chooses
where computation is to be applied next, based on the shape of E.

Error rules. The bottom of Figure 8 shows the error state re-
duction rules. When one of these rules applies, the abstract ma-
chine is about to enter an error state—in our implementation, the
debugger pauses the execution (breakpoint) just before entering
an error state. These rules are instrumental for proving soundness
(Section 3.3) as they indicate when bug detectors should fire. For
brevity, we only define error rules and prove soundness for the bugs
in Figure 2. We now proceed to describing the error rules. [BUG-
UNMATCHED-FREE] indicates an illegal free r is attempted, i.e., r
does not point to the begin of a legally allocated heap block. [BUG-
DOUBLE-FREE] indicates an attempt to call free r a second time,
i.e., the block pointed to by r has already been freed. [BUG-DANG-
PTR-DEREF] and [BUG-DANG-PTR-DEREF2] indicate attempts to
dereference a pointer (for reading and writing, respectively) in
an already-freed block. Similarly, [BUG-NULL-PTR-DEREF] and
[BUG-NULL-PTR-DEREF2] indicate attempts to dereference (read
from/write to) a null pointer. Rules [BUG-OVERFLOW] and [BUG-
OVERFLOW2] indicate attempts to access values outside of a block.
Rule [BUG-UNINITIALIZED] applies when attempting to read val-
ues inside an uninitialized block (allocated, but not yet written to).

3.3 Soundness
We use Σ as a shorthand for a legal state 〈H;F ;S;P ; k;σ; f ; e〉,
and Error as a shorthand for an error state. Hence, the condensed
form of the reduction relation for legal transitions is Σ −→ Σ′,
while transitions Σ −→ Error represent bugs. At a high level, our
notion of soundness can be expressed as follows: if the abstract
machine, in state Σ, would enter an error state next, which is
the “ground truth” for a bug, then the user-defined bug detectors,
defined in terms of just e and σ, must fire.

The proof of soundness relies on several key definitions and
lemmas. We define a notion of a well-formed state, then we prove
that reductions to non-error states preserve well-formedness, and
finally the soundness theorem captures the fact that the premises of
error transition rules in fact satisfy the user-defined bug specifica-
tion, hence bugs will be detected.

We begin with the definition of well-formed states:

Definition 3.1 (Well-formed states). A state Σ = 〈H;F ;S;P ; k;
σ; f ; e〉 is well-formed if:

1. H ∩ F = ∅
2. (H ∪F) ∩ (∪

S∈S
S) = ∅

Intuitively, the first part says that block id’s cannot simultaneously
be in the heap H and in the freed set F , while the second part
ensures that the set of heap pointers (allocated or freed) does not
overlap with the set of stack pointers.

Next, we introduce a lemma to prove that non-error transitions
keep the state well-formed.

Lemma 3.2 (Preservation of well-formedness). If Σ is well-
formed and Σ −→ Σ′, and Σ′ is not an error state, then Σ′ is
well-formed.

The proof is by induction on the reduction Σ −→ Σ′. Intuitively,
this lemma states that, since the state always stays well-formed
during non-error reductions, memory bugs cannot “creep in” and
manifest later, which would hinder the debugging process. We now
proceed to stating the main result, the soundness theorem.

Theorem 3.3 (Soundness). Let the current state be Σ, where
Σ 6= Error, the current trace be σ and the redex be e. Suppose
p is a bug detector, i.e., a predicate on σ and e, and [BUG-P] is
an error rule associated with the detector. If the machine’s next
state is an Error state (Σ −→ Error) then the detector fires, i.e.,
predicate p is true.

Put otherwise, the soundness theorem states that an error in
the concrete domain of the operational semantics is detected in
the abstract domain of the bug detector. Some auxiliary lemmas
and the complete proof can be found in the companion technical
report [35]. In a nutshell, in the proof we proceed by case analysis
on the given error state transition, then appeal to various lemmas
to show how the trace σ correctly captures the events that, when
examined together with the redex e, will lead to the bug detector’s
predicate p becoming true and hence ensure the correctness of bug
detection.

4. Implementation
We now describe our implementation; it consists of an offline
translation part that generates the detectors and locators from a bug
specification, and an online debugger that runs the program and
performs detection/location.

