
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN

INGEGNERIA ELETTRONICA, TELECOMUNICAZIONI E
TECNOLOGIE DELL'INFORMAZIONE

Ciclo 35

Settore Concorsuale: 09/E3 - ELETTRONICA

Settore Scientifico Disciplinare: ING-INF/01 - ELETTRONICA

OPTIMIZING AI AT THE EDGE: FROM NETWORK TOPOLOGY DESIGN TO MCU
DEPLOYMENT

Presentata da: Alessio Burrello

Supervisore

Luca Benini

Esame finale anno 2023

Coordinatore Dottorato

Aldo Romani

Co-supervisore

Davide Rossi

ALMA MATER STUDIORUM - UNIVERSITY OF BOLOGNA

Optimizing AI at the Edge: from

network topology design to MCU

deployment

by

Alessio Burrello

A thesis submitted for the degree of

Doctor of Philosophy

in the

Faculty of Engineering

Department of Electrical, Electronic and Information Engineering ”G. Marconi

(DEI)

December 2022

https://www.unibo.it/it
alessio.burrello@unibo.it
https://phd.unibo.it/etit/en/phd-programme/
http://www.dei.unibo.it/en
http://www.dei.unibo.it/en

Acknowledgements

I first would like to thank my supervisor Luca Benini for his support, inputs, and all the

help he gave me in these years.

I would like to thank Simone Benatti, Francesco Conti, and Davide Brunelli, who always

provided essential suggestions for projects that I did during my Ph.D.

I also thank all the people of the research group in Bologna, in Torino, and in KU Leuven

that shared this incredible journey with me and helped me explore many different aspects

of research and life.

Finally, I thank my parents and my friends who supported me during these three years.

A special thank goes to my brother, Jacopo Burrello, which inspired me in this career

since 2018 when we did our first research work together.

ii

Abstract

Optimizing and deploying artificial intelligence on edge devices to remove the necessity

of cloud computing systems and sending data over networks is vital for reducing energy

consumption and improving privacy. This thesis will describe two essential knobs to

optimize the so-called EdgeAI.

The first topic analyzed in the thesis will be Neural Architecture Search (NAS).

NAS is quickly becoming the go-to approach to optimize the structure of Deep Learning

(DL) models. I will focus on two different tools that I developed, one to optimize the

architecture of Temporal Convolutional Networks (TCNs), a convolutional model for

time-series processing that has recently emerged, and one to optimize the data precision

of tensors inside CNNs. The first NAS proposed explicitly targets the optimization of

the most peculiar architectural parameters of TCNs, namely dilation, receptive field,

and the number of features in each layer. Note that this is the first NAS that explicitly

targets these networks. The second NAS proposed instead focuses on finding the most

efficient data format for a target CNN, with the granularity of the layer filter. Note that

applying these two NASes in sequence allows an ”application designer” to minimize the

structure of the neural network employed, minimizing the number of operations or the

memory usage of the network.

After that, the second topic described is the optimization of neural network deploy-

ment on edge devices. Importantly, exploiting edge platforms’ scarce resources is critical

for NN efficient execution on MCUs. To do so, I will introduce DORY (Deployment Ori-

ented to memoRY) – an automatic tool to deploy CNNs on low-cost MCUs. DORY,

in different steps, can manage different levels of memory inside the MCU automati-

cally, offload the computation workload (i.e., the different layers of a neural network)

to dedicated hardware accelerators, and automatically generates ANSI C code that or-

chestrates off- and on-chip transfers with the computation phases. On top of this, I will

introduce two optimized computation libraries that DORY can exploit to deploy TCNs

and Transformers on edge efficiently.

I conclude the thesis with two different applications on bio-signal analysis, i.e., heart

rate tracking and sEMG-based gesture recognition. In these two applications, I will show

the employment of previously described techniques as fundamental blocks for optimizing

the execution of these tasks on edge.

Contents

Acknowledgements ii

Abstract iii

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Contributions . 3

1.2 List of Publications . 7

2 Background 16

2.1 Deep Neural Networks . 16

2.1.1 Temporal Convolutional Networks 16

2.1.2 Attention & Transformers . 17

2.2 Neural Architecture Search . 18

2.2.1 Reinforcement Learning based NAS 19

2.2.2 Differentiable NAS . 19

2.2.3 Dmasking NAS . 21

2.3 Microcontrollers: ARM & RISC-V platforms 21

2.3.1 ARM Platforms . 22

2.3.1.1 Single-core: STM32L4 and STM32H7 22

2.3.1.2 Dual-core: STM32WB55 23

Hwatch . 23

2.3.2 RISC-V Platforms: PULP & GAP8 26

2.3.2.1 MPIC . 27

2.3.2.2 GAP8 . 28

2.4 Biosignals: Sensors and processing . 29

2.4.1 Photoplethysmography and PPG-based HR 29

2.4.2 Surface Electromyographic Signal 30

3 Neural Architecture Search for Efficient Deployment on MCUs 31

3.1 Related Works . 31

iv

Contents v

3.2 Lightweight Neural Architecture Search for Temporal Convolutional Net-
works at the Edge . 33

3.2.1 Search Space . 33

3.2.1.1 Channels Search . 35

3.2.1.2 Receptive Field Search 37

3.2.1.3 Dilation Search . 38

3.2.1.4 Joint Search . 40

3.2.2 Regularization . 40

3.2.2.1 Size Regularizer . 41

3.2.2.2 OPs Regularizer . 42

3.2.3 Training Procedure . 42

3.2.4 Benchmarks . 43

3.2.4.1 PPG-based Heart-Rate Monitoring 44

3.2.4.2 ECG-based Arrhythmia Detection 44

3.2.4.3 sEMG-based Hand-Gesture Recognition 45

3.2.4.4 Keyword Spotting . 45

3.2.5 Experimental Results . 45

3.2.5.1 Search Space Exploration 46

3.2.5.2 Ablation Studies . 48

Hyper-parameters . 48

Regularizers . 49

3.2.5.3 Comparison with state-of-the-art NAS tools 50

3.2.5.4 Embedded Deployment 52

3.3 Channel-wise Mixed-precision Assignment for DNN Inference on Con-
strained Edge Nodes . 54

3.3.1 Precision Assignment Optimization Method 54

3.3.2 Training Procedure . 57

3.3.3 Implementation Details . 58

3.3.4 Experimental Results . 59

3.3.4.1 Setup . 59

3.3.4.2 Search-Space Exploration 60

3.3.4.3 Results Analysis . 61

3.4 Multi-Complexity-Loss DNAS for Energy-Efficient and Memory-Constrained
Deep Neural Networks . 63

3.4.1 Weighting Losses . 64

3.4.2 Experimental Results . 65

3.4.2.1 Setup . 65

3.4.2.2 Search-Space Exploration 65

3.4.2.3 Architecture Details . 66

4 Deployment of Deep Neural Networks on MCUs 68

4.1 Related Works . 68

4.1.1 Optimized software & ISA for DNN computation 70

4.1.2 Memory hierarchy management . 70

4.1.3 DNN-oriented microcontrollers and related tools 71

4.2 DORY: Automatic End-to-End Deployment of Real-World DNNs on Low-
Cost IoT MCUs . 73

Contents vi

4.2.1 ONNX Decoder . 73

4.2.2 Layer Analyzer . 74

4.2.2.1 DORY Tiling Solver . 75

4.2.2.2 GAP8-specific Heuristics & Constraints 77

4.2.2.3 DORY SW-cache Generator 78

4.2.3 DORY Hybrid Model . 78

4.2.4 Network Parser . 80

4.2.4.1 Buffer allocation stack & Residual connections 81

4.2.5 Results . 82

4.2.5.1 Single layer performance & SoA comparison 83

4.2.5.2 End-to-end network performance 85

4.2.5.3 End-to-end MobileNet-v1 and -v2 & SoA comparison . . 85

4.2.5.4 In-depth analysis of MobileNet-v1 execution 86

4.2.6 Ablation Study . 88

4.2.6.1 Single tile performance 88

4.2.6.2 Hybrid optimization for Depthwise layers 89

4.2.6.3 Voltage and frequency scaling 89

4.2.6.4 Memory hierarchy sizing 90

4.2.6.5 Single core performance on different architectures 92

4.3 TCN Mapping Optimization for Ultra-Low Power Time-Series Edge In-
ference . 94

4.3.1 TCN Kernel Toolkit . 94

4.3.1.1 Design Choices . 94

4.3.1.2 1D Convolutional Kernels 96

4.3.1.3 Kernel modeling and selection 97

4.3.2 Experimental Results and Discussion 99

4.3.2.1 Kernels Comparison . 99

4.3.2.2 Comparison with State-of-the-art NN backends 100

4.3.2.3 Complete use cases . 102

4.4 A Microcontroller is All You Need: Enabling Transformer Execution on
Low-Power IoT Endnodes . 105

4.4.1 Self-Attention Kernels . 105

4.4.2 Linear Layers . 105

4.4.3 Matrix Multiplications . 106

4.4.4 Kernel execution loops . 108

4.4.5 Quantization . 109

4.4.6 TinyRadar Transformer . 109

4.4.7 Experimental Results . 110

4.4.7.1 Kernel performance . 111

4.4.7.2 Comparison with the state-of-the-art 111

4.4.7.3 TinyRadar Transformer performance 114

5 Biosignal analysis with deep neural networks on the edge 116

5.1 Q-PPG: Energy-Efficient PPG-based Heart Rate Monitoring on Wearable
Devices . 116

5.1.1 Q-PPG Exploration Flow . 116

5.1.1.1 Input Data and Seed Network 118

Contents vii

5.1.1.2 Architecture Optimization 118

Search Protocol . 120

5.1.1.3 Precision Optimization 120

Search Protocol . 122

5.1.1.4 Post-processing . 122

5.1.1.5 Fine-Tuning . 123

5.1.2 Results . 123

5.1.2.1 The PPG-Dalia Dataset 124

5.1.2.2 Architecture Optimization Results 124

5.1.2.3 State-of-the-art comparison 126

5.1.2.4 Precision Optimization 129

5.1.2.5 Deployment Results . 130

5.2 Bioformers: Embedding Transformers for Ultra-Low Power sEMG-based
Gesture Recognition . 132

5.2.1 Bioformer: Network Topology . 132

5.2.2 Bioformer: Training . 133

5.2.3 Experimental Setup & Dataset . 134

5.2.4 Experimental Results . 135

5.2.4.1 Ninapro DB6 benchmark 136

5.2.4.2 Ablation Study: pre-training & Patch Dimension 136

5.2.4.3 Deployment on GAP8 . 138

6 Conclusions 140

Bibliography 143

List of Figures

1.1 Flow of the following thesis. Four background topics introduce the three
main chapters of the thesis, i) NAS for efficient deployment on MCUs
(Chapter 3), ii) deployment of DNNs on MCUs (Chapter 4), and iii)
biosignal analysis with deep neural networks on edge (Chapter 5). 2

2.1 STM32L4 block diagram. 22

2.2 STM32WB55 block diagram. 24

2.3 Wrist-worn form factor board presented in [1]. 25

2.4 MPIC block diagram with mixed-precision dedicated hardware IPs in yellow. 27

2.5 GWT GAP-8 MCU block diagram. 28

2.6 Synthtic generated and ideal PPG signal. 29

3.1 Search space of PIT. 35

3.2 Channels search example. Each ΘA,m = 0 zeroes-out the m-th convolu-
tional filter, i.e., a slice of size K × Cin of the weights tensor W 36

3.3 Receptive field search example. Each ΘB,i = 0 eliminates the contribution
of 1 input time-step from the convolution output, by zeroing out a time-
slice of size Cout × Cin of the weights tensor W 38

3.4 Example of conversion between trainable architectural parameters β and
γ and corresponding binary masks ΘB and ΘΓ, for a layer with Fseed = 9. 38

3.5 Dilation search example. Each Γi = 0 increases d by a factor 2. 40

3.6 Seed network architectures for the four considered benchmarks. 43

3.7 Overall PIT Pareto fronts for the four target benchmarks, and comparison
with seed and hand-tuned TCNs. 46

3.8 Comparison between the results of PIT searches with different combina-
tions of hyper-parameters for PPG-Dalia. 49

3.9 Comparison of Rsize and Rops regularizers for PPG-Dalia. 49

3.10 Quality of results comparison between PIT and state-of-the-art NAS tools
on the PPG-Dalia dataset. 50

3.11 Search space and time comparison between PIT and state-of-the-art NAS
tools on the PPG-Dalia dataset. 51

3.12 Hyperparameters of the deployed PIT architectures and corresponding
seed network for the four benchmarks. 51

3.13 Overview of the proposed approach. 55

3.14 Layer re-organization to support channel-wise precision assignment. . . . 58

3.15 Pareto fronts obtained for the four MLPerf Tiny benchmarks, and com-
parison with EdMIPS and fixed-precision solutions. 59

3.16 Example of found architectures for the IC benchmark. 61

3.17 Accuracy versus OPs results for different size targets. 65

viii

List of Figures ix

3.18 Examples of found architectures for the IC benchmark. 67

4.1 DORY L3-L2-L1 layer routine example. On the left, the I/O DMA copies
weights tile in case only Cy is L3-tiled. Two different buffers are used
for L2w. Then, the Cluster DMA manages L2-L1 communication us-
ing double-buffering while the cores compute a kernel on the current tile
stored in one of the L1 buffers. 74

4.2 Modified execution model for depthwise convolutions: the Im2Col buffer
is built using a single channel out of CHW-layout activations; outputs are
quantized and stored back using the PULP-NN model. 79

4.3 Execution time analysis for point-wise and depth-wise layers. 82

4.4 In Part. A, the power traces of a point-wise Convolution following a
depth-wise one. The I/O DMA causes the COREs to go in IDLE, waiting
for the memory transfer to end. In Part. B, an L3-tiled layer is executed
and perfectly buffered to hide the memory hierarchy to the computing
engine. fr = 100 MHz and VDD = 1V have been used on the GAP8 MCU. 82

4.5 In the left part, the 1.0-MobileNet-128 power profile when running on
GAP-8 @ fcluster = fio = 100MHz and VDD = 1V . On the right are
MAC operations, average power, and time for each network layer. power
was sampled at 64 KHz and then filtered with a moving average of 300 us. 84

4.6 example of the effect of heuristic optimizations on convolutional layer
performance. In this case, the “optimal” tile has output tensor 24×4×32
(HWC) and weight tensor 32×3×3×32 (CoHWCi). Different optimiza-
tions are showed by varying wy, hy, and Cy and violating the heuristics
of Section 4.2.2.2. 88

4.7 Comparison between HWC, CHW, and DORY layers layout. Different
kernels are explored. 89

4.8 Power, latency, and MAC/cycles performance exploration with swiping
frequencies. The 1.0-MobileNet-128 is used as a benchmark. CL fre-
quency varies in [25 MHz, 260 MHz], I/O one in [50 MHz ,250 MHz].
A green dashed circle highlights the (100 MHz, 100 MHz) configuration
used throughout the paper. 90

4.9 MAC/cycles and FPS are explored with different configurations of L1-L2
memories using a 1.0-MobileNet-v1 with resolution 128x128. L2 varies
from 256 kB (19/29 layers tiled from L3) to 4 MB (No L3 tiling), whereas
L1 varies from 22 kB to 400 kB. 91

4.10 On the left, absolute MAC/cycle of DORY framework on STM32H7 and
single-core GAP8, compared with default CUBE-AI/TensorFlow Lite for
Micro layer backend, CMSIS-NN. On the right, relative gains compared
to the fastest CMSIS-NN implementation. 92

4.11 Three different input data gathering options are used in the proposed
kernels. 95

4.12 MatMul loop, Quantization, and Batch Normalization in the proposed
toolkit. Lighter colors represent parallelization over multiple cores. 95

4.13 Modeling of the three kernels versus various layer parameters. 97

4.14 Execution cycles of the three 1D convolution kernels on a 64 × 256 × 32
layer. The three kernels achieve 15.1, 13.7, and 12.0 MACs/cycle, respec-
tively. With d = 2, the No-im2col performance lowers to 9.7 MACs/cycle. 100

4.15 Memory occupation of the kernels of Fig. 4.14. 101

List of Figures x

4.16 Comparison with state-of-the-art CNN backends for edge devices. 101

4.17 Multi-Head Attention module. 106

4.18 Linear layer data flow for HPS and HSP out data layouts. Output
matrices are filled from left to right, top to bottom. 107

4.19 Matrix multiplication designed to work with multiple heads with different
data layouts. 107

4.20 Overall architecture of the proposed network. The front end comprises
three blocks of pointwise convolution, depthwise convolution, and pooling,
followed by a Linear layer. Each of the six encoder blocks (in purple)
consists of layer norm layers (LN), a Multi-Head Attention layer (MH),
and Linear layers (FF). 110

4.21 Performance description of baselines and proposed kernels on the three
different platforms. The x scales are different for each platform given the
extremely different upper limits. 111

4.22 Parallelization of the attention layer with 1, 2, 4, and 8 cores on GAP8. . 114

5.1 Proposed Q-PPG design space exploration flow. 117

5.2 High-level scheme of the functionality of the two NAS algorithms used
for architecture optimization. Pooling and other layers are not shown for
simplicity. 119

5.3 EdMIPS flow for arithmetic precision optimization. 121

5.4 HR tracking obtained with the best performing Q-PPG output TCNs
before and after post-processing on the subject n.3 of the Dalia dataset. . 123

5.5 Architecture optimization results in the MAE versus n. of parameters and
MAE versus Millions of Operations (MOPs) planes. The curve labeled
“MN-PIT” corresponds to the sequence of MorhpNet (MN) and PIT used
in the proposed Q-PPG flow. 125

5.6 Comparison with state-of-the-art algorithms in the MAE versus number
of operations space. 128

5.7 MAE versus memory occupation of Q-PPG TCNs quantized with different
data formats. 129

5.8 Break-down of the energy consumed in the 2s between two successive
HR estimations, including data communication, algorithm execution, and
waiting time for new data. 131

5.9 In the upper part, the basic MHSA layer used inside the architectures.
In the lower part, the two Bioformers architectures that I propose as
benchmarks. 133

5.10 Performance variation on the different testing sessions. 135

5.11 Accuracy per subject with intra- and inter-patient training data. 137

5.12 Performance using [1,30] filter dimensions for the front-end convolutional
layer. Increasing the filter dimension reduces both the number of param-
eters and the number of operations. 137

5.13 Accuracy vs parameters. 138

5.14 Accuracy vs MAC operations. 138

List of Tables

2.1 State-of-the-art NAS (Values: ↑= large, ↗= medium, ↓= small). 18

2.2 Board components power profile. 25

3.1 List of symbols used in the description of the NAS algorithm. 34

3.2 Range of regularizer strength (λ) values for the four benchmarks. 48

3.3 Detailed deployment results for the four benchmarks. 52

4.1 Data flow scheduling and tiling in literature for different computing scales,
super computing, ASIC accelerators, and tiny MCUs. 69

4.2 Symbols used throughout this work. 73

4.3 Average performance and efficiency on 8-bits MobileNet-V1 layers ob-
tained with DORY and other SoA MCU-deployment frameworks. 83

4.4 End-to-end execution of image recognition MobileNet-v1 and MobileNet-
v2 on GAP8 and STM32H7 MCUs. 87

4.5 Performance of the TCN kernel library using different optimization crite-
ria for tiling parameters and kernel selection. 99

4.6 End-to-end comparison on three TCNs architectures for different tasks.
Abbreviations: OOM: Out of Memory. 103

4.7 Comparison of my kernel library with PULP-NN and CMSIS-NN onto
three commercial MCUs. 113

4.8 Performance of the proposed transformer architecture at fr = 100MHz
on GAP8 platform. Abbreviations: At.: Attention. FF: Linear layers in
Transformer backend. 115

5.1 Comparison with state-of-the-art PPG-based HR monitoring algorithms. . 127

5.2 Deployment of different Q-PPG networks on the STM32WB55 using
Cmix-NN layers [2]. 130

5.3 Energy consumption of the three main components of the system during
in phases. 131

5.4 Performance of the quantized Pareto architectures on the GAP8 MCU.
Bio1 corresponds to Bioformer (h=8, d=1), Bio2 to Bioformer (h=2,
d=2). Abbreviations: Lat.: latency, E.: energy, Q.Acc.: quantized accu-
racy. 139

xi

Chapter 1

Introduction

Deep Learning (DL) models are at the core of many time-series processing appli-

cations. Notable examples are audio classification [3], bio-signals analysis [4–7] and

predictive maintenance [8, 9]. For many years, the state-of-the-art DL models for time-

series-based tasks have been Recurrent Neural Networks (RNNs) [10]. Recently, however,

new architectures have been proposed as viable alternatives to RNNs, such as Attention-

based Transformers and Temporal Convolutional Networks (TCNs) [11]. Transformer

networks are based on the attention mechanism, which puts in the relationship every

time-point of the input. These networks are quickly becoming state-of-the-art, outclass-

ing all competitors in terms of accuracy also in this field. These results are obtained

thanks to models such as BERT [12], and GPT-3 [13], which include hundreds of mil-

lions or even billions of parameters. TCNs are uni-dimensional Convolutional Neural

Networks (CNNs) specialized for time series, which have been shown to provide accu-

racy comparable to RNNs, while providing computational advantages, namely higher

arithmetic intensity, smaller memory footprint, and more data reuse opportunities [11].

Thanks to these features, TCNs are particularly interesting for edge computing appli-

cations, where inference is directly executed on Internet of Things (IoT) edge devices

rather than on centralized servers in the cloud.

However, dedicated optimization steps are required to execute both Transformers

and TCN networks on edge. On-device inference requires indeed small and efficient DL

models compatible with edge nodes’ limited memory spaces and tight energy budgets.

On the other hand, selecting an efficient model is usually insufficient to meet such tight

constraints. This thesis will show two key optimization steps for shrinking, optimizing,

and deploying neural network execution on edge devices.

The first step is the optimization of architectural hyperparameters and the deci-

sion of the arithmetic precision of the tensors so that the resulting network occupies as

1

Introduction 2

Figure 1.1: Flow of the following thesis. Four background topics introduce the three
main chapters of the thesis, i) NAS for efficient deployment on MCUs (Chapter 3), ii)
deployment of DNNs on MCUs (Chapter 4), and iii) biosignal analysis with deep neural
networks on edge (Chapter 5).

low memory and performs as few operations – with the simplest format – as possible

to reach the desired accuracy level. Nowadays, rather than manually, such architec-

tural optimization is increasingly performed with automatic Neural Architecture Search

(NAS) tools. A plethora of different NAS approaches has been proposed in the last few

years, and several of these works have targeted edge devices [14–18]. However, none

of them has focused specifically on models for time-series processing (i.e., TCNs), nor

specifically on the data format for weights and intermediate activations. Although there

are NAS tools, initially designed for 2D CNNs, that can be easily extended to explore

TCNs-related parameters and data format, they do so in a coarse-grain way. Specifically,

they create a different copy of all network layers for each setting [18]. This approach

results in high memory- and time-consuming searches, requiring hundreds of GPU hours

even for relatively simple tasks, which translates into large energy wastes and CO2 emis-

sions. In contrast, in this thesis, I will show two innovative DmaskingNAS, which can

perform a fine-grain search of hyperparameters within a single relatively fast training:

the first, Pruning in Time (PiT), is tailored explicitly for TCNs. It explores dilation,

receptive field, and the number of channels. The second has been designed to explore

mixed-precision quantization, i.e. the association of each different tensor of a DNN with

a different data format (e.g., int2, int4, int8, etc...). Noteworthy, these tools can also be

extended to work on different type of networks, with a small amount of modifications.

However, in this thesis I will only describe the main scope of these NASes, and why they

have been initially designed.

After applying these optimization steps, the output is a fixed topology with fixed

data formats. However, to port it to edge devices without support for any OS, we

still need i) to map it onto layer primitives and ii) to manage the memory system of

the devices to maximize execution performance. The deployment of DL-based algo-

rithms on IoT devices indeed demands aggressive hardware, software, and algorithmic

co-optimization to exploit the scarce resources on these systems to the maximum de-

gree [19]. For instance, on the hardware side, accelerators [20–22] and instruction set

Introduction 3

architecture (ISA) extensions [23] that exploit low-precision data formats have been in-

troduced to speed up the computation, lessen the impact of memory constraints, and

minimize energy consumption. A typical architecture often couples a conventional MCU

with an accelerator [24, 25] and employs multi-level hierarchies of on- and off-chip mem-

ories. In some cases, they do away entirely with energy-expensive coherent data caches,

exploiting manually managed scratchpad memories instead to maximize area and en-

ergy efficiency. Therefore, the main contribution of the thesis towards integrating small

DNNs on state-of-the-art MCU nodes will be DORY (Deployment Oriented to mem-

oRY), which automatically generates ANSI C code for a target network. The generated

code i) optimally manages data transfers between different memory levels and ii) double-

buffer them with an optimized execution of the micro-kernels, e.g., convolutions. While

DORY has been initially thought for 2D convolutional neural networks, given the focus

on time-series-based application, I will also introduce two new specialized collections of

kernels that are integrated into DORY: PULP-NN-1D, a collection of optimized convo-

lutional kernels for 1D convolutions, and TinyFormers, a collection of micro-kernels for

the optimization of the sub-nodes inside attention layers. Thanks to these two libraries,

I expanded the scope of DORY, bringing to the edge different 1D applications. Note

that DORY could be also similarly extended to other architectures and platforms, such

as heterogeneous hardware platforms, but it is outside the scope of this work.

In the last chapter of this thesis, ”Biosignal analysis with deep neural networks

on edge”, I demonstrate how the tools and libraries that I introduced are exploited to

optimize real-world tasks (I consider two bio-signal based temporal tasks, but these tools

can be applied to any application domain). As reported, I used them to optimize and

reach cutting-edge results in terms of accuracy and performance on real hot applications.

For instance, in heart-rate estimation using photoplethysmographic (PPG) signals, Deep

Learning (DL) is increasingly applied. Compared to classical solutions, it allows for

a better generalization, despite several problems related to DL. On the other hand,

deploying accurate models for heart-rate estimation on wrist-worn devices, typically

based on Microcontrollers (MCUs), is far from trivial [26]. I will show that thanks to

the tools introduced to optimize the topology and to optimally map networks on MCU

resources, we can efficiently deploy such solutions on different platforms, maximizing the

battery life of devices.

In the next section, I will detail all the contributions.

1.1 Contributions

In this thesis, I introduce three main important research directions:

Introduction 4

• Neural Architecture Search (NAS) for Efficient Deployment on MCUs:

first, I will describe a NAS algorithm called Pruning in Time (PIT) to optimize

Temporal Convolutional Networks, 1D Convolutional Neural Networks character-

ized by the presence of the dilation (a fixed gap between the activations that are

convolved with weights). The algorithm targets three crucial hyperparameters,

the receptive field, the dilation, and the channels of each layer. I frame their op-

timization as a structured weight pruning, in which additional trainable masking

parameters are added to different layers’ weights so that their binarized values

encode valid settings of the architectural hyperparameters. These masks are then

trained with a regularizer to reduce the model complexity as much as possible

while preserving accuracy. I consider two different regularizers to explore both the

reduction of the number of parameters and of the number of inference operations.

These regularizers allow me to enlarge and enrich the collection of Pareto architec-

tures found by this NAS. In Sec. 3.2.5, I will show PIT results on four benchmarks

relative to real-world time-series processing tasks where TCNs are commonly em-

ployed and for which a deployment on edge devices is relevant: (i) PPG-Based

Heart-Rate Monitoring; (ii) ECG-based Arrhythmia Detection; (iii) sEMG-based

Hand-Gesture Recognition; (iv) Keyword Spotting. Results show that PIT can

find multiple Pareto-optimal architectures starting from a single seed network,

achieving 15.9-152× parameter reduction while maintaining the same accuracy of

the seed. Furthermore, the approach shown dominates three popular NAS tools

developed for computer vision, thanks to the exploration of a larger search space.

The results of some relevant networks deployed to two platforms, the multicore

GAP8 IoT processor [27], and the single-core STM32H7 MCU [28] are shown to

demonstrate the suitability of the NAS for edge deployment. At iso-accuracy, solu-

tions found by PIT reduce energy consumption and latency up to 5.45× on GAP8

and up to 3.83× on the STM32H7, compared to hand-tuned networks. After, I

will describe a second NAS algorithm that explores for the first time the potential

of a channel-wise mixed-precision assignment. Note that it can be used on top

of any architectural NAS (e.g., PIT). This NAS explores the space of all possible

bit-width associated with each channel of each weight tensor in a Convolutional

Neural Network (CNN) while maintaining layer-wise quantization granularity for

activations. Again, a lightweight gradient-based search method, which belongs to

the family of Differentiable NAS (DNAS), is used. With experiments on the four

benchmarks of the MLPerf Tiny suite [29] I show that the tool can find a rich

front of Pareto-optimal solutions. When deployed on the MPIC [30] RISC-V edge

processor, the networks found by this DNAS can reduce memory footprint/energy

up to 63%/27% at iso-accuracy compared to a per-layer mixed-precision search.

Finally, I will show an additional improvement to these NASes by reformulating

Introduction 5

the problem (shown in Fig. 3.13) of optimization to allow them to find a set of

Pareto-optimal architectures in the accuracy vs OPs space, under a fixed model

size constraint. Note that when applied to a problem, these tools’ scope is to

minimize the resource utilization of a device while keeping the highest possible

accuracy.

• Deployment of Deep Neural Networks on MCUs: After optimizing the

topology and the data format, I here explore how to deploy the topologies found

on edge devices, such as MCUs. I describe DORY (Deployment Oriented to mem-

oRY), a tool for multi-level memory tiling aiming at fitting realistically sized DNNs

on memory-constrained MCUs. Relying on Constraint Programming (CP) opti-

mization, this tool matches on- and off-chip memory hierarchy constraints with

DNN geometrical requirements, such as the relationships between input, weight,

and output tensor dimensions to create a tiling solution for each network layer.

DORY includes a set of heuristics to maximize the performance of the CP so-

lution on PULP platforms using dedicated backend libraries [25, 31, 32]. It

also includes a code generator, which uses tiling solutions to produce ANSI C

code for the target platforms, with data L3-L2-L1 orchestration implemented as

fully pipelined, triple-buffered DMA transfers and integrated calls to the compu-

tational backend. Finally, it includes many backends for classical convolutional

networks [25], transformers architectures [31], and 1D convolutional networks [32].

I evaluate the performance and energy efficiency of the deployed networks pro-

duced by DORY on GWT GAP-8, considering both single layers and end-to-end

networks. DORY achieves up to 18.1× better MAC/cycle than the state-of-the-art

result on a conventional cache-based microcontroller, the STM32-H743 MCU, in

single 2D-convolutional layer execution. Using DORY, end-to-end deployment of

8-bit quantized networks such as 0.5-MobileNet-v1-192, achieve up to 8.00 MAC-

s/cycle, with a 13.2× improvement compared to the same networks running on

the STM32-H743 using the state-of-the-art ST X-CUBE-AI. Furthermore, on a

layer-by-layer basis, DORY can achieve up to 2.5× better throughput than the

proprietary GWT AutoTiler, on the same GAP-8 platform and up to 27% better

performance on full network execution. On 1D-convolutional layers, I obtain up

to 17.2 MAC/cycles, with an average performance improvement on single layers of

9.7× compared to the proprietary backend for GAP8 and up to 354× compared

to the Cube-AI toolkit on an STM32H7 microcontroller (MCU). On real-world

TCNs, DORY demonstrates a throughput of up to 1.11 GMAC/s and an energy

efficiency of 21.79 GMAC/s/W. On Attention layers, comparing my novel ker-

nels library for inference operations with implementations based on SoA public

libraries, PULP-NN [25], and CMSIS-NN [33], on the STM32H7, the STM32L4,

Introduction 6

and GAP8, I obtain a speed-up of 3.4×, 1.8×, and 2.1×, respectively, reaching
0.61, 0.18, and 11.3 MAC/cycle.

• Biosignal analysis with deep neural networks on edge: In this last chapter,

I leveraged previously introduced tools to improve the accuracy, energy efficiency,

and latency of bio-oriented applications. In detail, I will show two main applica-

tions. The first is the heart rate (HR) estimation starting from photoplethysmo-

graphic signals. The second is the recognition of gestures from surface electromyo-

graphic signals. For the HR, first, I leveraged Neural Architecture Search (NAS)

tools presented in Chapter 3 to obtain TimePPG, a collection of Pareto-optimal

TCN architectures that predict a user’s HR based on raw PPG and acceleration

data. All TCNs are automatically derived from a single seed architecture [34].

With respect to [35], which only optimized the number of feature maps in each

TCN layer, in this work, I extend the search also to consider the dilation param-

eter of convolutional layers, which effectively reduces the model complexity with

a limited impact on accuracy. Finally, I applied the NAS presented in Sec. 3.3,

to select the best data representation format for the networks’ parameters and

intermediate input/outputs. Thanks to the hardware-friendly quantization used

by that tool, I further reduced model size and latency, thus enriching and im-

proving the Pareto frontier. On PPGDalia, the best performing model obtained

with the proposed flow, coupled with simple smoothing post-processing, achieves

a Mean Absolute Error (MAE) of 4.36 BPM, and includes ≈ 269k trainable pa-

rameters. With an additional fine-tuning step, the MAE is further reduced to

3.61BPM. After quantization to 8bits and deployment on the STM32WB55, the

smallest model with a MAE < 8 BPM and the most accurate one consume 1.79mJ

and 47.65mJ per inference, with a latency of 71.6ms, and 1.9 s, and an error of

7.73BPM and 4.41BPM, respectively. These two models are respectively 32154.3-

145.63× smaller and require 3711.1-19.6× fewer operations per inference compared

to the previous state-of-the-art DL solution [36], while also significantly improving

the HR tracking accuracy. For the gesture recognition task, I introduce a novel

DL network topology, the Bioformer, which exploits the attention mechanism to

reduce computational complexity while achieving state-of-the-art gesture recogni-

tion results. My results show a clear advantage of using an initial 1D-convolutional

layer to aggregate raw signals in a series of projections to feed the transformer net-

work. I deployed this network using DORY and the attention kernel extensions

presented in Sec. 4.4. Testing this new architecture on the Ninapro DB6 dataset,

which includes eight grasp gestures from 10 subjects, I achieve 62.34% accuracy,

further improved to 65.73% thanks to the inter-subject pre-training. Quantized to

Introduction 7

8bits, it occupies as little as 94.2 kB, which is 4.9× lower than previous state-of-

the-art CNN, TEMPONet [34, 37], achieving 65.0% on the same task. Deployed

on the GAP8 multicore MCU, the same Bioformer only consumes 0.139 mJ per

inference, being 8.0× more efficient than TEMPONet.

The rest of the thesis is organized as follows. Chapter 2 introduces the concepts

crucial for understanding the thesis’s contribution. Chapter 3 and Chapter 4 present

tools which are needed to optimize the accuracy and the deployment of Deep Neural

Networks (DNNs). Finally, Chapter 5 shows two applications of these tools in the bio-

signal processing field. Figure 1.1 shows the dependencies between the different thesis

chapters.

1.2 List of Publications

The following articles published in either international journals or conferences are

directly discussed in the thesis dissertation:

1. Burrello, Alessio; Conti, Francesco; Garofalo, Angelo; Rossi, Davide; Benini,

Luca; Work-in-progress: DORY: Lightweight memory hierarchy management for

deep NN inference on IoT endnodes, 2019 International Conference on Hardware/-

Software Codesign and System Synthesis (CODES+ ISSS), 2019.

2. Burrello, Alessio; Garofalo, Angelo; Bruschi, Nazareno; Tagliavini, Giuseppe;

Rossi, Davide; Conti, Francesco; Dory: Automatic end-to-end deployment of real-

world dnns on low-cost iot mcus, IEEE Transactions on Computers, 2021.

3. Risso, Matteo; Burrello, Alessio; Pagliari, Daniele Jahier; Benatti, Simone;

Macii, Enrico; Benini, Luca; Pontino, Massimo; Robust and energy-efficient PPG-

based heart-rate monitoring, 2021 IEEE International Symposium on Circuits and

Systems (ISCAS), 2021.

4. Burrello, Alessio; Dequino, Alberto; Pagliari, Daniele Jahier; Conti, Francesco;

Zanghieri, Marcello; Macii, Enrico; Benini, Luca; Poncino, Massimo; TCN map-

ping optimization for ultra-low power time-series edge inference, 2021 IEEE/ACM

International Symposium on Low Power Electronics and Design (ISLPED), 2021.

5. Burrello, Alessio; Scherer, Moritz; Zanghieri, Marcello; Conti, Francesco; Benini,

Luca; A microcontroller is all you need: Enabling transformer execution on low-

power iot endnodes, 2021 IEEE International Conference on Omni-Layer Intelligent

Systems (COINS), 2021.

Introduction 8

6. Burrello, Alessio; Pagliari, Daniele Jahier; Risso, Matteo; Benatti, Simone;

Macii, Enrico; Benini, Luca; Poncino, Massimo; Q-ppg: energy-efficient ppg-based

heart rate monitoring on wearable devices, IEEE Transactions on Biomedical Cir-

cuits and Systems, 2021.

7. Risso, Matteo; Burrello, Alessio; Pagliari, Daniele Jahier; Conti, Francesco;

Lamberti, Lorenzo; Macii, Enrico; Benini, Luca; Poncino, Massimo; Pruning In

Time (PIT): A Lightweight Network Architecture Optimizer for Temporal Convo-

lutional Networks, 2021 58th ACM/IEEE Design Automation Conference (DAC),

2021.

8. Burrello, Alessio; Pagliari, Daniele Jahier; Rapa, Pierangelo Maria; Semilia,

Matilde; Risso, Matteo; Polonelli, Tommaso; Poncino, Massimo; Benini, Luca;

Benatti, Simone; Embedding temporal convolutional networks for energy-efficient

PPG-based heart rate monitoring, ACM Transactions on Computing for Healthcare

(HEALTH), 2022. .

9. Burrello, Alessio; Morghet, Francesco Bianco; Scherer, Moritz; Benatti, Simone;

Benini, Luca; Macii, Enrico; Poncino, Massimo; Pagliari, Daniele Jahier; Bioform-

ers: embedding transformers for ultra-low power sEMG-based gesture recognition,

”2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)”,

2022.

10. Risso, Matteo; Burrello, Alessio; Conti, Francesco; Lamberti, Lorenzo; Chen,

Yukai; Benini, Luca; Macii, Enrico; Poncino, Massimo; Pagliari, Daniele Jahier;

Lightweight Neural Architecture Search for Temporal Convolutional Networks at

the Edge, IEEE Transactions on Computers, 2022.

11. Risso, Matteo; Burrello, Alessio; Benini, Luca; Macii, Enrico; Poncino, Mas-

simo; Jahier Pagliari, Daniele; Multi-Complexity-Loss DNAS for Energy-Efficient

and Memory-Constrained Deep Neural Networks, Proceedings of the ACM/IEEE

International Symposium on Low Power Electronics and Design, 2022.

12. Risso, Matteo; Burrello, Alessio; Benini, Luca; Macii, Enrico; Poncino, Mas-

simo; Pagliari, Daniele Jahier; Channel-wise Mixed-precision Assignment for DNN

Inference on Constrained Edge Nodes, arXiv, 2022.

These additional articles discuss topics which are related to the ones discussed in

the thesis and can add to the interested readers, further informations in this research

area:

Introduction 9

1. Burrello, Alessio; Schindler, Kaspar; Benini, Luca; Rahimi, Abbas; One-shot

learning for iEEG seizure detection using end-to-end binary operations: Local bi-

nary patterns with hyperdimensional computing, 2018 IEEE Biomedical Circuits

and Systems Conference (BioCAS), 2018.

2. Burrello, Alessio; Cavigelli, Lukas; Schindler, Kaspar; Benini, Luca; Rahimi,

Abbas; Laelaps: An energy-efficient seizure detection algorithm from long-term

human iEEG recordings without false alarms, ”2019 Design, Automation & Test

in Europe Conference & Exhibition (DATE)”, 2019.

3. Burrello, Alessio; Marchioni, Alex; Brunelli, Davide; Benini, Luca; Embedding

principal component analysis for data reduction in structural health monitoring on

low-cost iot gateways, Proceedings of the 16th ACM International Conference on

Computing Frontiers, 2019.

4. Burrello, Alessio; Schindler, Kaspar; Benini, Luca; Rahimi, Abbas; Hyperdi-

mensional computing with local binary patterns: One-shot learning of seizure onset

and identification of ictogenic brain regions using short-time ieeg recordings, IEEE

Transactions on Biomedical Engineering, 2019.

5. Zanghieri, Marcello; Benatti, Simone; Burrello, Alessio; Kartsch, Victor; Conti,

Francesco; Benini, Luca; Robust real-time embedded EMG recognition framework

using temporal convolutional networks on a multicore IoT processor, IEEE trans-

actions on biomedical circuits and systems, 2019.

6. Zanghieri, Marcello; Benatti, Simone; Conti, Francesco; Burrello, Alessio; Benini,

Luca; Temporal variability analysis in semg hand grasp recognition using tempo-

ral convolutional networks, 2020 2nd IEEE International Conference on Artificial

Intelligence Circuits and Systems (AICAS), 2020.

7. Burrello, Alessio; Brunelli, Davide; Malavisi, Marzia; Benini, Luca; Enhancing

structural health monitoring with vehicle identification and tracking, 2020 IEEE

International Instrumentation and Measurement Technology Conference (I2MTC),

2020.

8. Burrello, Alessio; Benatti, Simone; Schindler, Kaspar Anton; Benini, Luca;

Rahimi, Abbas; An Ensemble of Hyperdimensional Classifiers: Hardware-Friendly

Short-Latency Seizure Detection with Automatic iEEG Electrode Selection, IEEE

journal of biomedical and health informatics, 2020.

9. Burrello, Alessio; Marchioni, Alex; Brunelli, Davide; Benatti, Simone; Man-

gia, Mauro; Benini, Luca; Embedded streaming principal components analysis for

Introduction 10

network load reduction in structural health monitoring, IEEE Internet of Things

Journal, 2020.

10. Daghero, Francesco; Burrello, Alessio; Pagliari, Daniele Jahier; Benini, Luca;

Macii, Enrico; Poncino, Massimo; Energy-efficient adaptive machine learning on

IoT end-nodes with class-dependent confidence, ”2020 27th IEEE International

Conference on Electronics, Circuits and Systems (ICECS)”, 2020.

11. Ingolfsson, Thorir Mar; Wang, Xiaying; Hersche, Michael; Burrello, Alessio;

Cavigelli, Lukas; Benini, Luca; Ecg-tcn: Wearable cardiac arrhythmia detection

with a temporal convolutional network, 2021 IEEE 3rd International Conference

on Artificial Intelligence Circuits and Systems (AICAS), 2021.

12. Burrello, Alessio; Pagliari, Daniele Jahier; Bartolini, Andrea; Benini, Luca;

Macii, Enrico; Poncino, Massimo; Predicting hard disk failures in data centers

using temporal convolutional neural networks, European Conference on Parallel

Processing, 2020.

13. Moallemi, Amirhossein; Burrello, Alessio; Brunelli, Davide; Benini, Luca; Model-

based vs. data-driven approaches for anomaly detection in structural health moni-

toring: A case study, 2021 IEEE International Instrumentation and Measurement

Technology Conference (I2MTC), 2021.

14. Daghero, Francesco; Xie, Chen; Pagliari, Daniele Jahier; Burrello, Alessio;

Castellano, Marco; Gandolfi, Luca; Calimera, Andrea; Macii, Enrico; Poncino,

Massimo; Ultra-compact binary neural networks for human activity recognition on

RISC-V processors, Proceedings of the 18th ACM International Conference on

Computing Frontiers, 2021.

15. Ardebili, Mohsen Seyedkazemi; Zanghieri, Marcello; Burrello, Alessio; Ben-

eventi, Francesco; Acquaviva, Andrea; Benini, Luca; Bartolini, Andrea; Prediction

of Thermal Hazards in a Real Datacenter Room Using Temporal Convolutional

Networks, ”2021 Design, Automation & Test in Europe Conference & Exhibition

(DATE)”, 2021.

16. Zanatta, Luca; Barchi, Francesco; Burrello, Alessio; Bartolini, Andrea; Brunelli,

Davide; Acquaviva, Andrea; Damage Detection in Structural Health Monitoring

with Spiking Neural Networks, 2021 IEEE International Workshop on Metrology

for Industry 4.0 & IoT (MetroInd4. 0&IoT), 2021.

17. Barchi, Francesco; Zanatta, Luca; Parisi, Emanuele; Burrello, Alessio; Brunelli,

Davide; Bartolini, Andrea; Acquaviva, Andrea; Spiking Neural Network-Based

Introduction 11

Near-Sensor Computing for Damage Detection in Structural Health Monitoring,

Future Internet, 2021.

18. Zanghieri, Marcello; Benatti, Simone; Burrello, Alessio; Morinigo, Victor Javier

Kartsch; Meattini, Roberto; Palli, Gianluca; Melchiorri, Claudio; Benini, Luca;

sEMG-based Regression of Hand Kinematics with Temporal Convolutional Net-

works on a Low-Power Edge Microcontroller, 2021 IEEE International Conference

on Omni-Layer Intelligent Systems (COINS), 2021.

19. Burrello, Alessio; Zanghieri, Marcello; Sarti, Cristian; Ravaglia, Leonardo;

Benatti, Simone; Benini, Luca; Tackling time-variability in sEMG-based gesture

recognition with on-device incremental learning and temporal convolutional net-

works, 2021 IEEE Sensors Applications Symposium (SAS), 2021.

20. Zanghieri, Marcello; Burrello, Alessio; Benatti, Simone; Schindler, Kaspar;

Benini, Luca; Low-latency detection of epileptic seizures from IEEG with tem-

poral convolutional networks on a low-power parallel MCU, 2021 IEEE Sensors

Applications Symposium (SAS), 2021.

21. Borghesi, Andrea; Burrello, Alessio; Bartolini, Andrea; ExaMon-X: a Predic-

tive Maintenance Framework for Automatic Monitoring in Industrial IoT Systems,

IEEE Internet of Things Journal, 2021.

22. Daghero, Francesco; Burrello, Alessio; Xie, Chen; Benini, Luca; Calimera, An-

drea; Macii, Enrico; Poncino, Massimo; Pagliari, Daniele Jahier; Adaptive Random

Forests for Energy-Efficient Inference on Microcontrollers, 2021 IFIP/IEEE 29th

International Conference on Very Large Scale Integration (VLSI-SoC), 2021.

23. Palossi, Daniele; Zimmerman, Nicky; Burrello, Alessio; Conti, Francesco; Müller,

Hanna; Gambardella, Luca Maria; Benini, Luca; Giusti, Alessandro; Guzzi, Jérôme;

Fully Onboard AI-powered Human-Drone Pose Estimation on Ultra-low Power Au-

tonomous Flying Nano-UAVs, IEEE Internet of Things Journal, 2021.

24. Burrello, Alessio; Zara, Giovanni; Benini, Luca; Brunelli, Davide; Macii, Enrico;

Poncino, Massimo; Pagliari, Daniele Jahier; Traffic Load Estimation from Struc-

tural Health Monitoring sensors using supervised learning, Sustainable Computing:

Informatics and Systems, 2022.

25. Moallemi, Amirhossein; Burrello, Alessio; Brunelli, Davide; Benini, Luca; Ex-

ploring Scalable, Distributed Real-Time Anomaly Detection for Bridge Health Mon-

itoring, IEEE Internet of Things Journal, 2022.

26. Seyedkazemi Ardebili, Mohsen; Zanghieri, Marcello; Burrello, Alessio; Ben-

eventi, Francesco; Acquaviva, Andrea; Benini, Luca; Bartolini, Andrea; Prediction

Introduction 12

of Thermal Hazards in a Real Datacenter Room Using Temporal Convolutional

Networks, ”Proceedings of the 2021 Design, Automation & Test in Europe (DATE

2021)”, 2021.

27. Daghero, Francesco; Burrello, Alessio; Xie, Chen; Castellano, Marco; Gan-

dolfi, Luca; Calimera, Andrea; Macii, Enrico; Poncino, Massimo; Pagliari, Daniele

Jahier; Human Activity Recognition on Microcontrollers with Quantized and Adap-

tive Deep Neural Networks, ACM Transactions on Embedded Computing Systems

(TECS), 2022.

28. Burrello, Alessio; Sintoni, Giacomo; Brunelli, Davide; Benini, Luca; Adversarially-

Trained Tiny Autoencoders for Near-Sensor Continuous Structural Health Moni-

toring, 2022 IEEE 4th International Conference on Artificial Intelligence Circuits

and Systems (AICAS), 2022.

Finally, these articles have been done in collaboration with physicians, showing that

machine learning could be strictly correlated with hospital applications and can lead to

better treatments:

1. Meyer, Lucie S; Wang, Xiao; Sušnik, Eva; Burrello, Jacopo; Burrello, Alessio;

Castellano, Isabella; Eisenhofer, Graeme; Fallo, Francesco; Kline, Gregory A;

Knösel, Thomas; Immunohistopathology and steroid profiles associated with bio-

chemical outcomes after adrenalectomy for unilateral primary aldosteronism, Hy-

pertension, 2018.

2. Yang, Yuhong; Burrello, Jacopo; Burrello, Alessio; Eisenhofer, Graeme; Peitzsch,

Mirko; Tetti, Martina; Knösel, Thomas; Beuschlein, Felix; Lenders, Jacques WM;

Mulatero, Paolo; Classification of microadenomas in patients with primary aldos-

teronism by steroid profiling, The Journal of steroid biochemistry and molecular

biology, 2019.

3. Burrello, Jacopo; Burrello, Alessio; Stowasser, Michael; Nishikawa, Tetsuo;

Quinkler, Marcus; Prejbisz, Aleksander; Lenders, Jacques WM; Satoh, Fumitoshi;

Mulatero, Paolo; Reincke, Martin; The primary aldosteronism surgical outcome

score for the prediction of clinical outcomes after adrenalectomy for unilateral pri-

mary aldosteronism, Annals of surgery, 2020.

4. Vallelonga, Fabrizio; Di Stefano, Cristina; Merola, Aristide; Romagnolo, Alberto;

Sobrero, Gabriele; Milazzo, Valeria; Burrello, Alessio; Burrello, Jacopo; Zibetti,

Maurizio; Veglio, Franco; Blood pressure circadian rhythm alterations in alpha-

synucleinopathies, Journal of Neurology, 2019.

Introduction 13

5. Vallelonga, Fabrizio; Romagnolo, Alberto; Merola, Aristide; Sobrero, Gabriele; Di

Stefano, Cristina; Milazzo, Valeria; Burrello, Jacopo; Burrello, Alessio; Zibetti,

Maurizio; Milan, Alberto; Detection of orthostatic hypotension with ambulatory

blood pressure monitoring in Parkinson’s disease, Hypertension Research, 2019.

6. Burrello, Jacopo; Burrello, Alessio; Pieroni, Jacopo; Sconfienza, Elisa; Forestiero,

Vittorio; Rabbia, Paola; Adolf, Christian; Reincke, Martin; Veglio, Franco; Williams,

Tracy Ann; Development and validation of prediction models for subtype diagnosis

of patients with primary aldosteronism, The Journal of Clinical Endocrinology &

Metabolism, 2020.

7. Castellani, C; Burrello, J; Fedrigo, M; Burrello, Alessio; Bolis, S; Di Silvestre,

D; Tona, F; Bottio, T; Biemmi, V; Toscano, G; Circulating extracellular vesicles

as a noninvasive biomarker of rejection in heart transplant, The Journal of Heart

and Lung Transplantation, 2020.

8. Burrello, Jacopo; Bolis, Sara; Balbi, Carolina; Burrello, Alessio; Provasi, Elena;

Caporali, Elena; Gauthier, Lorenzo Grazioli; Peirone, Andrea; D’Ascenzo, Fab-

rizio; Monticone, Silvia; An extracellular vesicle epitope profile is associated with

acute myocardial infarction, Journal of cellular and molecular medicine, 2020.

9. Vacchi, Elena; Burrello, Jacopo; Di Silvestre, Dario; Burrello, Alessio; Bolis,

Sara; Mauri, Pierluigi; Vassalli, Giuseppe; Cereda, Carlo W; Farina, Cinthia;

Barile, Lucio; Immune profiling of plasma-derived extracellular vesicles identifies

Parkinson disease, Neurology-Neuroimmunology Neuroinflammation, 2020.

10. Burrello, Jacopo; Burrello, Alessio; Pieroni, Jacopo; Sconfienza, Elisa; Forestiero,

Vittorio; Amongero, Martina; Rossato, Denis; Veglio, Franco; Williams, Tracy A;

Monticone, Silvia; Prediction of hyperaldosteronism subtypes when adrenal vein

sampling is unilaterally successful, European Journal of Endocrinology, 2020.

11. Burrello, Jacopo; Burrello, Alessio; Pieroni, Jacopo; Sconfienza, Elisa; Forestiero,

Vittorio; Amongero, Martina; Rossato, Denis; Veglio, Franco; Williams, Tracy A;

Monticone, Silvia; Prediction of hyperaldosteronism subtypes when adrenal vein

sampling is unilaterally successful, European Journal of Endocrinology, 2020.

12. Burrello, Jacopo; Amongero, Martina; Buffolo, Fabrizio; Sconfienza, Elisa; Forestiero,

Vittorio; Burrello, Alessio; Adolf, Christian; Handgriff, Laura; Reincke, Martin;

Veglio, Franco; Development of a prediction score to avoid confirmatory testing in

patients with suspected primary aldosteronism, The Journal of Clinical Endocrinol-

ogy & Metabolism, 2021.

Introduction 14

13. Vacchi, Elena; Burrello, Jacopo; Burrello, Alessio; Bolis, Sara; Monticone, Sil-

via; Barile, Lucio; Kaelin-Lang, Alain; Melli, Giorgia; Profiling inflammatory

extracellular vesicles in plasma and cerebrospinal fluid: an optimized diagnostic

model for Parkinson’s disease, Biomedicines, 2021.

14. Balbi, Carolina; Burrello, Jacopo; Bolis, Sara; Lazzarini, Edoardo; Biemmi, Vanessa;

Pianezzi, Enea; Burrello, Alessio; Caporali, Elena; Grazioli, Lorenzo Gauthier;

Martinetti, Gladys; Circulating extracellular vesicles are endowed with enhanced

procoagulant activity in SARS-CoV-2 infection, EBioMedicine, 2021.

15. Burrello, Jacopo; Bianco, Giovanni; Burrello, Alessio; Manno, Concetta; Maulucci,

Francesco; Pileggi, Marco; Nannoni, Stefania; Michel, Patrik; Bolis, Sara; Melli,

Giorgia; Extracellular vesicle surface markers as a diagnostic tool in transient is-

chemic attacks, Stroke, 2021.

16. Buffolo, Fabrizio; Burrello, Jacopo; Burrello, Alessio; Heinrich, Daniel; Adolf,

Christian; Müller, Lisa Marie; Chen, Rusi; Forestiero, Vittorio; Sconfienza, Elisa;

Tetti, Martina; Clinical Score and Machine Learning-Based Model to Predict Di-

agnosis of Primary Aldosteronism in Arterial Hypertension, Hypertension, 2021

17. Burrello, Jacopo; Burrello, Alessio; Vacchi, Elena; Bianco, Giovanni; Capo-

rali, Elena; Amongero, Martina; Airale, Lorenzo; Bolis, Sara; Vassalli, Giuseppe;

Cereda, Carlo W; Supervised and unsupervised learning to define the cardiovascular

risk of patients according to an extracellular vesicle molecular signature, Transla-

tional Research, 2022.

18. Vallelonga, Fabrizio; Sobrero, G; Merola, A; Valente, M; Giudici, M; Di Stefano, C;

Milazzo, V; Burrello, J; Burrello, Alessio; Veglio, F; Machine learning applied to

ambulatory blood pressure monitoring: a new tool to diagnose autonomic failure?,

Journal of Neurology, 2022.

19. Gallone, G; Burrello, J; Burrello, Alessio; Iannaccone, M; De Luca, L; Patti,

G; Cerrato, E; Venuti, G; De Filippo, O; Mattesini, A; C25 PREDICTION OF

ALL–CAUSE MORTALITY FOLLOWING PERCUTANEOUS CORONARY IN-

TERVENTION IN BIFURCATION LESIONS USING MACHINE LEARNING

ALGORITHMS–THE RAIN–ML PREDICTION MODEL, European Heart Jour-

nal Supplements, 2022.

20. Burrello, Jacopo; Caporali, Elena; Gauthier, Lorenzo Grazioli; Pianezzi, Enea;

Balbi, Carolina; Rigamonti, Elia; Bolis, Sara; Lazzarini, Edoardo; Biemmi, Vanessa;

Burrello, Alessio; Risk stratification of patients with SARS-CoV-2 by tissue fac-

tor expression in circulating extracellular vesicles,Vascular Pharmacology, 2022.

Introduction 15

21. Buffolo, Fabrizio; Burrello, Jacopo; Burrello, Alessio; Heinrich, Daniel; Adolf,

Christian; Muller, Lisa Marie; Chen, Rusi; Forestiero, Vittorio; Sconfienza, Elisa;

Tetti, Martina; DEVELOPMENT OF CLINICAL SCORING SYSTEM AND

MACHINE LEARNING-BASED MODEL TO PREDICT DIAGNOSIS OF PRI-

MARY ALDOSTERONISM IN PATIENTS WITH HYPERTENSION, Journal of

Hypertension, 2022.

22. Burrello, Jacopo; Gallone, Guglielmo; Burrello, Alessio; Jahier Pagliari, Daniele;

Ploumen, Eline H; Iannaccone, Mario; De Luca, Leonardo; Zocca, Paolo; Patti,

Giuseppe; Cerrato, Enrico; Prediction of All-Cause Mortality Following Percu-

taneous Coronary Intervention in Bifurcation Lesions Using Machine Learning

Algorithms, Journal of personalized medicine, 2022.

23. Burrello, Jacopo; Monticone, Silvia; Burrello, Alessio; Bolis, Sara; Cristalli,

Carlotta Pia; Comai, Giorgia; Corradetti, Valeria; Grange, Cristina; Orlando,

Giuseppe; Bonafè, Massimiliano; Identification of a serum and urine extracellu-

lar vesicle signature predicting renal outcome after kidney transplant, Nephrology

Dialysis Transplantation, 2022.

Chapter 2

Background

In this chapter, I will introduce the key concepts at the basis of the work. In partic-

ular, I first describe Neural Architecture Search (NAS) and all its possible realizations,

and then I depict the different deployment platforms that I target in the thesis. Finally,

I will give a few details on the target applications on which these vertical flows have

been tested.

2.1 Deep Neural Networks

2.1.1 Temporal Convolutional Networks

Temporal Convolutional Networks are 1-dimensional (1D) CNN variants that have

recently gained significant traction for efficient time-series processing, obtaining state-of-

the-art results in several tasks [35, 38, 39]. With respect to Recurrent Neural Networks

(RNNs) and their successive evolutions, such as the Long-Short Term Memory (LSTM)

and Gated Recurrent Unit (GRU), TCNs are less affected by training-time issues, such

as vanishing/exploding gradients and the large amount of training memory required by

RNNs for long input sequences. Moreover, they also have computational advantages

at inference time, since they share the better data locality and arithmetic intensity of

standard CNNs, which makes them latency- and energy-efficient [11].

The main building blocks of TCNs are the same ones found in standard CNNs, i.e.

Convolutional, Pooling and Fully Connected (FC) layers. However, the convolutional

layers of a TCN are characterized by causality and dilation, two properties that make

them suited for temporal inputs.

16

Background 17

Causality enforces that the outputs of convolutions do not violate the natural cause-

effect ordering of events. In practice, the outputs yt of a TCN convolution only depend on

a finite set of past inputs x[t−F ;t], where t is a discrete index. Dilation is the mechanism

used in TCNs for enlarging the receptive field of convolutions on the time axis, without

requiring more trainable parameters and without increasing the number of operations

required for inference. It is a fixed step d inserted between the input samples processed

by each convolutional filter. Eq. 2.1 summarizes the 1D dilated convolution operation

implemented by TCN layers:

ymt =
K−1∑
i=0

Cin−1∑
l=0

xlts−d i ·W
l,m
i , ∀m ∈ [0, Cout − 1],∀t ∈ [0, T − 1] (2.1)

where x and y are the input/output activations, T is the output sequence length, W the

array of filter weights, Cin/Cout the number of input/output channels, K the filter size

and s the stride. We also define F = d · (K − 1) + 1 the receptive field of the layer.

2.1.2 Attention & Transformers

I call attention, in general, any layer used in machine learning models to emphasize

“important” parts of data, imitating the cognitive mechanism with the same name.

Here we focus on multi-head self attention (MHSA), introduced by [40]. Sequence-to-

sequence Transformers [12] are mostly composed of stacks of MHSAs. Other kinds of

Transformers also follow this line [41], possibly integrating convolutional layers. MHSA

takes as input a tensor X of sequential data, with sequence length S and organized in E

channels usually called embeddings; it produces an output of the same shape S × E.

Internally, MHSA uses a set of H mutually independent parallel heads, all of which

perform an identical set of operations divided into three steps. In the first step, each

element of the input sequence X is projected from the space of embeddings of size E to

three separate projection spaces each of size P , known as queries Q, keys K and values

V – using three trainable linear transforms:

Q = XWquery K = XWkey V = XWvalue (2.2)

where Wquery , Wkey and Wvalue are all matrices of size E × P . In the second step,

Q, K and V are used as inputs to the core attention mechanism, scaled dot-product

attention, which is defined as

Attention(Q,K,V)
.
= AV

.
= SoftMax

over keys

(
QKT

√
P

)
V (2.3)

Background 18

Table 2.1: State-of-the-art NAS (Values: ↑= large, ↗= medium, ↓= small).

Time Mem. Search Space Topology

Reinforcement Learning

Zoph et al. [14] ↑ ↓ ↗ Variable∗

MNASNET [17] ↑ ↓ ↑ Variable

NASNET [42] ↑ ↓ ↗ Variable

MetaQNN [43] ↑ ↓ ↑ Variable

Evolutionary

Real et al. [44] ↑ ↓ ↑ Variable

DifferentiableNAS

DARTS [45] ↗ ↑ ↓ Variable

ProxylessNAS [18] ↗ ↗ ↗ Variable

DmaskingNAS

FBNetV2 [15] ↓ ↓ ↑ Fixed

MorphNet [16] ↓ ↓ ↗ Fixed

S.-Path NAS [46] ↓ ↓ ↗ Fixed

PIT (this work) ↓ ↓ ↑ Fixed
∗ Depth only

where A is an S × S matrix called the attention matrix. The intuition behind this is

that MHSA can learn to understand which elements in the sequence are relevant with

respect to one another (through A), and can use this information to gate V. Finally,

in the third step, the output of scaled dot-product attention from all heads is projected

back to the original embedding space with another linear layer, resulting in an output

of size S × E.

MHSAs can be expressed with three input Linear layers, the scaled dot-product

attention, and one output Linear layer by properly reorganizing the dimensions at each

step.

2.2 Neural Architecture Search

Exploring the network topology is the basis of the most successful applications in

computer vision or time-series analysis. For instance, in recent years, several manu-

ally designed efficient and compact convolutional neural network architectures for edge

devices have been proposed, including early MobileNets [47], ShuffleNets [48], Efficient-

Net [49], SqueezeNet [50], TEMPONet [34], etc. While these models are very effi-

cient, obtaining them requires a lengthy and time-consuming manual tuning of hyper-

parameters, which has to be repeated from scratch when considering a different target

task or another deployment target. For example, MobileNets, a class of networks ex-

plicitly designed for smartphone devices, are too large to be deployed on extreme-edge

devices such as Microcontrollers (MCUs) and do not fit their small on-chip memories.

Background 19

However, only scaling them, for instance, by changing their number of channels (with the

pre-defined width-multiplier [47]) could be detrimental for performance and accuracy.

To solve this issue, many automated or semi-automated methods to optimize neural

network architectures, easing the burden of designers, have been proposed. These ap-

proaches, generally denoted as Neural Architecture Search (NAS) algorithms, explore a

design space of different combinations of layers and/or hyper-parameter values, selecting

solutions that optimize a cost metric. The latter is often a function of both the accu-

racy of the network and its computational cost (e.g., number of parameters or inference

operations).

Table 2.1 qualitatively compares some of the most relevant works in this field in

terms of search time, memory requirements during training (Mem.), search space size,

and the possibility to vary the topology (number and type of layers) of the resulting

NNs. For Time and Mem., smaller is better, whereas, for Search Space, larger is better.

2.2.1 Reinforcement Learning based NAS

Early NAS tools were based on Reinforcement Learning (RL) [14, 17, 42, 43] or Evo-

lutionary Algorithms (EA) [44]. The network architectures are searched by employing

successive iterations and, therefore, subsequent training. These methods sample one or

more architectures from the search space at each search iteration. Sampled networks are

then trained to converge to evaluate their accuracy (and possibly cost), which is used

to drive the following sampling. The repeated training in each iteration is the main

drawback of these tools, for which a single search requires 1000s of GPU hours, even

on relatively simple tasks. Accordingly, these methods are associated with large search

time in Table 2.1. Memory occupation is low and comparable to standard training since

each sampled architecture can be trained separately. The search space size is virtually

unlimited, and these tools can easily support variable topologies. Notable exceptions are

[14], which searches over a fixed convolutional topology of a variable number of layers

without varying their type and the connections between them, and [42], which constrains

its search space to a set of only 13 different layers per node.

2.2.2 Differentiable NAS

To solve the search time issue of RL and EA methods, more recent Differentiable

NAS (DNAS) approaches have proposed the so-called supernets [45]. Supernets are

DNNs that include all possible alternative layers to be considered during the optimiza-

tion. For instance, a single supernet layer might consist of multiple Convolutional layers

Background 20

with different kernel sizes, operating in parallel, or even layers such as identity, depth-

wise convolutions, or pooling. Therefore, the problem of choosing a specific architecture

is then translated into the simpler problem of choosing a path in the supernet [45]. To

make a parallel with RL-based NAS, sampling each different possible path in the super-

net result in the collection of models explored in RL. The choice between the different

paths is encoded with binary variables, which are jointly trained with the standard

weights of the network using gradient-based learning.

DNAS tools enhance the normal training loss function with an additional differ-

entiable regularization term. Typical cost metrics are the number of parameters and

the number of Floating Point Operations (FLOPs) per inference [16]. In mathematical

terms, DNAS tools use the following loss function:

min
W,θ
L(W ; θ) + λR(θ) (2.4)

Where L is the standard loss function, W is the set of standard trainable weights (e.g.,

convolutional filters), θ is the set of additional NAS-specific trainable parameters that

encode the different paths in the supernet, R is the regularization loss that measures

the cost of the network and λ is a hand-tuned regularization strength, used to balance

the two loss terms.

While DNAS algorithms are more efficient than early RL/EA-based solutions, train-

ing the entire supernet still requires huge computational resources both in terms of

training time and memory occupation. This, in turn, translates into a reduction of

the explored search space for practical DNASes such as [45], which have to limit the

search to a few alternatives per layer to keep the memory occupation under reasonable

bounds. Note that the training time increases exponentially while adding additional

alternative layers. Therefore, the authors of [18] have proposed ProxylessNAS, an ad-

vanced DNAS that reduces the memory requirements, keeping in memory at most two

supernet paths for each batch of inputs. In ProxylessNAS, the average weights and the

additional parameters encoding supernet paths are trained and updated differently from

previous DNASes. First, path parameters are frozen and based on their current value,

two sub-architecture of the supernet are stochastically sampled out of all the possible

alternatives. Then, the weights of the sampled architectures are updated based on the

training set. Second, the weights are frozen, and the architectural parameters are trained

on the validation set. This clever strategy allows ProxylessNAS to explore a significantly

larger search space than other DNAS tools. On the other hand, while reducing the train-

ing time of a single epoch and strongly reducing the memory occupation, ProxylessNAS

needs more epochs to explore different paths and train all of them.

Background 21

2.2.3 Dmasking NAS

As a last evolution of the NAS theory, further going in the direction of efficient

and lightweight NAS, researchers explored DMaskingNAS [15], fine-grain NAS [16] and

Single-Path NAS [46] approaches. In these solutions, the supernet is replaced by a single,

usually large, architecture with a unique path. Optimized architectures are found as

modifications of this initial seed model, obtained tuning hyper-parameters, such as the

number of channels in each layer [16]. The key mechanism that enables this tuning within

a normal training loop is the use of trainable masks, used to prune parts of the network.

Compared to DNAS algorithms, the choice of different layers can not be done, but the

parameters of individual layers can be explored. DMaskingNAS tools pursue the same

DNAS objective of (2.4), where θ now represents the set of trainable masks. FBNet-V2

[15], for instance, uses a set of dedicated masks, each of which encodes a different number

of output channels or a different spatial resolution, and is weighted with a trainable

parameter. At the end of the search, the mask coupled with the largest parameter is

used to determine the final architectural setting. Similarly, MorphNet [16] exploit as

masking parameters the pre-existing multiplicative terms of batch normalization layers

[51]. When these parameters assume a value lower than a threshold, the corresponding

channels/feature maps from the preceding Convolutional layer are eliminated.

In general, the search space of these approaches is slightly more constrained com-

pared to supernet-based ones. For example, they do not allow the selection between

alternative layers (e.g., standard convolution versus depth-wise + point-wise). On the

other hand, they have two key advantages. First, they have much lower memory cost

and search time while still being able to find high-quality architectures. Crucially, the

search time of a DMaskingNAS is comparable to standard network training. Second,

some DMaskingNASes (including my proposed works) can explore the search space at a

much finer grain. For example, MorphNet [16] can easily select between 1 and 32 output

channels in a Convolutional layer with a granularity of 1, starting from a 32-channel

seed layer, and eliminating those corresponding to the smallest batch normalization pa-

rameters. Obtaining the same result with a standard DNAS would require a very large

supernet with 32 parallel convolutional layers. Note that I can also combine the masking

and supernet approaches to bypass the limitations of DMaskingNAS.

2.3 Microcontrollers: ARM & RISC-V platforms

Edge devices are becoming pervasive in everyday life. This thesis mainly focuses

on the enrichment of these platforms with AI capability. Therefore, in the following

Background 22

Figure 2.1: STM32L4 block diagram.

paragraphs, I will introduce different MCUs which are suitable or even designed to

support AI execution on board.

2.3.1 ARM Platforms

The first MCUs presented are based on ARM cores, either single or multi processors.

In the first section, I will describe single-core devices, STM32L4 and STM32H7 families.

At the same time, in the second, I will introduce the STM32WB55, a dual-core MCU

thought for edge applications with wireless connection capabilities.

2.3.1.1 Single-core: STM32L4 and STM32H7

The STM32H7 and the STM32L4 comprise one core ARM M7 and one core ARM

M4, respectively. The two platforms are thought to be either extremely low power

(STM32L4) or to maximize the computational capability for general-purpose computing

in a thight power envelope (STM32H7). The STM32L4 block-diagram is depicted in Fig.

2.1. The main component is the ARM Cortex M4, a general-purpose processor equipped

with FPU for floating point computation. Through the bus system, on-chip SRAM and

Flash memories are connected. Additionally, Direct Memory Access peripherals are

connected to support the connections of external memories or to move data from the

Background 23

sensor to the core rapidly. The best operating frequency is 80 MHz, at which the

STM32L4 only consumes 10 mW.

The STM32H7 presents a similar structure with some fundamental differences. First,

this MCU includes two caches to improve the core performance at the expense of more

energy consumption. In particular, the cache system consists of a data cache and an

instruction cache to reduce the time to both fetch instructions but also to move the data

to the register file. Additionally, the M7 core allows reaching a higher frequency, up to

480 MHz, at a power consumption of 234 mW.

Both these MCUs support a wide range of peripherals, including, for instance, Se-

rial Peripheral Interface (SPI) and Inter-Integrated Circuit (I2C) for communication or

Analog-to-digital converters (ADCs) for sensor data connection.

2.3.1.2 Dual-core: STM32WB55

I here refer to the STM32WB55RGV6 System-on-Chip (SoC), a dual-core platform

from ST Microelectronics [52]. In the rest of the thesis, I refer to it simply as STM32WB.

The SoC architecture includes two fully independent cores, an Arm® Cortex®-M4 core

running at 64 MHz (application processor) and an Arm® Cortex®-M0+ core at 32 MHz

(network processor), optimized for real-time and low-power execution. Moreover, the

SoC also includes a Radio-Frequency (RF) transceiver with a radio stack compliant with

Bluetooth Low Energy 5.0 (BLE) standard, including Bluetooth SIG, Mesh profile, and

an HCI for proprietary custom solutions. The two cores are thought to run in parallel

and manage different functionalities: the M0 core is dedicated to managing the radio-

frequency and communication system. In contrast, the M4 core runs the applications.

Given the similarity with the STMicroelectronics L4 families of MCUs, the STM32WB

series provide similar digital and analog peripherals, suitable for applications requiring

both extended battery life and high computational capability. Note that this MCU

is thought for edge devices involved in networks of devices, allowing for both a high

computaitonal capability on board and a variety of solutions for device connection.

Hwatch In [1], the authors introduced a new platform with a wrist-worn form factor.

Its picture, together with a simplified block diagram of the system, is shown in Fig. 2.3,

where only the components needed for PPG-based HR monitoring are shown. The board

includes the above-mentioned STM32WB55 System-on-Chip (SoC) from ST Microelec-

tronics [52], as main computational unit. The power supply sub-system of the board

exploits a TPS63031 from Texas Instruments, a buck-boost DC/DC converter specif-

ically designed to provide stable output voltage also with impulsive and non-reliable

Background 24

Figure 2.2: STM32WB55 block diagram.

Background 25

Figure 2.3: Wrist-worn form factor board presented in [1].

Table 2.2: Board components power profile.

Component State Current (I) Power Consumption

Microcontroller

STM32 Active 7.59 mA 25 mW
STM32 Idle 4.15 mA 13.7 mW
STM32 Stop 2.45 µA 8.1 µW
STM32 BLE∗ 30 µA 99 µW
STM32 BLE▷◁ 2.1 mA 6.9 mW

Sensors

MAX30101 Active 1100 µA 5.5 mW
MAX30101 Shutdown 0.7 µA 3.5 µW
LSM6DS Active 9 µA 30 µW
LSM6DS Shutdown 3 µA 10 µW
∗ STM32 BLE current advertising (0 dBm; 1 s; 31 B).
▷◁ STM32 BLE connected master (200 B; 100 ms)

power sources, such as energy harvesters and solar panels. The converter reaches 90%

efficiency during sensor acquisition and processing modes. The TPS63031 uses a Li-Ion

370 mAh battery as the primary source of power. The other two relevant components

of the system of [1] that are used in the bio applications shown in Chapter 5 are two

sensors for PPG and acceleration, the MAX30101 [53], and the LSM6DSM [54]. The

Background 26

former is a low-power pulse oximeter and PPG module, which is thought for extremely

low-power signal aquisition from Maxim instruments. The latter is a 6-axes Inertial

Measurement Unit (IMU) from STMicroelectronics. Besides its low level of noise, this

sensor also includes an additional computational unit, which can be used to build small

AI models (random forests of fewer than 8 trees) which use acceleration data as in-

puts. Additionally, different features from the acceleration can be computed directly

on board, unburdening the main computational unit from this task and giving the pos-

sibility to trigger interrupts as a result of these AI on-sensor computations. Both the

sensors are connected with the MCU, using respectively I2C and SPI digital busses of

the STM32WB55. The hardware power consumption of the different components in all

the respective working states, measured through a measurement unit Keysight B2900A,

is reported in Table 2.2. Compared to the rest of the System-on-Chip, the PPG sensor

requires a dedicated 5 V power supply to power up the internal LEDs. This supply

voltage is generated using a step-up converter, with an efficiency of 80%.

2.3.2 RISC-V Platforms: PULP & GAP8

Compared to the previously introduced MCUs, in this paragraph, I will talk of two

platforms that are based on a different instruction set architecture (ISA), the RISC-V

one. Noteworthy, compared to ARM ISA, the RISC-V is open source; additionally,

many extensions are possible and are currently public, which allows for specialization in

tasks such as digital signal processing. On top of this ISA, a new architectural paradigm

has been introduced in the direction of general-purpose MCUs with some specialized

hardware parts to accelerate modern applications (e.g., deep learning). Some examples

are specialized co-processors (accelerators) and hierarchical memories designed to ex-

ploit the pervasive data regularity. Parallel Ultra-Low Power computing is one of these

paradigms, which leverages near-threshold computing to achieve high energy efficiency,

coupled with parallelism to improve the performance degradation at low-voltage [55].

The PULP paradigm builds upon RISC-V ISA optimizations for DSP, and DNN com-

puting, heterogeneous parallel acceleration, architecturally different compute units dedi-

cated to unrelated tasks, and explicitly managed memory management. Some examples

of ISA extensions include SIMD MACs operations at the core of DNN computation and

load/store with post-increment. For instance, adding these operations reduces the num-

ber of cycles to perform an int8 MAC (the atomic operation repeated multiple times

in most of the layers at the basis of every neural network, e.g., convolutions) from 7

to just 1, with a speed-up of 7×. If I only exploit the basic ISA operations, I would

need three index updates, two loads, one MAC, and one store to perform a complete

Background 27

Figure 2.4: MPIC block diagram with mixed-precision dedicated hardware IPs in
yellow.

MAC with operands stored in memory. On the other hand, exploiting the new opera-

tions introduced in PULP, the index updates are included in the memory operations.

Furthermore, the MAC parallelizes the process on 4 int8 data (the bus and the ALU is

on 32bits). Therefore, 4 cycles are used to perform 4 MACs in parallel.

Most of the embodiments of the PULP paradigm are centered around a state-of-the-

art single-core microcontroller (Fabric Controller domain) with a standard set of periph-

erals. In contrast, they offload the processing-intensive tasks to a software-programmable

parallel accelerator composed of N additional cores, standing in its voltage and frequency

domain (cluster domain).

2.3.2.1 MPIC

The first RISCV core that I present is MPIC, shown in Fig. 2.4. This core could be

the building block at the basis of the clusters of different PULP embodiments. Compared

to classical RISC-V cores, MPIC includes optimized hardware units for the execution

of MAC operations with inputs independently quantized to pw/x ∈ {2, 4, 8} bit. This

new hardware block allows executing integer-reduced precision operations (less than 8

bits) faster than 8 bits operations, allowing the efficient deployment of quantized neural

networks. The reader can find more details in [30].

Background 28

PMU

DC/DC

RTC

HYPER
UART

SPI
I2S
I2C

GPIO
JTAG

I/O
 D

M
A

L2 Memory
512 kB

4 GB/s @ 250MHz

Instr Cache

I/O RISC-V

I/O L1

ROM

DBG CLK

CL DMA

HWCE

HW Sync

DBG

Shared Multi-Bank L1 Memory - 64 kB
16 GB/s @ 250 MHz

Logarithmic Interconnect

RI
SC

-V

RI
SC

-V

RI
SC

-V

RI
SC

-V

RI
SC

-V

RI
SC

-V

RI
SC

-V

RI
SC

-V

Shared Instruction Cache

L3 Memory

8 MB RAM
64 MB Flash
250 MB/s DDR

I/O DOMAIN CLUSTER DOMAIN

O�-Chip

Figure 2.5: GWT GAP-8 MCU block diagram.

2.3.2.2 GAP8

GWT GAP-8 [27] (depicted in Figure 2.5) is a commercial PULP system with 9

extended RISC-V cores (one I/O + an eight-core cluster), which represents one of the

most advanced embodiments of the DNN-dedicated MCU trends. The GAP-8 ’cluster’

comprises eight 4-stage in-order single-issue pipeline RI5CY [56] cores, implementing the

RISC-V RV32IMCXpulpV2 Instruction Set Architecture (ISA). XpulpV2 is a domain-

specific extension meant for efficient digital signal processing, with hardware loops, post-

modified access LD/ST, and SIMD instructions down to 8-bit vector operands.

The cores of the cluster share the first level of memory, a 64 kB multi-banked L1

memory Tightly-Coupled Data Memory (TCDM), accessible from the cluster’s cores

through a high-bandwidth, single-cycle-latency logarithmic interconnect. The L1 fea-

tures a 2× banking factor and a word-level interleaving scheme to reduce the probabil-

ity of contention [57]. To manage data transfers between the L1 TCDM memory and

a second-level 512 kB of memory (managed as a scratchpad as well) available in the

SoC domain, the cluster DMA [58] can manage data transfers between L1 and L2 with a

bandwidth up to 2 GB/s and a latency of 80 ns at the maximum frequency. On the other

hand, to interface the L2 memory with the external world, and in particular, with the

Cypress Semiconductor’s HyperRAM/HyperFash module [59] available on the GAPuino

board, GAP-8 can use an autonomous I/O sub-system called I/O DMA [60]. Through

the HyperBus interface, the external L3 HyperRAM and/or HyperFlash memory can

be connected to the system, enabling a further 64 MB of storage for read-only data on

Flash and 8-16 MB for volatile data on DRAM, with a bandwidth up to 200 MB/s.

Background 29

Figure 2.6: Synthtic generated and ideal PPG signal.

2.4 Biosignals: Sensors and processing

I here introduce the two applications on which the tools described in the following

sections are applied. The first is the photoplethysmography (PPG) based heart rate

(HR) monitoring. Thanks to the flowing of the blood, the beats of the core can also be

identified in the remote part of the arterio-venous system, allowing for minimal invasive

settings in the monitoring of the heart condition. The second application is surface

electromyographic signal (sEMG) based gesture recognition. The scope is to identify

the gestures of the arms from sEMG signals, possibly allowing patients to move robotic

hands or prostheses for amputees.

2.4.1 Photoplethysmography and PPG-based HR

Photoplethysmography (PPG) is a technique that measures the light absorption

variations of blood vessels during cardiac activity [61]. A PPG sensor consists of one

or more Light-Emitting Diodes (LEDs) that continuously emit light to the skin and a

photodetector (i.e., a photodiode) that measures variations of light intensity caused by

blood flow. The blood flow’s periodicity can be associated with the heart rate. More

specifically, the larger the blood volume variation, the greater the attenuation of the light

emitted by the LED, resulting in a lower current output on the photodiode. Therefore,

a heartbeat can be associated with each peak in the PPG signal. Figure 2.6 shows how

the PPG works.

Indeed, many studies demonstrated that the second derivative of the PPG signal

contains essential information for heart rate monitoring [62]. Therefore, the simplicity

of wearing a PPG sensor and the low cost contribute to its increasing popularity as an

alternative to ECG for HR monitoring [63]. However, one of the significant challenges

in employing PPG signals to recognize heartbeats and estimate HR is their considerable

dependency on the subject’s movements, which negatively affect the measurement qual-

ity during daily activities, as first shown in [64]. In particular, the arm movements cause

Background 30

the so-called Motion Artifacts (MA), which alter the readings of the sensor and strongly

impact the performance of the HR estimation. Therefore, they demand ad-hoc algo-

rithms for their remotion/reduction. The standard approach to cope with this problem

is to leverage additional inertial measurements (mainly acceleration) that correlate with

the PPG signal and can be used to discriminate between real HR peaks and MA-caused

ones. For additional details on using PPG for HR estimation, please refer to [65].

2.4.2 Surface Electromyographic Signal

EMG signals [66] used for gesture recognition originate from the electrical activity

that occurs during a muscular contraction, ranging from 10 uV to 1 mV. The bandwidth

is ∼ 2 kHz for standard applications, even though it is possible to acquire EMG data

up to ∼ 10 kHz in Motor Unit Action Potential Analysis. Conductive plates placed on

the skin surface (i.e., electrodes) acquire EMG activity. However, a significant issue of

signal acquisition is related to the skin-electrode interface, which is prone to the high

variability and can degrade signal quality given the arm’s movements. Also, electrode re-

positioning and user adaptation [34] cause degradation in the signal since they can change

from one acquisition session to another or from a day to the successive one. Finally, also

motion artifacts and floating ground noise represent causes of signal degradation and

variability.

Chapter 3

Neural Architecture Search for

Efficient Deployment on MCUs

3.1 Related Works

In literature, different approaches to NAS have been proposed. As previously

described, first NASes were based on reinforcement learning, e.g., NAS-RL [67] and

MetaQNN [14], or evolutionary algorithms [44].

DARTS [68] has been the first differentiable NAS algorithm. DARTS is modeled as

the optimization of a supernet, where many layers are connected through edges, each

associated with a trainable weight. Some of them are pruned at the end and only a

single path is selected. Successively, many NASes have been designed to explore the

huge space of DNNs. In particular, I focus here on two Dmasking NASes which have

inspired the work of this thesis.

MorphNet [16] is one of the first Dmasking NAS from 2018 that searches the number

of output channels of convolutional layer. In particular, it exploits batch normalization

parameters as masks for the weights. These parameters are then thresholded to yield

a simplified architecture, with an approach similar to weight pruning. The result is a

network with same topology but a reduced number of channels. MorphNet uses specific

regularizers to optimize specific metrics such as size, FLOP and latency. Further details

can be found in the original MorphNet paper [16].

FBNetV2 [15] also searches for the optimal number of output channels of convolu-

tional layer, but with a method based on exclusive masks. Noteworthy, this approach

can be easily extended to other hyper-parameters such as the filter size, increasing the

possible search space. For example, if a certain convolutional layer presents N output

31

Neural Architecture Search for Efficient Deployment on MCUs 32

channels, then it is possible to build N different masks with different numbers (l) of

leading 1s and N-l trailing 0s, that correspond to variants of the layer with l output

channels. Masks are then multiplied with a Gumbel-Softmax weight [69], summed to-

gether and multiplied with the output of convolution. In this way, a single mask is

chosen at the end of the search and applied to the output, obtaining a layer with the

selected number of channels.

In the following sections, I will first describe two Dmasking NAS on which I worked

to optimize TCNs and the quantization of DNNs. Then, I will briefly explain a technique

to combine different optimization directions inside the same NAS algorithm, allowing

embedded designers to obtain good deployment points in a lower amount of time.

Neural Architecture Search for Efficient Deployment on MCUs 33

3.2 Lightweight Neural Architecture Search for Temporal

Convolutional Networks at the Edge

In this section, I introduce Pruning in Time (PIT), a new lightweight DmaskingNAS

that targets networks that process time series. PIT explores the architectures of convo-

lutional and fully-connected (FC) layers, the two most compute- and memory-expensive

operations present in TCNs. For each convolutional layer, PIT jointly explores the num-

ber of channels (Cout), the receptive field (F), and the dilation (d). Moreover, by tuning

both F and d, it also indirectly affects the filter size K. Similarly, PIT can also optimize

the number of output neurons of FC layers1.

First, in Section 3.2.1, I give an overview of the search space explored by the tool

and of its general working principle. Then, I illustrate the mechanisms used to gener-

ate differentiable masks for each considered hyper-parameter in Sections 3.2.1.1-3.2.1.4.

Finally, the two cost regularizers used to augment the classic loss are described in Sec-

tion 3.2.2 and 3.2.3, respectively. Table 3.1 sums up the main mathematical symbols

used in this section.

3.2.1 Search Space

As shown in Figure 3.1, PIT’s search space encompasses all sub-architectures derived

from a seed TCN, with any combinations of the three abovementioned parameters per

layer. In particular, PIT can reduce Cout or F , and to increase d compared to the seed,

all of which have the effect of reducing the complexity and memory occupation of the

layer.

To achieve this objective, each convolutional/FC layer of the seed is modified to

become a function Ln(W
(n); θ(n)) of its original weights tensor W (n) and of a new set

of architectural parameters θ(n). For a TCN with N layers, the search space of PIT is

therefore defined by:

S = {Ln(W
(n); θ(n))}N−1

n=0 (3.1)

During the search, the elements of θ(n) are properly combined to form a binary mask

Θ(n). This mask prunes a portion of the layers’ weights by multiplying them by 0s. In

practice, an architecture Ŝ is sampled from S in each search iteration, by performing

the Hadamard product between W (n) and Θ(n), i.e., Ŝ = {Ln(W
(n) ⊙ Θ(n))}N−1

n=0 . This

eliminates the portions of W (n) that correspond to 0-valued mask elements: the seed

1This can be seen as a corner case of the Cout optimization since FC layers are just a particular case
of 1D convolutions with F = K = d = 1 and Cout equal to the number of output neurons. Accordingly,
the rest of this section describes PIT’s functionality for convolutions.

Neural Architecture Search for Efficient Deployment on MCUs 34

Table 3.1: List of symbols used in the description of the NAS algorithm.

Symbol Description

x Input activations of a convolutional layer
y Output activations of a convolutional layer
T Output sequence length of a convolutional layer
Cin, Cout Number of input/output channels of a conv. layer
W Convolutional filter weights
K Convolution filter size
s Convolution stride
d Convolution dilation
F Convolution receptive field
L Task-specific loss function
R Regularization loss function
λ Regularization strength

S, Ŝ Search space and sampled architecture
Ln Generic convolutional/FC layer
N Number of convolutional/FC layers
θ, Θ Generic NAS architectural parameters and corresponding binary mask
α, ΘA NAS architectural parameters to optimize Cout and corresponding bi-

nary mask
β, ΘB NAS architectural parameters for F , and corresponding binary mask
γ, Γ, ΘΓ NAS architectural parameters for d, intermediate binary mask ele-

ments and final binary mask
Cβ, Cγ Transformation matrices to generate ΘB and ΘΓ from β and γ.
k(i) Index mapping function used to generate ΘΓ from Γ

layer pruned produces the same output that I would obtain by having a smaller layer

with a lower number of channels or a smaller receptive field. The way in which Θ(n) is

generated from θ(n) to produce this effect is explained in Sections 3.2.1.1-3.2.1.3.

Noteworthy, having binary masks is required to either eliminate slices of W (n) (with

value 0) or keep them untouched (with value 1) when sampling an architecture with the

Hadamard product. In practice, this corresponds to sampling only feasible architectures

(with integer Cout, F and d). To this end, Θ(n) is binarized in the forward-pass of

search/training, applying an Heaviside step function with a fixed threshold th = 0.5.

At the same time, the θ(n) → Θ(n) transformation has to be differentiable to embed

the search into the standard gradient-based training of the network, learning contextu-

ally the weights W (n) and the topological parameters θ(n). To cope with the Heaviside

function derivation issues, i.e., derivative equal to 0 almost everywhere and not exis-

tent in δ, I follow the approach proposed in BinaryConnect [70], which substitutes the

backward pass with the Straight-Through Estimator (STE), and therefore the derivative

with the identity.

Neural Architecture Search for Efficient Deployment on MCUs 35

1D Convolu�onal Kernel

Subsets
of the kernel

Smaller
number of

output
channels

Smaller
recep�ve
field

Larger
dila�on
factor

Seed
Network

Figure 3.1: Search space of PIT.

For notation simplicity, θ(n) parameters are divided into three groups: α(n) are the

parameters associated with the output channels, β(n) tunes the receptive field, and γ(n)

affects the dilation factor. In PIT, each of these three parameters is used to generate an

independent binary mask, which can be combined with the other two. The final mask is

multiplied with weights to prune the correct portion. Also, having independent masks

for Cout, F and d, gives PIT the flexibility to work into two different modalities: in full

optimization, PIT optimizes the entire network, while in independent mode, the user

can define a single (or more) hyper-parameters to optimize.

During full optimization, PIT explores:

|S| ≈
N−1∏
n=0

(C
(n)
out,seed · F

(n)
seed · ⌈log2(F

(n)
seed)⌉) (3.2)

different solutions, where Cout,seed and Fseed in (3.2) are those of the seed layers. The

logarithmic term in (3.2) comes from the fact that I only consider power-of-2 dilation

factors, as detailed in Section 3.2.1.3 since they are the most used in state-of-the-art

networks. For a relatively small seed with N = 8, F
(n)
seed = 17, and C

(n)
out,seed = 128 ∀n,

this corresponds to evaluating ≈ 1032 architectures in a single training.

3.2.1.1 Channels Search

To explore the number of channels in each convolutional layer, I take inspiration

from [16]. In that work, the parameters of batch normalization (BN) layers [51] were

transformed into binary masks to prune entire output channels and explore the space

of all sub-layers with Cout < Cout,seed. Indeed, when a BN layer follows a convolutional

Neural Architecture Search for Efficient Deployment on MCUs 36

one, each output channel is obtained as:

ỹmt = γm · ymt (3.3)

where ymt is the output of convolution and γm is the multiplicative factor of BN. When

the latter is binarized to 0, the entirem-th output channel is effectively pruned. However,

requiring the presence of a BN layer after each convolution, although common in modern

2D-CNNs, still limits the applicability of the approach of [16]. Therefore, in PIT, the

channel search is decoupled from BN, adding a dedicated α parameter to each output

channel to zero-out entire filters from the W tensor of convolutional layers. PIT treats

each output channel independently. So, it uses an α array of length Cout,seed, The layer

function is modified to:

ỹmt =
K−1∑
i=0

Cin−1∑
l=0

xlts−di · (ΘA,m ·W l,m
i) (3.4)

In practice, each α parameter is multiplied with all the weights of the same convolutional

filter, i.e., with an entire slice of the weights tensor over the output channels axis. Each

filter multiplied with a 0-mask is effectively pruned from the network, reducing the

number of channels by 1. Figure 3.2 depicts the application of ΘA parameters to a

simple layer with Cout,seed = 4.

Convolu�onal
Kernel

Output Channels Masks Output Examples

Figure 3.2: Channels search example. Each ΘA,m = 0 zeroes-out the m-th convolu-
tional filter, i.e., a slice of size K × Cin of the weights tensor W .

Noteworthy, besides reducing the number of channels, PIT can also eliminate entire

layers from the network if the latter includes skip connections. In particular, if all the

ΘA,m of a convolutional layer are zeroed-out, then the inputs only flow through the skip

connection, effectively reducing the number of layers in the network by one. If skip

Neural Architecture Search for Efficient Deployment on MCUs 37

connections are not present, at least one output channel is always kept active to avoid

breaking the network connectivity.

3.2.1.2 Receptive Field Search

The second hyperparameter that is explored in PIT is the receptive field F , i.e.,

the range of input time-steps involved in a convolution. In standard convolutions, the

receptive field equals the filter size (F = K). However, in the modern TCNs, where the

d parameter has been introduced, the general relation becomes: F = (K − 1) · d + 1.

Therefore, since K depends on both F and d, PIT also indirectly optimizes the filter

dimension K.

The receptive field is explored using the array of parameters β, with len(β) =
⌊
F
gr

⌋
where F is the seed receptive field and gr ≥ 1 is the granularity of the exploration. A

granularity greater than 1 for the receptive field allows, for instance, to force the network

only to use even/odd receptive fields. Differently from the output channels, however,

the β needs to be further combined to define the corresponding binary differentiable

masks. The reason is that, to “simulate” the effect of a smaller receptive field through

masking, it is not sufficient to mask any set of time-slices in the weights tensor: on the

other hand, this should be i) continuous and, in the case of ”causal” convolutions, the

slices should be eliminated from the “oldest” part of the weights, i.e., those that are

multiplied with input time-steps that are farthest in the past. The following equation

derives elements of the binary masks ΘB from β to reproduce this behaviour:

ΘB,i = H

Fseed−i∑
j=1

|βFseed−j |

 (3.5)

Each ΘB,i is then multiplied with a time-slice of the W tensor during the forward

pass, as shown in Figure 3.3. Therefore, when searching for the receptive field, the

equation becomes:

ymt =

K−1∑
i=0

Cin−1∑
l=0

xlts−di · (ΘB,di ⊙W l,m
i) (3.6)

Thanks to the construction of (3.5), if i > j, then ΘB,i ≤ ΘB,j . This ensures that the

first weight slices to be pruned are always the leftmost ones, as shown in the example

on the right of Figure 3.3. Notably, β0 is always kept constant and equal to 1, to ensure

that even after binarization, at least one time-step will still be convolved with weights.

Neural Architecture Search for Efficient Deployment on MCUs 38

W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0

Convolu�onal Kernel

W8 W7 W6 W5 W4 W3 W2 W1 W0

..
.

W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0

,

W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0

W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0

W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0

Figure 3.3: Receptive field search example. Each ΘB,i = 0 eliminates the contribution
of 1 input time-step from the convolution output, by zeroing out a time-slice of size
Cout × Cin of the weights tensor W .

Dila�onRecep�ve-Field

Figure 3.4: Example of conversion between trainable architectural parameters β and
γ and corresponding binary masks ΘB and ΘΓ, for a layer with Fseed = 9.

In practice, for efficiency reasons, binary masks are generated using the matrix

transformation:

ΘB = H (Cβ · |β|) (3.7)

Where Cβ is a constant upper triangular matrix of 1s generated once at the beginning

of a search, as shown on the left of Figure 3.4.

3.2.1.3 Dilation Search

Lastly, PIT also explores the dilation factor d. Similarly to the receptive field,

searching for dilation imposes some constraints on the portions of the weights tensor that

Neural Architecture Search for Efficient Deployment on MCUs 39

this NAS should prune. In particular, only regular dilation factors should be generated,

i.e., the time-steps gaps between consecutive convolution inputs are all equal for a given

layer. For example, I do not want to obtain a layer that takes as input time-steps t, t−2,
t− 3, and t− 8, corresponding to gaps of 0, 1, and 5 time-steps respectively. Note that

this is necessary since most inference libraries would not support layers with ”random”

time gaps, in particular those for edge devices [71, 72], which only implement regular

gaps, since they enable repetitive memory accesses therefore minimizing the additional

arithmetic operations needed to compute memory indexing.