4.1 Debugger Code Generation
From bug specification rules, described in Section 2.1, automated
translation via Flex[13] and Bison[14] is used to generate a de-
tector and locator pair. We illustrate this process using Figure 9
which contains the full bug specification text for double-free bugs
as written by the developer.

The translator first generates two helper functions for the Al-
located and Freed predicates, respectively. The Allocated helper
function parses the tracked event trace (realized by the state mon-
itoring runtime library, explained shortly) to find out whether the
block associated with r is allocated in the heap. The generated
detector checks whether the block pointed to by pointer r is allo-
cated in the heap and freed later whenever the program’s execution
reaches the start of the free function.

Each generated locator computes several value propagation
chains based on the bug specification. For example, as shown in
Figure 9, two value propagation chains are computed for the two
pointers (r and r1) which are used to deallocate the same memory
block. Each write event write, r, , z in the captured trace represents
a value propagation edge from z to r. Value propagation chains are
computed by traversing the value propagation edges back starting
from the error detection point, until gen is encountered.

4.2 Online Debugging
Figure 10 shows an overview of the online debugger. The im-
plementation runs as two separate processes (GDB and Pin) and
consists of several parts: a GDB [15] component, that provides a
command-line user interface and is responsible for interpreting the
target program’s debugging information; a state monitoring com-
ponent, that tracks program execution and translates it into the ab-
stract machine state of our calculus; and a detector control com-
ponent that helps programmers turn detectors on and off on-the-
fly. The generated bug detectors, together with the state monitor-
ing and detector control component are linked and compiled to
a pintool (a shared library) which is dynamically loaded by the
Pin [20] dynamic binary instrumentation tool. Both our state mon-
itoring component and automatically-generated bug detectors are
realized by instrumenting the appropriate x86 instructions in Pin.
The GDB component communicates with the Pin-based component
via GDB’s remote debugging protocol.

58

define Allocated(r) = exists event(, malloc, , bid) in Trace suchthat (bid == Bid(r))
define Freed(r , r1) = exists event(, free , r1 , bid) in Trace suchthat (bid == Bid(r))
[double free] detect <Trace; free r>: Allocated(r) && Freed(r, r1) :VPC(r), VPC(r1)

Figure 9. Actual bug specification input for double-free bugs.

Pin$

Running$Program$
Code$ Data$

Abstract$State$Machine$

Detector&$
Locator1

State$Monitoring$Detector$Control$

…$ Detector&$
LocatorN

Pintool.so$

Remote&&
Debugging&&
Protocol&

Binary$

GDB$

&&&&&&Load&&
executable&

Lo
ad
&&&
&

sy
m
bo

ls&

&Programmer$

&&&&&&&&&Pin&API&

Figure 10. Online debugging process.

The detector control module allows programmers to turn detec-
tors on and off at runtime. When the program’s execution reaches
a detection point, all the detectors associated with that detection
point are evaluated in the specified order. Whenever any specified
bug condition is satisfied, i.e., a bug is detected, our implementation
first calls PIN_ApplicationBreakpoint to generate a breakpoint
at the specified statement, and then generates a bug report which
consists of all the concerned events in the bug specification, as a
well as the source file name and line number.

The state monitoring component, a runtime library, observes the
program execution at assembly code level and maps it back to tran-
sitions and state changes in the abstract machine state (e.g., H , P ,
σ) described in Section 3.2. Figure 11 shows a null pointer deref-
erence bug to illustrate how the native x86 execution is mapped to
the abstract state transitions in our calculus, as well as the detec-
tion points in the detection rules. The first three columns show the
code in C, in our calculus, and assembly. Because C implicitly uses
dereferenced pointers for stack variables (e.g., p=1 in C is really
*(&p)=1), and our calculus make the implicit dereference explicit,
code in our calculus needs one more dereference than code in C
(e.g., w:=***p in our calculus corresponds to w=**p in C). In the
second column of Figure 11 we append the addr suffix to variables
from the first column (e.g., p becomes p addr) to avoid confusion.

As we can see, the x86 execution has a straightforward map-
ping to the state transition in our calculus. For example, the execu-
tion of the first mov (%eax),%eax instruction is mapped back to the
[READ] evaluation rule with r being p addr (where r is stored in
register eax here), while the second mov (%eax),%eax is mapped
back to the same rule with r being *p addr in our calculus. Mean-
while, each binary instruction has a natural mapping to the detec-
tion points (shown in the fourth column). For example, the first mov
(%eax),%eax instruction corresponds to both deref r p addr and
deref p addr detection points. That is, all the bug detectors asso-
ciated with deref r r or deref r detection points are evaluated
when the program is about to execute this instruction.

We generate the recording infrastructure after parsing the spec-
ifications, and only activate the required event trackers (e.g., we
only activate malloc and free event trackers for double-free bugs).

Next we describe maintaining state transitions for the pointer
mapping P . A block id is assigned to each allocated block, and
the block id is increased after each allocation. Unique block ids
ensure the detection of dangling pointer dereference bugs even

when a memory block is reused. Each pointer is bound with the
block id and index of the block pointed to by shadow memory.
We implement the pointer mapping transition by propagating the
shadow value of each pointer along with the pointer arithmetic op-
eration. Although we only need the mapping for pointers, we tem-
porarily maintain mapping information for registers. The fifth col-
umn in Figure 11 shows an example of how the pointer mapping
is changed by propagating the shadow value for the execution of
assembly code given in the third column. For example, the mal-
loc function returns the address of the allocated block (e.g., the
block id is 1H) in the register %eax, we shadow %eax to (1H ,
0), denoted by P [%eax 7→ (1H , 0)] in Figure 11. The mapping
info is propagated from register %eax into p after the execution
of mov %eax,−0x10(%ebp), denoted by P [−0x10(%ebp) 7→
(1H , 0)] in Figure 11, which means that pointer p points to the first
element inside block 1H . Suppose two bug detectors are generated
based on the buffer overflow and null pointer dereference specifica-
tions in Figure 2. Then when the program’s execution reaches the
first mov (%eax),%eax instruction, we are at a deref r detection
point (r is stored inside register %eax), and pointer mapping in-
formation for register %eax contains the pointer mapping informa-
tion for r here(P [%eax 7→ (1H , 0)]). By evaluating the two detec-
tors, none of the bug conditions are satisfied. The pointer mapping
for register %eax is set to invalid (denoted by (x,x) in Figure 11)
due to the assignment. The execution continues to the second mov
(%eax),%eax instruction, and the null pointer dereference bug is
reported because r == 0 is satisfied here (r is stored in register
%eax and its value equals zero).

Value origin tracking is implemented similarly to pointer map-
ping. Each variable and register is tagged with a shadow origin of
its value, and whenever the next expression to reduce is r := v, we
update the origin (shadow value) of r to be the origin of v, and we
record r and its new origin in the trace.

Storing all the tracked events and value propagations in memory
may cause the debugger to run out of memory for long-running
programs. Older events, which are unlikely to be accessed, can be
dumped to disk and reloaded into memory if needed. However, we
did not encounter this problem for our examined programs.

5. Experimental Evaluation
We evaluate our approach on several dimensions: efficiency, i.e.,
the manual coding effort saved by automated generation; effec-
tiveness/coverage, i.e., can we (re)discover actual bugs in real-
world programs; and performance overhead incurred by running
programs using our approach.

5.1 Efficiency
We measure the efficiency of our debugger code generation by
comparing the lines of code of the bug specification and the gener-
ated C implementation. For each kind of bug, we specify the bug
detector and bug locator as shown in Figure 2. Table 1 shows the
comparison of lines of codes for bug specification and generated
debugger for each kind of bug and all bugs combined.

Since detectors use the same model (detection point and predi-
cates on the abstract machine state), and share the code for the state
monitoring library, the generated code for all detectors combined
is 3.3 KLOC, while for a single detector, the code size ranges from
2.2 to 2.4 KLOC. Note that the generated implementations are or-
ders of magnitude larger than the bug specifications.