Based on these observations, I follow an approach similar to the one described in

Section 3.2.1.2. Starting from an array of trainable parameters γ, they are then combined

to compose differentiable binary masks. This method only supports power-of-2 dilation

factors since i) they are the most common and ii) they simplify the generation of the

masks. Thus, I obtain: len(γ) = ⌈log2(Fseed)⌉.

To obtain the elements of ΘΓ, I pass through an intermediate array Γ, generated

similarly to (3.5):

Γi = H

len(γ)−i∑
j=1

|γlen(γ)−j |

 (3.8)

Then, the mask is obtained by further reorganizing the Γi values into the vector ΘΓ, of

length Fseed, as follows:

ΘΓ,i = Γk(i), with k(i) =

len(γ)∑
p=1

1− δ(i mod 2p, 0) (3.9)

and where δ() is Kronecker’s Delta function. This reorganization ensures that the Γ

element with the largest index (Γlen(γ)−1) ends up in all positions corresponding to

time-steps that a layer would skip with d = 2. Similarly, the element with the second

largest index ends up in positions that are skipped when using d = 4, and so on. This,

combined with the fact that, by construction of (3.8), it holds that Γi ≤ Γj for i > j,

ensures that the dilation is progressively increased. In this way, each additional binarized

Γi causes a proportional increase in the dilation, which is doubled.

The obtained ΘΓ vector is multiplied with the W tensor, exactly as the previous

ones. Again, γ0 is set to 1 to ensure that I never prune the entire convolution, and

I always keep the first and last weight of the receptive field, therefore minimizing the

number of weights. Figure 3.5 shows an example of how the tensor is generated and

its effect on the dilation. In practice, similarly to the receptive field mask, also ΘΓ is

obtained from γ with a simple matrix multiplication:

ΘΓ = H(Cγ · |γ|) (3.10)

Neural Architecture Search for Efficient Deployment on MCUs 40

W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0

Convolu�onal Kernel

W8 W7 W6 W5 W4 W3 W2 W1 W0

,

W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0

W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0

W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0W8 W7 W6 W5 W4 W3 W2 W1 W0

Figure 3.5: Dilation search example. Each Γi = 0 increases d by a factor 2.

where Cγ is a constant matrix of 0s and 1s that can be generated procedurally based on

the value of Fseed. An example of Cγ is shown on the right of Figure 3.4.

3.2.1.4 Joint Search

To jointly optimize all three hyper-parameters mentioned above, I simultaneously

apply all three Θ masks to the weight tensor of a layer. Therefore, the equivalent of the

equation for a seed convolutional layer during a joint search is:

ymt =
K−1∑
i=0

Cin−1∑
l=0

xlts−i · (ΘB,i ⊙ΘΓ,i ⊙ (ΘA,m ·W l,m
i)) (3.11)

In the experiments section, I will show that performing such a joint search yields superior

results compared to optimizing the three hyper-parameters sequentially since PIT can

take into account the complex interactions among them (especially among F and d).

3.2.2 Regularization

PIT searches for accurate yet low-complexity architectures by combining the task-

specific loss function L with a regularization term R as introduced in Sec. 2.2. The

additional differentiable term proportional to the dimension/operations of the network

encodes a prior in the loss landscape that directs the optimization towards low-cost solu-

tions. The two cost metrics considered in this work are the model’s number of parameters

(or size) and the number of operations (OPs) for an inference. The corresponding two

regularizers Rsize and Rops are differentiable functions of the pre-binarization masks

Neural Architecture Search for Efficient Deployment on MCUs 41

Θ̃A, Θ̃B and Θ̃Γ. The latter, in turn, depends on the trainable architectural parameters

α, β, and γ. I use pre-binarization masks as in [16], because this yields a smoother loss

landscape, improving convergence. Indeed, using floating point continuous values do not

lead to any abrupt change in the loss, giving more stability to the training process.

3.2.2.1 Size Regularizer

The Size regularizer Rsize estimates, during each forward-pass, the effective number

of parameters of the network, based on the values of the differentiable binary masks.

The number of parameters of a 1D convolutional layer, i.e., the size of weight tensor

W , is equal to Cin × Cout × K. Accordingly, the size regularizer for a TCN with N

convolutional (or FC) layers is defined as:

Rsize =
N-1∑
n=0

(R(n)
size) =

N-1∑
n=0

C
(n−1)
out,eff · C

(n)
out,eff ·K

(n)
eff (3.12)

where:

C
(n)
out,eff =

C
(n)
out,seed−1∑

i=0

Θ̃
(n)
A,i (3.13)

is the effective number of channels in the n-th layer, and:

K
(n)
eff =

F
(n)
seed−1∑
i=0

Θ̃
(n)
B,i

Fseed − i
·

Θ̃
(n)
Γ,i

len(γ)− k(i)
(3.14)

is the effective kernel size, which depends both on the total receptive field and on the

dilation. For the 1st layer of the network, C
(n−1)
out,eff is constant and equal to the number

of channels of the input signal.

The definitions of (3.13) and (3.14) are continuous relaxations of the number of active

(non-pruned) channels and time-slices of W (n), respectively. By minimizing Rsize, PIT

is encouraged to reduce the Θ̃ values, bringing them below the binarization threshold.

Depending on the regularization strength λ, PIT balances the corresponding reduction

in cost with the accuracy drop caused by the reduced number of parameters included in

the different layers.

The denominators in (3.14) are needed to make sure that, when β and γ are equal

to 1 (i.e., the initialization value, see Section 3.2.3), K
(n)
eff corresponds to the real filter

size of the seed. In fact, each Θ̃B/Γ is obtained as sum of a different number of γ (or β)

elements. As a result, without normalization, the estimated cost would be higher than

the real filter size. For instance, in a layer with Fseed = 5 and with all β/γ initialized

Neural Architecture Search for Efficient Deployment on MCUs 42

Algorithm 1

1: for i← 1, . . . ,Stepswu do #warmup loop
2: Update W based on ∇WL(W)
3: end for
4: while not converged do #search loop
5: Update W and θ based on ∇W,θ(L(W ; θ) + λR(θ))
6: end while
7: for i← 1, . . . ,Stepsft do #fine-tuning loop
8: Update W based on ∇WL(W)
9: end for

at 1, without the denominators, I would have Keff = 33, which is clearly incorrect.

Conversely, with the denominators, I have Keff = 5 = Fseed, which is correct, since the

initialization of γ = 1 implicitly imposes d = 1.

3.2.2.2 OPs Regularizer

The second proposed regularizer Rops estimates the number of operations required

to perform inference. Since the number of OPs of a 1D convolutional layer is T ×Cin×
Cout ×K, the regularizer expression is simply:

Rops =

N∑
n=1

(R(n)
size · T

(n)) (3.15)

In practice, when targeting the reduction of the total OPs for inference, the only differ-

ence in the regularizer is that the output sequence length weights the cost of each layer.

Note that this is not a constant over every layer since T can change over layers such as

pooling, strided convolution, etc..

3.2.3 Training Procedure

Algorithm 1 summarizes the three main phases of a PIT architecture search. The

first phase consists of Stepswu iterations of warm-up. At this algorithm stage, all θ

parameters (i.e., α, β, and γ) are initialized to 1 and frozen. Accordingly, all elements

of the binary masks Θ are also binarized to 1. Therefore, warm-up coincides with a

normal training of the seed network, where the only objective is minimizing the task

loss function L. The number of warm-up iterations is a user-defined parameter. In all

experiments, I perform the warm-up to the convergence of the floating point network.

Neural Architecture Search for Efficient Deployment on MCUs 43

neurons

%

stride

pool

stride dila�on

kernel
Convolu�on ReLU Batch Normaliza�on Pooling Fully Connected Dropout

Att

A�en�on

BN

TE
M

P
O

N
et

1

3

2i+1 x2 1

3

2i+1 2

2

i: [0, 1, 2]

j

.5

j: [256, 128]
1

1

3

1

2

9

1 1

9

1

2

1

1
+

1

9

1 1

9

1

1

1

1

+

x3

12

TC
R

e
sN

et
-1

4
EC

G
TC

N

i: [0, 1, 2]

1

11

1

1

11 .3

2i x2

1

1

1
+

5
TC

C
N

et

1

3 .05

+

2i 1

3 .05

2i+1

1

1

1

i: [0, 1, 2] 1

3 .05

64

1

1

1
+

53

BN
BN

BN BN

BN

BN

Att

Figure 3.6: Seed network architectures for the four considered benchmarks.

The second phase is where the actual NAS takes place. In the search loop, the model

weights W and the architectural parameters θ are optimized simultaneously. Accord-

ingly, the goal of this phase is to minimize the sum of the task-specific loss L and of

the regularization loss, weighted by the regularization strength λ. The duration of the

search phase is controlled by an early-stop mechanism that monitors the value of L on

an unseen validation split of the target dataset and stops the search when the latter

does not improve for 20 epochs. Note that the higher is λ, the more the minimization

of the network is favored.

Finally, in the third and last phase, the θ parameters and corresponding Θ binary

masks are frozen to their latest values. This corresponds to sampling from the search

space the architecture that PIT determined as optimal during the previous phase. Then,

the weights W of the selected network are fine-tuned only considering the task loss L.

To obtain different Pareto points in the accuracy versus cost (size or OPs) space

with PIT, Algorithm 1 should be repeated, changing the regularization strength λ. More

precisely, the warm-up phase can be performed just once, saving the final weights of the

seed network. Overall, Algorithm 1 has a complexity that is comparable to a single

TCN training. Moreover, GPU time and memory requirements are greatly reduced with

respect to a supernet-based DNAS.

3.2.4 Benchmarks

I test PIT on four edge-relevant real-world benchmarks. The benchmarks include

regression as well as classification tasks; the four examples are described in detail in the

rest of this section. All the seed networks are depicted in Fig. 3.6.

Neural Architecture Search for Efficient Deployment on MCUs 44

3.2.4.1 PPG-based Heart-Rate Monitoring

The first benchmark deals with Heart-Rate (HR) monitoring on wrist-worn devices,

using Photoplethysmography (PPG) sensors coupled with tri-axial accelerometers to

mitigate the effect of motion artifacts [35, 36]. PPG-Dalia [36] dataset is considered

since it is the most extensive open-source dataset. The task is formulated as a regression

of the HR value, whose ground truth is derived with ECG measurements. Both PPG

and acceleration are sampled at 32Hz and organized in 8 s long sliding windows with a

time shift of 2 s between successive windows.

The seed network for this task is TEMPONet, a TCN originally proposed in [4]

and later used for HR monitoring with state-of-the-art results in [35]. The network

architecture is depicted in the top left of Figure 3.6. The network is composed of

three feature extraction blocks and a final regressor module with three FC layers. Each

feature extraction block is made of three convolutional layers with BatchNorm and

ReLU activation, followed by an average pooling. The FC layers are also followed by

BatchNorm and ReLU, and by a dropout layer with 50% rate. With respect to the

original TEMPONet, the seed is obtained doubling the receptive field of all convolutions

and setting the dilation to 1.

3.2.4.2 ECG-based Arrhythmia Detection

The second benchmark deals with Electrocardiogram (ECG)-based arrhythmia de-

tection for wearable medical devices. I consider the ECG5000 dataset [73], and the task

consists in classifying the ECG signals in 5 classes: Normal, R-on-T Premature Ven-

tricular Contraction, Premature Ventricular Contraction, Supraventricular Premature

or Ectopic beat, and Unclassified Beat.

The reference TCN is ECGTCN, shown in the top right of Figure 3.6. Differently

from TEMPONet, ECGTCN is based on residual blocks. It has a first convolutional

layer that enlarges the number of input channels, followed by three modular blocks,

each including two dilated convolutions with ReLU activation, BatchNorm, and 50%

dropout. The input and output feature maps of each block are then summed together.

When the number of input and output channels differs, the residual path also includes a

point-wise convolution (i.e., K = 1) to adapt the tensor sizes. The PIT seed is obtained

from ECGTCN, setting the dilation of all layers to 1, while keeping the original receptive

field.

Neural Architecture Search for Efficient Deployment on MCUs 45

3.2.4.3 sEMG-based Hand-Gesture Recognition

The third benchmark deals with hand-gesture recognition based on surface elec-

tromiography (sEMG) signals. Executing gesture recognition at the edge is a crucial

enabler for applications such as complex human-computer interfaces, non-invasive pros-

thesis control, and rehabilitation. For this task, I target the NinaPro DB1 dataset [74],

which includes records of 27 healthy patients monitored with 10 electrodes while per-

forming 52 heterogeneous hand gestures, including basic finger and wrist movements,

different hand poses, and grasping.

The seed network is TCCNet, originally proposed in [39], and depicted in the bot-

tom left of Figure 3.6. The architecture includes three feature extraction blocks, each

composed of two dilated convolutions with ReLU and dropout (5% rate) and a residual

branch with a point-wise convolution. The classifier includes an attention layer of the

type described in [75] and a final FC layer with 53 output neurons (52 hand-gestures +

1 unknown class).

3.2.4.4 Keyword Spotting

The last benchmark is keyword spotting (KWS), a key component of speech-based

human-machine interfaces (e.g., for smart personal assistants). The standard benchmark

for KWS systems, i.e., the Speech Commands v2 dataset [76], which consists of 105829

utterances collected from 2618 speakers, is used. I follow the pre-processing scheme pro-

posed by the MLPerf Tiny industry-standard benchmark suite [77], which produces 12

possible labels, including 10 words and two special classes for ”unknown” and ”silence”.

As the seed, the TCN presented in [38], called TC-ResNet14, whose architecture is

shown in the bottom right of Figure 3.6, is used. The main difference with the other

reference TCNs is that the original TC-ResNet14 did not use dilation and the modular

convolutional blocks alternate plain convolutions with strided convolution with s = 2.

PIT’s seed is obtained by doubling the receptive field in each layer.

3.2.5 Experimental Results

This section discusses the results obtained by PIT on the four benchmarks mentioned

above. In Section 3.2.5.1, I present the global results of the NAS search in the accuracy

versus the number of parameters and the number of OPs planes. In Section 3.2.5.2, I

conduct ablation studies on the PPG benchmarks, and in Section 3.2.5.3 PIT is com-

pared with a state-of-the-art DNAS, ProxylessNAS [18], and with two state-of-the-art

Neural Architecture Search for Efficient Deployment on MCUs 46

Seed Network Hand-Tuned Network Size Regularizer OPs Regularizer

PPG

sEMG KWS

5.0 5.4 5.8 6.2 5.0 5.4 5.8 6.2

O
P

s

108

107

106

N
u

m
. o

f
P

ar
am

et
e

rs 106

105

104

O
P

s

N
u

m
. o

f
P

ar
am

et
e

rs

104

103

106

105

104

.932
AccuracyMAE MAE

.936 .940 .944 .938 .942 .946
Accuracy

N
u

m
. o

f
P

ar
am

et
e

rs 106

105

104

108

107

106
O

P
s

.78 .82 .86 .90
Accuracy

.78 .82 .86 .90
Accuracy

N
u

m
. o

f
ar

am
et

e
rs

106

105

104

.80 .84 .88
Accuracy

.92 .88.87 .89 .90 .91 .92
Accuracy

108

107

106

O
P

s

ECGPPG ECG

sEMG KWS

8.03x 5.42x
2.83x

+0.36%

7.06x

5.72x
1.8x

-0.11BPM

+0.36%

-0.11BPM

Figure 3.7: Overall PIT Pareto fronts for the four target benchmarks, and comparison
with seed and hand-tuned TCNs.

DMaskingNAS approaches, namely, MorphNet [16] and FBNetV2 [15]. Since the code

for [15] is not publicly available, it has been re-implemented based on the information

provided in the paper. Finally, Section 3.2.5.4 presents the memory, latency, and en-

ergy consumption results obtained deploying some of the networks found by PIT on two

commercial edge devices, GAP8, and the STM32H7. As an inference software backend,

I use the open-source layers library described in the following chapter for GAP8 and the

CMSIS-NN library [78] for the STM32H7. All deployed networks are quantized to 8-bit,

using PyTorch’s built-in quantization algorithm.

3.2.5.1 Search Space Exploration

Figure 3.7 shows the results of applying PIT to the four benchmarks. The graphs

report the TCNs accuracy (for classification tasks) or Mean Absolute Error (MAE, for

regression tasks) on the x-axis and the number of parameters or OPs per inference on

the y-axis. The curves correspond to the outputs of PIT. The different curves’ points

are obtained by varying the regularization strength λ. I also consider both size and OPs

regularizers. Moreover, each plot also reports the metrics of two additional TCNs. Black

triangles correspond to the results obtained by the hand-tuned state-of-the-art TCNs of

Figure 3.6, directly taken from [35, 38, 39, 79], with the original number of channels,

receptive fields, and dilation factors. Black squares, instead, indicate the metrics of the

PIT seeds, i.e., the same networks modified as described in Section 3.2.4 (setting d = 1

everywhere, etc.) to enlarge the PIT search space.

The upper-left part of Figure 3.7 reports the results of the PPG-Dalia dataset for the

PPG-based HR monitoring task. The HR tracking is the only regression task considered,

so the network performance is measured with the MAE, for which lower values are better.

As shown by the graphs, starting from a single seed network, PIT can obtain a rich

Neural Architecture Search for Efficient Deployment on MCUs 47

collection of Pareto-optimal architectures, spanning more than one order of magnitude

both in terms of parameters (4.7k-78k) and OPs (0.27M-9.6M). Notably, PIT networks

dominate trade-off accuracy vs. OPs, the seed architecture, and the hand-tuned state-

of-the-art TEMPONet. In particular, I obtain a similar MAE to the seed TCN (5.38 vs

5.40 BPM), with 120.0× fewer parameters and 96.0× fewer operations. Moreover, PIT

also finds a new state-of-the-art deep learning model for this task, achieving an MAE of

just 5.03BPM. It also requires only 53k parameters and 5.1M OPs, improving the best-

performing architecture proposed in [35]2 requiring 8.03× and 5.42× fewer parameters

and OPs.

The other parts of the figures refer to classification tasks, whose performance is mea-

sured in terms of accuracy. The Upper-right pair of charts shows the results obtained

on the ECG5000 dataset for Arrhythmia Detection. PIT results span almost one order

of magnitude in parameters (0.91k-5.36k) and OPs (50.3k-293.5k). Moreover, both the

seed network and the hand-tuned one are Pareto-dominated. The best performing archi-

tecture found by the NAS improves the accuracy of the hand-tuned network (+1.03%),

reducing both the number of parameters (-64.7%) and the FLOPs (-85.8%).

The lower-left part of Figure 3.7 shows the results obtained for the sEMG-based

Hand-Gesture Recognition task on the NinaPro-DB1 dataset. Also, in this case, I found

architectures in a wide range of sizes and numbers of OPs. However, while PIT results

still dominate the seed, the hand-tuned TCNNet sits on the Pareto front. Indeed, the

PIT network nearest to the hand-tuned architecture on the curve achieves a slightly lower

accuracy (-0.47%) traded-off with a reduction of size (-3.33%). This result demonstrates

the goodness of the original TCNNet proposed in [39] but, at the same time, it shows

the excellent quality of the architectures found by PIT, which despite starting from an

oversized seed, is still able to produce optimized networks that closely resemble those

tuned by experts.

Lastly, the lower-right part of Figure 3.7 shows the two Pareto fronts obtained on

the Google Speech Commands dataset for Keyword Spotting. Once again, PIT vastly

outperforms both the seed and the hand-tuned TCNs. Specifically, the most accurate

PIT architecture slightly improves the accuracy of the hand-tuned network (+0.36%)

while significantly reducing both the number of parameters (-82.53%) and FLOPs (-

44.53%). Moreover, the Pareto points span 10k-98k parameters and 0.87M-3.98M OPs.

I report in Table 3.2 the range of regularizer strengths λ that I used for the ex-

periments on the four benchmarks to obtain the Pareto frontier analysis. In general, λ

should be set so that the two additive terms in the loss (L and λR) assume comparable

2Note that this result is achieved without applying any additional post-processing as described in
[35].

Neural Architecture Search for Efficient Deployment on MCUs 48

Table 3.2: Range of regularizer strength (λ) values for the four benchmarks.

Regularizer PPG ECG sEMG KWS

Rsize 1e-7 : 5e-4 5e-7 : 7.5e-3 1e-7 : 5e-6 5e-10 : 1e-5

Rops 1e-8 : 5e-5 5e-8 : 5e-4 5e-10 : 5e-8 1e-10 : 1e-6

values at the beginning of training. With this setting, I ensure that PIT considers both

accuracy and inference cost in its search without degenerating to one of the two corner

cases in the first few epochs. The corresponding values of λ vary for different tasks, as

shown in the table. However, a good rule of thumb, which works for all benchmarks,

to identify the order of magnitude of the regularization strength is to start from λ =

1/(Seed Model Size). Then, based on the results of a PIT search with this initial value,

one can decide to increase/decrease λ to obtain smaller/more accurate TCNs, respec-

tively. By monitoring the loss in the initial epochs, it is also straightforward to detect

when the NAS is falling in one of the corner cases (one term much larger than the other)

and stop the search immediately without wasting training time.

3.2.5.2 Ablation Studies

This section analyzes the impact of some of the most important PIT parameters. I

report the results of this study only for the PPG-based HR monitoring benchmark since

the same conclusions also hold for the other datasets.

Hyper-parameters Figure 3.8 analyzes the contribution of different hyper-parameters

to the quality of results found by PIT. For this experiment, I used the Rsize regular-

izer while considering solutions in the MAE versus the number of parameters space.

Three curves are obtained by running PIT individually on the three different hyperpa-

rameters (α, β, and γ), freezing the other ones. This gives i) the results of a search

that only optimizes the number of channels in each layer (Ch-Only), performed on a

TCN with maximal receptive field and d = 1, ii) the results of a receptive field-only

search (Rf-Only), on a TCN with maximal Cout and d = 1, and iii) the results of a

dilation-only search (Dil-Only) on a network with maximal F and Cout. The Pareto

fronts obtained in each of these 3 conditions by varying the regularization strength λ

are shown in the figure, together with the output of a complete search that optimizes

all three hyper-parameters simultaneously (All-in-One).

The primary source of parameter reduction and performance improvement is the

search along the channels dimension since the channels represent a significant source of

redundancy in hand-tuned TCN (their number is typically set using common heuristics).

Neural Architecture Search for Efficient Deployment on MCUs 49

106

105

104N
u

m
. o

f
P

ar
am

et
e

rs

5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4
MAE

Seed Network Hand-Tuned Network
Rf-Only Dil-Only

Ch-Only All-in-One

Figure 3.8: Comparison between the results of PIT searches with different combina-
tions of hyper-parameters for PPG-Dalia.

Seed Network Hand-Tuned Network Size Regularizer OPs Regularizer

N
u

m
.o

f
P

ar
am

et
e

rs

105

104

106

MAE
5.0 5.4 5.8 6.2

MAE
5.0 5.4 5.8 6.2

108

107

106

O
P

s

Figure 3.9: Comparison of Rsize and Rops regularizers for PPG-Dalia.

However, Figure 3.8 also shows that optimizing only the number of channels is insufficient

and that a combined optimization that considers receptive field and dilation can yield

Pareto-optimal networks across the entire MAE/parameters range.

Regularizers Note that the PPG-based HR monitoring benchmark on which I show

this ablation study is the one for which the distinction between model size and number

of OPs is most relevant due to the presence of both strided convolutions and pooling,

which strongly impact the time dimension T .

The figure shows that, as expected, the majority of the Pareto points in the MAE

versus the number of parameters plane are produced using the Rsize regularizer, with

the few exceptions being local minima. Vice versa, the Rops regularizer tends to generate

superior solutions regarding MAE versus the number of OPs.

Neural Architecture Search for Efficient Deployment on MCUs 50

106

105

N
u

m
. o

f
P

ar
am

et
e

rs

104

108

107

106

O
P

s

105

Seed
Network

Hand-Tuned
Network MorphNetProxylessNAS

Original PITProxylessNAS
EarlyStop

FBNetV2
Coarse

FBNetV2
Fine

5.00
MAE

5.50 6.00 6.50 5.00
MAE

5.50 6.00 6.507.00 7.00

Figure 3.10: Quality of results comparison between PIT and state-of-the-art NAS
tools on the PPG-Dalia dataset.

3.2.5.3 Comparison with state-of-the-art NAS tools

Figure 3.10 compares the Pareto fronts obtained with PIT and three state-of-the-

art NAS tools, namely ProxylessNAS [18] MorphNet [16] and FBNetV2 [15], on the HR

monitoring benchmark. Results show that PIT outperforms all three across the entire

design space, except for one MorphNet and one FBNetV2 point, which achieve a low

number of operations, although at the cost of a larger MAE. The main reason for the

superior results of PIT is the fact that the NAS explores a larger and finer-grain search

space compared to the baselines. For MorphNet and FBNetV2, this is partly due to the

intrinsic nature of those tools, which are limited to exploring one parameter. For this

reason, I set up the remaining hyperparameters to their values inside the seed model for

these NAS searches. This different search starting point compared to PIT is the reason

why, in the low-size/high-MAE regime, these tools find a single Pareto-optimal point.

For FBNetV2, I considered both a Coarse search space and a Fine search space. For

the first one, I included 4 Cout alternatives per layer, uniformly spaced, i.e., 1/4Cout,seed,

1/2Cout,seed, 3/4Cout,seed and Cout,seed. The latter instead evaluates all Cout values with

a granularity of 1. The latter is more similar to PIT, but the former generally achieves

superior results. This is because FBNetV2 uses a pre-defined binary mask for each

layer variant, combining them through a Gumbel softmax, as explained in Sec. 3.2.1.1.

Experimentally, it is shown that with too many masks, the search becomes unstable and

yields sub-optimal results. In contrast, PIT does not have this limitation since it uses

independent trainable masks that keep or eliminate an individual channel.

ProxylessNAS would be virtually able to explore the entire PIT search space, but

at the cost of a very long training time, leading to the impossibility of training the

Neural Architecture Search for Efficient Deployment on MCUs 51

104
Ti

m
e

 [
s]

103

Se
ar

ch
 S

p
ac

e
 D

im
e

n
si

o
n

1032

1028

1016

1012

108

1024

1020

Without
Early-Stop

PIT Proxyless Single Proxyless Mul�ple MorphNet

Normal TrainingFbNetV2-Coarse FbNetV2-Fine

Figure 3.11: Search space and time comparison between PIT and state-of-the-art
NAS tools on the PPG-Dalia dataset.

network due to its requirements. In fact, as detailed in Section 3.2, PIT explores Cout

and F with a granularity of 1, and for d, it considers all possible power-of-2 values.

Therefore, each super-net node should include Cout,seed · Fseed · ⌈log2(Fseed)⌉ different
layers, connected in parallel. With the same parameters used for the example at the

end of Section 3.2.1, this would correspond to ≈10000 different versions of each layer.

c0
2

5

18

c1
2

3

6

c2
2

11

3

c3
2

17

2

c4
2

17

2

c5
1

5

2

c6
2

27

16

c7
2

1

16

c8
2

5

16

fc1
0

0

24

fc2
0

0

25

PPG-Small

c0
1

11

21

c1
1

11

7

c2
1

11

18

c3
1

19

11

c4
1

19

6

c5
1

5

29

c6
1

33

13

c7
2

31

46

c8
1

5

31

fc1
0

0

74

fc2
0

0

55

PPG-Large

c0
1

11

32

c1
1

11

32

c2
1

11

64

c3
1

19

64

c4
1

19

64

c5
1

5

128

c6
1

35

128

c7
1

31

128

c8
1

5

128

fc1
0

0

256

fc2
0

0

128

PPG-Seed

c0
1

1

0

c1
2

9

3

c2
1

1

0

c3
2

19

2

c4
2

39

1

c5
2

39

1

ECG-Small

c0
2

9

6

c1
2

9

8

c2
2

19

2

c3
2

19

7

c4
2

39

1

c5
2

39

6

ECG-Large

c0
1

11

11

c1
1

11

11

c2
1

21

11

c3
1

21

11

c4
1

41

11

c5
1

41

11

ECG-Seed

c0
1

1

2

c1
2

11

20

c2
1

9

5

c3
1

1

10

c4
1

1

14

c5
1

1

16

c6
1

9

4

c7
1

1

9

c8
1

1

14

c9
1

1

10

c10
1

1

0

c11
1

1

9

KWS-Small

c0
1

9

32

c1
1

17

35

c2
1

9

9

c3
1

1

32

c4
1

1

22

c5
4

63

36

c6
1

9

5

c7
4

33

29

c8
1

1

22

c9
1

1

18

c10
1

9

2

c11
1

1

18

KWS-Large

c0
1

9

36

c1
1

17

36

c2
1

9

36

c3
1

17

36

c4
1

33

48

c5
1

65

48

c6
1

9

48

c7
1

65

48

c8
1

129

72

c9
1

257

72

c10
1

9

72

c11
1

257

72

KWS-Seed

Recep�ve FieldDila�on Channels

c0

1

3

32

c1

1

5

30

c2

2

7

7

c3

2

13

31

c4

2

27

6

c5

2

61

36

c6

8

25

53

sEMG-Small

c0
1

3

32

c1
1

5

31

c2
2

7

21

c3
2

13

29

c4
2

11

13

c5
2

9

43

c6
1

53

119

sEMG-Large

c0
1

3

32

c1
1

5

32

c2
1

9

32

c3
1

17

32

c4
1

33

64

c5
1

65

64

c6
1

129

128

sEMG-Seed

Figure 3.12: Hyperparameters of the deployed PIT architectures and corresponding
seed network for the four benchmarks.

Therefore, for ProxylessNAS, I tried to make the comparison with PIT as fair as possible

while keeping the search space size similar to the one of the original paper [18]. To do

so, I used an iterative procedure. First, multiple ProxylessNAS searches on Cout, F ,

and d separately, keeping the two not-optimized hyper-parameters at the seed values

are performed. In each of these searches, I consider 4 variants in each super-net layer,

uniformly sampling the PIT search space (in the same way described above for FBNetV2-

Coarse). After repeating the same procedure for F and d, for every layer, the two values

of each hyper-parameter have been chosen. The 23 possible combinations of the latter

are used to generate the combined search space for ProxylessNAS, which includes 8 layer

variants in each super-net node. The Pareto fronts of Figure 3.10 are obtained running

ProxylessNAS multiple times on this combined search space, with different regularization

strengths. I show both the results from the original paper training procedure (Original

Neural Architecture Search for Efficient Deployment on MCUs 52

Table 3.3: Detailed deployment results for the four benchmarks.

GAP8 STM32

Perf. Mem. Lat. En. Lat. En.
Task TCN int8 (float32) [kB] [ms] [mJ] [ms] [mJ]

PPG
HT 5.01 (5.14) BPM 423 23.2 1.2 58.3 13.6
S 5.71 (6.17) BPM 4.7 1.18 0.06 3.2 0.75
L 5.01 (5.03) BPM 53.2 4.25 0.22 15.2 3.56

ECG
HT 94.2 (94.2) % 15.2 2.69 0.14 6.66 1.56
S 92.84 (93.16) % 0.9 0.78 0.04 1.8 0.42
L 94.13 (94.13) % 5.4 1.26 0.06 2.84 0.66

sEMG
HT 88.89 (88.87) % 88.8 61.0 3.11 291 68.1
S 86.97 (86.98) % 35.4 39.6 2.02 169 39.5
L 91.2 (90.99) % 317.8 238 12.1 960 225

KWS
HT 92 (92.31) % 323.4 13.4 0.68 30.7 7.17
S 87 (86.58) % 9.8 1.40 0.07 2.66 0.62
L 92.16 (92.64) % 56.5 3.74 0.19 10.6 2.48

curve), which runs for a fixed number of epochs, and from the early-stop mechanism

employed for PIT (EarlyStop curve).

Further, Figure 3.11 compares the search space dimension and average execution

time of PIT, Morphett, and ProxylessNAS. For reference, the execution time of a

standard training of the seed network is also reported. All time results refer to the

search phase only (without warm-up), and are obtained on a single NVIDIA Titan XP

GPU with a batch size of 128. For ProxylessNAS, I report the results of initial single-

hyper-parameter searches (Proxyless-Single) and the final combined search (Proxyless-

Multiple), both with and without early-stopping.

The algorithm explores a 1026×/1012× larger search space than Proxyless-Single/-

Multiple. Further, it is only 1.13× slower than Proxyless-Single with early-stopping,

and 3.55× faster than the variant without early-stopping, while it is 3.0×/14.22× faster

compared to Proxyless-Multiple with/without the early-stopping training. Compared

to MorphNet, PIT explores a 1011× larger search space at the cost of a small 1.07×
increase in runtime. FBNetV2-Coarse is the fastest tool, converging in a few search

epochs. Whereas offering a 2.5× speedup compared to PIT, the explored search space

is 1026 smaller. Instead, FBNetV2-Fine explores a 1011 smaller space while requiring

the same search time of the proposed approach. Lastly, PIT’s time-overhead of this

approach compared to regular training is only 34%.

3.2.5.4 Embedded Deployment

This section analyzes the results obtained by deploying two TCNs for each target

benchmark on the GAP8 IoT processor (running at 100MHz) and on the STM32H7

MCU (at 480MHz). For each task, I chose the best performing network in terms of

Neural Architecture Search for Efficient Deployment on MCUs 53

MAE or accuracy (L) and the smallest network that achieves a MAE drop < 1 BPM, or

an accuracy drop < 5% compared to the best performing one (S). For comparison, I also

deploy the baseline hand-tuned architectures (HT). Table 3.3 reports the results in terms

of performance (MAE or accuracy, depending on the dataset), memory footprint, infer-

ence latency, and energy consumption, while Figure 3.12 shows the hyper-parameters

selected by the NAS.

PIT finds competitive solutions for both hardware targets and for all 4 tasks, despite

the large difference in complexity among them, testified by the more than two orders of

magnitude span in memory, latency, and energy consumption in the results of Table 3.3.

For PPG-based HR monitoring, the L/S models achieve a 0/0.70 BPM MAE increase

compared to the hand-tuned TEMPONet, respectively, while resulting in a 8.03/90.8×
lower memory footprint and a 5.45/19.6× lower latency and energy consumption on

GAP8. On the STM32 MCU, the latency and energy reduction of the two PIT outputs

is 3.83/18.2×. PIT’s L/S models for ECG processing, instead, achieve +0.07%/-1.36%

accuracy compared to the hand-tuned ECGNET, with a 2.83/16.8× lower memory foot-

print, 2.13/3.44× latency and energy reduction on GAP8, and 2.34/3.7× on the STM32.

For the sEMG gesture recognition task, the L/S models found by PIT obtain +2.31%/-

1.92% accuracy compared to TCCNet. The higher accuracy is paid with 3.57× larger

memory footprint and a 3.85× latency on GAP8 (3.33× on STM32H7). The small TCN,

instead, results in a 2.51× memory reduction and 1.54× and 1.72× lower latency and

energy on the two targets. Lastly, the L/S PIT outputs for KWS obtain +0.16%/-

5% accuracy compared to TCResNet-14, with a 5.72/33.1× lower memory footprint,

3.58/9.54× lower energy and latency on GAP8, and 2.9/11.54× lower energy and la-

tency on STM32H7.

To conclude the results, I show in Figure 3.12 the different TCNs deployed to show

the high variability of hyper-parameters settings found by PIT among the various bench-

marks.

Neural Architecture Search for Efficient Deployment on MCUs 54

3.3 Channel-wise Mixed-precision Assignment for DNN

Inference on Constrained Edge Nodes

In this section, I will introduce a second Dmasking NAS, similarly in structure to the

previous one, but with totally different scope. In particular, I show a lightweight DNAS

method able to learn an independent precision assignment for each weight tensor channel

in convolutional (Conv) or fully-connected (FC) layers. In other words, an independent

precision is assigned to the weights of each filter in Conv layers3, and to the weights

associated with each output neuron in FC layers. Reducing the precision of the weights

allows me to reduce the memory occupation of the network and, accordingly, its number

of operations. In the following, I discuss the details of the method for Convolutional

layers only since the extension to FC is straightforward.

Note that the channel-based precision assignment explores a larger and finer-grain

solution space than the layer-wise assignment. For instance, considering a MobileNetV1

with a width multiplier of 0.25, the number of solutions grows from 1026 (considering

also different precisions for the activations) in a layer-wise approach to 1074 in ours.

However, this allows this NAS to exploit the different relative importance of extracted

features within a single layer to optimize the model further.

3.3.1 Precision Assignment Optimization Method

Fig. 3.13 summarizes the flow of this approach. For each optimized layer of the target

DNN, first the fake-quantization is applied to the activation tensor X at all supported

bit-widths px ∈ Px, e.g., Px = {2, 4, 8} bit. I then combine the fake-quantized tensors

through a vector of NAS parameters δ(n) ∈ R|Px|, where the n superscript refers to the

n-th layer, in a way similar to [80]. Specifically, I first compute δ̂(n) = SM(δ(n); τ) where

SM(x; τ) is the softmax with temperature:

SM(x; τ) =
exi/τ∑
i e

xi/τ
, ∀i (3.16)

so that the elements of δ̂(n) sum to 1. As detailed in Sec. 3.3.2, the temperature τ is

progressively annealed during training, driving the softmax to increasingly resemble a

non-differentiable argmax, which is the function used to select the final precision at the

end of the optimization.

3By filter, I consider a slice of weights that processes all channels of an input activation patch, and
produces a single output channel.

Neural Architecture Search for Efficient Deployment on MCUs 55

Figure 3.13: Overview of the proposed approach.

Then, the effective activation tensor is obtained as the sum of all the activation

tensors at the different precisions:

X̂(n) =
∑

px∈PX

δ̂(n)px ·Xpx (3.17)

where Xpx is the px-bit fake-quantized version of the original float tensor X. Similarly

to [80], the rationale of (3.17) is that the larger δ̂
(n)
px , the more the final activation becomes

similar to the result of a px-bit quantization.

To explore the channel-wise assignments of bit-widths pw ∈ PW for weights, which

is the main novelty of this NAS, I further associate each layer with a 2D matrix γ(n) ∈
RC

(n)
out×|PW |, where C

(n)
out is the number of output channels/filters in the layer. The i-th

row of the matrix γ
(n)
i contains the NAS parameters that will determine the bit-width

assignment for the i-th channel. Accordingly, each row is applied an independent softmax

to obtain γ̂
(n)
i = SM(γ

(n)
i ; τ).

Next, the i-th effective weight tensor slice Ŵ
(n)
i , i.e., the i-th effective filter, is

obtained similarly to (3.17), as:

Ŵ
(n)
i =

∑
pw∈PW

γ̂
(n)
i,pw
·W (n)

i,pw
(3.18)

Lastly, the stack of these slices along the Cout dimension is used, together with X̂(n) to

produce the layer output:

Y (n) = Conv(X̂(n), stack
i

(Ŵ
(n)
i)) (3.19)

Neural Architecture Search for Efficient Deployment on MCUs 56

The exposed method uses weight sharing to reduce the amount of memory occu-

pied:all fake-quantized weights and activations are obtained from a single float tensor

and not from different ones, being generated on the fly. A single copy of the weights

in the floating point format is therefore trained and stored, minimizing the memory

overhead of this method, which is almost identical to the one of [80]. A key difference

between this NAS and [80] is instead in the quantization scheme, i.e., the function map-

ping X → Xpx and W → Wpw . Namely, I replace the original Gaussian quantizer used

in [80] with the PaCT method described in [81], since it is fully compatible with most

of the hardware libraries for MCUs.

To optimize the precision assignment, I minimize the same loss function of the

previously presented PIT

L(W ; θ) = LT (W ; θ) + λLR(θ), (3.20)

The difference is in the formulation of the complexity regularizer LR. When the goal

is to minimize the model size, i.e., the number of parameters weighted by their preci-

sions, the NAS is guided to select smaller bit-widths for weights tensors channels where

possible, whereas activations bit-widths have no impact. The regularizer is, therefore,

in the form of:

LR(n) = C
(n)
in K(n)

x K(n)
y

C
(n)
out∑

i=1

∑
pw∈PW

γ̂
(n)
i,pw
· pw (3.21)

where C
(n)
in K

(n)
x and K

(n)
y are number of input channels and the horizontal and vertical

convolution kernel sizes. In practice, this regularizer computes the effective number of

weight bits in the layer, multiplying each softmax coefficient γ̂
(n)
i,pw

times the correspond-

ing bit-width pw.

The second considered regularizer is associated with the energy consumption of the

network, which depends both on weights and activation precision. The corresponding

regularizer is:

LR(n) = Ω(n) ·
∑

px∈PX

δ̂(n)px

C
(n)
out∑

i=1

∑
pw∈PW

γ̂
(n)
i,pw

C(px, pw) (3.22)

where Ω(n) is the total number of operations required to produce the n-th layer output,

which is independent of the precision assignment and can be computed from well-known

formulas for Conv or FC layers. The rest of (3.22) computes the expected average energy

per operation of the layer. Specifically, C(px, pw) is a Look-Up Table (LUT) returning

an estimate of the energy/OP of a px-bit ×pw-bit convolution. The LUT is populated

by profiling the target hardware and is necessary because, for most hardware platforms,

Neural Architecture Search for Efficient Deployment on MCUs 57

Algorithm 2

1: for i← 1, . . . ,Epochswu do # warmup loop
2: Update W based on ∇WLT (Wpmax)
3: end for
4: while not converged do # search loop
5: if #samples < 20% current epoch then
6: Update θ based on ∇θ(LT (W ; θ) + λLR(θ))
7: else
8: Update W based on ∇W (LT (W ; θ))
9: end if

10: Anneal temperature τ
11: end while
12: for i← 1, . . . ,Epochsft do # fine-tuning loop
13: Freeze θ
14: Update W based on ∇WLT (W)
15: end for

the energy cost of arithmetic operations at sub-byte precision is not linearly propor-

tional to the bit-width. The regularizer weighs each combination of NAS parameters for

activations and weights with the cost of the corresponding mixed-precision operation.

The overall regularization loss is obtained as for PIT by summing either (3.21) or

(3.22) over all layers.

3.3.2 Training Procedure

Alg. 2 shows the training scheme of this NAS algorithm, which is almost identical to

the ones shown in PIT. I will therefore discuss here only the differences between them. In

the initial warmup phase, instead of training the floating point network, a quantization-

aware training at the maximum supported precision pmax is performed while keeping

NAS parameters frozen. In all the experiments, pmax is equal to 8bit. Warmup, as

already said, needs to be performed only once, reusing the result for multiple searches.

The second phase represents the core of the optimization. The main difference is

that the training dataset is randomly split into 20%-80%. First, θ are trained on the first

20% to minimize (3.20). Then, only the network weights are trained on the remaining

80%. At the end of each epoch, I anneal the softmax temperature τ to choose among

alternative bit-widths more “decisively”. In all experiments, τ is initially set to 5 and

progressively annealed by e−0.0045 as in [15].

The fine-tuning phase is identical to the PIT training algorithm.

Neural Architecture Search for Efficient Deployment on MCUs 58

Figure 3.14: Layer re-organization to support channel-wise precision assignment.

3.3.3 Implementation Details

In this section, I show that besides having the potential to improve the theoretical

compression and efficiency of DNNs compared to standard mixed-precision, this method

is also fully compatible with existing hardware and software libraries for mixed-precision

inference, with minimal overheads.

The top-left part of Fig. 3.14 shows the DNAS output for a generic Conv layer, with

all filters assigned 2, 4, or 8-bit, independently from their ordering in memory (e.g., the

3rd and last filter are 8-bit, while the 4th filter is 2bit, etc.). To deploy such a layer, the

filters are reordered by bit-width (top-right of the figure). Note that by doing so, also

the output activations are influenced. Accordingly, to preserve the functionality of the

following layer, its weight tensor has to be re-organized along the Cin axis so that each

weight is still multiplied with the correct input activation.

After this re-organization, which is performed offline and does not have run-time

overheads, the layer can be split into |PW | separate convolutions working in parallel,

each with a fraction of the original output channels. These sub-layers have a single bit-

width for W . Hence they are fully compatible with existing mixed-precision hardware

and libraries [2, 30]. Moreover, since the activation bit-width is assigned layer-wise, all

outputs have the same precision. Therefore, they can be concatenated (i.e., stored in

adjacent memory locations) after executing the three ”parallel” virtual layers created

at different precisions. Allowing this simple concatenation is why I do not show the

channel-wise precision assignment for activations. In that case, the next layer’s filters

would have to process an interleaved mix of different precision inputs, which is not

Neural Architecture Search for Efficient Deployment on MCUs 59

IC KWS VWW

A
cc

 [
%

]

88
86
84
82
80

78
76
74
72

95

90

85

80

75

70

A
U

C
 [

%
]

Energy [uJ]
80 1201006040

86

84

82

80

78

76

74
40

Ours EdMIPS FP w8x8 w4x8 w2x8 w8x4 w4x4 w2x4 w8x2 w4x2 w2x2

A
cc

 [
%

]

88

87

86

85

84

83

82
IC

0.40.30.2

90

85

80 KWS

0.080.060.04 0.14 0.16 0.18 1.00.80.60.4

88

87

86

85

84

83

82

VWW

A
U

C
 [

%
]

AD

86

84

82

80

78

1.00.80.6 1.2 1.4 1.6 1.8

Size [Mb]

1.4

86

84

82

80

78

76

74
AD

0.5 0.6 0.1 0.12

35 45 50 55 60 65 7010.0

1.2 1.4 1.6 2.0

12.5 15.0 17.5 20.0 22.5 25.0 27.5 75 1.6 1.8 2.0 2.2 2.4 2.6

Figure 3.15: Pareto fronts obtained for the four MLPerf Tiny benchmarks, and com-
parison with EdMIPS and fixed-precision solutions.

currently supported by inference libraries, causing a high overhead in the embedded

execution and nullifying the gains obtained by the mixed-precision inference.

3.3.4 Experimental Results

3.3.4.1 Setup

I evaluate this DNAS on the four benchmarks of the MLPerf Tiny suite [29]. Below is

a summary of each task, while readers can find more details in [29]. Image Classification

(IC) targets the CIFAR-10 dataset using a custom ResNet-like CNN with a backbone of

8 convolutional layers. Keyword Spotting (KWS) targets the Google Speech Commands

(GSC) v2 dataset with a small Depthwise Separable CNN (DS-CNN) originally proposed

in [82]. Visual Wake Word (VWW) uses the MSCOCO 2014 dataset for a presence

detection task, solved with a MobileNetV1 [83] with a width-multiplier of 0.25. Lastly,

Anomaly Detection (AD) targets the Toy-car subset of the DCASE2020 dataset with a

Dense Autoencoder.

The proposed DNAS is implemented in Python 3.9 using PyTorch v1.10.2. The de-

ployment target, in this case, is MPIC [30], which, compared to the previous deployment

targets, has optimized hardware units for the execution of MAC operations with inputs

independently quantized to pw/x ∈ {2, 4, 8} bit. The LUT implementing the cost func-

tion of (3.22) is built using the energy/OP values profiled from the MPIC core running

at 250MHz.

Neural Architecture Search for Efficient Deployment on MCUs 60

3.3.4.2 Search-Space Exploration

Fig. 3.15 shows the results of applying the mixed-precision assignment method to

the four MLPerf Tiny benchmarks. The vertical axes of all graphs report the task scores,

i.e., the accuracy for IC, KWS, and VWW and the Area Under the ROC Curve (AUC)

for AD. The horizontal axes of the first row of graphs report the energy consumption of

the models in µJ , whereas those in the second row report the model sizes in Mb.

Each plot compares the mixed-precision solutions found with this tool (blue dots)

with the results of EdMIPS [80] (orange dots), the reference DNAS, which optimizes

precision per-layer. To have a fair comparison, in which the presented method’s advan-

tages are solely due to the channel-wise precision assignment, I run it and EdMIPS with

identical training protocols, including the 20/80% alternate θ/W training and the τ an-

nealing. Moreover, I replace the original quantization algorithm of [80] with PaCT [81],

since the former would not be compatible with deployment on MPIC.

I also compare against all relevant fixed-precision quantization baselines, i.e., so-

lutions in which all tensors are quantized to the same precision. I only report wNx8

baselines in memory plots since the activations bit-width is not relevant for model size.

Lastly, the accuracy of a floating point version of each model is shown as a horizontal

dashed line. I do not report the float model energy and size in the figure since MPIC

does not have a Floating Point Unit (FPU).

Each Pareto-optimal point reported in the graphs for this method and for [80] refers

to a DNN with a different precision assignment. Multiple points are again obtained

changing the regularization strength λ in (3.20). I use the regularizer expressions of

(3.21) and (3.22) for memory and energy results respectively, both for this tool and

for [80]. Noteworthy, for all the benchmarks, neither the float models nor the full 8-bit

one outperforms the best mixed-precision assignment due to the well-known overfitting

reduction effect of low bitwidth quantization [84].

The left-most part of Fig. 3.15 shows the results obtained on the IC task. The fine-

grain mixed-precision approach outperforms all fixed-precision baselines and EdMIPS

in terms of energy and model size. Noteworthy, it saves up to 26.4% energy and 35%

memory compared to EdMIPS at iso-accuracy while also obtaining a higher maximum

accuracy, +0.5%/+1% depending on the regularizer used. Similar results are obtained

also for KWS (middle-left part of Fig. 3.15). Again, the proposed method Pareto-

dominates, all comparison baselines, finding solutions that save up to 27.2% energy and

15.6% memory for the same accuracy and improve the best score by +4.3% and +0.7%

respectively.

Neural Architecture Search for Efficient Deployment on MCUs 61

ResNet8 - Ours

c0 c1 c2 r0 c3 c4 c6r1 c5 fc

ResNet8 - EdMIPS
8

1
%

6
%

1
3

%

1
0

0
%

2
5

%

3
%

1
0

0%

1
0

0%

1
0

0
%

1
0

0
%

1
0

0%

1
0

0%

1
0

0%

1
0

0%

1
0

0%

1
0

0%

7
5% 9
7%

9
1%

9%

3%
5

9
%

3
8%

1
0

0
%

3
8

%
6

2
%

6
1

%
3

9
%

1
0

0%

Figure 3.16: Example of found architectures for the IC benchmark.

The middle-right part of Fig. 3.15 reports the results on VWW. On this benchmark,

this NAS Pareto dominates fixed-precision networks in terms of memory and energy.

Conversely, compared to EdMIPS, this method is particularly beneficial in reducing the

memory footprint of the network, with up to 63.4% saving at equal accuracy, and a

maximum accuracy improvement is +0.4%. This benefit is due to the reduced precision

of many channels in layers that still need a part of high-precision channels. Note that,

for this benchmark, the fixed-precision networks with 2bit activations are not shown

because their training does not converge.

Lastly, the right-most part of Fig. 3.15 shows the results on AD. As for all other

benchmarks, the proposed method obtains superior results regarding AUC versus model

size. The memory saving is at most 46.1% for the same AUC compared to EdMIPS. In

this case, however, [80] outperforms the proposed NAS in terms of AUC versus energy

in the high score regime (up to 21.8% saving), while it is superior for lower AUC values

(up to 11.6%). I attribute this result to this NAS’s more difficult optimization problem.

The AD Autoencoder is composed solely of FC layers with 128 channels (i.e., neurons),

except for the bottleneck. With so many channels, the difference between the search

space explored by the described method and by [80] explodes. Hence, the gradient-based

DNAS optimization likely ends up in a local minimum. Nonetheless, I think that this

issue could be solved by tuning the training hyper-parameters precisely for this task. In

contrast, I keep all settings identical across benchmarks in these experiments for fairness

and reproducibility.

3.3.4.3 Results Analysis

Fig. 3.16 shows an example of the precision assignments determined by this tool

and by [80], to deliver to the readers how the precision is assigned to the weights of

the different layers. The two architectures are ResNet-8 for the IC task, obtained with

Neural Architecture Search for Efficient Deployment on MCUs 62

the energy regularizer of (3.22), and correspond to the two circled Pareto points of

Fig. 3.15, i.e., those for which the proposed method obtains the most significant energy

saving with no accuracy drop. Specifically, the channel-wise model saves 26.4% energy

with an accuracy improvement of +0.5%. Each rectangle represents a Conv (cn or rn,

where the latter are those in residual branches) or FC layer, with the activation bit-width

reported on the left and the fraction of weight channels associated with each precision

on the right.

This example shows some interesting insights into the effectiveness of the approach.

For instance, readers can notice that EdMIPS quantizes most of the activations with

8bit. In contrast, this proposed method exploits its additional flexibility to reduce the

activation precision, compensating it with an increase in the bit-width assigned to an

often small subset of the weights channels (e.g., only 3% in c4) to obtain the same final

accuracy. Eventually, only the first and last layer activations, which notoriously often

require higher precision [85] remain at 8bit. Although a single example is shown, similar

considerations apply to the results on the other 3 benchmarks.

Neural Architecture Search for Efficient Deployment on MCUs 63

3.4 Multi-Complexity-Loss DNAS for Energy-Efficient and

Memory-Constrained Deep Neural Networks

As previously said and shown for the two illustrated Dmasking NAS, these tools

minimize the following function:

min
W,θ
L(W ; θ) + λR(θ). (3.23)

However, there are two main limitations. First, R models a single cost metric, i.e.,

either the model size, the number of OPs, or a differentiable approximation of the

latency or energy consumption, as a function of the DNN hyper-parameters [16, 18].

Second, the cost is considered an objective to minimize rather than a constraint. While

this is appropriate for some metrics (e.g., OPs, latency, or energy), it is sub-optimal

when considering memory occupation. Most designers are interested in finding the

“best” model (e.g., the most accurate or the best balance between accuracy and energy

consumption) that fits a memory constraint, given by the target hardware. Doing so

with (3.23) requires repeating the DNAS multiple times, sweeping λ, until a model with

an appropriate memory footprint is found.

In this section, I will propose a new DNAS formulation that addresses both problems,

considering both memory occupation and other cost metrics (OPs, in the experiments)

simultaneously, taking the former as a constraint and the latter as an objective. This

enables the search for Pareto-Optimal architectures in the Accuracy vs. OPs plane,

around a fixed memory budget.

Most state-of-the-art DNAS tools [15, 16, 18] sum the task-specific loss L and the

complexity term R, scaled by a strength constant, using the scheme of (3.23). For

instance, the two proposed NASes regularize either against the number of parameters

or against the number of OPs. However, more recently, UDC [86] proposed a different

approach, where the regularization term is not minimized. In contrast, the term |R(θ)−
r∗| is minimized.

Building upon both these ideas, I propose to enhance the formulations of previous

sections with a two complexity loss terms, which drive the DNAS towards a desired

search space region, while still allowing the exploration of accuracy versus complexity

trade-offs. The proposed optimization problem formulation takes the form:

min
W,θ
L(W ; θ) + λ|S(θ)− s∗|+ µO(θ) (3.24)

Neural Architecture Search for Efficient Deployment on MCUs 64

In the equation, S models the size (i.e., memory footprint) of the DNN as a function of

the architecture parameters θ.

Since, as explained above, memory occupation is usually a constraint that DNNs

should respect for edge deployment, rather than a metric to optimize, I follow the ap-

proach of [86], minimizing the absolute value difference from a target size s∗ which

depends on the hardware.

I associate this cost term with a relatively large and fixed regularization strength λ,

with λ >> µ, thus forcing the NAS to find a set of θ∗ parameters that yield S(θ∗) ≈ s∗.

This allows immediately respecting the memory constraint in each search without a long

sweep of λ values. The way λ is calculated for a given seed is detailed in Sec. 3.4.1.

Furthermore, I add a further loss term O to model additional complexity-related

metrics, which is the term already present in my previous formulation. Differently from

S, O is treated as an objective, not a constraint, and its importance is weighted by µ.

µ is the main parameter to tune to generate different final architectures starting from

a single seed (as in Sec. 3.2 and Sec. 3.3). To summarize, the formulation of (3.24)

will produce DNNs with a size around s∗. With a small µ, the DNAS will focus on

minimizing L, producing networks that maximize accuracy (for that size constraint). In

contrast, large µs will cause to sacrifice the accuracy in exchange for fewer OPs.

Note that the OPs of a convolutional layer are equal to the parameters multiplied by

the output feature map size. Since the feature sizes tend to reduce going forward in the

network, OPs reduction under a fixed size budget usually is obtained by masking more

channels in the initial layers of the DNN, and fewer channels in the final ones. I will

show that this formulation produces precisely this behavior in the following Sec. 3.3.4.

3.4.1 Weighting Losses

For a given target size s∗, the size strength λ is determined with the formula λ =

L(θseed)/|S(θseed)−s∗|, where S(θseed) and L(θseed) are the model size and task loss of the

full seed network after warmup. The rationale is to have similar values for the first two

addends of (3.24) at the beginning of a search so that the DNAS does not just shrink

the network in the first iteration, ignoring the impact on accuracy completely. I verified

that this heuristic works well, but I also noticed that varying λ in a reasonable range

(± one order of magnitude) does not alter the search results significantly since the term

S(θ)− s∗ is quickly brought close to zero in the search phase. Importantly, this means

that λ can be computed in closed form and does not have to be swept.

Neural Architecture Search for Efficient Deployment on MCUs 65

87%

86%

85%

84%

83%

82%

A
cc

81%

1e7
0.2 0.4 0.6 0.8 1.0 1.2

OPs

IC

Seed
75%
50%
25%

87%
86%

85%

84%

83%

82%

81%

80%

79%

VWW

1e6
2 3 4 5 6 7

OPs
1

Seed
50%
25%
12.5%
6.25%

94%

92%

90%

88%

86%

84%
1.0

OPs
1.5 2.5

1e6
2.0 3.0

KWS

Seed
75%
50%
25%

Figure 3.17: Accuracy versus OPs results for different size targets.

3.4.2 Experimental Results

In this section, I show the application of this loss to the PIT algorithm applied only

to channels and extended to 2D kernels since I want only to show the benefit of using

this newly formulated loss. Noteworthy, it can be applied to all the differentiable NASes,

bringing advantages to designers in terms of reduction of searching time and training

iterations to find an architecture that fits target hardware.

3.4.2.1 Setup

As benchmarks, I evaluated the proposed loss applied to PIT on three datasets from

the previously described MLPerf Tiny Benchmark Suite [77]. As seed networks, I used

the same reference architectures shown before. The three considered tasks are Image

Classification (IC), Visual Wake Word (VWW), and Keyword Spotting (KWS). I do

not consider the last task since the reference DNN is an Autoencoder composed only

of Dense layers, for which the model size and number of OPs are directly proportional,

leading to no benefits from this new loss formulation.

3.4.2.2 Search-Space Exploration

Fig. 3.17 shows the results obtained by applying the proposed DNAS to the three

benchmarks. Each plot reports the found architectures (represented with colored dots)

and the seed (denoted with a black star) in the Accuracy versus OPs space. Different

colors correspond to different size targets s∗. To validate the approach, I initially set s∗

to be respectively 75%, 50%, and 25% of the original size of each seed network. In a

real scenario, s∗ would depend on the hardware, so this setup simulates targeting three

different MCUs with progressively less available memory. Different points are obtained

within the curve relative to each s∗ target, changing the OPs regularization strength µ.

The leftmost graph shows the results obtained on the IC task. Considering all three

memory targets, the DNAS can find networks that span almost one order of magnitude in

Neural Architecture Search for Efficient Deployment on MCUs 66

OPs 1.96M-9.86M), and ± 6.3% in accuracy. Moreover, under the 75% size constraint, I

obtain a network that achieves a negligible accuracy drop compared to the seed (-0.23%),

while reducing the number of OPs by 1.3x (12.7M vs. 9.86M).

The center graph reports the Pareto fronts obtained for the VWW task. In this case,

I found that the results obtained with the 75% and 50% size constraints are completely

outperformed by those obtained with lower memory, which achieves higher accuracy

with fewer OPs (only the 50% curve is shown in the graph for clarity). This means

that the reference network used for this task is strongly over-parameterized. Therefore,

forcing to optimize OPs with a too high s∗, leads to un-balanced architectures which

attain the same accuracy as smaller ones (see orange vs. red curves in the mid graph

of Fig. 3.17). Thus, I decided to add two additional memory targets (i.e., 12.5% and

6.25% of the seed) to show more insightful trade-offs. The NAS results span almost one

order of magnitude in terms of OPs (0.81M-6.14M). Furthermore, many of the found

architectures Pareto-dominate the seed, even at 12.5% size (+0.39% accuracy with 2.5×
OPs reduction and +0.82% accuracy with 2.2× OPs reduction).

Lastly, the right-most plot in Fig. 3.17 shows the results on the KWS task. In

this case, Pareto-fronts are not as rich as for the other two benchmarks due to the

peculiarities of the seed network. DS-CNN includes strided convolutions and pooling

only in the first and last convolutional layers. Consequently, all intermediate feature

map sizes are identical, with OPs and model sizes strongly correlated. Nonetheless,

multiple networks for each size constraint are found but with a less favorable trade-off.

At most, for the 50% size target, a OPs difference of 1.2× is traded for a small accuracy

degradation of 1.45%.

3.4.2.3 Architecture Details

As an example of the architectures found by PIT with this new loss, Fig. 3.18

reports four of the networks generated for the IC benchmark under the 75% and 25%

size constraints. The models labeled with “-H” (high-OPs) are obtained with µ = 0, i.e.,

performing the search with the only constraint of respecting the target size without OPs

reduction. Instead, the networks labeled with “-L” (low-OPs) are obtained with µ ̸= 0,

and in particular, they correspond to the points with the fewest OPs in the 75% and

25% Pareto fronts of the graph in Fig. 3.17. Each rectangle represents a convolutional

layer, and numbers inside them correspond to C
(n)
out,final/C

(n)
out,seed.

These examples demonstrate that this formulation generates meaningful results.

First, as expected, a lower target size results in more masked channels, regardless of the

OPs regularization strength. Moreover, the “-L” networks have fewer channels in their

Neural Architecture Search for Efficient Deployment on MCUs 67

c0 c1 c2 c3 c4 c5 c6

3
0

/6
4

1
2

/1
6

6
/1

6

1
4

/1
6

3
2

/3
2

1
2/

3
2

3
0

/6
4

ResNet8 - 25%- H

2
7

/6
4

7
/1

6

3
/1

6

7
/1

6

7
/3

2

1
0

/3
2

5
0

/6
4

ResNet8 - 25%- L

4
4

/6
4

1
1

/1
6

1
5

/1
6

1
5

/1
6

3
2

/3
2

2
6

/3
2

6
4

/6
4

ResNet8 - 75%- H

6
4

/6
4

7
/1

6

4
/1

6

9
/1

6

8
/3

2

2
7

/3
2

6
4

/6
4

ResNet8 - 75%- L

c0 c1 c2 c3 c4 c5 c6
s=2 s=2 s=2 s=2

Figure 3.18: Examples of found architectures for the IC benchmark.

initial layers, which contribute more to the total OPs, due to the larger resolution of

their input/output feature maps. The considered ResNet8 has two convolutional layers

with stride s = 2 (c3 and c5), indicated by yellow dashed lines in Fig. 3.18, which

reduce the feature map sizes of downstream layers by a factor 4. As evident from the

figure, this new loss allows reducing much more aggressively the layers before c3 when

µ increases.

Chapter 4

Deployment of Deep Neural

Networks on MCUs

4.1 Related Works

After the step of neural architecture search, shown in the previous section, the NN

has to be deployed on some hardware platform. In order to optimally deploy them,

there are two main challenges that should be faced. First, an appropriate optimized

hardware/software library is demanded. Second, the memory hierarchy and the orches-

tration of the tensors should be tackled to ensure that data needed from the kernels are

always in the fastest memory available in the system. In the next three sections, I would

describe my holistic tool for DNN and Transformers deployment (DORY) in Sec. 4.2,

and two optimized software backend for 1D-CNNs (Sec. 4.3) and Transformers (Sec.

4.4).

68

Deployment of Deep Neural Networks on MCUs 69

T
a
b
le

4
.1
:
D
at
a
fl
ow

sc
h
ed
u
li
n
g
an

d
ti
li
n
g
in

li
te
ra
tu
re

fo
r
d
iff
er
en
t
co
m
p
u
ti
n
g
sc
a
le
s,

su
p
er

co
m
p
u
ti
n
g
,
A
S
IC

a
cc
el
er
a
to
rs
,
a
n
d
ti
n
y
M
C
U
s.

W
o
rk

N
e
tw

o
rk

s
O
p
ti
m
iz
a
ti
o
n
s

O
u
tp

u
t

O
p
e
n
-

S
o
u
rc

e
P
re

c
is
io
n

S
u
p
e
rc

o
m
p
u
te

rs

D
M
IA

Y
N

[8
7
]

T
ra
n
sf
o
rm

er
s

1
)
O
p
er
a
to
r
F
u
si
n
g
,

2
)
D
a
ta

L
ay
o
u
t
E
x
p
lo
ra
ti
o
n

T
ra
n
sf
o
rm

er
P
ri
m
it
iv
es

Y
es

fp
3
2

D
N
N

A
c
c
e
le
ra

to
rs

d
M
a
ze
R
u
n
n
er

[8
8
]

C
N
N
,

N
es
te
d
L
o
o
p
s

1
)
L
o
o
p
O
rd
er
in
g
,

2
)
L
o
o
p
T
il
in
g
,

3
)
M
em

o
ry

M
ov
em

en
ts

T
em

p
o
ra
l/
S
p
a
ti
a
l
S
ch
ed

u
le
,

L
o
o
p
T
il
in
g

Y
es

F
le
x
ib
le

M
A
E
S
T
R
O

[8
9
]

C
N
N

1
)
M
a
p
p
in
g
&

D
a
ta

R
eu

se
,

2
)
P
E
s
D
es
ig
n

P
E
s
a
rr
ay
,

T
em

p
o
ra
l/
S
p
a
ti
a
l
S
ch
ed

u
le

Y
es

F
le
x
ib
le

In
te
rs
te
ll
a
r
[9
0
]

C
N
N
,

L
S
T
M
,

M
L
P

1
)
L
o
o
p
O
rd
er
in
g
,

2
)
L
o
o
p
T
il
in
g
,

3
)
P
E
s+

M
em

.
D
es
ig
n

P
E
s
+

M
em

.
A
rr
ay
,

7
-L
o
o
p
s
O
rd
er
in
g
a
n
d
T
il
in
g

Y
es

1
6
b
it
s

T
im

el
o
o
p
[9
1
]

C
N
N

1
)
L
o
o
p
O
rd
er
in
g

2
)
L
o
o
p
T
il
in
g

M
o
d
el

S
ch
ed

u
li
n
g
,

L
a
te
n
cy
/
E
n
er
g
y
E
st
im

a
ti
o
n

N
o

F
le
x
ib
le

M
o
b
il
e
&

M
C
U
s

L
C
E

[9
2
]

B
N
N

1
)
L
o
o
p
T
il
in
g
,

2
)
V
ec
to
ri
za
ti
o
n
,

3
)
P
a
ra
ll
el
iz
a
ti
o
n

C
+
+

R
u
n
ti
m
e
In
te
rp
re
te
r,

C
+
+

D
es
cr
ip
to
r

Y
es

1
b
it

T
F
L
it
e
M
ic
ro

[9
3
]

C
N
N
,

M
L
P

1
)
H
a
n
d
-c
o
n
fi
g
u
ra
b
le

M
em

.,
2
)
O
p
ti
m
iz
ed

B
a
ck
en

d
s

C
+
+

R
u
n
ti
m
e
In
te
rp
re
te
r,

C
+
+

D
es
cr
ip
to
r

Y
es

in
t8
-f
p
3
2

C
u
b
e-
A
I
[7
1
]

C
N
N
,

M
L
P

1
)
M
em

.
A
cc
es
s
O
p
t.

C
O
p
ti
m
iz
ed

E
x
ec
u
ta
b
le

N
o

in
t8
-f
p
3
2

G
W

T
A
u
to
T
il
er

C
N
N
,

M
L
P

1
)
L
o
o
p
T
il
in
g
,

2
)
M
em

.
A
cc
es
s
O
p
t.

C
O
p
ti
m
iz
ed

E
x
ec
u
ta
b
le

P
a
rt
ia
ll
y

in
t8
-i
n
t1
6

D
O
R
Y

C
N
N
,

M
L
P
,

T
ra
n
sf
o
rm

er
s

1
)
L
o
o
p
T
il
in
g
,

2
)
M
em

.
A
cc
es
s
O
p
t.

3
)
M
em

.
F
ra
g
m
en
ta
ti
o
n

C
O
p
ti
m
iz
ed

E
x
ec
u
ta
b
le

Y
es

in
t8

Deployment of Deep Neural Networks on MCUs 70

4.1.1 Optimized software & ISA for DNN computation

The scope of this ”deployment challenge” is to achieve maximal utilization of the

computing units, while minimizing the performance and energy penalties associated with

data transfers across the memory hierarchy.

A first alternative is to employ hardware-oriented optimization. Application-specific

hardware architectures are very useful in accelerating particular layers and, in some

cases, entire networks [20–22] – but their lack of flexibility can be a liability in a field

such as DL, where every year researchers introduce tens of new topologies and different

ways to combine the DNN basic blocks. To provide higher flexibility, in many cases, DNN

primitives are implemented in highly optimized software instead of full-hardware blocks.

Therefore, several software libraries of DNN kernels have been proposed [2, 25, 33, 94] to

maximize the efficiency of DNN execution with DSP-oriented single-instruction multiple-

data (SIMD) ISA capabilities [56]. The different software libraries are based on different

optimization criteria. For instance, they could optimize data reuse in the spatial dimen-

sions, to be faster on convolutions with larger filters and lower channel connectivity;

conversely, they can also optimize channel reuse, often requiring the construction of a

flattened data structure (’im2col’ buffer) to exploit spatial data reuse partially [33], but

increasing the possibility to exploit ISA operations (e.g., ARM Helium) to support and

accelerate the pervasive convolutional layers with low-bitwidth linear algebra instruc-

tions.

4.1.2 Memory hierarchy management

The other critical challenge in DNN deployment is memory hierarchy management:

modern DNNs generate high amounts of weight and activation traffic between dif-

ferent levels of the memory hierarchy, which may constitute a significant bottleneck.

In Table 4.1, I report different methods for data flow scheduling and generation that

cover three broad classes of devices, namely high-performance computing systems [87],

DNN accelerators [88–91], and embedded systems [92, 95]. For what concerns high-

performance computing systems, [87] propose new transformer primitives to exploit

data reuse and limit data movement by fusing pointwise operators. In this way, all

intermediate activations have not to be produced, strongly reducing the memory usage.

[88–91] discuss DNN optimization on AI-specialized accelerators based on systolic ar-

rays of processing elements (PEs), with a focus on loop tiling and/or reordering to i)

efficiently move the data to fastest memory regions and ii) correctly schedule layers in

space and time to maximize PE utilization. The output of these tools can be either an

Deployment of Deep Neural Networks on MCUs 71

accelerator model to run a given DNN [89, 90] or the spatial scheduling to maximize PE

array utilization on a target accelerator [88, 91].

MCU data flow scheduling tools show similarities to frameworks such as DMazeRun-

ner, as both target the optimization of a dataflow schedule given an externally known

architecture. However, the MCU scenario also imposes some additional unique chal-

lenges, such as the fact that DNN execution has to be adapted to a general-purpose

architecture and the small amount of memory that MCU platforms include. Further,

the kernel instructions are heavily influenced by the limited size of the register file, which

causes additional load-store operations and thus demand for an optimal loop sizing to

avoid register spilling overhead. Major frameworks for DNNs have so far focused either

on cloud-scale or specific DNN acceleration, and only recently started to put attention

on inference at the edge. Tensorflow Lite (TFLite) from Tensorflow creators is an open-

source framework for the deployment of DNN models on top of mobile-class devices and

represent a first step forward in this direction. A Tensorflow DNN model is converted

into a compressed flat buffer and interpreted on-device. Similarly, Larq Compute En-

gine (LCE) [92] is a framework targeting the deployment of heavily quantized neural

networks on edge mobile devices. LCE leverages optimization techniques such as tiling,

vectorization, and multi-threading parallelization to speed-up the execution of inference

tasks. Both TFLite and LCE are not suitable for IoT MCU-class devices for two rea-

sons: they require the target device to be capable of booting a full-fledged operating

system, and they are not tuned to target low-cost low-power MCUs with less than 1MB

of on-chip SRAM and just a few MB of off-chip memory.

4.1.3 DNN-oriented microcontrollers and related tools

Recently, the first generation of low-power neural-network oriented MCUs has been

introduced (Sec. 2.3.1 and Sec. 2.3.2). These platforms show an increased complexity

in terms of memory hierarchy compared to conventional flat-memory MCUs, with an

L1 memory optimized for speed and an L2 optimized for capacity. Programming these

DNN-oriented MCUs is typically more complicated with respect to conventional MCUs.

Maximizing the exploitation of computational resources is challenging, and scratchpads

require manually managed data orchestration and tiling.

To the best of my knowledge, the two most powerful DNN deployment tools available

in the state-of-the-art have been proposed by the industry as proprietary, vendor-locked

solutions for their own MCUs. X-CUBE-AI [71] from STMicroelectronics is an automatic

NN library generator optimized on computation and memory. It converts a pre-trained

DNN model from DNN tools such as Tensorflow into a precompiled library for the

Deployment of Deep Neural Networks on MCUs 72

ARM Cortex-M cores embedded in STM32 series MCUs. However all STM32 MCUs

supported by X-CUBE-AI have a cache. Therefore, it can be argued that they do

not directly tackle the memory management problem, relying on extended L1 cache

(up to 16 kB) to maximize the performance. On the other hand, GWT designed a

tool called AutoTiler, to target the GAP-8 RISC-V based multi-core ultra-low-power

microcontroller. The AutoTiler has a wider scope than other strictly AI-focused tools,

also targeting the deployment of traditional vision and signal processing algorithms. One

of its primary functions is to take a pre-trained DNN and generate code for memory

tiling and efficient transfers of weight and activation data between all memory levels

(on- and off-chip). The GWT AutoTiler directly tackles the data-movement and tile

sizing challenge to optimize memory access, reaching state-of-the-art performance on

the execution of many networks. The tool is proprietary, but its backend basic kernels

are available as open-source as part of the GAP-8 SDK1.

The framework that I will introduce in the next Section, DORY, is the first open-

source framework to directly tackle the MCU memory hierarchy management challenge,

with a comprehensive exploration of data tiling, optimized loop ordering for different

layers (i.e., pointwise and depthwise), and a solution for the data fragmentation problem

that is critical to deploy residual layers at the edge. DORY consistently outperforms all

the illustrated frameworks on all the proposed benchmarks.

1https://github.com/GreenWaves-Technologies/gap sdk

Deployment of Deep Neural Networks on MCUs 73

Table 4.2: Symbols used throughout this work.

Input x dims (height/width/chan) hx / wx / Cx

Output y dims (height/width/chan) hy / wy / Cy

Weight w dims (out c/height/width/in c) Cy / Kh / Kw / Cx

Buffer for tensor q at i-th level of mem. hier. Liq
Tiled dimension dq of a tensor q dtq

4.2 DORY: Automatic End-to-End Deployment of Real-

World DNNs on Low-Cost IoT MCUs

In this section, I will describe DORY, my tool for the deployment of neural networks

on MCUs. The explanation of DORY will be made on top of a node with three memory

levels, e.g., the GAP8 platform introduced, and taking into account the presence of an

optimized neural network kernel library. In the following section, we will use the general

PULP-NN library [96] to explain the general concepts. However, note that DORY is

equally able to manage the two specialized libraries PULP-NN-1D and TinyFormers,

exposed in the two sections after. Table 4.2 also introduce the notation used throughout

this chapter. DORY supports L3-L2 and L2-L1 tiling of both weights and activations.

Storage of weights in L3 (> 512 kB) is essential for the deployment of most non-trivial

networks such as [47, 83]. On the other hand, activations’ tiling is typically necessary

only for networks working on high-resolution images with big spatial dimensions, which

are rare in the edge computing domain. In the following, I will dig inside the three main

offline steps before network deployment.

ONNX decoder : it receives as input a QNN graph using the Open Neural Network

Exchange (ONNX format) and parses it to create a DORY-compatible graph.

Layer analyzer : it optimizes and generates code to run the tiling loop, orchestrate

layer-wise data movement and call a set of backend APIs to execute each layer of the

network individually.

Network parser : it merges information from the whole network to infer memory

buffer sizes in each hierarchical level and orchestrate the end-to-end network execution.

It uses this information to generate an ANSI C file that embodies the whole DNN

execution and can be compiled for the target platform.

4.2.1 ONNX Decoder

In the first operation, DORY decodes the input ONNX graph representing an already

quantized DNN and reorganizes it into a set of layers. In DORY, a layer corresponds

to a canonical sequence of operations performed by distinct ONNX graph nodes. Each

Deployment of Deep Neural Networks on MCUs 74

copy
in

computecopy
in

copy
out

compute

input tensor x

output tensor y

weight tensor w

L1 buffer I

L1 buffer II

L1x buffer I

L1w buffer I

L1 memory

L2 memory

Cluster

copy
in

computecopy
in

compute

t0 t1 t2 t3 … tn

PIPELINE

t0

t1

t2

x tile0

W tile0

Cx

wx

hx

C1
y

wy

hy

C1
y

Cx

Co
re

 0
Co

re
 1

Co
re

 2
Co

re
 3

Co
re

 4
Co

re
 5

Co
re

 6
Co

re
 7

iIND = 0,
hIND = 0,
wIND = 0

iIND = 0,
hIND = 0,
wIND = 1

iIND = 0,
oIND = 0

oIND = 0,
hIND = 0,
wIND = 0

oIND = 0,
hIND = 0,
wIND = 1

copy
in

Cluster DMA

L3 memory

I/O DMACx

Cy

Stage 0

Stage 1

L2x

L2w,curr

L2w,next

L2y,i

L2 memory buffer

L1y buffer I

copy
out

copy
out

L1y buffer II

L1x buffer II

L1w buffer II

Figure 4.1: DORY L3-L2-L1 layer routine example. On the left, the I/O DMA copies
weights tile in case only Cy is L3-tiled. Two different buffers are used for L2w. Then,
the Cluster DMA manages L2-L1 communication using double-buffering while the cores
compute a kernel on the current tile stored in one of the L1 buffers.

1 LTO: for (o = 0; o < Ct
y; o++)

2 LTH: for (h = 0; h < ht
y; h ++)

3 LTW: for (w = 0; w < wt
y; w ++)

4 LTI: for (i = 0; i < Ct
x; i ++)

5 dma wait(L1x,load); swap(L1x,load, L1x,exec)
6 dma async(L1x,load <- L2x[i, w, h])

7 dma wait(L1w,load); swap(L1w,load, L1w,exec)

8 dma async(L1w,load <- L2w[i, o])

9 if (o + h + w + i > 0)

10 DNN kernel (L1x,exec, L1w,exec, L1y,exec)
11 # from 3° iteration: fully operating pipeline

12 if (o + h + w + i > 1)

13 dma wait(L1y,load)
14 dma async(L1y,load -> L2y[o, w, h])

15 swap(L1y,load , L1y,exec)

Listing 4.1: DORY L2-L1 loop nest implementing the double buffering scheme as
represented in right part of Figure 4.1. At each most internal loop iteration, two
asynchronous Cluster DMA calls are made to copy the weights and input activation of
the next tile into L1 memory, the basic kernel is executed on the current tile, and one
other cluster DMA transfer is executed to copy the output back on the L2 memory.

layer includes i) a Linear/add/pooling operation, ii) an optional Batch-Normalization

operation, iii) a Quantization/Activation operation. Each DORY layer uses quantized

to 8bits inputs, outputs, and weights, while the representation of any temporary data is

made on 32-bit data arrays.

4.2.2 Layer Analyzer

After recognizing every single layer, in the first optimization phase, DORY layers

are considered separately from each other. Furthermore, partial information from the

Deployment of Deep Neural Networks on MCUs 75

previous layer is employed. The layer analyzer includes three submodules: a platform-

agnostic tiling solver ; a set of heuristics & constraints optimizing execution over a target-

specific backend and limiting the tiling search space; and a SW-cache generator.

4.2.2.1 DORY Tiling Solver

In the following discussion, I denote a buffer residing in Li memory as Lit, where t

is the name of the tensor. The Solver relies on a 2-step engine, which solves the L3-L2

tiling constrained problem first, and the L2-L1 one after. These two steps are generic

for architecture with three memory levels, as the GAP8 SoC described in Sec. 2.3.2.

On the other hand, user can also enable only one step, supporting different architecture

topologies. With L3-L2 tiling, I enable storing activations and weights in the L3 off-chip

memory instead of the on-chip L2, if available. Compared to tools that do not support

L3 tiling for activations, such as Tensorflow Lite Micro, this feature enables the support

of significantly larger layers.

In this first step, the Solver verifies whether the layer memory occupation fits the

L2 memory input constraint or needs to be stored in L3:

L2w,next + L2w,curr + L2x + L2y
?
< L2 . (4.1)

If it does not fit in L2 and the L3 memory is available, DORY searches for a proper

tiling solution using a five-stage cascaded procedure. At each stage, I try to tile a

different selection of buffers to fit the constraint of Eq. 4.1. If possible, the tiler tries to

avoid L3-L2 tiling of output activations since it requires a double number of transfers

compared to other tensors, i.e., L3 to L2, and vice-versa. Instead, the tiler tries to keep

output activations in L2 as much as possible. Each successive stage is more restrictive;

therefore, the L3-L2 Tiling Solver is stopped as soon as the constraint is respected to

avoid any additional performance loss.

stage 0. L3-tile x, w, y = OFF, OFF, OFF. If Eq. 4.1 is directly satisfied, no L3 is

required.

stage 1. L3-tile x = ON. This solution is selected when the previous layer’s output was

tiled in L3, so input tiling cannot be avoided. Tiling is performed along the hx

dimension of the input to avoid 2D transfers at the L3-L2 interface. The tiler

splits the layer into a series of identical ones that work on a different stripe of

the input image.

stage 2. L3-tile w = ON. Weight tiling is enabled on the Cy dimension, dividing the

layer into a set of smaller layers that work on different channels of the output

Deployment of Deep Neural Networks on MCUs 76

image with C ′
y < Cy. This solution can only be selected when the previous

layer’s output is already in L2.

stage 3. L3-tile w , y = OFF, ON. Weight tiling is disabled while output tiling is en-

abled: the approach is similar to input tiling but requires doubling the DMA

transfers for the tiled tensor across the full network execution.

stage 4. L3-tile w, y = ON, ON. The L3 tiling is enabled on both buffers, y, weights.

This solution is selected when no other solution can fit L2.

After the L3 tiling step, I have either a series of identical smaller nodes that fit L2 or the

initial node that fits L2. Then, the DORY solver processes the layer to find a suitable

L2-L1 tiling scheme, which requires more effort due to the typically small sizes of L1

memories. Compared to high-end computation engines, with much larger memories,

a suboptimal sizing of the tensors for the L1 small MCUs memory can be even more

detrimental in terms of performance, as exposed in Section 4.2.6.1. DORY abstracts

this as a Constraint Programming (CP) problem, exploiting the CP solver from the

open-source Google AI OR-Tools 2 to meet hardware and geometrical constraint (e.g.,

Ct
y for output and weights must be the same) while maximizing an objective function.

The base objective function of the Solver is to maximize L1 memory utilization:

max(L1x + L1y + L1w) , (4.2)

manipulating the tile dimensions (e.g., Ct
x and Ct

y). The hardware constraint is related

to the max L1 buffer dimensions:

L1x + L1y + L1w + L1backend <
L1

2
.

with L1backend, the overhead of the backend kernel, such as the im2col memory occu-

pation of PULP-NN backend [25] or any other support buffer (e.g., the intermediate

full-precision accumulators for CHW-based convolutions or the intermediate activations

from the sub-nodes of attention layers). Topological and geometrical constraints are due

to the relationships between each tensor’s characteristic dimensions and other parame-

ters of a layer; for instance, I show the relationship between the input and the output

dimensions of an image,

hty =
(
htx − (Kh − 1) + 2 · p

)
.

2https://developers.google.com/optimization/

Deployment of Deep Neural Networks on MCUs 77

4.2.2.2 GAP8-specific Heuristics & Constraints

In this paragraph, I will show how to augment the objective function of Eq. 4.2

with a series of heuristics targeting a specific backend to maximize performance. The

heuristics are combined with the objective function of Eq. 4.2 using a set of tweakable

parameters:

max
(
α(L1x + L1y + L1w) +

∑
i

βiHi

)
. (4.3)

Here, I list four heuristics related to a specific combination, i.e., PULP-NN as the back-

end and GAP8 as the target platform. Note that a different kernel library or a different

backend can dramatically change all the heuristics.

- HIDE IM2COL: the PULP-NN library exploits the im2col transformation to re-order

data in L1. This buffer is reused for each output pixel; therefore, maximizing the

number of output channels optimizes the reuse of input pixels, reducing the overhead

to create the im2col:

Hi2c = Ct
y

- PAR BALANCE3: PULP-NN primarily divides workload among cores following the h

dimension (i.e., a chunk of rows per core). Therefore, I make it a multiple of cores

number (8), to maximizes balance:

Hpar = (hty − 1)mod 8

- MATMUL W and MATMUL CH: the innermost loop of PULP-NN is a 4x2 matrix multipli-

cation on 4 output channels and 2 pixels in w direction. Maximizing adherence of a

tile to this scheme optimizes performance:

Hmm w = (wt
y − 1)mod 2 ; Hmm ch = (Ct

y − 1)mod 4

I will discuss the utilization of these heuristics in Section 4.2.6.1. Additionally, Sec-

tion 4.2.6.1 describes the impact of applying these heuristics both to the main tiling

problem and to the sizing of the layer borders tile.

Finally, I impose one last but vital constraint to enforce an entire computation along

the input channel direction:

Ct
x = Cx

I choose not to tile the Cx dimension to avoid the memory overhead of long-term storage

(and, therefore, transfer to L2 and L3) of 32-bit partially accumulated values produced

3The PAR BALANCE constraint is changed to Hpar = (ht
y × wt

y − 1)mod 16 for “pathological” output
activations with hy < 8.

Deployment of Deep Neural Networks on MCUs 78

by the backend. For the same reason, I do not tile the spatial dimension of filters, i.e.,

Kh and Kw.

4.2.2.3 DORY SW-cache Generator

The SW-cache Generator automatically generates C code orchestrating the execution

of a whole layer given the tiling solution found by the Tiling Solver. It instantiates

asynchronous data transfers and calls to the backend kernels without any manual effort.

DORY uses a triple-buffering approach for the communication between L3-L2 and L2-L1

memories and a double-buffering approach when only two levels of memory are available.

For triple-buffering, double-buffering is applied simultaneously between L3-L2 and L2-

L1 (Figure 4.1), and all data transfers are pipelined and asynchronous. I can almost

completely hide the memory transfer overhead with these approaches, as discussed in

Section 4.2.5. While the code generator is not platform-agnostic (it uses SIMD specific

of GAP8 in this example and should be customized for each hardware platform), the

approach I follow can be easily generalized to any computing node with a three-level

memory hierarchy.

Listing 4.1 provides DORY’s scheduling scheme of L2-L1 layer execution through

LTO, LTW, LTH, and LTI loops on output channels, height, width, and input channels

tiles, respectively. Loop iteration limits are statically resolved by the DORY tiling

Solver. Moreover, DORY autonomously controls the complete execution of the layer by

managing padding, stride, and overlap for every single tile (e.g., padding > 0 for border

tiles whereas padding = 0 for internal ones, when the input padding parameter is > 0).

Note that using statically resolved parameters maximizes immediate usage, minimizing

loads/stores from the stack.

The layer-wise loop nest detailed in Listing 4.1 and Fig. 4.1 is executed in three

concurrent pipeline stages: i) a new computation starts and fill the output buffer that

was not used in the previous cycle; ii) the results of the last cycle are stored back in L2;

iii) a new set of inputs is loaded in L1. At each pipeline cycle, I swap the load and the

execution buffer (swap operation of Listing 4.1) to enable double buffering.

4.2.3 DORY Hybrid Model

In the HWC data layout, used by CMSIS-NN [33] and PULP-NN [25], pixels referring

to channels are contiguous, while spatially adjacent ones are stored with stride > 1. This

layout enables constructing very optimized convolutional layers out of a single optimized

matrix-multiplication kernel by exploiting the reuse of activations over input channels

Deployment of Deep Neural Networks on MCUs 79

CHW layout

0,0,0

0,Ky-1,Kx-1
1,0,0

...

1 byte

C-1,Ky-1,Kx-1

...

!lters for
Cy = 0

w
 b

u"
er

MatMul

1

K
h
××K

w
K
h
××K

w

1

1

1

32-bit accum

store with
HWC layout

Im2Col

Kw

hx

wx

window for
hy=1 wy=0Kh

CHW layout

Figure 4.2: Modified execution model for depthwise convolutions: the Im2Col buffer
is built using a single channel out of CHW-layout activations; outputs are quantized
and stored back using the PULP-NN model.

[25, 33]. In contrast, the CHW layout requires separately handcrafted and optimized

kernels for each kernel size/stride configuration. The principal limitation of this approach

is the efficient execution of depth-wise convolutions. These do not accumulate over

multiple channels; instead, they project each input channel into a single output channel

disjointly from other channels, not showing any possibility to exploit channel data reuse.

On the one hand, depth-wise convolutions are the core of many significant ”effi-

cient” networks. They are used to reduce the number of operations and the memory

occupation while maintaining a high accuracy [47]; on the other hand, they are typi-

cally only responsible for 10% or less of the overall operations [47, 83], meaning that

directly optimizing for them may be suboptimal. Therefore, I keep the HWC layout for

general convolutional layers (and point-wise 1x1 layers). Still, I try to apply a hybrid

CHW/HWC layout in depth-wise layers to optimize their performance.

Following this idea, I define new optimizations for existing layers and a new depth-

wise convolution that consumes and produces activations in HWC layout from L2/L3

memory but reorders them in CHW layout on L1 to maximize the data reuse and,

therefore, computational efficiency.

Specifically, multiple strided Cluster DMA transfers are used to marshal data from

L2, converting it directly from the HWC to CHW layout, reducing data-reordering over-

head. In the new depthwise layer, an Im2Col buffer is constructed simply as a contiguous

Deployment of Deep Neural Networks on MCUs 80

1 udma async(L2w,load <- L3w[I0])
2 udma wait(L2w,load);

3 LTL: for (i = 0; i < nlayers; i ++)

4 # number of CNN layers

5 udma wait(L2w,load); swap(L2w,load, L2w,exec)

6 if (layer{i+1} fit L2 && is Conv)

7 udma async(L2w,load <- L3w[Ii])
8 Layer{i} (L2x,[L2x2], [L3w[Ii]], [L2w,exec], L2y)
9 # [] optional arguments

10 swap(L2y, L2x)
11 if (layer{i} has residual) # bypass management

12 store (L2y->L2x2)
13 if (layer{i} is Sum)

14 delete (L2x2)
15 Stack dealloc(L2y) # stack control

16 Stack alloc(L2x[Ii+1])

Listing 4.2: DORY network execution loop.

vertical stripe of width Kw; the innermost loop proceeds along the vertical line by com-

puting a single output pixel per iteration. The output pixels are then quantized and

stored in an output buffer using the HWC layout, which can be directly transferred to

L2. Figure 4.2 shows the execution model adopted for depthwise convolutions. With

this strategy, input data reuse – the only kind available in depth-wise convolutions –

can be exploited along the vertical dimension, thanks to the fact that spatially adjacent

pixels are contiguous in memory. For parallel execution, multiple cores operate simul-

taneously on different channels. Due to channel independence, this choice minimizes

memory contention and optimizes parallelization performance: the same kernel can be

used to compute depth-wise layers of various filter shapes and strides.

4.2.4 Network Parser

After the Layer Analyzer has completed layer-wise tiling, DORY uses the information

extracted from all the layers to build a network graph, considering every single layer as

a sub-function to be called from it. Listing 4.2 showcases the execution loop of the

DNN execution as created by the DORY framework. At each step, three main tasks are

concatenated: i) I transfer from L3 the weights of the layer. ii) a new layer is executed

after that all data are in the correct memory level (either L3 or L2); iii) input and

output buffer offsets are updated after the layer execution.

Similarly to single layers, DORY generates the network-wise code automatically

without programmer intervention.

Deployment of Deep Neural Networks on MCUs 81

4.2.4.1 Buffer allocation stack & Residual connections

To allocate layer-wise input and output buffers in the L2 memory, I extend the two-

stack strategy proposed by Palossi et al. [97], employing an approach based on a single

bidirectional stack designed to avoid memory fragmentation and enable the execution

of a sequence of differently sized layers. Buffers are allocated/deallocated from the

buffer allocation stack. Unlike a classical stack, the buffers can be distributed on both

sides. By construction, the bidirectional stack is always smaller than two concurrent

stacks growing in the same direction. For example, in a simple case without residual

connections, the dimension of this new bidirectional stack is

Dstack = maxi(L2x,i + L2w,i + L2w,i+1 + L2x,i+1) ,

which is always less or equal than the size of two concurrent stacks Dstack,1, Dstack,2 due

to the triangle inequality.

Before executing the i-th layer, the allocator manages the weight buffer L2w,i and

output buffer L2y,i; notice that L2x,i is already allocated as the L2y,j of a previously

executed j-th layer (or the input of the network). A special case is associated to residual

connections: I associate each L2y,i buffer to different lifetime counters. To allocate a

buffer in the stack for the i-th layer:

1. one of the two corners of the stack is selected depending on a begin end flag that is

switched at each new weight allocation;

2. the allocator deallocates the last L2w,i−2 buffer on the corner;

3. the allocator checks if L2y,i−2 has its lifetime counter set to 0; if so, it is deallocated;

note that by constructions, these will always be the most internal buffers of the stack

and therefore can be safely deallocated.

4. L2y,i, L2w,i are allocated in order in the selected corner (with L2w,i nearest to the

pointer);

5. the lifetime counter of L2y,i is set to the lifetime of the activation buffer, i.e., the

number of layers to be executed before its deallocation.

6. all lifetime counters are decreased by 1.

This newly designed buffer allocation stack is naturally suited to execute a network

with different branches (i.e., residual connections), solving the memory fragmentation

problem produced by allocating and deallocating successive layers.

Deployment of Deep Neural Networks on MCUs 82

Mcycles [#]

PULP-NN pure MAC ops (sdotp)

PULP-NN MatMul inner loop (6x ld + 8x sdotp)

PULP-NN (Im2Col + MatMul + Norm/Qnt)

DORY Cluster DMA calls

DORY I/O DMA calls

+ 3.3 %

< 1 %

+ 24.5 %

+ 6.0 %

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 4.3: Execution time analysis for point-wise and depth-wise layers.

30

20

10

10

Po
w

er
 [

m
W

]

time [ms]
0 10 20

uDMA
Comp. Computation

Layer Separation
Cluster domain
I/O domain

time [ms]0 10 20 30 40

uDMA

Computation
uDMA uDMA uDMA uDMA uDMA uDMA

A

B30

20

10

10

Layer Separation
Cluster domain
I/O domain

Po
w

er
 [

m
W

]

Figure 4.4: In Part. A, the power traces of a point-wise Convolution following a depth-
wise one. The I/O DMA causes the COREs to go in IDLE, waiting for the memory
transfer to end. In Part. B, an L3-tiled layer is executed and perfectly buffered to hide
the memory hierarchy to the computing engine. fr = 100 MHz and VDD = 1V have
been used on the GAP8 MCU.

4.2.5 Results

In this Section, I evaluate DORY in terms of energy efficiency and latency on both

single layers and complete networks, using GWT GAP-8 as a target platform. I also

compare the shown results with those obtained on an STM32-H743 MCU using STM

X-CUBE-AI and on the same GAP-8 platform using the proprietary AutoTiler tool.

The results on single layers refer to a whole 8-bit QNN layer, with Linear, Batch-

Normalization, and Quantization/Activation sub-layers. I set α to 0.5, βHIDE IM2COL to

102, and other βi to 106 in the objective function.

Deployment of Deep Neural Networks on MCUs 83

Table 4.3: Average performance and efficiency on 8-bits
MobileNet-V1 layers obtained with DORY and other SoA
MCU-deployment frameworks.

Performance (speed-up) Efficiency

MAC/cycle GMAC/s GMAC/s/W

TFLite

Micro
a DwConv 0.064 (0.2×) 0.03 (0.2×) 0.13 (0.2×)

PwConv 0.056 (0.1×) 0.027 (0.1×) 0.11 (0.1×)

STMa

CUBE-AI

DwConv 0.39 (1×) 0.19 (1×) 0.8 (1×)
PwConv 0.71 (1×) 0.34 (1×) 1.46 (1×)

GWTb

AutoTiler

DwConv 2.16 (5.5×) 0.22 (1.2×) 4.24 (5.3×)
PwConv 7.87 (11.1×) 0.79 (2.3×) 15.4 (10.6×)

GWTc

AutoTiler

DwConv 2.16 (5.5×) 0.56 (3.0×) 2.16 (2.7×)
PwConv 7.87 (11.1×) 2.05 (6.0×) 7.87 (5.4×)

DORYb DwConv 1.14 (2.9×) 0.11 (0.6×) 2.24 (2.8×)
PwConv 12.86 (18.1×) 1.29 (3.8×) 25.2 (17.3×)

DORYc DwConv 1.14 (2.9×) 0.30 (1.6×) 1.14 (1.4×)
PwConv 12.86 (18.1×) 3.34 (9.8×) 12.86 (8.8×)

a Collected on the STM32H743 @ 480MHz.
b Collected on the GWT GAP8 @ (100MHz, 1V).
c Collected on the GWT GAP8 @ (260MHz, 1.15V).