59

C Our calculus Assembly code Detection points Tracked pointer mapping Additions to σ

int w;
int ∗∗p;
p=(int∗∗)
malloc(4);
∗p=0;

w=∗∗p;

let w addr=salloc 4 in
let p addr=salloc 4 in
p addr:=malloc 8;

∗p addr:=0;

w addr:=∗∗∗p addr;

call malloc
mov %eax,−0x10(%ebp)
mov − 0x10(%ebp),%eax
movl $0x0, (%eax)
mov − 0x10(%ebp),%eax
mov (%eax),%eax
mov (%eax),%eax
mov %eax,−0xc(%ebp)

deref w/deref p addr
deref r /deref p addr
deref w/deref ∗p addr
deref r /deref p addr
deref r /deref ∗p addr

P [%eax 7→ (1H , 0)]
P [−0x10(%ebp) 7→ (1H , 0)]
P [%eax 7→ (1H , 0)]
P [(%eax) 7→ (x, x)]
P [%eax 7→ (1H , 0)]
P [%eax 7→ (x, x)]

(malloc, n, 1H)
(write, p addr, ,
malloc retval)
(write, ∗p addr, ,
gen)

bug detected at
deref ∗ p addr

Figure 11. State transition for a null pointer dereference bug.

Lines of code Unmatched Double Dangling Null Heap Buffer Uninitialized Total
Free Free Ptr. Deref. Ptr. Deref. Overflow Read

Specification 2 3 3 1 3 1 8
Generated debugger 2.3K 2.4K 2.4K 2.2K 2.3K 2.2K 3.3K

Table 1. Debugger code generation efficiency: comparison of lines of specification and generated debuggers for different bugs.

Program Name LOC Bug type Bug location Bug source Program description
Tidy-34132 35.9K Double Free istack.c:031 BugNet [27] Html checking & cleanup
Tidy-34132 35.9K Null Pointer Dereference parser.c:161 BugNet [27] Html checking & cleanup
Bc-1.06 17.0K Heap Buffer Overflow storage.c:176 BugNet [27] Arbitrary-precision Calculator
Tar-1.13.25 27.1K Null Pointer Dereference incremen.c:180 gnu.org/software/tar/ Archive creator
Cpython-870c0ef7e8a2 336.0K Unmatched Free typeobject.c:2490 http://bugs.python.org Python interpreter
Cpython-2.6.8 336.0K Double Free import.c:2843 http://bugs.python.org Python interpreter
Cpython-08135a1f3f5d 387.6K Heap Buffer Overflow imageop.c:593 http://bugs.python.org Python interpreter
Cpython-83d0945eea42 271.1K Null Pointer Dereference pickle.c:442 http://bugs.python.org Python interpreter

Table 2. Overview of benchmark programs.

Program name Traditional Dynamic VPC
debugging slicing

Tidy-34132-double-free 28,487 4,687 16
Tidy-34132-null-deref 55,777 13,050 4
Bc-1.06 42,903 19,988 1
Tar-1.13.25 74 7 4
Cpython-870c0ef7e8a2 20,719 13,136 2
Cpython-2.6.8 1,083 444 10
Cpython-08135a1f3f5d 270,544 135,366 1
Cpython-83d0945eea42 11,916 7,285 2

Table 3. Debugging effort: instructions examined.

5.2 Debugger Effectiveness
A summary of benchmarks used in our evaluation is shown in
Table 2; each benchmark contains a real reported bug, with the
details in columns 3–6. We now provide brief descriptions of the
experience with using our approach to find and fix these bugs. Note
that three of the bugs were presented in detail in Section 2.2, hence
we focus on the remaining five bugs.

In addition to the double-free bug, Tidy-34132 also contains a
NULL pointer dereference which manifests when the input HTML
file contains a nested frameset, and the noframe tag is unexpectedly
included in the inner frameset rather than the outer one, which
causes function FindBody to wrongly return a null pointer.

Bc-1.06 fails with a memory corruption error due to heap buffer
overflow (variable v count is misused due to a copy-paste error).

Cpython-2.6.8 has a double-free memory bug when there is a
folder in the current directory whose name is exactly the same as
a module name, and this opened file is wrongly closed twice, re-
sulting in double-freeing a FILE structure. Cpython-08135a1f3f5d
crashes due to a heap buffer overflow which manifests when the im-
ageop module tries to convert a very large RGB image to an 8-bit
RGB. Cpython-83d0945eea42 fails due to a null pointer derefer-

ence when the pickle module tries to serialize a wrongly-initialized
object whose write buf field is null.

It can be easily seen that the benchmark suite includes bugs
from our detector list and that all the bugs come from widely-
used applications. Thus, this benchmark suite is representative with
respect to debugging effectiveness evaluation.

All the bugs were successfully detected using the debuggers
generated from the specifications in Figure 2. However, we did
find several cases of false positives. Because our approach is based
on Pin, which cannot track code execution into the kernel for
system calls, our generated debuggers detected some false positives
(uninitialized reads). This limitation can be overcome by capturing
system call effects [26], a task we leave to future work.