4.2.5.1 Single layer performance & SoA comparison

In this Section, I analyze the impact of the DORY optimizer on the execution of an

entire layer, including the unavoidable processing overhead to perform I/O DMA and

Cluster DMA calls and the data transfer overhead from imperfect pipelining. Fig. 4.3

analyzes all the execution time for a point-wise convolutional layer and depth-wise ones.

I will describe several effects. For the point-wise layer, roughly all the time is spent in

the innermost loop of MatMul (most of which is pure MAC operations). The rest of the

time is due to building the Im2Col buffer, Norm/Qnt, and MatMul loops that cover the

SIMD leftover cases (e.g., Ct
y not multiple of vector size 4). In the case of depth-wise

layers, this latter class of loops dominates the backend execution time. Regarding the

overhead introduced by DORY-generated tiling, the readers can observe that the Cluster

DMA does not impair the point-wise convolutional layers since they are compute-bound

and efficiently pipelined. Therefore, the cycles needed to transfer the data are totally

overlapped with computing cycles. On the other hand, depth-wise layers are small, and

the Cluster DMA and I/O DMA overheads are exacerbated. Therefore, the load of the

internal tiles and the asynchronous I/O DMA load of the following layer’s weights often

impact performance. Fig. 4.4 corroborates this conclusion, showing power valleys in the

cluster computation while waiting for new tile transfers, i.e., meaning that the cluster is

not doing any computation since the transfer time is higher than the computation time.

In Table 4.3, I also compare DORY with three state-of-the-art frameworks for DNN

Deployment of Deep Neural Networks on MCUs 84

0 100 200
0

10
0

10

20

30

40

50

50 150 250

5x

MMAC Avg Pwr
[mW]

Time
[ms]

Execution Time [ms]

Po
w

er
 [m

W
]

I/O
 d

om
ai

n
cl

us
te

r d
om

ai
n

Conv1
DwConv1
PwConv2
DwConv2
PwConv3
DwConv3
PwConv4
DwConv4
PwConv5
DwConv5
PwConv6
DwConv6
PwConv7
DwConv7-11
PwConv8-12
DwConv12
PwConv13
DwConv13
PwConv14
Pool
FC

{

3.54 46.0 8.30
1.18 35.4 9.13
8.39 47.9 10.91
0.59 32.0 10.16
8.39 48.0 7.84
1.18 38.9 8.72

16.78 48.4 13.31
0.29 33.4 4.62
8.39 48.5 6.58
0.59 40.4 4.75

16.78 48.4 11.91
0.15 35.6 2.56
8.39 48.5 5.94
0.29 38.9 2.56

16.78 36.5 13.08
0.07 33.3 1.45
8.39 31.4 9.11
0.15 38.1 1.78

16.78 44.1 27.31
0.00 19.8 0.56
1.02 18.3 15.78

Co
nv

1

Dw
Co

nv
1

Pw
Co

nv
2

Dw
Co

nv
2

Pw
Co

nv
3

Dw
Co

nv
3

Pw
Co

nv
4

Dw
Co

nv
4

Pw
Co

nv
5

Dw
Co

nv
5

Pw
Co

nv
6

Dw
Co

nv
6

Pw
Co

nv
7

Dw
Co

nv
7

Pw
Co

nv
8

Dw
Co

nv
12

Pw
Co

nv
13

Dw
Co

nv
13

Pw
Co

nv
14

FCDw
Co

nv
8

Dw
Co

nv
9

Dw
Co

nv
10

Dw
Co

nv
11

Pw
Co

nv
9

Pw
Co

nv
10

Pw
Co

nv
11

Pw
Co

nv
12

Po
ol

Figure 4.5: In the left part, the 1.0-MobileNet-128 power profile when running on
GAP-8 @ fcluster = fio = 100MHz and VDD = 1V . On the right are MAC operations,
average power, and time for each network layer. power was sampled at 64 KHz and
then filtered with a moving average of 300 us.

deployment on MCU: TFLite Micro, STM X-CUBE-AI, and GWT AutoTiler. I used

convolutional and depth-wise convolutional layers as benchmarks since they constitute

the vast majority of computation in modern DNN models. Results obtained on TFLite

Micro and STM X-CUBE-AI refer to the STM32H743 microcontroller, while GWT

AutoTiler and DORY ones to GWT GAP-8, described in Section 2.3.2. All results refer

to 8-bit quantized networks, even if STM32 also supports 32-bit floating point; accuracy

is equivalent to that of a non-quantized network.

TFLite Micro has the main advantage of being available on many different ARM

and RISC-V MCUs; on the other hand, its performance is severely limited because it

uses very general APIs without deep optimizations. State-of-the-art for ARM platforms

is indeed X-CUBE-AI, which outperforms it by 6.1× to 12.7×. Nonetheless, layers

generated by DORY outperform TFLite Micro and X-CUBE-AI by a margin of 2.9× to

229.6× in terms of MAC/cycle. This significant advantage is due to the architectural

benefits of GAP-8 (multi-core acceleration, DSP-enhanced instructions) that DORY

can exploit fully, but also to the perfect overlap of memory transfers and computation.

In Section 4.2.6.5, I will decouple DORY performance enhancement and architectural

benefits to underline the benefits of the DORY framework, deploying layers with DORY

both on the STM32H7 and on GAP8 forced to run with a single-core.

When I also compare DORY to GWT AutoTiler in GAP8, DORY is 1.6× faster

in point-wise convolutions, while it pays a performance toll in depth-wise convolutions,

being 1.9× slower. These differences amount mainly to the different strategies followed

by the tools in their respective backends.

Deployment of Deep Neural Networks on MCUs 85

4.2.5.2 End-to-end network performance

In this Section, I focus on the performance of DORY in the deployment of two pop-

ular image detection networks end-to-end: MobileNet-v1 [83] and MobileNet-v2 [47].

These networks are used as benchmarks for many edge-oriented works [2]. They in-

clude many topological characteristics of modern networks: convolution, depth-wise

convolution, pooling, fully-connected layers, and residual connections. Here, I focus

on the specific configurations with 1.0 width multiplier and 128x128 input frames (1.0-

MobileNet-128 and 1.0-MobileNetV2-128, respectively). All the networks were run on

GWT GAP-8, verifying all intermediate results as well as the final result of end-to-end

runs against a PyTorch-based bit-accurate golden model for QNNs [98], to confirm the

correct functionality of the DORY framework and the PULP-NN backend.

4.2.5.3 End-to-end MobileNet-v1 and -v2 & SoA comparison

Table 4.4 showcases a full comparison in terms of energy efficiency (GMAC/s/W),

throughput (GMAC/s), latency, and energy per frame. Different variations of the

MobileNet-v1 have been compared, with the same topology but a different number of

channels or input dimensions. For state-of-the-art, I show the most extensive networks

that fit the on-chip/off-chip memory of the STM32H7 and GAP8, respectively (com-

patible with the ones deployed with DORY). As can be noticed from the Table, DORY

on MobileNet-v1 achieves up to 13.19× higher throughput in MAC/cycles than the ex-

ecution on an STM32H7 (on 0.5-M.V1-192), using the best framework (X-CUBE-AI)

currently available. On different operating points, I achieved up to 7.1× throughput

(1.78 vs. 0.25 GMAC/s) and 12.6× better energy efficiency, given the different fre-

quencies and power consumption of the two platforms. I want to stress that since the

technique that DORY uses is not dependent on the specific target, users can extend it

to different platforms (e.g., NXP and STM32 dual-core M0/M4). To do it, the user

should adapt the tiling and correct the offloading to improve the cache friendliness of

DNN primitives and exploit optimized ISAs. For instance, in Section 4.2.6.5 I show

DORY application also to the STM32H7 platform. Compared with GWT-proprietary

and partially closed-source AutoTiler run on the same GAP-8 platform, DORY performs

on average 20.5% better. As previously discussed, the advantage lies in 1) the more effi-

cient backend (PULP-NN) and 2) the heuristics, which guarantee that the tiling solution

is optimized for the PULP-NN execution model.

Deployment of Deep Neural Networks on MCUs 86

4.2.5.4 In-depth analysis of MobileNet-v1 execution

Fig. 4.5 depicts the power profile of the end-to-end execution of a MobileNet-v1 (1.0

width multiplier, 128× 128 resolution) on GAP-8, with both the cluster and the fabric

controller running at 100 MHz. The power consumption of the cluster domain (including

8 RI5CY cores, the L1, and the Cluster DMA) and the I/O domain (including 1 RI5CY

core, the L2, and the I/O DMA) is shown separately in two separate subplots. In the

cluster domain, power is dominated by the cores when the computation is in the active

phase. Small valleys within a layer are given by (short) waits for the end of a memory

transfer where the cores are all idle (e.g., during depthwise layer execution), or by

cluster DMA calls where a single core is active. In the I/O domain, DMA consumption

spikes can be observed: at the beginning of layers, the weights of the following one are

transferred from L3 to L2.

Deployment of Deep Neural Networks on MCUs 87

T
a
b
le

4
.4
:
E
n
d
-t
o-
en
d
ex
ec
u
ti
on

of
im

a
g
e
re
co
g
n
it
io
n
M
o
b
il
eN

et
-v
1
a
n
d
M
o
b
il
eN

et
-v
2
o
n
G
A
P
8
a
n
d
S
T
M
3
2
H
7
M
C
U
s.

C
o
n
fi
g
u
ra

ti
o
n

P
a
ra

m
s

W
o
rk

C
y
c
le
s

P
e
rf

E
ff

P
e
rf

L
a
t

E
n
e
rg

y
E
ff

P
e
rf

L
a
t

E
n
e
rg

y

M
A
C

M
A
C
/
cy
c

G
M
A
C
/
s/
W

G
M
A
C
/
s

la
t.

[m
s]

E
[m

J
]

G
M
A
C
/
s/
W

G
M
A
C
/
s

la
t.

[m
s]

E
[m

J
]

D
O
R
Y

@
G
A
P
8

L
ow

en
er
g
y
1
V

@
1
0
0
M
H
z

L
ow

la
te
n
cy

1
.1
5
V

@
2
6
0
M
H
z

1
.0
-M

.V
1
-1
2
8

4
.2

M
1
8
6
.4

M
2
3
.3

M
8
.0
0

1
5
.6
8

0
.8
0

2
3
3
.1
1

1
1
.8
9

7
.9
3

2
.0
8

8
9
.6
6

2
3
.5
1

0
.5
-M

.V
1
-1
9
2

1
.3

M
1
1
0
.0

M
1
6
.0

M
6
.8
6

1
3
.4
6

0
.6
9

1
6
0
.2

8
.1
7

6
.8
2

1
.7
8

6
1
.6
2

1
6
.1
6

0
.2
5
-M

.V
1
-1
2
8

0
.5

M
1
3
.5

M
2
.8

M
4
.7
4

9
.3
0

0
.4
7

2
8
.5
0

1
.4
5

4
.6
9

1
.2
3

1
0
.9
5

2
.8
7

1
.0
-M

.V
2
-1
2
8

3
.4
7
M

1
0
0
.1

M
1
9
.0

M
5
.2
7

1
0
.3
3

0
.5
3

1
9
0
.0
3

9
.6
9

5
.2
2

1
.3
7

7
3
.0
9

1
9
.1
6

G
W

T
A
u
to
T
il
er

@
G
A
P
8

L
ow

en
er
g
y
1
V

@
1
0
0
M
H
z

L
ow

la
te
n
cy

1
.1
5
V

@
2
6
0
M
H
z

1
.0
-M

.V
1
-1
2
8

4
.2

M
1
8
6
.4

M
2
8
.1

M
6
.6
4

1
3
.0
2

0
.6
6

2
8
0
.8
0

1
4
.3
2

6
.5
8

1
.7
3

1
0
8
.0
0

2
8
.3
2

1
.0
-M

.V
2
-1
2
8

3
.4
7
M

1
0
0
.1

M
1
9
.7

M
5
.0
7

9
.9
5

0
.5
1

1
9
7
.3
8

1
0
.0
7

5
.0
3

1
.3
2

7
5
.9
2

1
9
.9
1

X
-C

U
B
E
-A

I
@

S
T
M
3
2
H
7
,
so
lu
ti
o
n
s
fi
tt
in
g
2
M
B

R
O
M

+
5
1
2
k
B

R
/
W

R
A
M

@
4
8
0
M
H
z
[2
]

0
.2
5
-M

.V
1
-1
2
8

0
.5

M
1
3
.5

M
2
6
.0

M
0
.5
2

1
.0
7

0
.2
5

5
1
.1
4

1
2
.6
7

n
.a
.

n
.a
.

n
.a
.

n
.a
.

0
.5
-M

.V
1
-1
9
2

1
.3
7
M

1
0
9
.5

M
2
1
2
.3

M
0
.5
2

1
.0
6

0
.2
5

4
4
2
.2
7

1
0
3
.4
9

n
.a
.

n
.a
.

n
.a
.

n
.a
.

Deployment of Deep Neural Networks on MCUs 88

5 10 15 20 25 30
Cy [#]

15 20 25
hy [#]

0 2 4
wy [#]

8

9

10

11

12

13

14

15

Pe
rf

or
m

an
ce

 [M
A

CS
/c

yc
le

]

Tile 24 × wy × 32 Tile hy × 4 × 32

-38% -28%-29%

Tile 24 × 4 × Cy

optimal tile no PAR_BALANCEno HIDE_IM2COL +
no MATMUL_CHno MATMUL_W no HIDE_IM2COL

Figure 4.6: example of the effect of heuristic optimizations on convolutional layer
performance. In this case, the “optimal” tile has output tensor 24×4×32 (HWC) and
weight tensor 32×3×3×32 (CoHWCi). Different optimizations are showed by varying
wy, hy, and Cy and violating the heuristics of Section 4.2.2.2.

4.2.6 Ablation Study

This section presents a detailed ablation study of each previously described contri-

bution. I separately analyze: i) the proposed heuristics; ii) the hybrid optimization for

depthwise layers; iii) voltage and frequency scaling on GAP-8; iv) the size of L1 and L2

memories; v) the specific GAP-8 architecture compared to standard MCUs.

4.2.6.1 Single tile performance

I analyze the effects of the heuristics shown on the tiling solution’s quality-of-results.

Moreover, I show the effect of applying these techniques to the border tile, increasing

the performance in different configurations. In particular, the size of the tile influences

the execution efficiency of the backend layer. As such, a sub-optimal tiling choice can

significantly reduce performance in executing a single inner tile. Figure 4.6 exemplifies

this phenomenon starting from an “optimal” tile of output tensor 24 × 4 × 32 (HWC)

with a 32× 3× 3× 32 filter (channel out - height - width - channel in, or CoHWCi) and

violating progressively each of the imposed heuristics. Violating MATMUL W/CH leads to a

maximum performance loss of 29%, violation of HIDE IM2COL to a 38% loss, and violation

of PAR BALANCE to a 28% loss in this example layer. Noteworthy, the performance loss

is cumulative since each heuristic is written to improve the performance of a different

section of the PULP-NN kernel. Indeed, suppose I set all the βi coefficients into the

objective function of Eq. 4.3 to 0 and only focus on maximizing the tile sizes. In that

Deployment of Deep Neural Networks on MCUs 89

Conv

P
e

rf
o

rm
a

n
c
e

 [
M

A
C

s
/c

y
c
le

s
]

2.5x

0.54x
2.0x

0.53x
1.45x

DWConv LowCh DWConv HighCh

Figure 4.7: Comparison between HWC, CHW, and DORY layers layout. Different
kernels are explored.

case, DORY chooses a tiling scheme that achieves only 2.78 MAC/cycles, 80.6% lower

than the 14.37 MAC/cycles achieved with the βi values previously reported.

4.2.6.2 Hybrid optimization for Depthwise layers

Here, I discuss the improvement of the new DORY kernel library (with new depth-

wise) over PULP-NN kernels [25] (HWC layout) and Greenwaves’ ones (CHW layout).

In Fig. 4.7, I show a comparison of regular convolutions and depth-wise ones. On clas-

sical convolutions, the new HWC approach is 2.5× faster compared to the CHW layout.

As discussed in Section 4.2.3, the DORY library includes an optimized depth-wise layer,

reducing the penalty of using the HWC layout in its execution. Using an HWC layout

on depth-wise layers can cause up to 3.7× slow down if compared to the CHW one,

strongly penalizing the performance for these layers. With my newly designed kernels,

I reduce this loss by a factor of 2: this kernel is 1.5×/2.0× faster than the HWC one,

reaching 0.54× the performance of the Greenwaves’ one. On the Mobilenet-v1-1.0 with

resolution 128x128, updating the depth-wise and point-wise kernel from the HWC ones,

I gain 1.79 MAC/cycles on the network’s overall execution. At a frequency of 100 MHz

on both cluster and I/O domains, I improved the 3.0 FPS of the HWC layout, reaching

4.3 FPS thanks to the optimized DORY kernel library.

4.2.6.3 Voltage and frequency scaling

Since the I/O DMA and the cluster are in two different clock domains, the ratio

of the two frequencies can significantly impact the bandwidth of both the L3-L2 and

L2-L1 transfers and the performance and energy efficiency. In Fig. 4.8, I show the

Deployment of Deep Neural Networks on MCUs 90

0 200 400 600 800 1000
0

50

100

150

200

250

300
50 MHz
100 MHz
150 MHz
200 MHz
250 MHz

I/O
 f

re
q

50 MHz
100 MHz
150 MHz
200 MHz
250 MHz

I/O
 f

re
q

50 100 150 200 250

4

6

8

0
3

5

7

M
A

C/
cy

cl
e

(c
lu

s)

VDD @ 1.0 V

B

A

time per frame [ms]

10 mJ/frame

30 mJ/frame

VDD @ 1.15 V
av

er
ag

e
po

w
er

 [m
W

]

cluster frequency [MHz]
Figure 4.8: Power, latency, and MAC/cycles performance exploration with swiping
frequencies. The 1.0-MobileNet-128 is used as a benchmark. CL frequency varies in [25
MHz, 260 MHz], I/O one in [50 MHz ,250 MHz]. A green dashed circle highlights the
(100 MHz, 100 MHz) configuration used throughout the paper.

relationships between average power, execution time, and throughput in MAC/cycles,

which are strictly related to the two frequencies. In sub-plot A, energy efficiency is also

shown as a set of iso-energetic curves. The first significant effect that can be observed in

these plots – particularly sub-plot B – is that increasing the fabric controller frequency

improves performance. Increasing the fabric controller frequency causes the memory

transfers to be faster since the DMA is in the same domain, minimizing the fraction of

time in which the system is memory bound. On the other hand, increasing frequencies

also raises proportionally average dynamic power, as visible in sub-plot A.

It is also interesting to observe that by using voltage and frequency scaling, it is

possible to scale the execution of MobileNet from a minimum latency of 93.9 ms at 24.6

mJ per frame to minimum energy of 12.5 mJ at 244 ms per frame.

4.2.6.4 Memory hierarchy sizing

I also investigate the impact of memory dimensions on the network execution time.

Deployment of Deep Neural Networks on MCUs 91

10

8

6

4

2

0

M
A

C
/c

y
c
le

L1 [KB]

-20%
Tiling degradation:

MATMUL_CH: - 5 layers

HIDE_IM2COL: - 8 layers

Tiling degradation:

MATMUL_W: - 1 layers

HIDE_IM2COL: - 6 layers

-9%

14

12

10

8

6

4

2

0

F
P

S

Figure 4.9: MAC/cycles and FPS are explored with different configurations of L1-L2
memories using a 1.0-MobileNet-v1 with resolution 128x128. L2 varies from 256 kB
(19/29 layers tiled from L3) to 4 MB (No L3 tiling), whereas L1 varies from 22 kB to
400 kB.

To explore configurations with high dimensions of the memory, I used an FPGA-based

emulator, realized with a Xilinx Zynq Ultrascale+ zcu102 since it can host different

instantiations of the PULP architecture template with varying memories of various sizes.

Since DORY solves a series of tiling constrained problems, these constraints are

relaxed/hardened if I increase/reduce the internal MCU memories’ size. Fig. 4.9 depicts

MAC/cycles and FPS while sweeping L1 between [22 kB, 400 kB] and L2 in {256 kB,

384 kB, 512 kB, 4 MB}, highlighting different working corners in the tiling problem. L1

memory limits have been chosen since i) 22 kB are needed to construct the smaller tile

available and store the corresponding im2col buffer, and ii) over 400 kB no performance

improvements are yet observed. L2 limits are related to chip design: 256 kB is the

lowest memory used as on-chip memory on a PULP platform [55], and no current MCUs

currently have more than 4 MB as maximum memory.

A first performance gap can be observed between the L2 = 256 kB and L2 = 512

kB configurations: with different L1 dimensions, using half of the memory causes up to

3.2 FPS loss @ 260MHz. Using only half of the L2, 9 out of 29 layers demand the tiling

of their activations from the external memory slowing down the execution of the first

half of the network since they can not fit the tightened constraint. Readers can observe

a relatively constant decrease in performance when reducing L1 memory from 70 kB

down to 22 kB with some abrupt performance loss. Two different phenomena can be

observed: first, reducing L1 memory requires smaller tiles and hence more iterations,

increasing overhead. A second and more severe degradation can be observed when the

tiling heuristics of the network layers cannot be maximized anymore. For example,

from case A of Fig. 4.9, if I reduce L1 memory from 30 kB to 28 kB, the heuristics

of 13 layers simultaneously get worse with a corresponding degradation of 20% in the

Deployment of Deep Neural Networks on MCUs 92

1.0

0.1

300

200

100

0

-100

M
A

C
s

/c
y
c

le G
a

in
 [%

]

Complexity [MACs] Complexity [MACs]

STM32H7-D-cache STM32H7-No-D-cache STM32H7-DORY GAP8-1C

Conv

DwConv

Figure 4.10: On the left, absolute MAC/cycle of DORY framework on STM32H7 and
single-core GAP8, compared with default CUBE-AI/TensorFlow Lite for Micro layer
backend, CMSIS-NN. On the right, relative gains compared to the fastest CMSIS-NN
implementation.

performance. Conversely, from 70 kB to 400 kB of L1 the gain is minimal because all

the tiling heuristics are already satisfied.

Overall, thanks to DORY’s optimizations (tiling and optimized backend), I see that

a 80 kB L1 and 384 kB L2 memory configuration is sufficient to lead to a MAC/cycle

degradation of 8% (from 10.57 to 9.74 MAC/cycles) compared to the largest memory

configuration of the platform.

4.2.6.5 Single core performance on different architectures

In this section, I explore the impact of architectural and microarchitectural choices

on DNN deployment using DORY. To do so, I directly compare the single-core perfor-

mance obtained on GAP-8 with that achievable on the STM32H743ZI2 MCU in several

configurations. DORY is generic enough that it can be easily ported to many different

platforms. To show this feature, I not only run “native” layers using the STM32H7 data

cache but, as an alternative, I used DORY to manage the DTCM scratchpad on this

device manually.

In this experiment, I tested 44 different layers configurations (depthwise and convo-

lutional) spanning six orders of magnitudes of complexity. I show four sets of solutions:

for GAP-8, I used DORY and ran on a single core in the cluster; for the STM32H7, I

used CMSIS-NN with and without D-Cache enabled. Finally, in the third STM32H7

configuration, I ran using the DTCM scratchpad by combining DORY (for memory

Deployment of Deep Neural Networks on MCUs 93

management) with CMSIS-NN. This was possible thanks to the modular architecture of

DORY and required only changing the computational backend and adapting the code

generator to use the correct DMA hardware abstraction layer calls.

The results are shown in Fig. 4.10. First of all, as expected, performance drops

dramatically deactivating the D-Cache on the STM32: I observe a degradation of 58.5

± 5.5 % compared to the baseline over all the benchmark layers. More interestingly, the

results also show that the software caching mechanism realized by DORY on the DTCM

can achieve the same performance as the D-Cache on average, with a slight speedup in

some cases: on average, 9.1± 2.1 % for depthwise layers and 3.9 ± 3.8 % for normal

convolutions.

On the other hand, single-core execution on GAP-8 shows, on average, a speedup

of 2.5±0.9× compared to the STM32H7 baseline in terms of cycle/cycle. Since multi-

core execution is disabled in this test, the speed-up achieved in GAP8 compared to the

STM32H7 is referred mainly to the more specialized architecture, particularly to the

DSP extensions extensively exploited by the PULP-NN backend.

Deployment of Deep Neural Networks on MCUs 94

4.3 TCNMapping Optimization for Ultra-Low Power Time-

Series Edge Inference

In this section, I will describe a new kernel library for Temporal convolutional net-

works, which is thought to be plugged inside DORY, to generate end-to-end temporal

convolutional networks on the edge.

4.3.1 TCN Kernel Toolkit

I first introduce the main design choices on which this library is based, the kernel

implementations, and how they are plugged into DORY. I tested these kernels again on

the GAP8 platform.

4.3.1.1 Design Choices

1) Data Layout: Kernel libraries for 2D convolution organize input and output

data either as Channel-Height-Width (CHW), i.e., with the spatial dimension as the

innermost one or HWC. In the case of 1D convolutions, the equivalent layouts are CT

(channel-time) and TC (time-channel). Using TC, inputs relative to subsequent time-

steps are separated by d×Cin elements. In particular, for d = 1, all convolution inputs

are stored contiguously. Therefore, given the presence in many DSP-oriented ISAs of

single-cycle loads with pointer increment (e.g., p.lw in XpulpV2, the ISA of GAP8), I

select the TC layout. The chosen data organization is shown in the “x buffer” of Fig.

4.11.

2) Data Gathering: Conceptually, the convolution kernels in this library operate

in two phases, which I will call input data gathering and MatMul loop respectively,

similarly to [25, 33]. In the first phase, dedicated buffers in each core are used to

prepare the input data needed for the convolution. Differently from CMSIS-NN and

PULP-NN, I propose different ways of data re-ordering, either using explicit im2col

buffers [33] or indirect buffers [99]. This design choice is motivated by the fact that the

two buffers exploit different trade-offs regarding memory occupation and performance.

For instance, the indirect buffers strongly reduce memory occupation on layers with

a large Cin, allowing them to fit in small on-chip memories. At the same time, im2col

leads to high-memory occupation but also better performance. Note that in non-dilated

1D-CNN convolutional layers (d = 1), input data is already contiguous, and this phase

can be bypassed.

Deployment of Deep Neural Networks on MCUs 95

Figure 4.11: Three different input data gathering options are used in the proposed
kernels.

Figure 4.12: MatMul loop, Quantization, and Batch Normalization in the proposed
toolkit. Lighter colors represent parallelization over multiple cores.

3) MatMul Loop: After data gathering, convolution reduces to a series of MatMul,

as depicted in Fig. 4.12. As an atomic operation, I use a 4 × 2 unrolled MatMul as

in PULP-NN (i.e., the product of 4 sets of weights with two sets of inputs). Indeed, it

has been demonstrated that 4×2 unrolling maximizes data reuse in a RISC-V register

file with 32 registers. Since 4×2 unrolling requires two sets of inputs, I allocate two

im2col/indirect buffers in each core (see Fig. 4.11). Each unrolled MatMuls is further

Deployment of Deep Neural Networks on MCUs 96

vectorized using the pv.sdotsp.b instruction of the XpulpV2 ISA, which computes the

dot product of 4 contiguously stored 8-bit inputs in parallel.

4) Normalization and Quantization: I “fuse” the quantization and normalization

pointwise operations, essential for quantized inference [100], together with the new con-

volution kernels. In contrast, using separate kernels for these operations would result in

additional data movement and worsen performance.

5) Parallelization: I split the convolution workload on multiple cores over the time

dimension, i.e., each core computes the output features of all channels for an assigned

range of time steps. I select time-wise over channel-wise parallelization since it allows

cores to produce outputs of their assigned time-steps without exchanging partial data

with other cores and to store results on a separate, contiguous memory area. The

workload subdivision among cores is shown on the right of Fig. 4.12.

4.3.1.2 1D Convolutional Kernels

The three convolution kernels implemented in this library differ mainly in the data

gathering phase, as shown in Figure 4.11.

1) No-im2col Kernel: As explained in Section 4.3.1.1-1, due to the sequential nature

of 1D data and the TC layout, data gathering can be bypassed when d = 1. Removing

this buffering phase positively affects both memory usage and performance. On the other

hand, for kernels with d > 1, performing the MatMul loop without data gathering would

require interleaving the weight vectors with zeros to eliminate the contribution of input

time-steps that have to be skipped. The resulting memory occupation increase and per-

formance loss make the No-im2col approach feasible only for non-dilated convolutions,

where, however, it is optimal for both memory and performance.

To efficiently handle dilation rates higher than 1, data gathering becomes necessary.

2) Im2col kernel: One approach is to use an im2col buffer [33] (bottom-center of Fig-

ure 4.11). This support buffer is a linear array in which all inputs required to produce a

given convolution output are copied contiguously. When the convolution stride is smaller

than K, data will be replicated in multiple im2col buffers, causing a memory overhead.

However, the linear im2col output yields maximal exploitation of the hardware facili-

ties to optimize the MatMul performance (e.g., SIMD operations, single cycle pointer

increment, etc.). 3) Indirect kernel: To minimize the memory footprint of convolution,

the im2col buffer can be replaced with an indirect buffer for data gathering. Instead of

copying all convolution inputs in contiguous memory, this buffer only stores the pointers

to the first input relative to each time-step involved in the convolution (bottom-right

Deployment of Deep Neural Networks on MCUs 97

Figure 4.13: Modeling of the three kernels versus various layer parameters.

of Fig. 4.11). Indirect convolution reduces by a factor Cin the memory overhead for

data gathering (that it becomes negligible compared to buffer memory) but requires an

additional loop to cycle through the buffer’s addresses in the MatMul section, negatively

impacting performance. Note that this is the first edge-oriented backend to include both

im2col and indirect convolution kernels.

4.3.1.3 Kernel modeling and selection

In this section, I show how this library is plugged inside DORY. To do so, I mod-

ified the baseline optimizer so that it finds appropriate tiling solutions and selects the

optimal 1D convolution implementation for a given layer and tiling via an additional

kernel selection step. Therefore, I computed a detailed model of each kernel’s execution

cycle based on the target platform’s compiled assembly code. Based on the models,

the optimizer first determines the best tiling scheme for each of the three alternative

implementations using the Constraint Programming (CP) solver of [100] and it then

computes the absolute execution cycles to choose among the no-im2col, im2col and in-

direct kernel implementations. As an example, to model the performance of the im2col

kernel, the total number of convolutions performed by each core are denoted as as

Deployment of Deep Neural Networks on MCUs 98

Core Iter = T
2Ncores

, where T is the total number of time-steps in the input sequence

and the factor 2 comes from the fact that all cores manage 2 time-steps simultaneously.

I also call MM Iter = Cout
4 the number of iterations on the output channel dimension

performed within each convolution, where the factor 4 comes from the 4x2 MatMul loop

that simultaneously generates 4 Cout elements (Sec. 4.3.1.1).

I then compute the execution cycles for the two main phases (data gathering and

MatMul) and for the entire kernel as:

Gather Cyc = max (2×K × α, 2×K × Cin × β) (4.4)

MM Cyc = (γ + δ × Cin × K/4) (4.5)

Cyc = Core Iter× (ϵ+Gather Cyc +MM Iter×MM Cyc). (4.6)

where α, β, γ, δ, ϵ are hardware-dependent constants corresponding to the cost in

execution cycles for load/store, pointer updates, and arithmetic operations.

The first equation derives from using asynchronous DMA transfers for data gath-

ering. It computes the maximum between the DMA control overhead (first term, de-

pendent on the 2 × K DMA invocations needed to build the two im2col buffers) and

the cycles required for the actual transfer (second term, dependent on the size of the

actual transmitted data). The MM Cyc equation computes the cycles of the MatMul

loop as a function of the layer parameters, where the division by 4 comes from the use

of SIMD operations processing four 8-bit elements per instruction. Here, the constants

also account for batch normalization and quantization.

Models for the other two convolution kernels are similar, with different amounts of

cycles for the different phases based on data position.

Figure 4.13 shows all kernels’ modeled vs. real performance for different parameter

sweeps. Although there is an offset between real execution cycles and predicted ones,

due to stalls and memory contentions, this gap is almost constant over all the parameters

and kernels, hence not changing the ranking between different kernels’ for a given set of

parameters.

Table 4.5 shows the performance achieved plugging these kernels inside DORY. The

table compares the results obtained with the new cycle models with those obtained with

other objective functions for the same tiling optimizer, namely the tiles’ pure memory

occupation and the simplified model based on previously described heuristics. These

new models achieve 1.3×/3.6× speed-up for complete layers with different geometries.

This is due to an accurate assessment of the execution time of border tiles, for which the

computation loop might be under-utilized depending on the amount of data remaining to

Deployment of Deep Neural Networks on MCUs 99

Table 4.5: Performance of the TCN kernel library using different optimization criteria
for tiling parameters and kernel selection.

layer
(Cin × T × Cout)

MACs/cycle
model heuristic memory best kernel

64× 256× 64,
d = 1, K = 3 15.98 15.47 12.50 no-im2col

256× 16× 256,
d = 2, K = 3 14.92 14.92 4.14 im2col

1024× 16× 1024,
d = 2, K = 3 13.31 8.94 10.42 indirect

be computed. Further, I want to highlight that the three kernel variants are helpful for

different cases. The column best kernel shows the kernel selected by the tiling optimizer

as the most efficient.

4.3.2 Experimental Results and Discussion

I tested this library on GAP-8 [27], the platform described in Sec. 2.3.2. Since

1D dedicated libraries are not present, I compare this work with two state-of-the-art

CNN backends for the same hardware target (PULP-NN [25] and GWT NN-Tool, on

the GAP SDK v3.6 [101]). I also compare it with the Cube-AI toolchain (v5.1.2) [71]

executed on the STM32H7 and the STM32L4 MCUs. All experiments refer to int8

quantized layers. Entire networks are trained in a quantization-aware manner, with neg-

ligible accuracy loss compared to float versions. I set GAP8, STM32H7, and STM32L4

frequencies at 100 MHz, 480 MHz, and 80 MHz, with a corresponding power consump-

tion of 51 mW, 234 mW, and 10 mW, respectively. As a result, I report GMAC/s,

GMAC/s/W, and MACs/cycle as comparison metrics. Note that while the first two

are platform-dependent and thus most significant for backends on the same hardware

(i.e., the introduced toolkit, PULP-NN, and GWT NN-Tool), the latter is platform-

independent, therefore not linked to the frequency or power consumption of the specific

platforms.

4.3.2.1 Kernels Comparison

Fig. 4.14 and Fig. 4.15 show a detailed analysis of the three 1D convolution imple-

mentations for a 64 × 256 × 32 layer (i.e., Cin = 64, T = 256, Cout = 32) with K = 3,

i.e., a small enough layer that entirely fits the L1 memory of GAP8. Fig. 4.14 reports

the execution cycles for the data gathering and MatMul loop phases and the additional

cycles due to stalls and memory contentions, whereas Fig. 4.15 breaks down the memory

occupation. The graphs report the results for both d = 1 and d = 2.

Deployment of Deep Neural Networks on MCUs 100

Figure 4.14: Execution cycles of the three 1D convolution kernels on a 64× 256× 32
layer. The three kernels achieve 15.1, 13.7, and 12.0 MACs/cycle, respectively. With
d = 2, the No-im2col performance lowers to 9.7 MACs/cycle.

For d = 1, the No-im2col kernel obtains both the minimum number of cycles and

the minor memory occupation, as previously said, since it does not have the memory

overhead of the im2col nor the performance degradation of the indirect kernel. However,

for d > 1, the same kernel has significant overheads in operations and memory due to

the added zeros in the weight buffer. For d = 2, I show 62% more operations and an

additional 5 KB of memory, making the No-Im2col kernel the worst of the three. These

overheads increase with larger d.

The Im2col kernel uses fewer instructions in the MatMul loop than the Indirect

one while spending more time creating its gather buffer. In this example, the trade-

off results in an overall lower number of cycles for Im2col. However, note that the

gathering overhead is much higher for layers with a larger Cin (see Eq. 4.4). Therefore,

the ranking among the two depends on the number of channels. Further, the Indirect

kernel benefits from a nearly null additional memory, often improving the performance

when considering the effect of tiling on large layers as can be seen for end-to-end network

execution (Section 4.3.2.3).

4.3.2.2 Comparison with State-of-the-art NN backends

Figure 4.16 shows a complete comparison between the DORY+TCN library and

the other backends. The figure reports the performance (in MAC/cycle) for layers with

dilation d ∈ (1, 2, 4, 16). For each value of d, the box plots aggregate the results of

multiple layers with different shapes. Specifically, I show T ∈ (16, 64), K ∈ (3, 5, 7), and

Cin = Cout ∈ (32, 64, 128, 256).

Deployment of Deep Neural Networks on MCUs 101

Figure 4.15: Memory occupation of the kernels of Fig. 4.14.

Figure 4.16: Comparison with state-of-the-art CNN backends for edge devices.

This newly introduced solution consistently outperforms the state-of-the-art across

different layer shapes and dilation values. In particular, I show dramatically higher

performance than GWT NN-Tool, i.e., 9.7× on average. This improvement is due to

the CHW format used in its convolutions, which converts to a strongly sub-optimal CT

layout for 1D kernels (see Sec. 4.3.1.1 for details). Compared to PULP-NN, I slightly

improved the performance for d = 1 (1.2×), thanks to eliminating unnecessary im2col

buffers and optimizing the internal MatMul loop execution for 1D data. The benefit

increases significantly for larger dilation factors (e.g., 28.9× for d = 16) since, as men-

tioned, PULP-NN kernels do not support this fundamental 1D-convolution parameter,

which has to be reproduced interleaving weights with 0s. With respect to Cube-AI,

a speed-up between 34.7× (for d = 1) to 354× (for d = 16) is obtained. The higher

speed-up is achieved for higher d, given the same reasoning for PULP-NN. Comparing

Deployment of Deep Neural Networks on MCUs 102

both of them during single-core execution, the DORY-TCN toolkit still demonstrates

4.7×, 7.0×, 13.0×, and 47.6× higher MACs/cycle. Considering the energy efficiency in

GMAC/s/W, the improvement over PULP-NN and GWT NN-Tool is proportional to

the speed-up, given that the execution platform is the same. Compared to Cube-AI, in-

stead, considering the best energy configuration for both STM32H7 and GAP8, I obtain

33.1×, 50.0×, 92.3× and 338.4× higher efficiency on average for d = 1, 2, 4, 16. Notice

that d = 1 corresponds to a standard 1D CNN layer; hence, the first set of box plots

show that DORY, together with this new library, is outperforming the state-of-the-art

not just on dilated TCNs, but also on classical 1D-CNNs.

4.3.2.3 Complete use cases

In this section, I employ DORY together with the proposed kernel library to deploy

three state-of-the-art neural networks, shown in Table 4.6, i.e., TEMPONet [34] for

gesture recognition, and two ResTCNs from [11], for sound generation and language

modeling, respectively. While the number of layers of the three networks is similar (9,

8, and 10), the number of filters per layer, hence the number of parameters and MACs,

is increasingly high. Specifically, TEMPONet has a modular structure that shrinks the

time dimension while increasing the number of channels up to 128 [34], while the other

two TCNs maintain a constant T (16 and 50) with respectively 150 and 450 channels

per layer.

I want to highlight two main aspects of these experiments. First, integrating the ker-

nel selection step leads to up to 4.0× speed-up compared to always using a single kernel

implementation. While mapping all the layers of TEMPONet to the Im2col kernel leads

to a near-optimal implementation, the same strategy applied to the language-modeling

TCN yields 4× lower performance than a per-layer selection. Similarly, considering the

Indirect kernel solely results in 1.3× lower performance on TEMPONet. Therefore,

choosing the appropriate kernel for each layer is key to maximizing performance. In

general, for layers with d = 1, No-im2col reaches the highest performance, while Im2col

and Indirect are optimal for layers with d > 1 with a low/high number of channels,

respectively.

Deployment of Deep Neural Networks on MCUs 103

T
a
b
le

4
.6
:
E
n
d
-t
o-
en
d
co
m
p
ar
is
on

on
th
re
e
T
C
N
s
a
rc
h
it
ec
tu
re
s
fo
r
d
iff
er
en
t
ta
sk
s.

A
b
b
re
v
ia
ti
o
n
s:

O
O
M
:
O
u
t
o
f
M
em

o
ry
.

O
u
r
W
or
k

P
U
L
P
-N

N
N
N
-T
o
ol

C
u
b
e-
A
I

In
d
ir
ec
t

N
o-
Im

2c
ol

Im
2c
ol

O
p
ti
m
iz
er

P
la
tf
or
m
s
[M

C
U
]

G
A
P
8,

1x
R
IS
C
-V

+
8x

R
IS
C
-V

S
T
M
3
2
H
7

S
T
M
3
2
L
4

P
ow

er
[m

W
]
/
F
re
q
.
[M

H
z]

51
m
W

/
10

0
M
H
z

23
4
m
W

/
4
8
0
M
H
z

1
0
m
W

/
8
0
M
H
z

T
E
M

P
O
N
e
t
-
G
e
st
u
re

R
e
c
o
g
n
it
io
n

-
P
a
ra

m
e
te
rs
:
8
6
.5
k
-
M

A
C
s:

1
5
.1
M

T
im

e/
In
fe
re
n
ce

[m
s]

17
.1
8

29
.7
9

13
.9
4

13
.6
0

38
.7
8

10
3.
10

1
3
8
.2
9

1
4
0
8
.1
6

E
n
er
gy

[m
J
]

0.
88

1.
52

0.
71

0.
69

1.
98

5.
26

3
2
.3
6

1
4
.0
8

M
A
C
s/
cy
cl
e

8.
80

5.
07

10
.8
4

11
.1
1

3.
90

1.
47

0
.2
3

0
.1
3

T
h
ro
u
gh

p
u
t
[G

M
A
C
/s
]

0.
88

0.
51

1.
08

1.
11

0.
39

0.
15

0
.1
1

0
.0
1

E
n
.E
ffi
ci
en

cy
[G

M
A
C
s/
s/
W

]
17

.2
5

9.
95

21
.2
6

21
.7
9

7.
64

2.
87

0
.4
7

1
.0
7

R
e
sT

C
N

-
S
o
u
n
d

G
e
n
e
ra

ti
o
n

-
P
a
ra

m
e
te
rs
:
1
.1
3
M

-
M

A
C
s:

1
8
.1
M

T
im

e/
In
fe
re
n
ce

[m
s]

23
.9
1

O
O
M

24
.6
6

23
.4
5

O
O
M

56
8.
25

2
1
5
.7
9

O
O
M

E
n
er
gy

[m
J
]

1.
22

O
O
M

1.
26

1.
20

O
O
M

28
.9
8

5
0
.4
9

O
O
M

M
A
C
s/
cy
cl
e

7.
57

O
O
M

7.
34

7.
72

O
O
M

0.
32

0
.1
7

O
O
M

T
h
ro
u
gh

p
u
t
[G

M
A
C
/s
]

0.
76

O
O
M

0.
73

0.
77

O
O
M

0.
03

0
.0
8

O
O
M

E
n
.E
ffi
ci
en

cy
[G

M
A
C
s/
s/
W

]
14

.8
4

O
O
M

14
.3
9

15
.1
3

O
O
M

0.
62

0
.3
6

O
O
M

R
e
sT

C
N

-
L
a
n
g
u
a
g
e
M

o
d
e
li
n
g
-
P
a
ra

m
e
te
rs
:
2
.7
M

-
M

A
C
s:

1
3
5
M

T
im

e/
In
fe
re
n
ce

[m
s]

17
1.
00

O
O
M

66
5.
91

16
8.
51

O
O
M

44
90

.0
0

2
3
1
5
.2
5

O
O
M

E
n
er
gy

[m
J
]

8.
72

O
O
M

33
.9
6

8.
59

O
O
M

22
8.
99

5
4
1
.7
7

O
O
M

M
A
C
s/
cy
cl
e

7.
89

O
O
M

2.
03

8.
01

O
O
M

0.
30

0
.1
2

O
O
M

T
h
ro
u
gh

p
u
t
[G

M
A
C
/s
]

0.
79

O
O
M

0.
20

0.
80

O
O
M

0.
03

0
.0
6

O
O
M

E
n
.E
ffi
ci
en

cy
[G

M
A
C
s/
s/
W

]
15

.4
8

O
O
M

3.
98

15
.7
1

O
O
M

0.
59

0
.2
5

O
O
M

Deployment of Deep Neural Networks on MCUs 104

After, I also compare the best performance obtained with state-of-the-art full-stack

tools, including their backend and, when available, their tiling mechanism. A minimum

speed-up of 2.9× compared to the DORY+PULP-NN stack for the three networks is

achieved. However, 2 out of 3 cannot be implemented using this tool given the high

memory overhead of the Im2col support buffer, which is always necessary for the PULP-

NN backend. On the other hand, directly storing the whole network in the slow GAP-8

L2 memory (512KB) leads to a slowdown of more than 4×. When I compare this new

toolkit to Cube-AI and GWT NN-Tool on all the networks, I observe speed-ups of 7.6×
to 103×, with at least 20.3× lower energy. In terms of absolute latency numbers, using

GAP8 at 100 MHz, I obtained 13.6ms per inference for TEMPONet, and 23.45 / 168.5ms

for sound/language processing, respectively.

Deployment of Deep Neural Networks on MCUs 105

4.4 A Microcontroller is All You Need: Enabling Trans-

former Execution on Low-Power IoT Endnodes

I will conclude the fourth Chapter of my thesis with the introduction of a second

kernel library for attention based networks, given the spreading of this new topology in

many applications also related to edge computing. I will start with re-introducing the

fundamental equation of attention, as reported in the Background section:

Attention(Q,K,V)
.
= AV

.
= SoftMax

over keys

(
QKT

√
P

)
V (4.7)

4.4.1 Self-Attention Kernels

Fig. 4.17 shows the Multi-Head Self-Attention operator, the core operator of Trans-

former networks as described in [40]. Four Linear and two Matmul layers constitute

the layer, followed by memory marshaling operations such as transposition, reshape,

and concatenation. Even when these kernels are individually optimized using state-of-

the-art libraries [25, 33], they result in low data reuse and non-optimal parallelization

scaling. Therefore, this section presents a new set of tailored kernels for each internal

operation to address these issues. In each sub-section, I describe the optimization of one

different layer separately.

4.4.2 Linear Layers

Fig. 4.18 depicts two distinct implementations for the three input Linear layers, i.e.,

layers that can be reduced to a matrix-matrix multiplication. Implementation 1 , which

I will call Weight-Reuse Linear (WRL), is used to project the V tensor from X, while

2 , called Input-Reuse Linear (IRL), is used for Q and K. These kernels differ in i) loop

ordering and ii) data layouts.

The WRL kernel produces output data in the HPS layout to remove the data

reshaping operator (see Fig. 4.17). I also order the loop as H → P → S → E, from

outermost to innermost. Indeed, when targeting multi-core platforms such as GAP8,

I parallelize this kernel on the H dimension, thus splitting the outermost loop across

cores.

On the other hand, the IRL’s required layout is HSP , and thus I force the loop nest

to H → S → P → E, from outermost to innermost. In this kernel, at every iteration of

the S loop, a single input time sample (1× E) is multiplied by a weight-head (E × P).

The parallelization is identical to the WRL case, i.e., on the H dimension.

Deployment of Deep Neural Networks on MCUs 106

Figure 4.17: Multi-Head Attention module.

The last Linear layer, which projects the output tensor of the matrix multiplication

to the final output, uses the S → E → H × P loop order, parallelizing on E.

4.4.3 Matrix Multiplications

Also, in the case of matrix multiplications, I optimally order the loop executions

and parallelize over the outer dimensions to improve performance. Fig. 4.19 reports

two different implementations for the two matrix multiplications in the Self-Attention

kernel. The Softmax-Matmul 3 merges the matrix multiplication with the Softmax

operator; it uses the S → H → S loop order; P is the dimension over which the

reduction is performed. After completing each iteration of the H loop, the Softmax is

applied to the data produced (e.g., the first one, S0H0). The output data of this matrix-

multiplication is stored in SHS data layout to allow the second Matmul 4 to ingest data

sequentially and use load/store specialized operations. This implies reading input data

for the Softmax-Matmul layer in non-sequential order but still with a regular stride, thus

not impairing the performance. For instance, a set of weights, H0 (dimensions, P × S),

is multiplied with the corresponding activation buffer, H0S0 (dimensions, 1×P). Then,

the set of weights H1 is multiplied with the input H1S0, which is stored S input buffers

after the first one (with a stride of S × P). After all head positions relative to sequence

S0 are multiplied with the K matrix, the cycle is repeated for each Si of Q input.