We now quantify the effectiveness of our approach by show-
ing how locators dramatically simplify the process of finding bug
root causes. We have conducted the following experiment: we com-
pute the number of instructions that would need to be examined to
find the root cause of the bug in three scenarios: traditional de-
bugging, dynamic slicing[38], and our approach. We present the
results in Table 3. Traditional debugging refers to using a standard
debugger, e.g., GDB, where the programmer must trace back the
execution starting from the crash point to the point that represents
the root cause. For the bugs considered, this would require trac-
ing back through the execution of 74 to 270,544 instructions, de-
pending on the program. When dynamic slicing is employed, the
programmer traces back the execution along dynamic dependence
edges, i.e., only a relevant subset of instructions need to be ex-
amined. Breadth-first traversal of dependence chains until the root
cause is located leads to tracing back through the execution of 7 to
135,366 instructions, depending on the program. In contrast, in our
approach, the programmer will trace back through the execution
along value propagation chains which amounts to the examination
of just 1 to 16 instructions. Hence, our approach reduces the de-
bugging effort significantly, compared to traditional debugging and
dynamic slicing.

60

Program name Null Pin Bug detect Bug detect&VP
seconds seconds (factor) seconds (factor)

Tidy-34132-double-free 0.77 6.05 (7.9x) 7.62 (9.9x)
Tidy-34132-null-deref 0.62 4.52 (7.3x) 5.58 (9.0x)
Bc-1.06 0.62 4.61 (7.4x) 5.70 (9.2x)
Tar-1.13.25 1.08 5.89 (5.5x) 7.43 (6.9x)
Cpython-870c0ef7e8a2 3.95 59.21 (15.0x) 80.84 (20.5x)
Cpython-2.6.8 3.31 33.16 (10.0x) 41.35 (12.5x)
Cpython-08135a1f3f5d 2.95 32.03 (10.9x) 40.13 (13.6x)
Cpython-83d0945eea42 3.17 54.21 (17.1x) 63.83 (20.1x)

Table 4. Program execution times (from start to bug-detect), when
running inside our debugger.

5.3 Performance
The focus of our work was efficiency and effectiveness, so we have
not optimized our implementation for performance. Nevertheless,
we have found that the time overheads for generated monitors and
locators are acceptable for interactive debugging. When measuring
overhead, we used the same failing input we had used for the ef-
fectiveness evaluation. We report the results in Table 4. We use the
“Null Pin” (the program running under Pin without our debugger)
time overhead as the baseline, which is shown in the first column,
and the time overhead with all detectors on is in the second col-
umn. The third column shows the time overhead with all detectors
on and value propagation on. All experiments were conducted on
a DELL PowerEdge 1900 with 3.0GHz Intel Xeon processor and
3GB RAM, running Linux, kernel version 2.6.18.

From Table 4, we can see that the time overhead incurred by all
bug detectors ranges from 5.5x to 17.1x compared to the baseline,
while the time overhead incurred by all bug detectors and value
propagation ranges from 6.9x to 20.5x. We believe this overhead is
acceptable and a worthy tradeoff for the benefits of our approach.

When running the programs inside our debugger we have found
that (1) running time increases linearly with the number of bug
detectors enabled, and (2) even with the overhead imposed by our
dynamic approach with all detectors and value propagation on,
real-world programs took less than 81 seconds to crash on inputs
that lead to bug manifestation. These results demonstrate that the
overhead is acceptable and our approach appears promising for
debugging tasks on realistic programs.

6. Related Work
Memory debuggers. A number of works aim to handle multiple
kinds of memory bugs [2, 11, 28]. DieHard [2] is a unified algo-
rithm for memory management for avoiding memory errors. Pu-
rify [11] and Valgrind Memcheck [28] detect memory bugs using
dynamic binary instrumentation. Bond et al.’s approach [3] tracks
the origins of unusable values; however, it can only track the origin
of Null and undefined values while our VPCs capture not only ori-
gin, but propagation for any specified variable. VPCs are therefore
much more useful. E.g., for a double-free bug, the origin of pointer
r used in the second free is always the return value of malloc (which
is not very informative). These approaches are specialized to find
a reduced class of memory bugs, and the bug detection is “hard-
coded”. Our approach permits very easy extensibility to new kinds
of bugs via specification and code generation; we also present a
soundness proof to show that the debuggers specification are cor-
rect.