Deployment of Deep Neural Networks on MCUs 107

Figure 4.18: Linear layer data flow for HPS and HSP out data layouts. Output
matrices are filled from left to right, top to bottom.

Figure 4.19: Matrix multiplication designed to work with multiple heads with different
data layouts.

Deployment of Deep Neural Networks on MCUs 108

1 Inputs: I, W; Outputs: Q, K, V

2 C = H / CORES

3 Hstart = min(C * COREID, H); Hend = min(Hstart + C, H)

4 LH: for (h = Hstart; h < Hend; h++)

5 LP: for (p = 0; p < P/2; p++)

6 LS: for (s = 0; s < S/4; s++)

7 S0...7 = {0};

8 LE: for (e = 0; e < E/4; e++)

9 A1 = I(4s); A2 = I(4s + E);

10 A3 = I(4s + 2E); A4 = I(4s + 3E);

11 B1 = W(hpE + 2pE); B2 = I(hpE + (2p+1)E);

12 S0 += sdot4(A1,B1); S1 += sdot4(A1,B2);

13 S2 += sdot4(A2,B1); S3 += sdot4(A2,B2);

14 S4 += sdot4(A3,B1); S5 += sdot4(A3,B2);

15 S6 += sdot4(A4,B1); S7 += sdot4(A4,B2);

16 O(h,2p,4s) = quant(S0);

17 O(h,2p,4s+1) = quant(S1);

18 O(h,2p,4s+2) = quant(S2);

19 O(h,2p,4s+3) = quant(S3);

20 O(h,2p+1,4s) = quant(S4);

21 O(h,2p+1,4s+1) = quant(S5);

22 O(h,2p+1,4s+2) = quant(S6);

23 O(h,2p+1,4s+3) = quant(S7);

Listing 4.3: Example of kernel pseudocode of sub-layer 1 .

Matmul 4 produces the final tensor, which is then fed to the output projection

Linear layer. Given the design of the previous layers, 1 , and 3 , its implementation

is straightforward. The loop execution order is S → H → P , with P as innermost

dimension. The reduction dimension is the innermost S of the M1 matrix.

4.4.4 Kernel execution loops

The general rules that I employed for kernel optimizations are 3:

1. Keep the parallelization (when available on the target platform) as much as pos-

sible on the H dimension.

2. Exploit output stationarity.

3. Produce the output tensors sequentially (i.e., element i + 1 in the innermost di-

mension is always generated immediately after the i-th element).

The first guideline is particularly convenient when a low number of cores is available,

given the typically low number of heads in networks (e.g., eight heads in the original

transformer [40]). Furthermore, the heads dimension is present in all the kernels4. The

4The Linear output layer represents an exception, as I parallelize on E to maintain output stationarity.

Deployment of Deep Neural Networks on MCUs 109

second guideline saves memory by avoiding the storage of many intermediate int32 ac-

cumulators for the partial outputs. This is particularly important for memory-starved

MCUs, as described for DORY. Besides the memory saving, output stationarity en-

ables optimal exploitation of the dot-product Single Instruction Multiple Data (SIMD)

instructions, as demonstrated in [25]. Finally, producing output tensors sequentially

prevents undesired additional operations in the innermost loop to compute storage lo-

cations.

Listing 4.3 reports an example of the pseudocode of layer 1 with the RV32IMCXpulpV2

ISA and GAP8 target. In the innermost loop, I exploit the sdot4 operator to perform

4 Multiply-and-Accumulate (MAC) operations in a single instruction. Further, inspired

by [25], I again perform 8 sdot4 operations in the same loop iteration as for the TCN

kernels, thus eliminating Read-After-Write (RAW) hazards and performing just 6 load

operations (4 activations buffers and 2 weights buffers), better exploiting the data reuse

in the register file. Incrementing the number of produced output values in a single iter-

ation, e.g., to 16, would cause an increase in the number of utilized registers to 24 (16

for outputs, 4 for inputs, 4 for weights), causing additional load and store operations to

spill variables from the register file to the stack to make room for operands. Conversely,

reducing the number of registers employed causes a reduction in the MAC/load ratio

and impairs the performance.

4.4.5 Quantization

Since commercial off-the-shelf Microcontroller Units (MCUs) feature memory in the

order of hundreds of kilobytes up to one megabyte, quantization of both weights and

activations is typically used to reduce the memory footprint of trained networks [102].

Besides saving precious memory space on these tightly constrained devices, quantization

to 8 bits allows specialized microcontrollers to leverage SIMD instructions, which leads

to significant speed-up compared to floating-point computations. To quantize the Self-

Attention layers and allow for deployment onto commercial MCUs using the new kernels

and the baseline kernels, I used the NEMO toolchain [98]. The NEMO toolchain is used

to perform post-training quantization on the floating-point model to an 8 bits integer

model after training. I also added dedicated quantized operators (e.g., Softmax) from

I-BERT [103] to quantize the Self-Attention layers fully.

4.4.6 TinyRadar Transformer

As a benchmark, I use the TinyRadar network and its corresponding dataset [104] as

a use case to demonstrate both the feasibility and the advantages of porting Transformers

Deployment of Deep Neural Networks on MCUs 110

16
32

64 1
38
4

11111 32 5 32 5 32 5 32 5 32 5 32 5 32 5 10

MH

LN

MH

MH

+

MH

LN

5
96

FF

96
32

FF

+

Figure 4.20: Overall architecture of the proposed network. The front end comprises
three blocks of pointwise convolution, depthwise convolution, and pooling, followed by
a Linear layer. Each of the six encoder blocks (in purple) consists of layer norm layers
(LN), a Multi-Head Attention layer (MH), and Linear layers (FF).

on edge using the proposed kernels. TinyRadarNN has a CNN stage, a TCN stage, and

a dense layer stage [104]. The TinyRadar dataset consists of a total of over 10000

recordings of 11 hand gestures by 26 people made with a short-range radar. In the

original paper, the data is arranged in Spatio-temporal windows that contain samples of

the radar reflection amplitude sampled after different amounts of time-of-flight, called

range points, on the columns, with consecutive distance samples concatenated along the

rows. The working principle of the network architecture is based on splitting spatial and

temporal modeling of the gesture recognition problem.

I preserved this structure but replaced the TCN stage, which models the long-term

temporal dependencies, with a more advanced 6-layer transformer encoder architecture.

The proposed architecture is shown in Figure 4.20. A sequence of 5 × 32 inputs is fed

to the Transformer backend. The 6 layers which constitute the backend are identical to

the ones of [41], with S = 5, E = 32, P = 32, and H = 8. Finally, the output of the

encoder is fed to a dense layer which is used as a classifier, returning a prediction for

each time step.

Besides the changes in architecture, I down-sample the inputs by employing 1 sensor

and 246 range points instead of 2 sensors and 492 range points to reduce the total number

of operations without impairing accuracy.

4.4.7 Experimental Results

I will report the results of this new attention library on a Multi-Head Self-Attention

layer with H = 16, P = 64, E = 64, and S = 32. As benchmarking platforms, I always

Deployment of Deep Neural Networks on MCUs 111

Figure 4.21: Performance description of baselines and proposed kernels on the three
different platforms. The x scales are different for each platform given the extremely
different upper limits.

use GAP8, STM32H7, and STM32L4. I set the operating frequencies of the GAP8,

STM32H7, and STM32L4 at 100 MHz, 480 MHz, and 80 MHz, with a corresponding

average power consumption of 51 mW, 234 mW, and 10 mW, respectively. I choose these

three operating points as they are the most energy-efficient ones according to [105].

4.4.7.1 Kernel performance

Column ‘My Work’ of Table 4.7 details the performance of the library on top of

the three MCUs. The layer analyzed with H = 16, P = 64, E = 64, and S = 32

has 0.48 MMAC and 262k parameters and thus fits the on-chip memory of all three

platforms. Overall, the library allows Attention layers to achieve performance compara-

ble to the best performing convolutional layers with both Instruction Set Architectures

(ISAs), reaching 11.29 MAC/cycle and 0.61 MAC/cycle on GAP8 and STM32H7, re-

spectively, compared to 12.86 MAC/cycle and 0.71 MAC/cycle for convolutions [105].

The benchmark layer runs on the three platforms in 929 kcycles, 59.4 Mcycles, 17.2

Mcycles, respectively, with a latency of 9.29 ms (GAP8), 35.77 ms (STM32H7), and

741.93 ms (STM32L4).

4.4.7.2 Comparison with the state-of-the-art

I also compare the deployment of a transformer architecture with state-of-the-art

CNN libraries, CMSIS-NN [33], and PULP-NN [25]. In particular, I exploit these li-

braries’ optimized Linear layer kernels as a base function for the matrix multiplications

Deployment of Deep Neural Networks on MCUs 112

and projection layers, adding extra external loops, the SoftMax operator, and the mem-

ory marshaling operators.

Deployment of Deep Neural Networks on MCUs 113

T
a
b
le

4
.7
:
C
om

p
ar
is
on

of
m
y
ke
rn
el

li
b
ra
ry

w
it
h
P
U
L
P
-N

N
a
n
d
C
M
S
IS
-N

N
o
n
to

th
re
e
co
m
m
er
ci
a
l
M
C
U
s.

M
C
U

1
×
R
IS
C
-V

+
8×

R
IS
C
-V

1×
C
or
te
x
M
4

1
×
C
o
rt
ex
H
7

P
ow

er
[m

W
]/

F
re
q
.
[M

H
z]

51
m
W

/
10

0
M
H
z

10
m
W

/
80

M
H
z

2
3
4
m
W

/
4
8
0
M
H
z

K
er
n
el
s

M
y
W
or
k

P
U
L
P
-N

N
+
R
es
h
ap

e
M
y
W
or
k

C
M
S
IS
-N

N
+
R
es
h
ap

e
M
y
W
o
rk

C
M
S
IS
-N

N
+
R
es
h
a
p
e

L
a
y
e
r:

A
tt
e
n
ti
o
n

-
H
e
a
d
s:

1
6
,
P
ro

je
c
ti
o
n
:
6
4
,
S
e
q
u
e
n
c
e
:
3
2
,
E
m
b
e
d
d
in
g
:
6
4
,
O
p
e
ra

ti
o
n
s:

8
.4
M

C
y
cl
es

92
9k

1.
95

M
59

.4
M

10
3.
59

M
1
7
.1
7
M

5
7
.0
M

T
im

e/
In
fe
re
n
ce

[m
s]

9.
29

19
.5
2

74
1.
93

12
94

.9
2

3
5
.7
7

1
1
8
.7
4

E
n
er
gy

[m
J
]

0.
47

1.
00

7.
42

12
.9
5

8
.3
7

2
7
.7
9

M
A
C
s/
cy
cl
e

11
.2
9

5.
37

0.
18

0.
10

0
.6
1

0
.1
8

T
h
ro
u
gh

p
u
t
[G

M
A
C
/s
]

1.
13

0.
54

0.
01

4
0.
00

8
0
.2
9

0
.0
9

E
n
.E
ffi
ci
en

cy
[G

M
A
C
s/
s/
W

]
22

.1
3

10
.5
3

1.
41

0.
81

1
.2
5

0
.3
8

Deployment of Deep Neural Networks on MCUs 114

Figure 4.22: Parallelization of the attention layer with 1, 2, 4, and 8 cores on GAP8.

Fig. 4.21 depicts a detailed study on performance improvement of every single part

of the Attention layer. On the STM32L4, GAP8, and STM32H7, I obtain a speedup

of 1.8×, 2.1×, and 3.3×, respectively. However, the different sublayers demonstrate

different speeds-up on the three platforms. Starting from GAP8, the three different

components, Linear layers, matrix multiplications, and Softmax, demonstrate a speedup

of 1.7×, 2.0×, and 4.0×, respectively. These speedups are due to better data reuse and

the removal of reshaping layers. Furthermore, with the parallelization scheme on heads,

with each core taking care of a portion of the heads of the Multi-Head Attention, the

SoftMax execution can achieve a speedup of up to 8×. On the other hand, parallelizing

on S requires synchronization of all the cores after the computation of a single paral-

lelized sequence S of data. Fig. 4.22 details further the speedups on GAP8 of this library

compared to the PULP-NN baseline. While the baseline only achieves 4.73× speedup

with 8 cores compared to one, I can reach 7.16×, with an improvement of 1.51×.

On the STM32 platforms, the speedup is solely concentrated in Linear and ma-

trix multiplication layers. Remarkably, despite using the same ISA, a dramatically

higher speedup of 3.3× compared to 1.8× can be observed between the STM32H7 to

the STM32L4. This difference is mostly given by exploiting the dual-issue pipeline and

the cache refill on the H7. The kernels significantly boost data locality and reuse, al-

lowing for better cache utilization than the CMSIS-NN baseline. To confirm this fact,

disabling the caches reduces the relative speedup of the attention kernels compared to

the baseline from 3.3× to 2.4×.

4.4.7.3 TinyRadar Transformer performance

Finally, I briefly discuss the proposed TinyRadar Transformer architecture. I report

all accuracy values post-quantization at int8 precision. The transformer-based network

architecture achieves an accuracy of 77.15% on the TinyRadar dataset, outperforming

Deployment of Deep Neural Networks on MCUs 115

Table 4.8: Performance of the proposed transformer architecture at fr = 100MHz
on GAP8 platform. Abbreviations: At.: Attention. FF: Linear layers in Transformer
backend.

PULP-NN + Reshape Our Work
CNN Att. FF CNN Att. FF

MACS [#] 1.87M 1.06M 185k 1.87M 1.06M 185k
Cycles 717.4k 261.6k 94.5k 717.4k 112.5k 94.5k
Lat. [ms] 7.17 2.62 0.95 7.17 1.12 0.95
E. [mJ] 0.37 0.13 0.05 0.37 0.06 0.05

the original architecture by 3.5% and a modified Temporal Convolutional Neural Net-

work (TCN) architecture by ∼5%.

Note that this is achieved with a small network since the TinyRadar Transformer

contains 263k parameters, which fits the L2 on-chip memory of GAP8. Tab. 4.8 reports

the network’s performance running on GAP8 at 100 MHz. The network achieves as low

as 9.24 ms latency and 0.47 mJ, 9.6×, and 6.3× lower than the original TinyRadarNN.

Specifically, using the new attention library together with DORY for tiling, I improve

the performance of the Attention part by 2.32×, with a 14% direct reduction of the

overall cycles of the network.

Chapter 5

Biosignal analysis with deep

neural networks on the edge

I present in this chapter two main applications of the ”technological” tools exposed

in the previous two chapters: the first is the heart-rate tracking based on DNN and the

second one is the application of transformers to sEMG-based gesture recognition.

5.1 Q-PPG: Energy-Efficient PPG-based Heart Rate Mon-

itoring on Wearable Devices

In this section, I will describe the application of the NAS and deployment algorithms

to heart rate tracking. In particular, I will show a Temporal Convolutional Network

which is optimized with both the NASes described to minimize the memory and amount

of operations weighted for the data type of tensors.

5.1.1 Q-PPG Exploration Flow

The design space exploration achieved through NASes offers various MAE and com-

putational cost trade-offs. The latter is measured in terms of trainable parameters or

operations per inference. The inputs of the flow I will present are a training dataset

containing PPG and inertial data associated with the corresponding HR label and a

so-called seed TCN. This “template” network is the one from which all output models

are generated through PIT and the channel-wise precision NAS. I successively applied

them in 2 phases:

116

Biosignal analysis with deep neural networks on the edge 117

PPG-DaLiA

Seed Network

[FP32]

[FP32]

[FP32]

[FP32]

[FP32]

[FP32]

[FP32]

[FP32]

[FP32]

[FP32]

[FP32]

[FP32]

[INT8]

[INT4]

[INT8]

[INT4]

[INT2]

[INT8]

MorphNet PIT EdMIPS Post-Processing

Ground-
Truth

Pre

Post

Architecture Op�miza�on Precision Op�miza�on

Cost

HR Tracking Error

Pareto Front
Cost

HR Tracking Error

Constraint
Deployment

C
o
n
v/
FC

C
o
n
v/
FC

Figure 5.1: Proposed Q-PPG design space exploration flow.

1. Architecture Optimization: in this phase, I leverage PIT to trade off computational

cost and performance on the template TCN, searching for the optimal number of

filters for each layer.

2. Precision Optimization: in the second phase, starting from some of the points

found by PIT, I enrich the Pareto curve by applying different types of quantiza-

tion [81] to the weights and activations of the TCNs.

To reach state-of-the-art accuracy, I also apply a low-cost post-processing step to the

final TCNs. A high-level diagram of the entire flow is shown in Figure 5.1. Since its final

output is a set of quantized TCNs, I name this methodology Quantized-PPG (Q-PPG).

Notably, the lowermost part of the picture shows that the Q-PPG exploration has

to be performed only once for each seed model. Then, the user can pick one point

from the Pareto space if different hardware is involved. Specifically, the target platform

usually constrains the maximum memory available. Then, the most accurate Q-PPG

model that meets those constraints is selected and deployed. Therefore, generating an

entire family of models rather than a single one makes this methodology efficient and

flexible, enabling the deployment of optimized HR tracking solutions not only on a single

platform but also on other similar wearable-class systems.

Biosignal analysis with deep neural networks on the edge 118

5.1.1.1 Input Data and Seed Network

The Q-PPG exploration phase and the training of the final TCNs use the same input

dataset, which is composed of raw sensor data gathered from the PPG sensor and a tri-

axial accelerometer. Training samples are partitioned in sliding windows of length T on

the four signals. Therefore, the TCNs take a 2-dimensional array of size (T, 4) as input.

The target output for training is the ground truth HR estimate, expressed as a scalar

real number in BPM. The task to be solved by the NN is indeed a regression problem,

i.e., the objective of the TCNs is to approximate the HR ground truth value. I use the

LogCosh loss function in all training runs to measure the error between the real and

predicted HR during training. Note that I verified that the LogCosh outperforms both

RMSE and MAE [106] as a loss function, favoring the convergence near the minimum,

thanks to its smoother behavior around that point.

The other fundamental input for the design exploration is the seed network. All

Q-PPG outputs are obtained starting from the seed, varying the number of filters (i.e.,

the structure) or the tensor precision to trade off computational cost and HR tracking

performance. In particular, the Architecture Optimization phase of Q-PPG tries to

reduce/simplify the seed while maintaining the MAE as low as possible. Therefore, for

the flow to cover a rather ample design space, the starting point should be a relatively

large and accurate TCN. Specifically, in this work, I used the same seed network used

in PIT, i.e., an adapted version of TEMPONet [34]. Compared to the original version,

the structure of TEMPONet widens the space explored by reducing the dilation and

increasing the number of channels.

Therefore, I first modified the network for compatibility: the number of input chan-

nels of the first layer is adjusted to 4 to match the number of features of the input

dataset. The last FC layer is modified to change the number of units to 1, as required

when performing a scalar regression task. Lastly, the dilation parameters of all convo-

lutional layers in TEMPONet have been set to d = 1, while the filter size K has been

increased to match the original receptive field. As said, I did these modifications to

improve the search space, which encopasses many combinations of K, d, and channels.

5.1.1.2 Architecture Optimization

This section describes how to use the different NAS tools to generate different TCN

architectures for HR tracking in the accuracy vs. complexity space. At the top of

Figure 5.1, I show the cascade of two different Neural Architecture Search (NAS) tools.

The first is called MorphNet [16] for the number of channels exploration, and the second

Biosignal analysis with deep neural networks on the edge 119

is PIT. I use PIT to optimize only the d parameter in this exploration, while I do not

optimize d.

A summary of the functionality of the two tools used is shown in Figure 5.2. As

previously explained, before starting the search, the layers of the seed network are aug-

mented with the different sets of dedicated masks (αi and βi in the figure), each of which

multiplies a subset of the layer’s weights. βi masks are applied only to convolutions to

tune dilation, while αi masks control the number of channels.

m

0

1

2

3

m

0

1

2

3Conv + Mask

FC

S
ee

d
N

et
w

o
rk

Conv + Mask

Conv + Mask

FC + Mask

…

…

L
o

ss
F

u
n

ct
io

n

Masking Mechanism

Figure 5.2: High-level scheme of the functionality of the two NAS algorithms used
for architecture optimization. Pooling and other layers are not shown for simplicity.

As shown in Figure 5.2 masks are forced to small values during training by adding

to the normal loss function Ltask (i.e., LogCosh for HR tracking) the additional reg-

ularization term Lcost explained in Sec. 2.2. The different Pareto points obtained in

the complexity versus HR tracking error are derived by tuning the constant λ, which

regulates the relative importance of the two loss terms.

Instead of solely using PiT, I first used Morphnet to tune the channels. As shown

in Figure 5.2, MorphNet [16] indeed masks all weights relative to the same convolution

output channel with one αi. In contrast, I use PIT [107] masks to only tune d. All

weights corresponding to the same time-step (and to all output channels) are multiplied

by one βi, with the effect of inserting “holes” in the convolution filters. To clarify the

masking process, all weights multiplied with α1 and β1 are coloured in red in Figure 5.2a

and 5.2b respectively. As shown, α1 is multiplied with all the weights of filter W1 (i.e.,

the filter that comprises weights used to derive output channel C1). In contrast, β1

is multiplied with the 1-indexed columns of all filters, assuming these are stored in

channel-major order. I suggest readers refer to Chapter 3 for the complete discussion of

these tools.

Biosignal analysis with deep neural networks on the edge 120

Search Protocol I select MorphNet and PIT for the architecture optimization be-

cause both the number of channels and the dilation are key parameters that influence

the accuracy and complexity of TCNs [11]. In the experiments for this task, I found

empirically that running MorphNet first, followed by PIT, yields much better results

than the opposite ordering. This phenomenon happens because MorphNet operates in

a broader and more fine-grained search space since the possible channel combinations

are way more than the regular dilation values in a typical convolutional layer.

Given this observation, I used the following scheduling of algorithms. First, I apply

MorphNet to the seed network, with different regularization strengths (from λ = 10−6

to λ = 10−3). This results in a first Pareto frontier composed of TCNs with a different

number of channels and dilation fixed at 1. Then, I selected some key points from this

frontier: specifically, I took the two extremes of the curve (i.e., the TCN achieving the

minimum HR tracking error on the validation set and the one with the lowest cost), plus

two intermediate solutions to span the space homogeneously. In the second step, taking

these 4 networks as seeds for PIT, I repeated the training with different regularization

strengths (from λ = 10−9 to λ = 5 ·10−3). Consequently, the output of the MorphNet +

PIT chain includes 4 (in general, n) sets of TCNs, which are then combined to obtain the

final Pareto front. Each NAS execution is preceded by a warm-up phase and followed by

a fine-tuning, where only the weights of the seed/optimized TCN are trained to improve

the overall accuracy.

5.1.1.3 Precision Optimization

Starting from the architectures generated by the two cascaded NAS tools, I further

expand the solutions space by exploring the per-layer arithmetic precision of the TCNs.

The quantization technique I use is the same adopted in Sec. 4.2, which was shown to

maintain high accuracy even with sub-byte precision while also being hardware friendly.

Different from other techniques such as weight clustering [102], this method replaces all

floating point multiply-and-accumulate (MAC) operations required for inference with

integer MACs. With integer operations, the inference results in a more efficient execution

and enables the deployment of the resulting models on hardware without a Floating Point

Unit (FPU). The method implements a linear quantizer, which transforms each floating

point tensor t (of either weights or activations), with values in the range [αt, βt) into a

N -bit integer tensor t̂ as:

t̂ = round

(
t− αt

εt

)
(5.1)

where εt = (βt−αt)/(2
N − 1) is the smallest value that can be represented in the quan-

tized tensor. The entire inference is then performed using only integer data. Specifically,

Biosignal analysis with deep neural networks on the edge 121

the accumulation of partial outputs is performed with int32 data so that no overflows

occur.

Note that every quantization algorithm can be applied to a NN either post-training [2]

or using quantization-aware training (QAT) [80, 81].

In Q-PPG, I use QAT, by means of EdMIPS [80], a tool that allows to simultane-

ously i) perform QAT and ii) search for the optimal trade-off between each layer’s data

format and the network’s final error. The basic principle of QAT is simulating the effect

of quantization (so-called fake quantization) during the forward pass of each training

iteration while maintaining floating point updates during back-propagation. Figure 5.3

illustrates the functionality of EdMIPS, which relies on a gradient-based optimization

method very similar to the one used by the two NASes described in Section 5.1.1.2. Note

that I decided to use EdMIPS and not the channel-wise precision search NAS since the

latter is more complicated and leads to a much bigger design space. On the other hand,

to demonstrate the applicability of the tools to real-life problems, using EdMIPS already

shows a big improvement and an extended trade-off between accuracy and performance.

Conv

FC

S
ee

d
N

et
w

o
rk

Conv

Conv

FC

…

…

Mixed Precision Quantization

Conv/FC
Weight Tensor

…

Activations

Conv/FC

…

L
o

ss
F

u
n

ct
io

n

Figure 5.3: EdMIPS flow for arithmetic precision optimization.

Using EdMIPS, all convolutional and FC layers in the network are replaced by meta-

layers, identical in terms of the executed operation, but whose weights are obtained as

combinations of fake-quantized tensors with different precision. For instance, the 1D-

convolution equation is changed to:

ym
t =

K−1∑
i=0

Cin−1∑
l=0

xl
t s−d i · Ŵ

l,m
i (5.2)

where:

Ŵ =

P−1∑
p=0

Wqp · γp (5.3)

Biosignal analysis with deep neural networks on the edge 122

and P is the number of different precision formats considered. Wqp is the tensor of fake-

quantized weights using the p-th precision, and γp is a trainable coefficient associated

to it. For instance, if I consider int2, int4, and int8 formats, then Ŵ = Wqint2 ·
γint2 + Wqint4 · γint4 + Wqint8 · γint8. All fake-quantized tensors are obtained from

a single, shared set of floating point weights Wfp2. A similar transformation is also

applied to the outputs of the layer to search for the optimal quantization format for

activations. Specifically, the output of the meta-layer is obtained by combining fake-

quantized activations as follows:

y =
P−1∑
p=0

ŷp · δp. (5.4)

As for all NAS approaches described, γ and δ coefficients are then trained together with

the network weights, adding a secondary loss Lcost that takes into account the cost of

each data format. The training algorithm then assigns a more significant coefficient to

the fake-quantized tensor, offering the best trade-off between cost and performance.

Search Protocol Within Q-PPG, I apply EdMIPS with the following strategy. First,

I perform a uniform quantization, i.e., using the same bit-width for all tensors (P = 1),

to the entire set of TCNs obtained in the architecture optimization phase. I then repeat

the QAT with different formats, namely int2, int4, and int8, which are those supported

by the backend TCN inference library available for the target hardware [2]. Next, to

explore all the possible trafe-odds, I use the tool to search for the best bit-width for each

tensor, exploring so-called mixed-precision networks [80].

5.1.1.4 Post-processing

The last component of the complete chain of transformation applied is a post-

processing step used at runtime to the output of the optimized TCNs. This step is

orthogonal and independent of the design space exploration described above. It is moti-

vated by the fact that data-driven models such as TCNs, while very accurate on average,

may sometimes incur significant and unpredictable errors, primarily when the processed

inputs differ significantly from those seen in the training phase. Specifically, the human

heart rate dynamics impose an upper bound on the reasonable variation of the estimate

over time in normal conditions. Therefore, when performing continuous HR tracking

(e.g., every 2s in the experiments described in Section 5.1.2), a single TCN prediction

that differs significantly from all its predecessors is likely due to an error of the model.

Biosignal analysis with deep neural networks on the edge 123

H
ea

rt
-R

at
e[

B
P

M
]

120

100

80

60

40

140

Time[s]
0 500 1000 1500 2000 2500 3000 3500 4000

Ground Truth No Post-Proc. Post-Proc.

MAE: 5.62 BPM
MAE: 5.22 BPM

Figure 5.4: HR tracking obtained with the best performing Q-PPG output TCNs
before and after post-processing on the subject n.3 of the Dalia dataset.

Based on these considerations, the used post-processing applies a simple filtering,

where the latest TCN prediction HRn are compared with the average of the previous

N=10, En,N = E[HRn−1, ...,HRn−N]. If the difference between these two values is

larger than a threshold Pth, the estimate is clipped to HRn = En,N ± Pth.

5.1.1.5 Fine-Tuning

In one of the experiments, I also considered partially personalized per-subject models

instead of population ones. Specifically, after training the models with data of subjects

not included in the test-set, I apply a further fine-tuning step with a lower learning

rate, using the initial 25% of the data relative to the subject under test. The MAE is

then computed on the remaining 75% of the data. I applied this technique to match

state-of-the-art results and show the improvements on top of them.

5.1.2 Results

In this section, I present experimental results to demonstrate the effectiveness of the

proposed methodology for building accurate yet efficient HR tracking solutions based on

TCNs. Specifically, Section 5.1.2.1 describes the training protocol. Section 5.1.2.2 shows

the results of the architecture optimization phase of the flow, which is a set of TCNs with

different error and complexity characteristics but still using a floating point data format.

These networks are then compared with the state-of-the-art in Section 5.1.2.3, since all

existing algorithms tested on PPG-Dalia use float data. Next, Section 5.1.2.4 shows how

the error and complexity results change after the precision optimization phase. Lastly,

Section 5.1.2.5 reports the memory footprint, energy consumption, and latency obtained

Biosignal analysis with deep neural networks on the edge 124

deploying some of the final Q-PPG outputs on the platform described in Section 2.3.

The proposed flow and all TCN training codes are implemented in Python 3.6. To deploy

TCNs on a STM general purpose MCU, I use the open-source Cmix-NN inference library

for ARM processors presented in [2], which supports mixed-precision layers with int2,

int4 and int8 formats for weights and activations.

5.1.2.1 The PPG-Dalia Dataset

As a dataset, I used the previously introduced PPG dataset for motion compensation

and heart rate estimation in Daily-Life Activities (PPG-Dalia) [36]. I validate all models

following the cross-validation protocol proposed in [36], denoted as Leave-One-Session-

Out (LOSO) cross-validation, where the 15 subjects are organized in four randomly

picked data folds. Three folds are used as the training set, while the remaining one

is subdivided to form the test set, composed of a single subject and the validation

set. Fifteen training iterations are then performed, each with a different test subject,

ensuring that its input data are never used to train the model tested on it.

I also compare Q-PPG solutions against both classic and DL methods that have been

tested on the same dataset, taking their results directly from the original papers. When

analyzing MCU deployments, I consider a real-time constraint of 2s per inference, equal

to the time shift between two consecutive samples in the dataset, following previous

work [36, 108].

5.1.2.2 Architecture Optimization Results

Figure 5.5 reports the first obtained results thanks to the architecture optimization

phase. Specifically, it shows (in green) the Pareto frontiers defined by the different TCN

variants discovered by Q-PPG, changing the regularization strength of the two NAS

algorithms. Results are reported as MAE versus the number of trainable parameters

and MAE versus the number of operations. They include the effect of the runtime post-

processing described in Section 5.1.1.4. Note that these models are still not quantized;

therefore, all the tensors are in floating-point format.

Besides the outputs of the complete flow, four other results are reported for com-

parison. The black diamond and triangle correspond respectively to the original TEM-

PONet, with the dilation of convolutional layers set as in [34], and to the TEMPONet

variant with all dilations set to 1, which corresponds to the input seed of Q-PPG. Com-

paring these two points with the green curve clearly shows that: i) using a hand-tuned

TCN initially designed for another task, such as TEMPONet, would be suboptimal, and

Biosignal analysis with deep neural networks on the edge 125

6.0

5.5

5.0

4.5

M
A

E
[B

P
M

]

0
MOPs [#]

6.5

6.0

5.5

5.0

4.5

M
A

E
[B

P
M

]

0
Parameters [#]

5 10 15 35

200k 400k 600k 800k

Figure 5.5: Architecture optimization results in the MAE versus n. of parameters
and MAE versus Millions of Operations (MOPs) planes. The curve labeled “MN-PIT”
corresponds to the sequence of MorhpNet (MN) and PIT used in the proposed Q-PPG
flow.

ii) the two NAS algorithms can simultaneously improve the HR tracking performance

of the seed, while also dramatically reducing its complexity.

The other curves reported in Figure 5.5 show the results of the isolated application

of the two NAS algorithms. The blue points refer to the application of MorphNet (MN)

to TEMPONet with hand-tuned dilation. Orange points, instead, correspond to the

application of PIT alone, using the TEMPONet variant with d = 1 as seed. Comparing

these curves with the one with points obtained after applying both NASes shows that

it is almost always superior to apply both than to apply only one. In fact, the global

Pareto frontier (gray dashed line) is almost always overlapped with the output of the two

NASes search. For instance, MorphNet alone can explore a vast space of solutions by

tuning the number of channels in each layer but is forced to use sub-optimal hand-tuned

dilation values.

Biosignal analysis with deep neural networks on the edge 126

Overall, the automatic design space exploration technique proposed in this thesis can

span more than two orders of magnitude, both in terms of TCN parameters (3.5k-269k)

and OPs (0.1M-17.5M), despite starting from a single seed TCN. The most accurate

model obtained achieves an MAE of just 4.36 BPM while requiring around 269k pa-

rameters and 17.5M OPs. On the other hand, by only using Morphnet, the best MAE

obtained is 4.88 BPM (+0.52 BPM), with a similar number of parameters (230k) and

operations (12M). Noteworthy, increasing the number of parameters from 3.5k up to 30k

leads to improving the MAE from 6.5 BPM to 4.55 BPM. This huge improvement indi-

cates that the NAS-based flow finds near-optimal models with relatively few parameters,

increasing the accuracy for each new parameter added.

5.1.2.3 State-of-the-art comparison

Figure 5.6 compares the searched models (green) with state-of-the-art algorithms,

including both classical and deep learning solutions (blue and red points, respectively), in

the MAE versus the number of operations space. For Q-PPG, I report the entire Pareto

frontier of TCN architectures, i.e., the same points plotted in the lowermost graph of

Figure 5.5. The comparison is made with the state-of-the-art considering floating point

models. The details of the cross-validated MAE results for each of the 15 PPG-Dalia

subjects are reported in Table 5.1. For works proposing multiple models (ours and

DeepPPG [36]), the table reports the results of the most accurate one. Q-PPG results

are reported both with and without post-processing.

Biosignal analysis with deep neural networks on the edge 127

T
a
b
le

5
.1
:
C
om

p
ar
is
o
n
w
it
h
st
a
te
-o
f-
th
e-
a
rt

P
P
G
-b
a
se
d
H
R

m
o
n
it
o
ri
n
g
a
lg
o
ri
th
m
s.

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
10

S
11

S
12

S
1
3

S
1
4

S
1
5

M
ea
n

C
la
ss
ic
a
l
M

o
d
e
ls

S
ch
ac
k
20

17
[1
09

]
33

.1
27

.8
18

.5
28

.8
12

.6
8.
7

20
.6
5
21

.8
22

.3
12

.6
21

.1
22

.8
2
7
.7

1
2
.1

1
6
.4

2
0
.5

S
p
aM

aP
lu
s
[1
10

]
8.
86

9.
67

6.
40

14
.1
0
24

.0
6
11

.3
4
6.
31

11
.2
5
16

.0
4
6.
17

15
.1
5
12

.0
3
8
.5
0

7
.7
6

8
.2
9

1
1
.0
6

T
A
P
IR

[1
08

]
4.
50

4.
50

3.
20

6.
00

5.
00

3.
40

2.
80

6.
30

8.
00

2.
90

5.
10

4.
70

3
.1
0

5
.0
0

4
.1
0

4
.5
7

C
u
rT

oS
S
[1
11

]
5.
40

4.
30

3.
00

8.
00

2
.2
0
2
.8
0
3.
30

8.
50

12
.6
0
3.
60

3.
60

6.
10

3
.0
0

5
.5
0

3
.7
0

5
.0
4

D
e
e
p

L
e
a
rn

in
g
M

o
d
e
ls

D
ee
p
P
P
G

[3
6]

7.
73

6.
74

4.
03

5.
90

18
.5
1
12

.8
8
3.
91

10
.8
7
8.
79

4.
03

9.
22

9.
35

4
.2
9

4
.3
7

4
.1
7

7
.6
5

N
A
S
-P

P
G

[1
12

]
5.
46

5.
01

3.
74

6.
48

12
.6
8
10

.5
2
3.
31

8.
07

7.
91

3.
29

7.
05

6.
76

3
.8
4

4
.8
5

3
.5
7

6
.0
2

O
u
rW

or
k
,
B
es
t
M
A
E

4.
29

3.
62

2.
44

5.
73

10
.3
3
5.
26

2
.0
0
7.
09

8.
60

3.
09

4.
99

6.
25

1
.9
2
3
.0
2

3
.5
5

4
.8
1

+
P
os
t-
P
ro
ce
ss
in
g

3.
78

3.
36

2
.3
3
4.
84

9.
95

4.
38

2.
20

5.
88

7.
59

2
.7
4
4.
55

5.
20

2
.1
4

2
.9
9
3
.4
7

4
.3
6

+
F
in
e-
T
u
n
in
g

3
.2
5
2
.5
5
2.
66

4
.2
1
5.
41

4.
11

2.
06

5
.0
7
7
.1
5
3.
04

3
.0
7
3
.3
9
2
.1
3

3
.1
3

2
.9
6

3
.6
1

Biosignal analysis with deep neural networks on the edge 128

M
A

E
 [

B
P

M
]

Complexity [OPs]

SpaMAPlus

CurToSS

DeepPPG

TAPIR

Schack2017

NAS-PPG

DeepPPGDeepPPG

Figure 5.6: Comparison with state-of-the-art algorithms in the MAE versus number
of operations space.

As shown, Q-PPG significantly outperforms all previous solutions based on deep

learning. Compared to DeepPPG, the first approach introducing DL for HR, even with

the simplest model, I achieved better performance (6.07 vs. 7.65 BPM) and a striking

7572× reduction in complexity. Compared to the recent NAS-PPG, the same Q-PPG

model obtains comparable MAE (6.07 vs. 6.02 BPM) with 88.4× fewer operations.

Moreover, the best Q-PPG model obtains an MAE that outperforms all the previous

state-of-the-art methods for this dataset, including TAPIR [108], although at the cost

of higher complexity, achieving an average error of just 4.36 (vs. 4.57) BPM. TAPIR

is not dominated in the Pareto sense due to its low theoretical complexity. However,

it is essential to note that the hand-tuning of the parameters strongly influences this

method. Indeed, TAPIR performs poorly with slight parameter modifications and needs

different parameter tuning for different datasets as for other classical methods.

Looking at Table 5.1, it is evident that the best TCN performance is strongly im-

paired by subject 5. This is because this subject’s record contains very high HR val-

ues, rarely encountered in training data, which are badly predicted by data-driven ap-

proaches. Applying the fine-tuning step described, the MAE of the best Q-PPG model

further reduces to just 3.61 BPM, given that the MAE of Subject 5 decreases from

9.95 to 5.41 BPM. Overall, fine-tuning improves the performance of other 10 out of 14

subjects.

Biosignal analysis with deep neural networks on the edge 129

5.1.2.4 Precision Optimization

Figure 5.7 shows how the MAE versus model size results change when applying

different types of quantization to Q-PPG models, enlarging the exploration space. Note

that the x-axis of the curve now reports the model size in bytes rather than the number

of parameters, and the dark green curve corresponds to the one in the topmost graph of

Figure 5.5. The graph reports all the results obtained with uniform and mixed-precision

quantization.

MKV42F128VLF16 STM32WB55RG6STM32L031F4

M
A

E
[B

P
M

]

Memory constraint fp32 int8 int4 int2 mixed

Figure 5.7: MAE versus memory occupation of Q-PPG TCNs quantized with different
data formats.

A first important observation is that uniform int8 quantization incurs minimal MAE

degradation, as shown by the similar shapes of the dark green and blue curves, despite

reducing a factor of 4 in model size. Furthermore, both sub-byte uniform quantization

(int4 and int2) and mixed precision have solutions that fall on the global Pareto frontier,

demonstrating that all formats are practical in different regions of the design space.

Thanks to quantization, the range of model sizes obtained reaches 3 orders of magnitude,

from around 1MB (most giant float TCN) to less than 1kB (smallest int2-quantized

TCN), with MAE values ranging from 4.36 to ≈20 BPM.

The figure also reports, in the form of vertical dashed lines, the constraints imposed

by the Flash memory available in 3 different commercial MCUs. The rightmost line

corresponds to the target platform employed (the STM32WB, with 1MB of Flash),

whereas the other two correspond, from right to left, to a MKV4 MCU from NXP,

based on a Cortex-M4 with 128kB of Flash [113] and to the STM32L031F4, equipped

Biosignal analysis with deep neural networks on the edge 130

with a Cortex-M0+ and 16kB of Flash [114]. Typically, an MCU installed on a wearable

device has to store the code and data for multiple applications in Flash. Since the specific

application set varies from product to product, I assumed that 50% of the total Flash

could be devoted to storing the TCN. While the actual constraint may differ in practice,

this is just an example to demonstrate a valid principle in general. Once the constraint

is defined, picking the best Q-PPG model for given hardware reduces to finding the most

accurate Pareto point which respects the constraint. In particular, on the STM32WB I

fit the most accurate quantized model overall, which requires ≈412 kB of memory, and

achieves an MAE of 4.41 BPM.

5.1.2.5 Deployment Results

In this section, I discuss the results obtained deploying three representative TCNs

obtained with Q-PPG on the wearable device described in Sec. 2.3.1. Specifically, I

deployed the smallest networks with less than 8 BPM and 5 BPM of MAE, (Q-PPG-S

and Q-PP-M, respectively), as well as the most accurate of all quantized networks (Q-

PPG-L). All deployments have been performed using the Cmix-NN layers library [2],

which has been adapted to support 1D convolutions with dilation.

The memory occupation, latency, and energy consumption of the three networks for

a single inference are reported in Table 5.2, which also shows the type of quantization

used by each of them. As expected, smaller models are associated with a larger MAE.

However, Q-PPG-M achieves better latency and energy results with respect to Q-PPG-S.

This is because Q-PPG-M also includes int8 layers, which have higher performance than

int4 in Cmix-NN, since the latter require more complex packing/unpacking operations

to match the bit-width of Cortex-M vector ALUs. Interestingly, Q-PPG-M trades-off

just 0.23 BPM of MAE for a 36.2× (34.2×) memory (energy) reduction compared to

Q-PPG-L.

Table 5.2: Deployment of different Q-PPG networks on the STM32WB55 using Cmix-
NN layers [2].

Model Memory [B] Latency Energy MAE

Q-PPG-S (int4) 1866 71.6 ms 1.79 mJ 7.73 BPM
Q-PPG-M (mixed) 11388 55.7 ms 1.39 mJ 4.64 BPM
Q-PPG-L (int8) 411997 1.90 s 47.65 mJ 4.41 BPM

To compute the power consumption of the entire wearable platform, I also charac-

terized the two sensors (PPG and accelerometer) and the MCU during data gathering,

data communication, and inference, as shown in Table 5.3. This is useful to understand

how much different networks can impact the total energy consumption of the application

Biosignal analysis with deep neural networks on the edge 131

Table 5.3: Energy consumption of the three main components of the system during
in phases.

MAX30101 [mW] LSM6DSM [mW] STM32WB [mW]

Inference 5.5 [18.0%] 0.03 [0.1%] 25.0 [81.9%]
Data Comm. 5.5 [28.6%] 0.03 [0.2%] 13.7 [71.2%]
Data Gath. 5.5 [99.3%] 0.03 [0.5%] 0.008 [0.2%]

STM32WB

11 mJ

2.22 mJ
0.06 mJ

0.06 mJ
0.06 mJ

11 mJ

11 mJ

1.83 mJ

48.0 mJ

MAX30101 LSM6DSM

Q-PPG-S Q-PPG-M Q-PPG-L

Figure 5.8: Break-down of the energy consumed in the 2s between two successive HR
estimations, including data communication, algorithm execution, and waiting time for
new data.

running on the edge. The STM32WB stays in Stop mode (0.008mW power) between the

end of the computation and the moment in which the next window of data is ready to

be acquired (gathering phase). After that, it goes in Idle mode (13.7mW power) during

the data communication phase, enabling only the DMA and the SPI/I2C peripherals.

Lastly, it goes in Active mode (25.0mW power) only to perform inference. Note that

during the data gathering phase, the power consumption is strongly dominated by the

MAX30101 power. However, I do not focus on power-saving techniques for the system’s

sensing parts but only on the minimization of the signal analysis part.

Figure 5.8 reports the energy breakdown of the system in a 2s window (the interval

between two HR predictions) for the three networks of Table 5.2 chosen for deployment.

SPI/I2C data acquisition and DMA transfers from peripherals to main memory require

15.4ms for both the PPG signal and the acceleration (considering a sampling rate of

32Hz), leading to stable energy consumption of 11 mJ and 0.06 mJ, respectively. Con-

versely, the execution time for inference ranges from 71.6 ms to 1.9 s, always meeting the

real-time constraint of 2s. In particular, by using the Q-PPG-L network as a predictor,

I obtained an energy consumption of 48.0 mJ, which is 81.3% of the total consumption

of the system. On the other hand, trading off a bit of performance for a lighter network,

using the Q-PPG-M network, the energy consumption for inference falls to just 1.83 mJ,

which is only 14.1% of the total.

Biosignal analysis with deep neural networks on the edge 132

5.2 Bioformers: Embedding Transformers for Ultra-Low

Power sEMG-based Gesture Recognition

In this section, I will describe a second application of DNNs to bio signals. In details,

I will show the application of attention kernels deployed with DORY on GAP8 to the

Bioformer, an architecture designed for gesture recognition using surface EMG data.

This paragraph deeply describes Bioformer, a Vision Transformer (ViT) [41] in-

spired architecture, thought to significantly reduces the computation complexity for

sEMG-based gesture recognition while reaching an accuracy comparable with the state-

of-the-art. Simultaneously, I also show a new pre-training protocol to feed more data

to the transformer for gesture recognition, inspired by the pre-training of recent ViT

architectures.

5.2.1 Bioformer: Network Topology

The network analyzed comprises three modules. First, the input signal is projected

onto a space of dimensions N × 64 using a 1D-convolutional layer. I use padding = 0

and stride equal to the filter dimension to aggregate non-overlapping windows of the

input signal. Similarly to what is done in ViT for images, the idea is to create a

series of N tokens of dimension 64 that encode the input information. This 1D layer

creates 1D temporal patches, similar to the image patches of ViT. I tested [1, 5, 10,

20, 30] for the filter dimension. Note that the higher the dimension, the smaller the

number N of produced tokens (and therefore, the lower the complexity of the following

attention blocks), but the higher the information fused in a single layer. Compared

to standard transformers [40], tuning the dimension of this first layer increases the

architecture’s flexibility, allowing for a trade-off between the total number of operations

and the accuracy.

After this small block, the output is processed by the self-attention section. In the

rest of the section, I focus on two variants of the Bioformer architecture, both of which

exhibit good accuracy on sEMG-based gesture recognition. The parameters of the two

networks are all identical except for the number of heads and the number of layers

(depth). The first network comprises one attention layer with eight heads, while the

second consists of two attention layers with two heads each. These two parameters have

been chosen after performing a grid search on depth ∈ {1, 2, 3, 4} and heads ∈ {1, 2,
4, 8}. I chose the architectures with the best trade-off of accuracy vs. parameters. The

hidden space has dimension 128, while each head has a size P of 32. Similarly to [41], a

”class token” is concatenated after the QKV projection step, adding one sample to the

Biosignal analysis with deep neural networks on the edge 133

Figure 5.9: In the upper part, the basic MHSA layer used inside the architectures. In
the lower part, the two Bioformers architectures that I propose as benchmarks.

sequence length ((N +1)× 64). Noteworthy, these layers are much smaller compared to

the state-of-the-art TEMPONet [34], which is constituted by a total of 9 convolutional

layers and three fully connected layers. This dissimilarity demonstrates the attention

layers’ higher symbolic power than classical convolutions in gesture recognition. The

final step takes the output ”class token” and applies a linear layer with nine neurons per

gesture. The SoftMax operator provides the probability for each gesture. Opposite to

sequence-to-sequence transformers, where the output takes into account all the output

tokens, the class token can be seen as the one that pays attention to the relevant elements

in the sequence for the classification.

The lower section of Fig. 5.9 summarizes these two network architectures.

5.2.2 Bioformer: Training

Regardless of the employed dataset, the standard training for sEMG gesture recog-

nition is subject-specific, given that the movements and muscle contractions associated

with different gestures can differ significantly from one subject to another [34, 39]. On

the other hand, it is known that performing a pre-training step on data similar to the

ones used for the final training is highly beneficial for DL models, and in particular,

for Transformers [12]. For instance, many state-of-the-art image recognition networks

Biosignal analysis with deep neural networks on the edge 134

do not perform single-stage training but go through pre-training on the extended Im-

agenet dataset before fine-tuning the target dataset. The Imagenet pre-training allows

the network to start the ”real” training from a set of good weights and a non-random ac-

curacy. Similar pre-training + fine-tuning protocols are key elements of most successful

transformer models, e.g., in NLP [12, 13].