Advanced debugging and bug finding. MemTracker [34] pro-
vides a unified architectural support for low-overhead programmable
tracking to meet the needs for different kinds of bugs. Find-
Bugs [12] leverages bug patterns to locate bugs and Algorithmic
(or declarative) debugging [32] is an interactive technique where

the user is asked at each step whether the prior computation step
was correct [33]. Program synthesis has been used in prior work
to automatically generate programs from specifications at various
levels: types [21], predicates or assertions/goals [22]; however no
prior work on synthesis has investigated specification at the opera-
tional semantics level in the context of debugging.

Runtime verification and dynamic analysis. Monitor-oriented
programming (MOP) [24] and Time Rover [16] allow correctness
properties to be specified formally (e.g., in LTL, MTL, FSM, or
CFG); code generation is then used to yield runtime monitors from
the specification. Monitor-oriented programming (MOP) [4, 24]
combines formal specification with runtime monitoring. In MOP,
correctness properties can be specified in LTL, or as FSM, or as a
CFG. Then, from a specification, a low-overhead runtime monitor
is synthesized to run in AspectJ (i.e., use aspect-oriented program-
ming [17] in JavaMOP [4]) or on the PCI bus (in BusMOP [30]) to
monitor the program execution and detect violations of the specifi-
cation. Time Rover [7, 16] combines LTL, MTL and UML speci-
fication with code generation to yield runtime monitors for formal
specifications.

PQL [23] and PTQL [9] allow programmers to query the pro-
gram execution history, while tracematches [1] allows free vari-
ables in trace matching on top of AspectJ. GC assertions [31] allow
programmers to query the garbage collector about the heap struc-
ture. Jinn [19] synthesizes bug detectors from state machine for
detect foreign function interface.

Ellison and Roşu [8] define a general-purpose semantics for C
with applications including debugging and runtime verification; in
our semantics we only expose those reduction rules that help spec-
ify memory debuggers, but our approach works for the entire x86
instruction set and sizable real-world programs including library
code.

Compared to all these approaches, our work differs in several
ways: the prior approaches are adept at specifying properties and
generating runtime checkers (which detect what property has been
violated), whereas ours points out where,why, and how a property
is violated; also, we introduce value propagation chains to signifi-
cantly reduce the effort associated with bug finding and fixing.

7. Conclusions
We have presented a novel approach to constructing memory de-
buggers from declarative bug specifications. We demonstrate that
many categories of memory bugs can be specified in an elegant
and concise manner using First-order logic; we then prove that bug
specifications are sound, i.e., they do not miss bugs that manifest
during execution. We show that from the concise bug specifica-
tions, debuggers that catch and locate these bugs can be generated
automatically, hence programmers can easily specify new kinds of
bugs. We illustrate our approach by generating debuggers for six
kinds of memory bugs. Experiments with using our approach on
real-world programs indicate that it is both efficient and effective.

Acknowledgments
This research is supported by the National Science Foundation
grants CCF-0963996 and CCF-1149632 to the University of Cali-
fornia, Riverside.

References
[1] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,

O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble.
Adding trace matching with free variables to aspectj. OOPSLA ’05,
pages 345–364.

[2] E. D. Berger and B. G. Zorn. DieHard: Probabilistic memory safety
for unsafe languages. PLDI’06, pages 158–168.

61

[3] M. D. Bond, N. Nethercote, S. W. Kent, S. Z. Guyer, and K. S.
McKinley. Tracking bad apples: reporting the origin of null and
undefined value errors. OOPSLA ’07, pages 405–422.

[4] F. Chen and G. Roşu. MOP: An Efficient and Generic Runtime
Verification Framework. In OOPSLA’07, pages 569–588.

[5] D. Dhurjati and V. Adve. Efficiently detecting all dangling pointer
uses in production servers. In DSN ’06, pages 269–280.

[6] D. Dhurjati and V. Adve. Backwards-compatible array bounds check-
ing for c with very low overhead. In ICSE ’06, pages 162–171, 2006.