Based on these assumptions, this work introduces a new two-step training procedure

for sEMG-based gesture recognition. Compared to the standard approach, I first per-

form an inter-subject pre-training, in which data relative to all subjects available in the

training dataset is employed. Then, I proceed with subject-specific fine-tuning, common

to all state-of-the-art approaches. Despite the task being strictly subject-dependent, one

can intuitively imagine that the sEMG signal features useful for gesture classification

should be similar for all patients. Indeed, using this protocol, I observe that feeding

more data is beneficial for accuracy. With this training, I demonstrate higher accuracy

on state-of-the-art networks and the new transformer. To clarify better this proposed

protocol, I report below the training procedure that I use for subject 1 of the 10-subject

Ninapro DB6 training dataset. First, I train the network for 100 epochs with data from

patients 2-10, excluding subject 1, on which I want to test the final model. In this

step, the model adjusts the weights to extract general features associated with different

hand gestures. Then, I perform 20 epochs of fine-tuning using only the training data

of subject 1. During this fine-tuning, the recording sessions of the patients are sepa-

rated between train and test set, following the classical sequential training protocol used

by other state-of-the-art approaches for this task, which mimics a real scenario, using

sessions 1-5 for training and 6-10 for testing.

For the parameters during the pre-training step, I use Adam optimizer with a linear

warmup of the learning rate from 1e-7 to 5e-4; for the fine-tuning stage, a fixed learning

rate of 1e-4 is used, with a reduction of 10× after 10 epochs.

5.2.3 Experimental Setup & Dataset

To validate this new architecture, I employ the public sEMG-based hand gesture

recognition dataset called Non-Invasive Adaptive hand Prosthetics Database 6 (NinaPro

DB6) [115], which has been explicitly realized to investigate the degradation of sEMG-

based hand gesture recognition accuracy over time. The dataset includes 10 non-amputee

subjects (3 females, 7 males, average age 27± 6 years) who have been asked to undergo

10 gathering sessions. The 10 sessions are distributed over 5 days, one in the morning,

one in the afternoon, each including 12 repetitions of the gestures for each patient. The

gestures considered include the rest position and seven grasps, covering hand movements

Biosignal analysis with deep neural networks on the edge 135

6 7 8 9 10
Testing Sessions [#]

58%
60%
62%
64%
66%
68%
70%
72%

Ac
cu

ra
cy

 [
%

]

Bioformer (h=2,d=2) Pre-Training
Bioformer (h=8,d=1) Pre-Training
TEMPONet Pre-Training

Bioformer (h=2,d=2)
Bioformer (h=8,d=1)
TEMPONet

Figure 5.10: Performance variation on the different testing sessions.

typically done during daily activities. Each grasp repetition lasts approximately 6s,

followed by 2s of rest. The array of sensors is composed of 14 Delsys Trigno sEMG

Wireless electrodes placed on the high half of the forearm, simulating the amputation of

the lower half of the forearm. Each sensor gathers the data at a sampling rate of 2 kHz.

The dataset is divided into windows of 150 ms (i.e., 300 samples) with a slide between

them of 15 ms. Network training is performed on steady gestures, which is done by

removing contraction transients: this means that the first and last 1.5 s of each motion

is discarded.

For training and validating the model using floating-point (fp32) arithmetic, I em-

ployed Python3.7 together with Pytorch1.8.1. I then perform a few epochs of quanti-

zation aware training (QAT) to shift from fp32 to integer (int8) arithmetic. I follow

the steps described in the previous Sec. 4.4. Finally, I deployed the resulting quantized

models on the GAP8 MCU, using the optimized kernels described in Sec. 4.4.

5.2.4 Experimental Results

In this section, I first demonstrate the performance of the Bioformer on the Ninapro

DB6. Then, I perform an ablation study to demonstrate i) the pre-training impact on

the Bioformer (h = 8, d = 1) and ii) the influence of the filter dimension of the initial

convolutional layer on the complexity and on the accuracy of the different architectures.

Finally, I discuss the deployment results of the different architectures.

Biosignal analysis with deep neural networks on the edge 136

5.2.4.1 Ninapro DB6 benchmark

Fig. 5.10 reports the accuracy of two Bioformers and of the state-of-the-art TEM-

PONet [34]. Each point corresponds to one of the five testing sessions, and the reported

accuracy is the average across patients. Higher session numbers correspond to tests far-

ther in time from the training period. The two Bioformers are composed of a different

number of heads and layers. Compared to the reference TCN, the Bioformers achieve

slightly lower accuracy both with and without pre-training. Bioformers without pre-

training achieve a 2.7%-3.9% lower accuracy on average. However, the accuracy differ-

ence w.r.t. TEMPONet decreases for sessions that are farther in time from the training

and, therefore, more dissimilar. In particular, the h=8, d=1 Bioformer outperforms

TEMPONet on testing session 10 (+ 0.48%). This result suggests that Transformers,

thanks to the capability of extracting meaningful features, are more prone to well gener-

alize on more dissimilar data, a key factor for a task where the data can shift over time.

Also, note that the application of pre-training is beneficial both for the proposed Bio-

formers and for TEMPONet. However, the accuracy difference between the two types of

models decreases, confirming the superior capability of Transformer-based architectures

to benefit from large datasets during training. In the different sessions, I observe an

average gain of 3.39%, 2.48%, and 1.80% for Bioformer (h=8, d=1), Bioformer (h=2,

d=2), and TEMPONet, respectively.

Overall, the best architecture (i.e., the one with 8 heads) achieves an average 65.73%

accuracy, which is 0.73% better than the previous state-of-the-art TEMPONet, and

1.07% lower than the new pre-trained TEMPONet.

5.2.4.2 Ablation Study: pre-training & Patch Dimension

In this paragraph, I detail i) the benefit of applying the new training approach and

ii) the impact of the filter dimension of the initial 1D convolutional layer in Bioformers.

Fig. 5.11 details the performance change between standard and two-step training for

each subject. Note that the most significant advantages are obtained for subjects with

lower accuracy before pre-training. On subjects whose starting accuracy is lower than

60%, the average accuracy improvement is 6.33%, while on the other five subjects, it is

just 0.45%, leading to an overall average gain of 3.39%. Solely, Subj.6’s accuracy gets

worse with the new proposed training. This degradation could be caused by the lower

learning rate used in the subject-specific fine-tuning that does not allow the network to

converge to the global minimum. This result demonstrates that even tiny transformers

can be beneficial, given their optimal deployment on the hardware and the possible high

accuracy that could be reached thanks to the extensive dataset used for pre-training.

Biosignal analysis with deep neural networks on the edge 137

Su
bj.

1

Su
bj.

2

Su
bj.

3

Su
bj.

4

Su
bj.

5

Su
bj.

6

Su
bj.

7

Su
bj.

8

Su
bj.

9

Su
bj.

10
50%

60%

70%

80%

90%

Ac
cu

ra
cy

 [
%

]

+1.44%

+0.47%
+12.50%

+1.67%

+2.91%

-4.26% +7.15%
+5.27%

+3.08%

+3.65%

Normal Training: 62.34% Pre-Training: +3.39%

Figure 5.11: Accuracy per subject with intra- and inter-patient training data.

1 5 10 20 30
Input 1D-Convolutional Filter dim. [#]

56%

58%

60%

62%

64%

66%

Ac
cu

ra
cy

 [
%

]

Bioformer (h=2,d=2) Pre-Training
Bioformer (h=8,d=1) Pre-Training
Bioformer (h=2,d=2)
Bioformer (h=8,d=1)

Figure 5.12: Performance using [1,30] filter dimensions for the front-end convolutional
layer. Increasing the filter dimension reduces both the number of parameters and the
number of operations.

In Fig. 5.12, I show the impact of the filter dimension of the first convolutional

layer. Remember that a more comprehensive filter implies a smaller input signal for the

attention block. Each solid line represents a Bioformer on which I applied the two-step

training (pre-training and fine-tuning), whereas the dashed lines correspond to networks

trained with the standard procedure. For most models, a filter dimension equal to 10

results in the best accuracy, despite its lower complexity compared to 1 and 5 (the

resulting input sequence length is 30 instead of 60 and 300 for filter sizes 5 and 11,

1When a filter size of 1 is applied, the 1D-convolutional layer becomes a fully-connected embedding
layer.

Biosignal analysis with deep neural networks on the edge 138

1M 10M
Complexity [MACs]

61%

62%

63%

64%

65%

66%

67%

Ac
cu

ra
cy

 [
%

]

Bioformer (h=2,d=2) Pre-Training
Bioformer (h=8,d=1) Pre-Training

TEMPONet Pre-Training
TEMPONet

Figure 5.13: Accuracy vs parameters.

100k 150k 200k 250k 300k 350k 400k 450k
Parameters[#]

61%

62%

63%

64%

65%

66%

67%

Ac
cu

ra
cy

 [
%

]

Bioformer (h=2,d=2) Pre-Training
Bioformer (h=8,d=1) Pre-Training

TEMPONet Pre-training
TEMPONet

Figure 5.14: Accuracy vs MAC operations.

respectively). Furthermore, despite the resulting lower accuracy, increasing the filter

dimension beyond 10 can be beneficial from the deployment point of view, given the

reduction in the algorithm’s complexity, whose number of operations depends almost

linearly on the sequence length. For instance, changing dimension from 10 to 20 on the

Bioformer with 8 heads and a depth of 1 only causes a drop of 1.70% of accuracy while

reducing the total number of operations by a factor 1.93× and the energy by 2×.

5.2.4.3 Deployment on GAP8

Fig. 5.14 and Fig. 5.13 show the Bioformer architectures and TEMPONet in the

N. of Operations versus accuracy and N. of parameters vs. accuracy planes. While

the pre-trained TEMPONet reaches the highest accuracy, all other Pareto points are

populated by Bioformers. The different points plotted for the same Bioformer refer

Biosignal analysis with deep neural networks on the edge 139

Table 5.4: Performance of the quantized Pareto architectures on the GAP8 MCU.
Bio1 corresponds to Bioformer (h=8, d=1), Bio2 to Bioformer (h=2, d=2).
Abbreviations: Lat.: latency, E.: energy, Q.Acc.: quantized accuracy.

Network Memory MMAC Lat.[ms] E.[mJ] Q. Acc.

MCU: GAP8, 100 MHz @ 1V, 51 mW

Bio1, wind=30 110.8 kB 1.2 1.03 0.052 61.09%
Bio1, wind=20 102.1 kB 1.7 1.37 0.070 63.14%
Bio1, wind=10 94.2 kB 3.3 2.72 0.139 64.69%
Bio2, wind=30 92.2 kB 1.0 1.55 0.079 60.19%
Bio2, wind=10 78.3 kB 2.5 4.82 0.246 62.43%

TEMPONet [34] 461 kB 16.0 21.82 1.11 61.00%

to different filter sizes of the initial 1D Convolutional layer. In the complexity versus

accuracy space, I identified two key architectures of Bioformers. The most accurate

model (h=8, d=1, filter = 10) outperforms the state-of-the-art TEMPONet and is only

1.07% less accurate than the pre-trained TEMPONet, but shows an impressive 4.9×
operations reduction. Instead, the lightest Bioformer (h=2, d=2, filter = 10) on the

Pareto frontier reduces the required number of operations of an additional factor 3.3×
(16.17× lower than TEMPONet), at the cost of a further 4.47% accuracy drop.

The results of deploying some of these Pareto architectures on GAP8 are shown in

Table 5.4. Note that the accuracy of these models, as reported in Table 5.4, is the one

obtained after the quantization-aware fine-tuning.

After quantization, the most accurate model yet achieves 64.69% accuracy, consum-

ing an impressively lower 8.0× energy compared to TEMPONet (always considering the

same 51 mW of power consumption reported for GAP8 at 100 MHz). This model can

also fit a smaller MCU since it only requires 94.2 kB.

The Bioformer with the lowest latency further reduces the energy compared to TEM-

PONet by 17.3×, with an accuracy reduction of only 3.60% and a comparable memory

footprint (110.8 kB). Considering this last model, a 150 ms window classified every 15

ms costs 52 µJ and has a latency of 1.02 ms, while for the remaining time, the GAP8

SoC only collects data. In this step, I can consider idling the 8-core cluster using its

embedded hardware synchronization unit [116] and therefore reduce the power consump-

tion to only the 10 mW of the FC, yielding an average power consumption over time of

as low as 12.81 mW.

Chapter 6

Conclusions

This thesis showed a complete flow for a generic application, from optimizing the

topology to deploying the network on MCUs. In the last chapter, this flow is applied to

two bio-inspired tasks, showing how I improved the state-of-the-art performance thanks

to the tools presented.

In Chapter 3, I showed a new NAS algorithm, Pruning in Time (PIT). This NAS

is optimized for TCNs and can explore a vast, fine-grained search space of architectures

with low GPU memory requirements. PIT is the first DMaksingNAS tool that explicitly

targets the 1D convolutional networks, targetting both the receptive field and the dilation

of all network layers. My thesis demonstrates that PIT can find improved versions of

state-of-the-art TCNs, with a memory compression of up to 8.03× (90.8×) and a latency

and energy reduction of up to 5.45× (19.6×) without (with a reasonable) accuracy drop

on four different benchmarks regarding classification or regression of time-series. After,

I introduced a second algorithm, which in turn targets the optimization of the data

format of each tensor inside the network. Noteworthy, these two tools can be combined

or applied individually. Compared to the existing state-of-the-art algorithm, this tool

is particularly innovative in the granularity of precision assigned. The number of bits is

not assigned at the granularity of the layer. Instead, every single filter from a layer can

assume a different number of bits. To improve both these NASes and generic Dmasking

NASes that targets edge deployment, I finally depict a new formulation of the loss that

lets them find optimal trade-offs between accuracy and inference complexity under fixed

memory constraints.

In Chapter 4, I described DORY, a new tool to deploy the optimized DNN architec-

tures on low-power MCUs. DORY, Deployment Oriented to memoRY, unburdens the

programmer from the manual optimizations of neural networks on end nodes. DORY

obtains near-optimal tiling in DNNs layers on architectures with three and two memory

140

Conclusions 141

levels by combining constraint programming with a set of target-aware heuristics that

exploit the target architecture’s potential performance, even under stringent memory

constraints. I showed its applicability by deploying different neural networks on GAP8,

an MCU characterized by a three-level memory and a general-purpose accelerator. I

demonstrate 12.6× higher energy efficiency and 7.1× higher performance compared to

the industry-standard STM32H743 and up to 26.6% end-to-end inference improvement

compared to the proprietary tool from GWT. These results show that part of the Deep

Learning Memory Wall, i.e., the limited amount of on-chip memory, can be overcome

using optimal multi-level tiling to drive a software-based caching scheme. For instance,

in the Results, I showed that GAP8 could execute real-world networks designed for

smartphone inference at real-time frame rates with less than 1 MB of on-chip memory.

On top of it, in the other two sections of the chapter, I showed two optimized kernels

that can be plugged inside DORY for deploying TCNs and Transformers. The first is

a library for TCNs to optimize their performance on smart edge nodes. I have shown

that by using multiple 1D kernels simultaneously and picking the most efficient per

layer of a neural network, I can speed up the execution compared to the state-of-the-art

by 3× to 103×. The second library has been made to support for the first time the

porting of Transformers from the cloud down to low-power edge devices. I designed a

set of optimized yet general kernels, which exploit ARM and RISC-V ISA to improve

attention layers’ performance. Furthermore, I also show the application of Transform-

ers in a TinyML application, improving the State-of-the-Art (SoA) performance on the

TinyRadar dataset by 3.5%, while improving latency and energy by 9.6×, and 6.3× over

the performance and energy of the previous SoA network, which is fully dominated.

Finally, I showed two applications that exploit these tools in Chapter 5. In the first

work described, I applied neural architecture search to improve the topology and the

data format of a network for HR tracking using the PPG signal. I introduced Q-PPG,

a new set of quantized deep learning models derived from applying the NAS algorithms

exposed in cascade. Q-PPG spans 3 orders of magnitude in memory occupation, with

MAEs ranging from a state-of-the-art 4.36 BPM to ≈ 20 BPM, on the PPGDalia dataset.

All models are derived from a single seed network through the application of the algo-

rithms in cascade to shrink the model and improve its performance progressively. I

also deployed some of the models on the STM32WB55 device, demonstrating that they

achieve real-time HR tracking with state-of-the-art accuracy while contributing to 14.1%

of the system’s total energy consumption when considering sensing and communication.

The second application is gesture recognition through sEMG signals. For this task,

I demonstrate that tiny Transformers can achieve state-of-the-art performance while

strongly reducing the complexity and the memory footprint required for deployment on

edge nodes. On Ninapro DB6, the most accurate Bioformer obtains 65.73% accuracy,

Conclusions 142

better than the previous state-of-the-art accuracy (65.00% of TEMPONet [34]). De-

ployed on GAP8 with the tools and library introduced in Chapter 4, it consumes just

0.139 mJ with a latency of 2.72 ms.

Bibliography

[1] Tommaso Polonelli, Lukas Schulthess, Philipp Mayer, Michele Magno, and Luca

Benini. H-watch: An open, connected platform for ai-enhanced covid19 infection

symptoms monitoring and contact tracing. In 2021 IEEE International Symposium

on Circuits and Systems (ISCAS), pages 1–5, 2021. doi: 10.1109/ISCAS51556.

2021.9401362.

[2] Alessandro Capotondi, Manuele Rusci, Marco Fariselli, and Luca Benini. CMix-

NN: Mixed Low-Precision CNN Library for Memory-Constrained Edge Devices.

IEEE Transactions on Circuits and Systems II: Express Briefs, 2020.

[3] W. He, P. Motlicek, and J. Odobez. Deep neural networks for multiple speaker

detection and localization. In IEEE ICRA, pages 74–79, 2018. doi: 10.1109/ICRA.

2018.8461267.

[4] Marcello Zanghieri, Simone Benatti, Alessio Burrello, Victor Kartsch, Francesco

Conti, and Luca Benini. Robust real-time embedded emg recognition framework

using temporal convolutional networks on a multicore iot processor. IEEE Trans.

Biomed. Circuits Syst., 2019.

[5] Nhan Duy Truong, Anh Duy Nguyen, Levin Kuhlmann, Mohammad Reza

Bonyadi, Jiawei Yang, Samuel Ippolito, and Omid Kavehei. Convolutional neu-

ral networks for seizure prediction using intracranial and scalp electroencephalo-

gram. Neural Networks, 105:104–111, 2018. ISSN 0893-6080. doi: https:

//doi.org/10.1016/j.neunet.2018.04.018.

[6] Alessio Burrello, Francesco Bianco Morghet, Moritz Scherer, Simone Benatti, Luca

Benini, Enrico Macii, Massimo Poncino, and Daniele Jahier Pagliari. Bioformers:

embedding transformers for ultra-low power semg-based gesture recognition. In

2022 Design, Automation & Test in Europe Conference & Exhibition (DATE),

pages 1443–1448. IEEE, 2022.

[7] Alessio Burrello, Daniele Jahier Pagliari, Matteo Risso, Simone Benatti, Enrico

Macii, Luca Benini, and Massimo Poncino. Q-ppg: Energy-efficient ppg-based

143

Bibliography 144

heart rate monitoring on wearable devices. IEEE Trans. Biomed. Circuits Syst.,

2021.

[8] Mohsen Azimi, Armin Dadras Eslamlou, and Gokhan Pekcan. Data-driven struc-

tural health monitoring and damage detection through deep learning: State-of-

the-art review. Sensors, 20(10):2778, 2020.

[9] Tania Cerquitelli, Daniele Jahier Pagliari, Andrea Calimera, Lorenzo Bottaccioli,

Edoardo Patti, Andrea Acquaviva, and Massimo Poncino. Manufacturing as a

data-driven practice: Methodologies, technologies, and tools. Proc. IEEE, 109(4):

399–422, 2021. doi: 10.1109/JPROC.2021.3056006.

[10] Zachary C. Lipton, John Berkowitz, and Charles Elkan. A critical review of re-

current neural networks for sequence learning. arXiv:1506.00019, 2015.

[11] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling. arXiv preprint

arXiv:1803.01271, 2018.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

[13] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

et al. Language models are few-shot learners. arXiv preprint arXiv:2005.14165,

2020.

[14] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learn-

ing. arXiv preprint arXiv:1611.01578, 2016.

[15] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining

Xie, Bichen Wu, Matthew Yu, Tao Xu, Kan Chen, et al. Fbnetv2: Differentiable

neural architecture search for spatial and channel dimensions. In Proc. IEEE/CVF

CVPR, pages 12965–12974, 2020.

[16] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and

Edward Choi. Morphnet: Fast & simple resource-constrained structure learning

of deep networks. In Proc. of the IEEE CVPR, pages 1586–1595. arXiv, 2018. doi:

10.48550/ARXIV.1711.06798. URL https://arxiv.org/abs/1711.06798.

[17] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew

Howard, and Quoc V Le. Mnasnet: Platform-aware neural architecture search for

mobile. In Proc. IEEE CVPR, pages 2820–2828, 2019.

https://arxiv.org/abs/1711.06798

Bibliography 145

[18] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture

search on target task and hardware. arXiv preprint arXiv:1812.00332, 2018.

[19] Francesco Conti, Robert Schilling, Pasquale Davide Schiavone, Antonio Pullini,

Davide Rossi, Frank Kağan Gürkaynak, Michael Muehlberghuber, Michael

Gautschi, Igor Loi, Germain Haugou, et al. An IoT Endpoint System-on-Chip

for Secure and Energy-Efficient Near-Sensor Analytics. IEEE Transactions on

Circuits and Systems I: Regular Papers, 64(9):2481–2494, 2017.

[20] Y. Chen, J. Emer, and V. Sze. Eyeriss: A Spatial Architecture for Energy-Efficient

Dataflow for Convolutional Neural Networks. In 2016 ACM/IEEE 43rd Annual

International Symposium on Computer Architecture (ISCA), pages 367–379, 2016.

[21] F. Conti and L. Benini. A Ultra-Low-Energy Convolution Engine for Fast Brain-

Inspired Vision in Multicore Clusters. In 2015 Design, Automation Test in Europe

Conference Exhibition (DATE), pages 683–688, 2015.

[22] Vivienne Sze, Yu-Hsin Chen, Joel Emer, Amr Suleiman, and Zhengdong Zhang.

Hardware for machine learning: Challenges and opportunities. In 2017 IEEE

Custom Integrated Circuits Conference (CICC), pages 1–8. IEEE, 2017.

[23] Angelo Garofalo, Giuseppe Tagliavini, Francesco Conti, Davide Rossi, and Luca

Benini. XpulpNN: Accelerating Quantized Neural Networkson on RISC-V Proces-

sors Through ISA Extensions. In To appear at Design, Automation and Test in

Europe Conference (DATE) 2020. IEEE, 2020.

[24] G. Desoli, N. Chawla, T. Boesch, S. Singh, E. Guidetti, F. De Ambroggi, T. Majo,

P. Zambotti, M. Ayodhyawasi, H. Singh, and N. Aggarwal. A 2.9TOPS/W deep

convolutional neural network SoC in FD-SOI 28nm for intelligent embedded sys-

tems. In 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017.

[25] Angelo Garofalo, Manuele Rusci, Francesco Conti, Davide Rossi, and Luca Benini.

PULP-NN: Accelerating Quantized Neural Networks on Parallel Ultra-Low-Power

RISC-V Processors. Philosophical Transactions of the Royal Society A, 378(2164):

20190155, 2020.

[26] Rasha M Al-Eidan, Hend Al-Khalifa, and Abdul Malik Al-Salman. A review of

wrist-worn wearable: Sensors, models, and challenges. Journal of Sensors, 2018,

2018.

[27] Eric Flamand, Davide Rossi, Francesco Conti, Igor Loi, Antonio Pullini, Florent

Rotenberg, and Luca Benini. GAP-8: A RISC-V SoC for AI at the Edge of the

IoT. In 2018 IEEE 29th International Conference on Application-specific Systems,

Architectures and Processors (ASAP), pages 1–4. IEEE, 2018.

Bibliography 146

[28] ST Microelectronics. STM32H7, 2022. URL https://www.st.com/en/

microcontrollers-microprocessors/stm32h7-series.html.

[29] Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat Jeffries,

Csaba Kiraly, Pietro Montino, David Kanter, Sebastian Ahmed, Danilo Pau, et al.

Mlperf tiny benchmark. arXiv preprint arXiv:2106.07597, 2021.

[30] Gianmarco Ottavi, Angelo Garofalo, Giuseppe Tagliavini, Francesco Conti, Luca

Benini, and Davide Rossi. A mixed-precision risc-v processor for extreme-edge dnn

inference. In 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),

pages 512–517, 2020. doi: 10.1109/ISVLSI49217.2020.000-5.

[31] Alessio Burrello, Moritz Scherer, Marcello Zanghieri, Francesco Conti, and Luca

Benini. A microcontroller is all you need: Enabling transformer execution on

low-power iot endnodes. In 2021 IEEE International Conference on Omni-Layer

Intelligent Systems (COINS), pages 1–6. IEEE, 2021.

[32] Alessio Burrello, Alberto Dequino, Daniele Jahier Pagliari, Francesco Conti, Mar-

cello Zanghieri, Enrico Macii, Luca Benini, and Massimo Poncino. Tcn mapping

optimization for ultra-low power time-series edge inference. In 2021 IEEE/ACM

International Symposium on Low Power Electronics and Design (ISLPED), pages

1–6. IEEE, 2021.

[33] Liangzhen Lai, Naveen Suda, and Vikas Chandra. Cmsis-nn: Efficient neural

network kernels for arm cortex-m cpus. arXiv preprint arXiv:1801.06601, 2018.

[34] M Zanghieri et al. Robust real-time embedded emg recognition framework using

temporal convolutional networks on a multicore iot processor. IEEE transactions

on biomedical circuits and systems, 14(2):244–256, 2019.

[35] Matteo Risso, Alessio Burrello, Daniele Jahier Pagliari, Simone Benatti, Enrico

Macii, Luca Benini, and Massimo Poncino. Robust and energy-efficient ppg-based

heart-rate monitoring. In 2021 IEEE International Symposium on Circuits and

Systems (ISCAS), pages 1–5. IEEE, 2021.

[36] Attila Reiss, Ina Indlekofer, Philip Schmidt, and Kristof Van Laerhoven. Deep ppg:

large-scale heart rate estimation with convolutional neural networks. Sensors, 19

(14):3079, 2019.

[37] Marcello Zanghieri, Simone Benatti, Francesco Conti, Alessio Burrello, and Luca

Benini. Temporal variability analysis in semg hand grasp recognition using tem-

poral convolutional networks. In 2020 2nd IEEE International Conference on

Artificial Intelligence Circuits and Systems (AICAS), pages 228–232. IEEE, 2020.

https://www.st.com/en/microcontrollers-microprocessors/stm32h7-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32h7-series.html

Bibliography 147

[38] Seungwoo Choi, Seokjun Seo, Beomjun Shin, Hyeongmin Byun, Martin Kersner,

Beomsu Kim, Dongyoung Kim, and Sungjoo Ha. Temporal convolution for real-

time keyword spotting on mobile devices. arXiv preprint arXiv:1904.03814, 2019.

[39] P Tsinganos et al. Improved gesture recognition based on semg signals and tcn.

In ICASSP 2019, pages 1169–1173. IEEE, 2019.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

arXiv preprint arXiv:1706.03762, 2017.

[41] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for

image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[42] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning trans-

ferable architectures for scalable image recognition. Proc. IEEE/CVF CVPR,

pages 8697–8710, 2018.

[43] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural

network architectures using reinforcement learning. ArXiv, abs/1611.02167, 2017.

[44] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-

matsu, Jie Tan, Quoc V Le, and Alexey Kurakin. Large-scale evolution of image

classifiers. In Proc. ICML, pages 2902–2911. PMLR, 2017.

[45] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architec-

ture search. arXiv:1806.09055, 2019.

[46] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi

Priyantha, Jie Liu, and Diana Marculescu. Single-path mobile automl: Efficient

convnet design and nas hyperparameter optimization. IEEE J. Sel. Topics Signal

Process., 14(4):609–622, 2020.

[47] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. MobileNetV2: Inverted Residuals and Linear Bottlenecks, 2018.

[48] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Prac-

tical guidelines for efficient cnn architecture design. In Proc. ECCV, pages 116–131,

2018.

[49] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convo-

lutional neural networks. ArXiv, abs/1905.11946, 2019.

Bibliography 148

[50] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J.

Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer pa-

rameters and < 1mb model size. ArXiv, abs/1602.07360, 2016.

[51] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift. In International conference on

machine learning, pages 448–456. PMLR, 2015.

[52] STMicroelectronics. Stm32wb55, 2022. URL https://www.st.com/en/

microcontrollers-microprocessors/stm32wb55rg.html.

[53] Maxim Integrated. Max30101, 2022. URL https://datasheets.

maximintegrated.com/en/ds/MAX30101.pdf.

[54] STMicroelectronics. Lsm6dsm, 2022. URL https://www.st.com/resource/en/

datasheet/lsm6dsm.pdf.

[55] A. Pullini, D. Rossi, I. Loi, G. Tagliavini, and L. Benini. Mr.Wolf: An Energy-

Precision Scalable Parallel Ultra Low Power SoC for IoT Edge Processing. IEEE

Journal of Solid-State Circuits, 54(7):1970–1981, 2019.

[56] Michael Gautschi et al. Near-threshold risc-v core with dsp extensions for scalable

iot endpoint devices. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 2017.

[57] Abbas Rahimi, Igor Loi, Mohammad Reza Kakoee, and Luca Benini. A fully-

synthesizable single-cycle interconnection network for shared-l1 processor clusters.

In 2011 Design, Automation & Test in Europe, pages 1–6. IEEE, 2011.

[58] Davide Rossi, Igor Loi, Germain Haugou, and Luca Benini. Ultra-low-latency

lightweight DMA for tightly coupled multi-core clusters. In Proceedings of the

11th ACM Conference on Computing Frontiers, 2014.

[59] Cypress. Cypress DRAM, 2019. URL https://www.cypress.com/products/

hyperram-memory.

[60] Antonio Pullini, Davide Rossi, Germain Haugou, and Luca Benini. µDMA: An

autonomous I/O subsystem for IoT end-nodes. In 2017 27th International Sympo-

sium on Power and Timing Modeling, Optimization and Simulation (PATMOS),

pages 1–8. IEEE, 2017.

[61] Toshiyo Tamura, Yuka Maeda, Masaki Sekine, and Masaki Yoshida. Wearable pho-

toplethysmographic sensors—past and present. Electronics, 3(2):282–302, 2014.

https://www.st.com/en/microcontrollers-microprocessors/stm32wb55rg.html
https://www.st.com/en/microcontrollers-microprocessors/stm32wb55rg.html
https://datasheets.maximintegrated.com/en/ds/MAX30101.pdf
https://datasheets.maximintegrated.com/en/ds/MAX30101.pdf
https://www.st.com/resource/en/datasheet/lsm6dsm.pdf
https://www.st.com/resource/en/datasheet/lsm6dsm.pdf
https://www.cypress.com/products/hyperram-memory
https://www.cypress.com/products/hyperram-memory

Bibliography 149

[62] Zhilin Zhang, Zhouyue Pi, and Benyuan Liu. Troika: A general framework for

heart rate monitoring using wrist-type photoplethysmographic signals during in-

tensive physical exercise. IEEE Transactions on biomedical engineering, 62(2):

522–531, 2014.

[63] Nina Sviridova and Kenshi Sakai. Human photoplethysmogram: new insight into

chaotic characteristics. Chaos, Solitons & Fractals, 77:53–63, 2015.

[64] Yangsong Zhang, Benyuan Liu, and Zhilin Zhang. Combining ensemble empirical

mode decomposition with spectrum subtraction technique for heart rate moni-

toring using wrist-type photoplethysmography. Biomedical Signal Processing and

Control, 21:119–125, 2015.

[65] D. Biswas, N. Simões-Capela, C. Van Hoof, and N. Van Helleputte. Heart rate esti-

mation from wrist-worn photoplethysmography: A review. IEEE Sensors Journal,

19(16):6560–6570, 2019. doi: 10.1109/JSEN.2019.2914166.

[66] C J De Luca et al. The use of surface electromyography in biomechanics. Journal

of applied biomechanics, 1997.

[67] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Design-

ing neural network architectures using reinforcement learning. arXiv preprint

arXiv:1611.02167, 2016.

[68] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architec-

ture search. arXiv:1806.09055, 2018.

[69] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with

gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.

[70] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. Binarized neural networks: Training deep neural networks with weights

and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[71] ST Microelectornics. X-cube-ai, 2017. URL https://www.st.com/en/

embedded-software/x-cube-ai.html.

[72] GreenWaves Technologies. Gap8 nntool, 2019. URL https://

greenwaves-technologies.com/manuals/.

[73] Yanping Chen, Yuan Hao, Thanawin Rakthanmanon, Jesin Zakaria, Bing Hu, and

Eamonn Keogh. A general framework for never-ending learning from time series

streams. Data Min. Knowl. Discov., 29(6):1622–1664, 2015.

https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.st.com/en/embedded-software/x-cube-ai.html
https://greenwaves-technologies.com/manuals/
https://greenwaves-technologies.com/manuals/

Bibliography 150

[74] Manfredo Atzori, Arjan Gijsberts, Simone Heynen, Anne-Gabrielle Mittaz Hager,

Olivier Deriaz, Patrick Van Der Smagt, Claudio Castellini, Barbara Caputo, and

Henning Müller. Building the ninapro database: A resource for the biorobotics

community. In Proc. 4th IEEE RAS & EMBS BioRob, pages 1258–1265. IEEE,

2012.

[75] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.

Hierarchical attention networks for document classification. In Proc. 2016 NAACL,

pages 1480–1489, 2016.

[76] Pete Warden. Speech commands: A dataset for limited-vocabulary speech recog-

nition. arXiv preprint arXiv:1804.03209, 2018.

[77] Colby R Banbury, Vijay Janapa Reddi, Max Lam, William Fu, Amin Fazel, Jeremy

Holleman, Xinyuan Huang, Robert Hurtado, David Kanter, Anton Lokhmotov,

et al. Benchmarking tinyml systems: Challenges and direction. arXiv preprint

arXiv:2003.04821, 2020.

[78] ARM. CMSIS-NN, 2022. URL https://arm-software.github.io/CMSIS_5/NN/

html/index.html.

[79] Thorir Mar Ingolfsson, Xiaying Wang Michael Hersche, Alessio Burrello, Lukas

Cavigelli, and Luca Benini. Ecg-tcn: Wearable cardiac arrhythmia detection with

a temporal convolutional network. In Proc. 3rd IEEE AICAS, pages 1–4. IEEE,

2021.

[80] Zhaowei Cai and Nuno Vasconcelos. Rethinking differentiable search for mixed-

precision neural networks. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 2349–2358, 2020.

[81] Jungwook Choi, ZhuoWang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijay-

alakshmi Srinivasan, and Kailash Gopalakrishnan. Pact: Parameterized clipping

activation for quantized neural networks. arXiv preprint arXiv:1805.06085, 2018.

[82] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. Hello edge:

Keyword spotting on microcontrollers. arXiv:1711.07128, 2017.

[83] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision applications. arXiv preprint

arXiv:1704.04861, 2017.

https://arm-software.github.io/CMSIS_5/NN/html/index.html
https://arm-software.github.io/CMSIS_5/NN/html/index.html

Bibliography 151

[84] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, An-

drew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and train-

ing of neural networks for efficient integer-arithmetic-only inference, 2017. URL

https://arxiv.org/abs/1712.05877.

[85] Francesco Daghero, Chen Xie, Daniele Jahier Pagliari, Alessio Burrello, Marco

Castellano, Luca Gandolfi, Andrea Calimera, Enrico Macii, and Massimo Poncino.

Ultra-compact binary neural networks for human activity recognition on risc-v

processors. In Proc. 18th ACM CF, 2021. ISBN 9781450384049.

[86] Igor Fedorov, Ramon Matas, Hokchhay Tann, Chuteng Zhou, Matthew Mat-

tina, and Paul Whatmough. Udc: Unified dnas for compressible tinyml models.

arXiv:2201.05842, 2022.

[87] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and Torsten Hoefler.

Data movement is all you need: A case study of transformer networks. arXiv

preprint arXiv:2007.00072, 2020.

[88] Shail Dave, Youngbin Kim, Sasikanth Avancha, Kyoungwoo Lee, and Aviral Shri-

vastava. Dmazerunner: Executing perfectly nested loops on dataflow accelerators.

ACM Transactions on Embedded Computing Systems (TECS), 18(5s):1–27, 2019.

[89] Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna, Michael Pel-

lauer, and Angshuman Parashar. Maestro: A data-centric approach to understand

reuse, performance, and hardware cost of dnn mappings. IEEE Micro, 40(3):20–29,

2020.

[90] Xuan Yang, Mingyu Gao, Qiaoyi Liu, Jeff Setter, Jing Pu, Ankita Nayak, Steven

Bell, Kaidi Cao, Heonjae Ha, Priyanka Raina, et al. Interstellar: Using halide’s

scheduling language to analyze dnn accelerators. In Proceedings of the Twenty-

Fifth International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 369–383, 2020.

[91] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,

Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,

Stephen W Keckler, and Joel Emer. Timeloop: A systematic approach to dnn

accelerator evaluation. In 2019 IEEE international symposium on performance

analysis of systems and software (ISPASS), pages 304–315. IEEE, 2019.

[92] Lukas Geiger and Plumerai Team. Larq: An Open-Source Library for Training

Binarized Neural Networks. Journal of Open Source Software, 5(45):1746, January

2020.

https://arxiv.org/abs/1712.05877

Bibliography 152

[93] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian

Li, Nick Kreeger, Ian Nappier, Meghna Natraj, Shlomi Regev, et al. Tensor-

flow lite micro: Embedded machine learning on tinyml systems. arXiv preprint

arXiv:2010.08678, 2020.

[94] Manuele Rusci, Alessandro Capotondi, Francesco Conti, and Luca Benini. Work-

in-progress: Quantized nns as the definitive solution for inference on low-power

arm mcus? In 2018 International Conference on Hardware/Software Codesign and

System Synthesis (CODES+ ISSS), pages 1–2. IEEE, 2018.

[95] Mart́ın Abadi, Ashish Agarwal, and Paul Barham et al. Tensorflow lite for micro-

controllers, 2015. URL https://www.tensorflow.org/lite/microcontrollers.

Software available from tensorflow.org.

[96] Angelo Garofalo, Manuele Rusci, Francesco Conti, Davide Rossi, and Luca Benini.

Pulp-nn: Accelerating quantized neural networks on parallel ultra-low-power risc-v

processors. arXiv preprint arXiv:1908.11263, 2019.

[97] Daniele Palossi, Antonio Loquercio, Francesco Conti, Eric Flamand, Davide Scara-

muzza, and Luca Benini. A 64mW DNN-based Visual Navigation Engine for Au-

tonomous Nano-Drones. IEEE Internet of Things Journal, 2019.

[98] Francesco Conti. Technical report: Nemo dnn quantization for deployment model,

2020.

[99] Marat Dukhan. The indirect convolution algorithm, 2019.

[100] Alessio Burrello, Angelo Garofalo, Nazareno Bruschi, Giuseppe Tagliavini, Davide

Rossi, and Francesco Conti. Dory: Automatic end-to-end deployment of real-world

dnns on low-cost iot mcus, 2020.

[101] GreenWaves Technologies. Gap8 auto-tiler, 2019. URL https://

greenwaves-technologies.com/manuals/BUILD/AUTOTILER/html/index.html.

[102] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding, 2016.

[103] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.

I-bert: Integer-only bert quantization. arXiv preprint arXiv:2101.01321, 2021.

[104] M. Scherer, M. Magno, J. Erb, P. Mayer, M. Eggimann, and L. Benini.

Tinyradarnn: Combining spatial and temporal convolutional neural networks for

embedded gesture recognition with short range radars. IEEE Internet of Things

Journal, pages 1–1, 2021. doi: 10.1109/JIOT.2021.3067382.

https://www.tensorflow.org/lite/microcontrollers
https://greenwaves-technologies.com/manuals/BUILD/AUTOTILER/html/index.html
https://greenwaves-technologies.com/manuals/BUILD/AUTOTILER/html/index.html

Bibliography 153

[105] Alessio Burrello, Angelo Garofalo, Nazareno Bruschi, Giuseppe Tagliavini, Davide

Rossi, and Francesco Conti. Dory: Automatic end-to-end deployment of real-world

dnns on low-cost iot mcus. IEEE Trans. Comput., 2021.

[106] Ralph Neuneier and Hans Georg Zimmermann. How to train neural networks. In

Neural networks: tricks of the trade, pages 373–423. Springer, 1998.

[107] Matteo Risso, Alessio Burrello, Daniele Jahier Pagliari, Francesco Conti, Lorenzo

Lamberti, Enrico Macii, Luca Benini, and Massimo Poncino. Pruning in time

(pit): A light-weight network architecture optimizer for temporal convolutional

networks. In Proc. 58th DAC, pages 1–6, 2021.

[108] Nicholas Huang and Nandakumar Selvaraj. Robust ppg-based ambulatory heart

rate tracking algorithm. In 2020 42nd Annual International Conference of the

IEEE Engineering in Medicine & Biology Society (EMBC), pages 5929–5934.

IEEE, 2020.

[109] Tim Schäck, Michael Muma, and Abdelhak M Zoubir. Computationally efficient

heart rate estimation during physical exercise using photoplethysmographic sig-

nals. In 2017 25th European Signal Processing Conference (EUSIPCO), pages

2478–2481. IEEE, 2017.

[110] Seyed Salehizadeh, Duy Dao, Jeffrey Bolkhovsky, Chae Cho, Yitzhak Mendelson,

and Ki H Chon. A novel time-varying spectral filtering algorithm for reconstruction

of motion artifact corrupted heart rate signals during intense physical activities

using a wearable photoplethysmogram sensor. Sensors, 16(1):10, 2016.

[111] Menglian Zhou and Nandakumar Selvaraj. Heart rate monitoring using sparse

spectral curve tracing. In 2020 42nd Annual International Conference of the IEEE

Engineering in Medicine & Biology Society (EMBC), pages 5347–5352. IEEE,

2020.

[112] Seok Bin Song, Jung Woo Nam, and Jin Heon Kim. Nas-ppg: Ppg based heart

rate estimation using neural architecture search. IEEE Sensors Journal, 2021.

[113] NXP. Kv4xp100m168, 2022. URL https://www.nxp.com/docs/en/data-sheet/

KV4XP100M168.pdf.

[114] STMicroelectronics. Stm32l031f4, 2022. URL https://www.st.com/en/

microcontrollers-microprocessors/stm32l031f4.html.

[115] Francesca Palermo, Matteo Cognolato, Arjan Gijsberts, Henning Muller, Barbara

Caputo, and Manfredo Atzori. Repeatability of grasp recognition for robotic hand

prosthesis control based on sEMG data. In 2017 International Conference on

https://www.nxp.com/docs/en/data-sheet/KV4XP100M168.pdf
https://www.nxp.com/docs/en/data-sheet/KV4XP100M168.pdf
https://www.st.com/en/microcontrollers-microprocessors/stm32l031f4.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l031f4.html

Bibliography 154

Rehabilitation Robotics (ICORR), pages 1154–1159. IEEE, jul 2017. ISBN 978-

1-5386-2296-4. doi: 10.1109/ICORR.2017.8009405. URL https://ieeexplore.

ieee.org/document/8009405/.

[116] F. Glaser, G. Haugou, D. Rossi, Q. Huang, and L. Benini. Hardware-accelerated

energy-efficient synchronization and communication for ultra-low-power tightly

coupled clusters. In 2019 DATE Conference, pages 552–557, March 2019. doi:

10.23919/DATE.2019.8715266.

[117] Xiangmao Chang, Gangkai Li, Guoliang Xing, Kun Zhu, and Linlin Tu. Deepheart:

A deep learning approach for accurate heart rate estimation from ppg signals. ACM

Trans. Sen. Netw., 17(2), January 2021. ISSN 1550-4859. doi: 10.1145/3441626.

URL https://doi.org/10.1145/3441626.

[118] Heewon Chung, Hoon Ko, Hooseok Lee, and Jinseok Lee. Deep learning for heart

rate estimation from reflectance photoplethysmography with acceleration power

spectrum and acceleration intensity. IEEE Access, 8:63390–63402, 2020.

[119] A Shyam, Vignesh Ravichandran, SP Preejith, Jayaraj Joseph, and Mohanasankar

Sivaprakasam. Ppgnet: Deep network for device independent heart rate estimation

from photoplethysmogram. In 2019 41st Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (EMBC), pages 1899–1902.

IEEE, 2019.

[120] KR Arunkumar and M Bhaskar. Robust de-noising technique for accurate heart

rate estimation using wrist-type ppg signals. IEEE Sensors Journal, 20(14):7980–

7987, 2020.

[121] Alistair Doswald, Francesco Carrino, and Fabien. Ringeval. Advanced processing

of semg signals for user independent gesture recognition. In XIII Mediterranean

Conference on Medical and Biological Engineering and Computing 2013, 2014.

[122] Yu Du, Wenguang Jin, Wentao Wei, Yu Hu, and Weidong Geng. Surface EMG-

based inter-session gesture recognition enhanced by deep domain adaptation. Sen-

sors (Switzerland), 17(3):6–9, 2017. ISSN 14248220. doi: 10.3390/s17030458.

[123] Koby Crammer, Michael Kearns, and Jennifer Wortman. Learning from multiple

sources. Journal of Machine Learning Research, 9:1757–1774, 2008. ISSN 1532-

4435. doi: 10.1145/1390681.1442790. URL http://portal.acm.org/citation.

cfm?id=1442790.

[124] Louis G Tassinary, John T Cacioppo, and Eric J Vanman. The Skeletomotor

System : Surface. In . ., 1985.

https://ieeexplore.ieee.org/document/8009405/
https://ieeexplore.ieee.org/document/8009405/
https://doi.org/10.1145/3441626
http://portal.acm.org/citation.cfm?id=1442790
http://portal.acm.org/citation.cfm?id=1442790

Bibliography 155

[125] C J De Luca. The Use of Surface Electromyography. Journal of applied biome-

chanics, 13(July 1993):1–38, 1997.

[126] Rangaraj M Rangayyan. Biomedical Signal Analysis: A Case-Study Approach.

IEEE/Wiley, New York, NY, 2002.

[127] Marco Tomasini, Simone Benatti, Bojan Milosevic, Elisabetta Farella, and Luca

Benini. Power Line Interference Removal for High-Quality Continuous Biosignal

Monitoring with Low-Power Wearable Devices. IEEE Sensors Journal, 16(10):

3887–3895, 2016. ISSN 1530437X. doi: 10.1109/JSEN.2016.2536363.

[128] Bojan Milosevic, Elisabetta Farella, and Simone Benatti. Exploring Arm Posture

and Temporal Variability in Myoelectric Hand Gesture Recognition. Proceedings of

the IEEE RAS and EMBS International Conference on Biomedical Robotics and

Biomechatronics, 2018-August:1032–1037, 2018. ISSN 21551774. doi: 10.1109/

BIOROB.2018.8487838.

[129] Vinicius Horn Cene, Mauricio Tosin, Juliano Machado, and Alexandre Balbinot.

Open Database for Accurate Upper-Limb Intent Detection Using Electromyogra-

phy and Reliable Extreme Learning Machines. Sensors (Basel, Switzerland), 19

(8), 2019. ISSN 14248220. doi: 10.3390/s19081864.

[130] Panagiotis Tsinganos, Bruno Cornelis, Jan Cornelis, Bart Jansen, and Athanassios

Skodras. Deep learning in emg-based gesture recognition. In PhyCS, 2018.

[131] Wentao Wei, Yongkang Wong, Yu Du, Yu Hu, Mohan Kankanhalli, and Weidong

Geng. A multi-stream convolutional neural network for semg-based gesture recog-

nition in muscle-computer interface. Pattern Recognition Letters, 119, 12 2017.

doi: 10.1016/j.patrec.2017.12.005.

[132] Bernard Hudgins, Philip Parker, and Robert N. Scott. A new strategy for mul-

tifunction myoelectric control. IEEE transactions on bio-medical engineering, 40:

82–94, 02 1993. doi: 10.1109/10.204774.

[133] K. Englehart and B. Hudgins. A robust, real-time control scheme for multifunction

myoelectric control. IEEE Transactions on Biomedical Engineering, 50(7):848–

854, July 2003. ISSN 0018-9294. doi: 10.1109/TBME.2003.813539.

[134] Claudio Castellini, Emanuele Gruppioni, Angelo Davalli, and Giulio Sandini. Fine

detection of grasp force and posture by amputees via surface electromyography.