[7] D. Drusinsky. The temporal rover and the atg rover. In SPIN 2000.
[8] C. Ellison and G. Roşu. An executable formal semantics of C with

applications. In POPL ’12, pages 533–544.
[9] S. F. Goldsmith, R. O’Callahan, and A. Aiken. Relational queries over

program traces. OOPSLA ’05, pages 385–402.
[10] R. Hähnle, M. Baum, R. Bubel, and M. Rothe. A visual interactive

debugger based on symbolic execution. In ASE ’10, pages 143–146.
[11] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and

access errors. USENIX Winter Tech. Conf., pages 125–136, 1992.
[12] D. Hovemeyer and W. Pugh. Finding bugs is easy. OOSPLA’04, pages

92–106.
[13] http://flex.sourceforge.net/. Flex homepage.
[14] http://www.gnu.org/software/bison/. Bison homepage.
[15] http://www.gnu.org/software/gdb/. Gdb homepage.
[16] http://www.time-rover.com. Time Rover homepage.
[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.

Loingtier, and J. Irwin. Aspect-oriented programming. In ECOOP’97,
pages 220–242.

[18] A. Ko and B. Myers. Debugging reinvented: Asking and answering
why and why not questions about program behavior. ICSE’08, pages
301–310.

[19] B. Lee, B. Wiedermann, M. Hirzel, R. Grimm, and K. S. McKinley.
Jinn: synthesizing dynamic bug detectors for foreign language inter-
faces. PLDI ’10, pages 36–49.

[20] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: building customized pro-
gram analysis tools with dynamic instrumentation. In PLDI ’05, pages
190–200.

[21] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid mining:
helping to navigate the api jungle. In PLDI ’05, pages 48–61.

[22] Z. Manna and R. Waldinger. A deductive approach to program syn-
thesis. ACM Trans. Program. Lang. Syst., pages 90–121, 1980.

[23] M. Martin, B. Livshits, and M. S. Lam. Finding application errors and
security flaws using pql: a program query language. OOPSLA ’05,
pages 365–383.

[24] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu. An overview
of the MOP runtime verification framework. International Journal on
Software Techniques for Technology Transfer, pages 249–289, 2011.

[25] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. Softbound:
highly compatible and complete spatial memory safety for c. PLDI’09,
pages 245–258.

[26] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and B. Calder. Au-
tomatic logging of operating system effects to guide application-level
architecture simulation. In SIGMETRICS’06, pages 216–227.

[27] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Continu-
ously recording program execution for deterministic replay debug-
ging. ISCA’05, pages 284–295, 2005.

[28] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. PLDI’07, pages 89–100.

[29] G. Novark, E. D. Berger, and B. G. Zorn. Efficiently and precisely
locating memory leaks and bloat. In PLDI ’09, pages 397–407.

[30] R. Pellizzoni, P. Meredith, M. Caccamo, and G. Rosu. Hardware
runtime monitoring for dependable cots-based real-time embedded
systems. In RTSS’08, pages 481–491.

[31] C. Reichenbach, N. Immerman, Y. Smaragdakis, E. E. Aftandilian,
and S. Z. Guyer. What can the gc compute efficiently?: a language for
heap assertions at gc time. OOPSLA ’10, pages 256–269.

[32] E. Y. Shapiro. Algorithmic Program DeBugging. MIT Press, 1983.
[33] J. Silva. A survey on algorithmic debugging strategies. Adv. Eng.

Softw., pages 976–991, 2011.
[34] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic. Mem-

tracker: An accelerator for memory debugging and monitoring. ACM
Trans. Archit. Code Optim., pages 5:1–5:33, 2009.

[35] Y. Wang, I. Neamtiu, and R. Gupta. Generating sound and effec-
tive memory debuggers. Technical report, University of California,
Riverside, Department of Computer Science and Engineering, http:
//www.cs.ucr.edu/~neamtiu/pubs/memdebug-tr.pdf, 2013.

[36] G. Xu, M. D. Bond, F. Qin, and A. Rountev. Leakchaser: helping
programmers narrow down causes of memory leaks. In PLDI ’11,
pages 270–282.

[37] C. Zhang, D. Yan, J. Zhao, Y. Chen, and S. Yang. Bpgen: an automated
breakpoint generator for debugging. In ICSE ’10, pages 271–274.

[38] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slicing algo-
rithms. ICSE ’03, pages 319–329, May 2003.

62