Journal of Physiology-Paris, 103:255–262, 2009.

[135] Joseph L. Betthauser, John T. Krall, Rahul R. Kaliki, Matthew S. Fifer, and Ni-

tish V. Thakor. Stable Electromyographic Sequence Prediction during Movement

Bibliography 156

Transitions using Temporal Convolutional Networks. International IEEE/EMBS

Conference on Neural Engineering, 2019. ISSN 19483554. doi: 10.1109/NER.2019.

8717169.

[136] Manfredo Atzori, Arjan Gijsberts, Simone Heynen, Anne-Gabrielle Mittaz Hager,

Olivier Deriaz, Patrick Vand der Smagt, Claudio Castellini, Barbara Caputo,

and Henning Müller. Building the NINAPRO Database: A Resource for the

Biorobotics Community - HES SO Valais publications - Aigaion 2.0. Proceedings of

the IEEE International Conference on Biomedical Robotics and Biomechatronics,

page 51, 2012. URL http://publications.hevs.ch/index.php/publications/

show/1172.

[137] Manfredo Atzori, Arjan Gijsberts, Ilja Kuzborskij, Simone Heynen, Anne-

Gabrielle Mittz Hagger, Olivier Deriaz, Claudio Castellini, Henning Müller, and

Barbara Caputo. A Benchmark Database for Myoelectric Movement Classifica-

tion. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 23:

73–83, 2013. doi: 10.1109/TNSRE.2014.2328495.

[138] Manfredo Atzori, Arjan Gijsberts, Claudio Castellini, Barbara Caputo, Anne-

Gabrielle Mittaz Hager, Simone Elsig, Giorgio Giatsidis, Franco Bassetto, and

Henning Müller. Electromyography data for non-invasive naturally-controlled

robotic hand prostheses. Scientific Data, 1:140053, dec 2014. ISSN 2052-4463. doi:

10.1038/sdata.2014.53. URL http://www.nature.com/articles/sdata201453.

[139] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, Cambridge, MA, USA, 2016. http://www.deeplearningbook.org.

[140] Ki-Hee Park and Seong-Whan Lee. Movement intention decoding based on deep

learning for multiuser myoelectric interfaces. 2016 4th International Winter Con-

ference on Brain-Computer Interface (BCI), pages 1–2, 2016.

[141] Manfredo Atzori, Arjan Gijsberts, Ilja Kuzborskij, Simone Elsig, Anne-

Gabrielle Mittaz Hager, Olivier Deriaz, Claudio Castellini, Henning Muller, and

Barbara Caputo. Characterization of a benchmark database for myoelectric move-

ment classification. IEEE Transactions on Neural Systems and Rehabilitation En-

gineering, 23:73–83, 2015.

[142] Manfredo Atzori, Matteo Cognolato, and Henning Müller. Deep learning with

convolutional neural networks applied to electromyography data: A resource for

the classification of movements for prosthetic hands. Frontiers in Neurorobotics,

10, 09 2016. doi: 10.3389/fnbot.2016.00009.

http://publications.hevs.ch/index.php/publications/show/1172
http://publications.hevs.ch/index.php/publications/show/1172
http://www.nature.com/articles/sdata201453
http://www.deeplearningbook.org

Bibliography 157

[143] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

J. Mach. Learn. Res., 15:1929–1958, 2014.

[144] Angkoon Phinyomark and Erik Scheme. Emg pattern recognition in the era of big

data and deep learning. Big Data and Cognitive Computing, 2(3):21, 2018.

[145] Colin Lea, Michael D. Flynn, René Vidal, Austin Reiter, and Gregory D. Hager.

Temporal convolutional networks for action segmentation and detection. 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

1003–1012, 2016.

[146] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift. ArXiv, abs/1502.03167, 2015.

[147] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

Wojna. Rethinking the inception architecture for computer vision. In The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

[148] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[149] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisit-

ing batch normalization for practical domain adaptation. ArXiv, abs/1603.04779,

2016.

[150] Yu Du, Wenguang Jin, Wentao Wei, Yu Hu, and Weidong Geng. Surface emg-

based inter-session gesture recognition enhanced by deep domain adaptation. In

Sensors, 2017.

[151] Ulysse Côté Allard, Cheikh Latyr Fall, Alexandre Drouin, Alexandre Campeau-

Lecours, Clément Gosselin, Kyrre Glette, François Laviolette, and Benoit Gosselin.

Deep learning for electromyographic hand gesture signal classification by leverag-

ing transfer learning. CoRR, abs/1801.07756, 2018. URL http://arxiv.org/

abs/1801.07756.

[152] Sebastian Amsuss, Liliana P. Paredes, Nina Rudigkeit, Bernhard Graimann,

Michael J. Herrmann, and Dario Farina. Long term stability of surface EMG pat-

tern classification for prosthetic control. Proceedings of the Annual International

Conference of the IEEE Engineering in Medicine and Biology Society, EMBS,

pages 3622–3625, 2013. ISSN 1557170X. doi: 10.1109/EMBC.2013.6610327.

http://arxiv.org/abs/1801.07756
http://arxiv.org/abs/1801.07756

Bibliography 158

[153] Jiayuan He, Dingguo Zhang, Ning Jiang, Xinjun Sheng, Dario Farina, and Xi-

angyang Zhu. User adaptation in long-term, open-loop myoelectric training: Im-

plications for EMG pattern recognition in prosthesis control. Journal of Neural

Engineering, 12(4), 2015. ISSN 17412552. doi: 10.1088/1741-2560/12/4/046005.

[154] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 4510–

4520, June 2018.

[155] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[156] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

Automatic differentiation in pytorch. In NIPS-W, 2017.

[157] Abeg Kumar Jaiswal and Haider Banka. Local pattern transformation based

feature extraction techniques for classification of epileptic eeg signals. Biomed-

ical Signal Processing and Control, 34:81–92, 2017. ISSN 1746-8094. doi:

https://doi.org/10.1016/j.bspc.2017.01.005. URL http://www.sciencedirect.

com/science/article/pii/S174680941730006X.

[158] D. Palossi, A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza, and L. Benini. A

64mw dnn-based visual navigation engine for autonomous nano-drones. IEEE In-

ternet of Things Journal, 2019. ISSN 2327-4662. doi: 10.1109/JIOT.2019.2917066.

[159] Fabio Montagna, Abbas Rahimi, Simone Benatti, Davide Rossi, and Luca Benini.

Pulp-hd: Accelerating brain-inspired high-dimensional computing on a parallel

ultra-low power platform. In Proceedings of the 55th Annual Design Automation

Conference, DAC ’18, pages 111:1–111:6, New York, NY, USA, 2018. ACM. ISBN

978-1-4503-5700-5. doi: 10.1145/3195970.3196096. URL http://doi.acm.org/

10.1145/3195970.3196096.

[160] Hirsch Martin, Altenmüller Dirk-Matthias, and Schulze-Bonhage Andreas. Laten-

cies from intracranial seizure onset to ictal tachycardia: A comparison to sur-

face eeg patterns and other clinical signs. Epilepsia, 56(10):1639–1647, 2015.

doi: 10.1111/epi.13117. URL https://onlinelibrary.wiley.com/doi/abs/10.

1111/epi.13117.

http://www.sciencedirect.com/science/article/pii/S174680941730006X
http://www.sciencedirect.com/science/article/pii/S174680941730006X
http://doi.acm.org/10.1145/3195970.3196096
http://doi.acm.org/10.1145/3195970.3196096
https://onlinelibrary.wiley.com/doi/abs/10.1111/epi.13117
https://onlinelibrary.wiley.com/doi/abs/10.1111/epi.13117

Bibliography 159

[161] Christian Rummel, Eugenio Abela, Ralph G. Andrzejak, Martinus Hauf, Clau-

dio Pollo, Markus Müller, Christian Weisstanner, Roland Wiest, and Kaspar

Schindler. Resected brain tissue, seizure onset zone and quantitative eeg mea-

sures: Towards prediction of post-surgical seizure control. PLOS ONE, 10(10):

1–26, 10 2015. doi: 10.1371/journal.pone.0141023. URL https://doi.org/10.

1371/journal.pone.0141023.

[162] M. A. Bin Altaf, C. Zhang, and J. Yoo. A 16-channel patient-specific seizure on-

set and termination detection soc with impedance-adaptive transcranial electrical

stimulator. IEEE Journal of Solid-State Circuits, 50(11):2728–2740, Nov 2015.

ISSN 0018-9200. doi: 10.1109/JSSC.2015.2482498.

[163] Florian Mormann, Ralph G. Andrzejak, Christian E. Elger, and Klaus Lehnertz.

Seizure prediction: the long and winding road. Brain, 130(2):314–333, 2007. doi:

10.1093/brain/awl241. URL http://dx.doi.org/10.1093/brain/awl241.

[164] Dieter Schmidt and Matti Sillanpää. Evidence-based review on the natural history

of the epilepsies. Current opinion in neurology, 25 2:159–63, 2012.

[165] José F. Téllez-Zenteno, Raj Dhar, and Samuel Wiebe. Long-term seizure outcomes

following epilepsy surgery: a systematic review and meta-analysis. Brain, 128(5):

1188–1198, 2005. doi: 10.1093/brain/awh449. URL http://dx.doi.org/10.

1093/brain/awh449.

[166] RummelC, AbelaE, AndrzejakRG, Hauf M, PolloC, MüllerM, and et al. Resected

brain tissue, seizure onset zone and quantitative eeg measures: Towards prediction

of post-surgical seizure control. PLOSOne, 2015. doi: https://doi.org/10.1371/

journal.pone.0141023.

[167] Schindler Kaspar, Gast Heidemarie, Stieglitz Lennart, Stibal Alexander, Hauf

Martinus, Wiest Roland, Mariani Luigi, and Rummel Christian. Forbidden ordi-

nal patterns of periictal intracranial eeg indicate deterministic dynamics in human

epileptic seizures. Epilepsia, 52(10):1771–1780, 2011. doi: 10.1111/j.1528-1167.

2011.03202.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.

1528-1167.2011.03202.x.

[168] T. S. Kumar, V. Kanhangad, and R. B. Pachori. Classification of seizure and

seizure-free eeg signals using multi-level local patterns. In 2014 19th International

Conference on Digital Signal Processing, pages 646–650, Aug 2014. doi: 10.1109/

ICDSP.2014.6900745.

https://doi.org/10.1371/journal.pone.0141023
https://doi.org/10.1371/journal.pone.0141023
http://dx.doi.org/10.1093/brain/awl241
http://dx.doi.org/10.1093/brain/awh449
http://dx.doi.org/10.1093/brain/awh449
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1528-1167.2011.03202.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1528-1167.2011.03202.x

Bibliography 160

[169] Yılmaz Kaya, Murat Uyar, Ramazan Tekin, and Selçuk Yıldırım. 1d-local binary

pattern based feature extraction for classification of epileptic eeg signals. Ap-

plied Mathematics and Computation, 243:209–219, 2014. ISSN 0096-3003. doi:

https://doi.org/10.1016/j.amc.2014.05.128. URL http://www.sciencedirect.

com/science/article/pii/S0096300314008285.

[170] C. S. Daw, C. E. A. Finney, and E. R. Tracy. A review of symbolic analysis of

experimental data. Review of Scientific Instruments, 74(2):915–930, 2003. doi:

10.1063/1.1531823. URL https://doi.org/10.1063/1.1531823.

[171] Schindler Kaspar, Gast Heidemarie, Goodfellow Marc, and Rummel Christian.

On seeing the trees and the forest: Single-signal and multisignal analysis of peri-

ictal intracranial eeg. Epilepsia, 53(9):1658–1668, 2012. doi: 10.1111/j.1528-1167.

2012.03588.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.

1528-1167.2012.03588.x.

[172] William Stacey, Michel Le Van Quyen, Florian Mormann, and Andreas Schulze-

Bonhage. What is the present-day eeg evidence for a preictal state? Epilepsy

Research, 97(3):243–251, 2011. ISSN 0920-1211. doi: https://doi.org/10.

1016/j.eplepsyres.2011.07.012. URL http://www.sciencedirect.com/science/

article/pii/S0920121111002154. Special Issue on Epilepsy Research UK Work-

shop 2010 on “Preictal Phenomena”.

[173] Md Rezwanul Ahsan, Muhammad I Ibrahimy, Othman O Khalifa, et al. Emg

signal classification for human computer interaction: a review. European Journal

of Scientific Research, 33(3):480–501, 2009.

[174] M. Imani, J. Hwang, T. Rosing, A. Rahimi, and J. M. Rabaey. Low-power sparse

hyperdimensional encoder for language recognition. IEEE Design Test, 34(6):

94–101, Dec 2017. ISSN 2168-2356. doi: 10.1109/MDAT.2017.2740839.

[175] Oriol Vinyals, Charles Blundell, Timothy P. Lillicrap, Koray Kavukcuoglu, and

Daan Wierstra. Matching networks for one shot learning. CoRR, abs/1606.04080,

2016. URL http://arxiv.org/abs/1606.04080.

[176] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical net-

works for few-shot learning. In I. Guyon, U. V. Luxburg, S. Ben-

gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, edi-

tors, Advances in Neural Information Processing Systems 30, pages 4080–

4090. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/

6996-prototypical-networks-for-few-shot-learning.pdf.

http://www.sciencedirect.com/science/article/pii/S0096300314008285
http://www.sciencedirect.com/science/article/pii/S0096300314008285
https://doi.org/10.1063/1.1531823
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1528-1167.2012.03588.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1528-1167.2012.03588.x
http://www.sciencedirect.com/science/article/pii/S0920121111002154
http://www.sciencedirect.com/science/article/pii/S0920121111002154
http://arxiv.org/abs/1606.04080
http://papers.nips.cc/paper/6996-prototypical-networks-for-few-shot-learning.pdf
http://papers.nips.cc/paper/6996-prototypical-networks-for-few-shot-learning.pdf

Bibliography 161

[177] S. Benatti, F. Casamassima, B. Milosevic, E. Farella, P. Schönle, S. Fateh,

T. Burger, Q. Huang, and L. Benini. A versatile embedded platform for EMG

acquisition and gesture recognition. IEEE Transactions on Biomedical Circuits

and Systems, 9(5):620–630, Oct 2015. ISSN 1932-4545. doi: 10.1109/TBCAS.

2015.2476555.

[178] Kai Keng Ang, Zheng Yang Chin, Chuanchu Wang, Cuntai Guan, and Haihong

Zhang. Filter bank common spatial pattern algorithm on bci competition iv

datasets 2a and 2b. Frontiers in Neuroscience, 6:39, 2012. ISSN 1662-453X.

doi: 10.3389/fnins.2012.00039. URL https://www.frontiersin.org/article/

10.3389/fnins.2012.00039.

[179] S. Sakhavi, C. Guan, and S. Yan. Parallel convolutional-linear neural network for

motor imagery classification. In 2015 23rd European Signal Processing Conference

(EUSIPCO), pages 2736–2740, Aug 2015. doi: 10.1109/EUSIPCO.2015.7362882.

[180] Deng Wang, Duoqian Miao, and Gunnar Blohm. Multi-class motor imagery

EEG decoding for brain-computer interfaces. Frontiers in Neuroscience, 6:151,

2012. ISSN 1662-453X. doi: 10.3389/fnins.2012.00151. URL https://www.

frontiersin.org/article/10.3389/fnins.2012.00151.

[181] S. Saeedi, R. Chavarriaga, R. Leeb, and José del R. Millán. Adaptive assistance

for brain-computer interfaces by online prediction of command reliability. IEEE

Computational Intelligence Magazine, 11(1):32–39, Feb 2016. ISSN 1556-603X.

doi: 10.1109/MCI.2015.2501550.

[182] Dapeng Yang, Li Jiang, Qi Huang, Rongqiang Liu, and Hong Liu. Experimental

study of an EMG-controlled 5-dof anthropomorphic prosthetic hand for motion

restoration. Journal of Intelligent & Robotic Systems, 76(3):427–441, Dec 2014.

ISSN 1573-0409. doi: 10.1007/s10846-014-0037-6. URL https://doi.org/10.

1007/s10846-014-0037-6.

[183] J. Rosen, M. Brand, M. B. Fuchs, and M. Arcan. A myosignal-based powered

exoskeleton system. IEEE Transactions on Systems, Man, and Cybernetics - Part

A: Systems and Humans, 31(3):210–222, May 2001. ISSN 1083-4427. doi: 10.

1109/3468.925661.

[184] A. Moin, A. Zhou, A. Rahimi, S. Benatti, A. Menon, S. Tamakloe, J. Ting, N. Ya-

mamoto, Y. Khan, F. Burghardt, L. Benini, A. C. Arias, and J. M. Rabaey.

An EMG gesture recognition system with flexible high-density sensors and brain-

inspired high-dimensional classifier. In IEEE International Symposium on Circuits

and Systems, ISCAS, In press 2018.

https://www.frontiersin.org/article/10.3389/fnins.2012.00039
https://www.frontiersin.org/article/10.3389/fnins.2012.00039
https://www.frontiersin.org/article/10.3389/fnins.2012.00151
https://www.frontiersin.org/article/10.3389/fnins.2012.00151
https://doi.org/10.1007/s10846-014-0037-6
https://doi.org/10.1007/s10846-014-0037-6

Bibliography 162

[185] D. Kleyko, A. Rahimi, D. Rachkovskij, E. Osipov, P. Kanerva, and J. M. Rabaey.

Binary hyperdimensional computing: Trade-offs in choice of density and mapping

characteristics. In IEEE Transactions on Neural Networks and Learning Systems,

TNNLS, In press 2018.

[186] T. Wu, P.-C. Huang, A. Rahimi, H. Li, M. Shulaker, J. M. Rabaey, H.-S.P. Wong,

and S. Mitra. Brain-inspired computing exploiting carbon nanotube FETs and

resistive RAM: Hyperdimensional computing case study. In IEEE International

Solid-State Circuits Conference, ISSCC, In press 2018.

[187] Jan M. Rabaey. A roadmap to lower supply voltages—a system perspective. In

IEEE International Solid-State Circuits Conference, ISSCC, 2015.

[188] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. Communication-Efficient Learning of Deep Networks from

Decentralized Data. In Aarti Singh and Jerry Zhu, editors, Proceedings of the

20th International Conference on Artificial Intelligence and Statistics, volume 54

of Proceedings of Machine Learning Research, pages 1273–1282, Fort Lauderdale,

FL, USA, 20–22 Apr 2017. PMLR. URL http://proceedings.mlr.press/v54/

mcmahan17a.html.

[189] White House Report. Consumer data privacy in a networked world: A framework

for protecting privacy and promoting innovation in the global digital economy. In

Journal of Privacy and Confidentiality, 2013.

[190] Ozgur Yilmaz. Symbolic computation using cellular automata-based hyperdi-

mensional computing. Neural Computation, 27(12):2661–2692, 2015. doi: 10.

1162/NECO\ a\ 00787. URL https://doi.org/10.1162/NECO_a_00787. PMID:

26496041.

[191] D. Kleyko, S. Khan, E. Osipov, and S. P. Yong. Modality classification of med-

ical images with distributed representations based on cellular automata reservoir

computing. In 2017 IEEE 14th International Symposium on Biomedical Imaging

(ISBI 2017), pages 1053–1056, April 2017. doi: 10.1109/ISBI.2017.7950697.

[192] Ashok Litwin-Kumar, Kameron Decker Harris, Richard Axel, Haim Sompolinsky,

and L. F. Abbott. Optimal degrees of synaptic connectivity. Neuron, 93(5):1153–

1164, March 2017. ISSN 0896-6273. doi: 10.1016/j.neuron.2017.01.030. URL

http://dx.doi.org/10.1016/j.neuron.2017.01.030.

[193] O Bertrand, F Perrin, and J Pernier. A theoretical justification of the av-

erage reference in topographic evoked potential studies. Electroencephalogra-

phy and Clinical Neurophysiology/Evoked Potentials Section, 62(6):462–464, 1985.

http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1162/NECO_a_00787
http://dx.doi.org/10.1016/j.neuron.2017.01.030

Bibliography 163

ISSN 0168-5597. doi: http://dx.doi.org/10.1016/0168-5597(85)90058-9. URL

http://www.sciencedirect.com/science/article/pii/0168559785900589.

[194] Pierre Ferrez and José del R. Millán. Error-related EEG potentials in brain-

computer interfaces. PhD thesis, STI, Lausanne, 2007.

[195] Dennis J. McFarland, Lynn M. McCane, Stephen V. David, and Jonathan R.

Wolpaw. Spatial filter selection for EEG-based communication. Electroen-

cephalography and Clinical Neurophysiology, 103(3):386–394, 1997. ISSN 0013-

4694. doi: http://dx.doi.org/10.1016/S0013-4694(97)00022-2. URL http://www.

sciencedirect.com/science/article/pii/S0013469497000222.

[196] Monitoring error-related potentials. http://bnci-horizon-2020.eu/database/

data-sets, 2022.

[197] GAP8 SDK. https://greenwaves-technologies.com/setting-up-sdk/, 2022.

[198] BCI Competition IV-2a (Four class motor imagery). http://

bnci-horizon-2020.eu/database/data-sets, 2022.

[199] BNCI Horizon 2020. http://bnci-horizon-2020.eu/, 2022.

[200] R. Chavarriaga and J. d. R. Millán. Learning from EEG error-related potentials

in noninvasive brain-computer interfaces. IEEE Transactions on Neural Systems

and Rehabilitation Engineering, 18(4):381–388, Aug 2010. ISSN 1534-4320. doi:

10.1109/TNSRE.2010.2053387.

[201] Pierre W. Ferrez and José Del R. Millán. You are wrong!—automatic detection

of interaction errors from brain waves. In In Proceedings of the 19th International

Joint Conference on Artificial Intelligence, 2005.

[202] P. W. Ferrez and J. del R. Millán. Error-related EEG potentials generated during

simulated brain-computer interaction. IEEE Transactions on Biomedical Engi-

neering, 55(3):923–929, March 2008. ISSN 0018-9294. doi: 10.1109/TBME.2007.

908083.

[203] Xiaofei He, Deng Cai, and Partha Niyogi. Laplacian score for feature selection. In

Proceedings of the 18th International Conference on Neural Information Processing

Systems, NIPS’05, pages 507–514, Cambridge, MA, USA, 2005. MIT Press. URL

http://dl.acm.org/citation.cfm?id=2976248.2976312.

[204] Abbas Rahimi, Artiom Tchouprina, Pentti Kanerva, José del R. Millán, and

Jan M. Rabaey. Hyperdimensional computing for blind and one-shot classi-

fication of EEG error-related potentials. Mobile Networks and Applications,

http://www.sciencedirect.com/science/article/pii/0168559785900589
http://www.sciencedirect.com/science/article/pii/S0013469497000222
http://www.sciencedirect.com/science/article/pii/S0013469497000222
http://bnci-horizon-2020.eu/database/data-sets
http://bnci-horizon-2020.eu/database/data-sets
https://greenwaves-technologies.com/setting-up-sdk/
http://bnci-horizon-2020.eu/database/data-sets
http://bnci-horizon-2020.eu/database/data-sets
http://bnci-horizon-2020.eu/
http://dl.acm.org/citation.cfm?id=2976248.2976312

Bibliography 164

pages 1–12, Oct 2017. ISSN 1572-8153. doi: 10.1007/s11036-017-0942-6. URL

https://doi.org/10.1007/s11036-017-0942-6.

[205] Yitong Li, michael Murias, samantha Major, geraldine Dawson, Kafui

Dzirasa, Lawrence Carin, and David E Carlson. Targeting EEG/LFP

synchrony with neural nets. In I. Guyon, U. V. Luxburg, S. Ben-

gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, edi-

tors, Advances in Neural Information Processing Systems 30, pages 4623–

4633. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/

7048-targeting-eeglfp-synchrony-with-neural-nets.pdf.

[206] D. Rossi, F. Conti, A. Marongiu, A. Pullini, I. Loi, M. Gautschi, G. Tagliavini,

A. Capotondi, P. Flatresse, and L. Benini. PULP: A parallel ultra low power plat-

form for next generation IoT applications. In 2015 IEEE Hot Chips 27 Symposium

(HCS), pages 1–39, Aug 2015. doi: 10.1109/HOTCHIPS.2015.7477325.

[207] D. Kleyko and E. Osipov. On bidirectional transitions between localist and dis-

tributed representations: The case of common substrings search using vector sym-

bolic architecture. Procedia Computer Science, 41:104–113, 2014.

[208] D. Kleyko, E. Osipov, and R. W. Gayler. Recognizing permuted words with Vec-

tor Symbolic Architectures: A Cambridge test for machines. Procedia Computer

Science, 88:169–175, 2016.

[209] R Stanley Williams, Erik P DeBenedictis, IBM Arvind Kumar, Mark Stalzer,

Mustafa Badaroglu, Geoff W Burr Qualcomm, An Chen, Shamik Das Global-

foundaries, Andrew B MITRE, Matt Marinella, et al. Ostp nanotechnology-

inspired grand challenge: Sensible machines (extended version 2.5). Technical

report, Tech. Rep., Oct, 2015.

[210] H. Li, T. F. Wu, A. Rahimi, K. S. Li, M. Rusch, C. H. Lin, J. L. Hsu, M. M. Sabry,

S. B. Eryilmaz, J. Sohn, W. C. Chiu, M. C. Chen, T. T. Wu, J. M. Shieh, W. K.

Yeh, J. M. Rabaey, S. Mitra, and H. S. P. Wong. Hyperdimensional computing

with 3D VRRAM in-memory kernels: Device-architecture co-design for energy-

efficient, error-resilient language recognition. In 2016 IEEE International Electron

Devices Meeting (IEDM), pages 16.1.1–16.1.4, Dec 2016. doi: 10.1109/IEDM.

2016.7838428.

[211] D. Kleyko and E. Osipov. Brain-like classifier of temporal patterns. In The Proceed-

ing of the 2nd International Conference on Computer and Information Sciences -

ICCOINS, pages 1–6, 2014.

https://doi.org/10.1007/s11036-017-0942-6
http://papers.nips.cc/paper/7048-targeting-eeglfp-synchrony-with-neural-nets.pdf
http://papers.nips.cc/paper/7048-targeting-eeglfp-synchrony-with-neural-nets.pdf

Bibliography 165

[212] B. B. Nasution and A. I. Khan. A Hierarchical Graph Neuron Scheme for Real-

Time Pattern Recognition. Neural Networks, IEEE Transactions on, 19(2):212–

229, February 2008.

[213] D. Kleyko, E. Osipov, N. Papakonstantinou, V. Vyatkin, and A. Mousavi. Fault

detection in the hyperspace: Towards intelligent automation systems. In IEEE

International Conference on Industrial Informatics, INDIN, pages 1–6, 2015.

[214] S. I. Gallant and T. W. Okaywe. Representing objects, relations, and sequences.

Neural Computation, 25(8):2038–2078, 2013.

[215] T.A. Plate. Holographic reduced representations. IEEE Transactions on Neural

Networks, 6(3):623–641, 1995.

[216] D. Aerts, M. Czachor, and B. De Moor. Geometric analogue of holographic reduced

representation. Journal of Mathematical Psychology, 53:389–398, 2009.

[217] D. A. Rachkovskij. Representation and Processing of Structures with Binary

Sparse Distributed Codes. IEEE Transactions on Knowledge and Data Engineer-

ing, 3(2):261–276, 2001.

[218] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T.

Chen, and M. J. Tsai. Metal Oxide RRAM. Proceedings of the IEEE, 100(6):

1951–1970, June 2012. ISSN 0018-9219. doi: 10.1109/JPROC.2012.2190369.

[219] G. Recchia, M. Sahlgren, and P. Kanerva M.N. Jones. Encoding Sequential In-

formation in Semantic Space Models. Comparing Holographic Reduced Represen-

tation and Random Permutation. Computational Intelligence and Neuroscience,

pages 1–18, 2015.

[220] H. Y. Chen, S. Yu, B. Gao, P. Huang, J. Kang, and H. S. P. Wong. HfOx based

vertical resistive random access memory for cost-effective 3D cross-point archi-

tecture without cell selector. In Electron Devices Meeting (IEDM), 2012 IEEE

International, pages 20.7.1–20.7.4, Dec 2012. doi: 10.1109/IEDM.2012.6479083.

[221] B. Govoreanu, A. Redolfi, L. Zhang, C. Adelmann, M. Popovici, S. Clima, H. Hody,

V. Paraschiv, I. P. Radu, A. Franquet, J. C. Liu, J. Swerts, O. Richard, H. Ben-

der, L. Altimime, and M. Jurczak. Vacancy-modulated conductive oxide resis-

tive RAM (VMCO-RRAM): An area-scalable switching current, self-compliant,

highly nonlinear and wide on/off-window resistive switching cell. In 2013 IEEE

International Electron Devices Meeting, pages 10.2.1–10.2.4, Dec 2013. doi:

10.1109/IEDM.2013.6724599.

Bibliography 166

[222] Seunghyun Lee, Joon Sohn, Hong-Yu Chen, and H-S Philip Wong. Metal Ox-

ide Resistive Memory using Graphene Edge Electrode. Nature Communications,

September 25, 2015.

[223] T.A. Plate. Holographic Reduced Representations. CLSI Publications, 2003.

[224] E. Paxon Frady, Denis Kleyko, Pentti Kanerva, and Friedrich T. Sommer. The

capacity of active memorythe information capacity of distributed neural activity.

In Redwood Center Preprint, 2017.

[225] E. Weiss, B. Cheung, and B. A. Olshausen. Representing spatial structure with

complex vectors. In Proceedings of the International Conference on Learning Rep-

resentations, ICLR, 2016.

[226] Pentti Kanerva. Fully Distributed Representation. In , editor, Proceedings of 1997

Real World Computing Symposium, RWC’97, pages 358–365. , 1997.

[227] Pentti Kanerva. Computing with 10,000-bit words. In Proc. 52nd Annual Allerton

Conference on Communication, Control, and Computing, 2014.

[228] Tony Plate. Holographic reduced representations: Convolution algebra for com-

positional distributed representations. In INTERNATIONAL JOINT CONFER-

ENCE ON ARTIFICIAL INTELLIGENCE, pages 30–35. Morgan Kaufmann,

1991.

[229] Ross W. Gayler. Multiplicative binding, representation operators & analogy. In

Gentner, D., Holyoak, K. J., Kokinov, B. N. (Eds.), Advances in analogy re-

search: Integration of theory and data from the cognitive, computational, and neu-

ral sciences, pages 1–4, New Bulgarian University, Sofia, Bulgaria, 1998. URL

http://cogprints.org/502/.

[230] Ross W. Gayler. Vector symbolic architectures answer Jackendoff’s challenges for

cognitive neuroscience. In Proceedings of the Joint International Conference on

Cognitive Science. ICCS/ASCS, pages 133–138, 2003.

[231] Pentti Kanerva, Jan Kristoferson, and Anders Holst. Random indexing of text

samples for latent semantic analysis. In Proceedings of the 22nd Annual Conference

of the Cognitive Science Society, page 1036. Erlbaum, 2000. URL http://www.

rni.org/kanerva/cogsci2k-poster.txt.

[232] Chris Eliasmith. How to build a brain: A neural architecture for biological cogni-

tion. Oxford University Press, 2013.

http://cogprints.org/502/
http://www.rni.org/kanerva/cogsci2k-poster.txt
http://www.rni.org/kanerva/cogsci2k-poster.txt

Bibliography 167

[233] D. Kleyko, E. Osipov, A. Senior, A. I. Khan, and Y. A. Sekercioglu. Holographic

graph neuron: A bioinspired architecture for pattern processing. IEEE Transac-

tions on Neural Networks and Learning Systems, PP(99):1–13, 2016. ISSN 2162-

237X. doi: 10.1109/TNNLS.2016.2535338.

[234] Thomas K Landauer and Susan T. Dutnais. A solution to plato’s problem: The

latent semantic analysis theory of acquisition, induction, and representation of

knowledge. Psychological Review, 104(2):211–240, 1997.

[235] Fateme Rasti Najafabadi, Abbas Rahimi, Pentti Kanerva, and Jan M. Rabaey.

Hyperdimensional computing for text classification. Design, Automation Test in

Europe Conference Exhibition (DATE), University Booth, 2016. URL https://

www.date-conference.com/system/files/file/date16/ubooth/37923.pdf.

[236] Abbas Rahimi, Pentti Kanerva, and Jan M. Rabaey. A robust and energy effi-

cient classifier using brain-inspired hyperdimensional computing. In Low Power

Electronics and Design (ISLPED), 2016 IEEE/ACM International Symposium on,

August 2016.

[237] O. Räsänen and S. Kakouros. Modeling dependencies in multiple parallel data

streams with hyperdimensional computing. IEEE Signal Processing Letters, 21

(7):899–903, July 2014. ISSN 1070-9908. doi: 10.1109/LSP.2014.2320573.

[238] O. Räsänen and J. Saarinen. Sequence prediction with sparse distributed hyper-

dimensional coding applied to the analysis of mobile phone use patterns. IEEE

Transactions on Neural Networks and Learning Systems, PP(99):1–12, 2015. ISSN

2162-237X. doi: 10.1109/TNNLS.2015.2462721.

[239] M. Laiho, J. H. Poikonen, P. Kanerva, and E. Lehtonen. High-dimensional comput-

ing with sparse vectors. In Biomedical Circuits and Systems Conference (BioCAS),

2015 IEEE, pages 1–4, Oct 2015. doi: 10.1109/BioCAS.2015.7348414.

[240] Dominic Widdows and Microsoft Bing. Reasoning with vectors: a continuous

model for fast robust inference. In Logic Journal of the IGPL, 2014.

[241] Manish Deo, Jeffrey Schulz, and Lance Brown. White paper: Stratix 10 mx devices

solve the memory bandwidth challenge. Altera, WP-01264-1.0, May 2016.

[242] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features

for scene labeling. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 35(8):1915–1929, Aug 2013. ISSN 0162-8828. doi: 10.1109/TPAMI.2012.

231.

https://www.date-conference.com/system/files/file/date16/ubooth/37923.pdf
https://www.date-conference.com/system/files/file/date16/ubooth/37923.pdf

Bibliography 168

[243] H. Li and et al. Four-layer 3D vertical RRAM integrated with FinFET as a

versatile computing unit for brain-inspired cognitive information processing. In

IEEE Symp. VLSI Technology, 2016.

[244] Pentti Kanerva. What we mean when we say “what’s the dollar of mexico?”:

Prototypes and mapping in concept space. In AAAI Fall Symposium: Quantum

Informatics for Cognitive, Social, and Semantic Processes, pages 2–6, 2010.

[245] Swagath Venkataramani, Ashish Ranjan, Kaushik Roy, and Anand Raghunathan.

Axnn: Energy-efficient neuromorphic systems using approximate computing. In

Proceedings of the 2014 International Symposium on Low Power Electronics and

Design, ISLPED ’14, pages 27–32, New York, NY, USA, 2014. ACM. ISBN 978-

1-4503-2975-0. doi: 10.1145/2627369.2627613. URL http://doi.acm.org/10.

1145/2627369.2627613.

[246] Beinuo Zhang, Zhewei Jiang, Qi Wang, Jae sun Seo, and Mingoo Seok. A neuro-

morphic neural spike clustering processor for deep-brain sensing and stimulation

systems. In Low Power Electronics and Design (ISLPED), 2015 IEEE/ACM In-

ternational Symposium on, pages 91–97, July 2015. doi: 10.1109/ISLPED.2015.

7273496.

[247] Aditya Joshi, Johan T. Halseth, and Pentti Kanerva. Language geometry us-

ing random indexing. In Jose Acacio de Barros, Bob Coecke, and Emmanuel

Pothos, editors, Quantum Interaction: 10th International Conference, QI 2016,

San Francisco, CA, USA, July 20-22, 2016, Revised Selected Papers, pages 265–

274, Cham, 2017. Springer International Publishing. ISBN 978-3-319-52289-

0. doi: 10.1007/978-3-319-52289-0 21. URL http://dx.doi.org/10.1007/

978-3-319-52289-0_21.

[248] Philipp Koehn. Europarl: A parallel corpus for statistical machine translation.

http://www.statmt.org/europarl/, 2005.

[249] Uwe Quasthoff, Matthias Richter, and Christian Biemann. Biemann c., “corpus

portal for search in monolingual corpora. In Proceedings of the 5th International

Conference on Language Resources and Evaluation, 2006.

[250] Thorsten Joachims. Text categorization with suport vector machines: Learn-

ing with many relevant features. In Proceedings of the 10th European Confer-

ence on Machine Learning, ECML ’98, pages 137–142, London, UK, UK, 1998.

Springer-Verlag. ISBN 3-540-64417-2. URL http://dl.acm.org/citation.cfm?

id=645326.649721.

http://doi.acm.org/10.1145/2627369.2627613
http://doi.acm.org/10.1145/2627369.2627613
http://dx.doi.org/10.1007/978-3-319-52289-0_21
http://dx.doi.org/10.1007/978-3-319-52289-0_21
http://www.statmt.org/europarl/
http://dl.acm.org/citation.cfm?id=645326.649721
http://dl.acm.org/citation.cfm?id=645326.649721

Bibliography 169

[251] T.-T. Liu and J.M. Rabaey. A 0.25 v 460 nw asynchronous neural signal processor

with inherent leakage suppression. Solid-State Circuits, IEEE Journal of, 48(4):

897–906, April 2013. ISSN 0018-9200. doi: 10.1109/JSSC.2013.2239096.

[252] D. Kuzum, R.G.D. Jeyasingh, Shimeng Yu, and H.-S.P. Wong. Low-energy

robust neuromorphic computation using synaptic devices. Electron Devices,

IEEE Transactions on, 59(12):3489–3494, Dec 2012. ISSN 0018-9383. doi:

10.1109/TED.2012.2217146.

[253] S.D. Levy and R.W. Gayler. Lateral inhibition in a fully distributed connectionist

architecture. In Proceedings of the Ninth International Conference on Cognitive

Modeling, 2009.

[254] Pentti Kanerva. Sparse Distributed Memory. The MIT Press, Cambridge, MA,

USA, 1988. ISBN 0262111322.

[255] Magnus Sahlgren. An introduction to random indexing. In In Methods and Ap-

plications of Semantic Indexing Workshop at the 7th International Conference on

Terminology and Knowledge Engineering, TKE 2005, 2005.

[256] TK LANDAUER and ST DUMAIS. A solution to plato’s problem: The latent se-

mantic analysis theory of acquisition, induction, and representation of knowledge.

Psychological review, 104(2):211–240, 1997.

[257] C. E. Shannon. A mathematical theory of communication. SIGMOBILE Mob.

Comput. Commun. Rev., 5(1):3–55, January 2001. ISSN 1559-1662. doi: 10.1145/

584091.584093. URL http://doi.acm.org/10.1145/584091.584093.

[258] P. K. Artemiadis and K. J. Kyriakopoulos. EMG-based teleoperation of a robot

arm using low-dimensional representation. In 2007 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 489–495, Oct 2007. doi:

10.1109/IROS.2007.4399452.

[259] Dapeng Yang, Li Jiang, Qi Huang, Rongqiang Liu, and Hong Liu. Experi-

mental study of an EMG-controlled 5-dof anthropomorphic prosthetic hand for

motion restoration. J. Intell. Robotics Syst., 76:427–441, 2014. ISSN 0921-

0296. doi: 10.1007/s10846-014-0037-6. URL http://dx.doi.org/10.1007/

s10846-014-0037-6.

[260] Ottobock Sensor 13E200. http://www.ottobock.com/, 2022.

[261] L.J. Hargrove, K. Englehart, and B. Hudgins. A comparison of surface and intra-

muscular myoelectric signal classification. Biomedical Engineering, IEEE Trans-

actions on, 54(5):847–853, May 2007.

http://doi.acm.org/10.1145/584091.584093
http://dx.doi.org/10.1007/s10846-014-0037-6
http://dx.doi.org/10.1007/s10846-014-0037-6
http://www.ottobock.com/

Bibliography 170

[262] Mohammadreza Asghari Oskoei and Huosheng Hu. Myoelectric control systems—a

survey. Biomedical signal processing and control, 2(4):275–294, 2007.

[263] Haoshi Zhang, Yaonan Zhao, Fuan Yao, Lisheng Xu, Peng Shang, and Guanglin

Li. An adaptation strategy of using LDA classifier for EMG pattern recognition.

In International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC), pages 4267–4270, 2013. doi: 10.1109/EMBC.2013.6610488.

[264] Mohammadreza Asghari Oskoei, Student Member, and Huosheng Hu. Support

vector machine-based classification scheme for myoelectric control applied to upper

limb, 2022.

[265] M.R. Ahsan, M.I. Ibrahimy, and O.O. Khalifa. Electromygraphy (EMG) signal

based hand gesture recognition using artificial neural network (ann). In Mecha-

tronics (ICOM), 2011 4th International Conference On, pages 1–6, May 2011.

[266] John V Basmajian and CJ De Luca. Muscles alive. Muscles alive: their functions

revealed by electromyography, 278:126, 1985.

[267] Hong-Bo Xie, Tianruo Guo, Siwei Bai, and Socrates Dokos. Hybrid soft computing

systems for electromyographic signals analysis: a review. BioMedical Engineering

OnLine, 13(1):1–19, 2014. ISSN 1475-925X. doi: 10.1186/1475-925X-13-8. URL

http://dx.doi.org/10.1186/1475-925X-13-8.

[268] Matteo Rossi, Simone Benatti, Elisabetta Farella, and Luca Benini. Hybrid EMG

classifier based on hmm and svm for hand gesture recognition in prosthetics. In In-

dustrial Technology (ICIT), 2015 IEEE International Conference on, pages 1700–

1705. IEEE, 2015.

[269] Fei Sha, Lawrence K Saul, and Daniel D Lee. Multiplicative updates for nonneg-

ative quadratic programming in support vector machines. In Advances in neural

information processing systems, pages 1041–1048, 2002.

[270] S. Benatti, B. Milosevic, F. Casamassima, P. Schönle, P. Bunjaku, S. Fateh,

Q. Huang, and L. Benini. EMG-based hand gesture recognition with flexible analog

front end. In 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS)

Proceedings, pages 57–60, Oct 2014. doi: 10.1109/BioCAS.2014.6981644.

[271] Zeeshan O Khokhar, Zhen G Xiao, Carlo Menon, et al. Surface EMG pattern

recognition for real-time control of a wrist exoskeleton. Biomedical engineering

online, 9(1):41, 2010.

[272] Dapeng Yang, Jingdong Zhao, Yikun Gu, Li Jiang, and Hong Liu. EMG pat-

tern recognition and grasping force estimation: Improvement to the myocontrol of

http://dx.doi.org/10.1186/1475-925X-13-8

Bibliography 171

multi-dof prosthetic hands. In Intelligent Robots and Systems, 2009. IROS 2009.

IEEE/RSJ International Conference on, pages 516–521. IEEE, 2009.

[273] Jamileh Yousefi and Andrew Hamilton-Wright. Characterizing emg data using

machine-learning tools. Computers in biology and medicine, 51:1–13, 2014.

[274] Paul Kaufmann, Kevin Englehart, and Marco Platzner. Fluctuating emg signals:

Investigating long-term effects of pattern matching algorithms. In 2010 Annual

International Conference of the IEEE Engineering in Medicine and Biology, pages

6357–6360. IEEE, 2010.

[275] Simone Benatti, Elisabetta Farella, Emanuele Gruppioni, and Luca Benini. Anal-

ysis of robust implementation of an emg pattern recognition based control. In Pro-

ceedings of the International Joint Conference on Biomedical Engineering Systems

and Technologies-Volume 4, pages 45–54. SCITEPRESS-Science and Technology

Publications, Lda, 2014.

[276] Texas Instruments, 2015. URL http://www.ti.com/lit/ds/symlink/ads1298.

pdf.

[277] A. D. I. Falih, W. A. Dharma, and S. Sumpeno. Classification of emg signals from

forearm muscles as automatic control using naive bayes. In 2017 International

Seminar on Intelligent Technology and Its Applications (ISITIA), pages 346–351,

Aug 2017. doi: 10.1109/ISITIA.2017.8124107.

[278] D. Kleyko, E. Osipov, A. Senior, A. I. Khan, and Y. A. Şekerciogğlu. Holographic

graph neuron: A bioinspired architecture for pattern processing. IEEE Trans-

actions on Neural Networks and Learning Systems, 28(6):1250–1262, June 2017.

ISSN 2162-237X. doi: 10.1109/TNNLS.2016.2535338.

[279] stm32f427vg. http://www.st.com/resource/en/datasheet/stm32f427vg.pdf,

2016.

[280] ARM Cortex M4. https://developer.arm.com/products/processors/

cortex-m/cortex-m4, 2013.

[281] OMAP processor. http://www.ti.com, 2013.

[282] A. Pullini, D. Rossi, I. Loi, A. Di Mauro, and L. Benini. Mr. wolf: A 1 gflop/s

energy-proportional parallel ultra low power soc for iot edge processing. In ES-

SCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC),

pages 274–277, Sept 2018. doi: 10.1109/ESSCIRC.2018.8494247.

http://www.ti.com/lit/ds/symlink/ads1298.pdf
http://www.ti.com/lit/ds/symlink/ads1298.pdf
http://www.st.com/resource/en/datasheet/stm32f427vg.pdf
https://developer.arm.com/products/processors/cortex-m/cortex-m4
https://developer.arm.com/products/processors/cortex-m/cortex-m4
http://www.ti.com

Bibliography 172

[283] S. Benatti, G. Rovere, J. Bösser, F. Montagna, E. Farella, H. Glaser, P. Schönle,

T. Burger, S. Fateh, Q. Huang, and L. Benini. A sub-10mw real-time implemen-

tation for emg hand gesture recognition based on a multi-core biomedical soc. In

2017 7th IEEE International Workshop on Advances in Sensors and Interfaces

(IWASI), pages 139–144, June 2017. doi: 10.1109/IWASI.2017.7974234.

[284] A. Burrello, K. Schindler, L. Benini, and A. Rahimi. One-shot learning for iEEG

seizure detection using end-to-end binary operations: Local binary patterns with

hyperdimensional computing. In Biomedical Circuits and Systems Conference

(BioCAS), 2018 IEEE, pages 1–4, 2018.

[285] A. Rahimi, S. Datta, D. Kleyko, E. P. Frady, B. Olshausen, P. Kanerva, and

J. M. Rabaey. High-dimensional computing as a nanoscalable paradigm. IEEE

Transactions on Circuits and Systems I: Regular Papers, 64(9):2508–2521, Sept

2017. ISSN 1549-8328. doi: 10.1109/TCSI.2017.2705051.

[286] Thad Starner, Joshua Weaver, and Alex Pentland. Real-time american sign lan-

guage recognition using desk and wearable computer based video. IEEE Transac-

tions on pattern analysis and machine intelligence, 20(12):1371–1375, 1998.

[287] T Scott Saponas, Desney S Tan, Dan Morris, Ravin Balakrishnan, Jim Turner,

and James A Landay. Enabling always-available input with muscle-computer in-

terfaces. In Proceedings of the 22nd annual ACM symposium on User interface

software and technology, pages 167–176. ACM, 2009.

[288] Fabio Montagna, Simone Benatti, and Davide Rossi. Flexible, scalable and energy

efficient bio-signals processing on the pulp platform: A case study on seizure

detection. Journal of Low Power Electronics and Applications, 7(2):16, 2017.

[289] D. Rossi et al. A self-aware architecture for pvt compensation and power nap

in near threshold processors. IEEE Design Test, 34(6):46–53, Dec 2017. ISSN

2168-2356.

[290] touch bionics. http://www.touchbionics.com/products, 2018.

[291] Ottobock. https://www.ottobockus.com/prosthetics/

upper-limb-prosthetics/solution-overview/myoelectric-prosthetics/,

2018.

[292] Pentti Kanerva. Hyperdimensional computing: An introduction to computing in

distributed representation with high-dimensional random vectors. Cognitive Com-

putation, 1(2):139–159, 2009. ISSN 1866-9956. doi: 10.1007/s12559-009-9009-8.

URL http://dx.doi.org/10.1007/s12559-009-9009-8.

http://www.touchbionics.com/products
 https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/myoelectric-prosthetics/
 https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/myoelectric-prosthetics/
http://dx.doi.org/10.1007/s12559-009-9009-8

Bibliography 173

[293] Pentti Kanerva. Binary spatter-coding of ordered k-tuples. In , editor, ICANN’96,

Proceedings of the International Conference on Artificial Neural Networks, volume

1112 of Lecture Notes in Computer Science, pages 869–873. Springer, 1996.

[294] Abbas Rahimi, Simone Benatti, Pentti Kanerva, Luca Benini, and Jan M. Rabaey.

Hyperdimensional biosignal processing: A case study for EMG-based hand gesture

recognition. In IEEE International Conference on Rebooting Computing, October

2016.

[295] A. Rahimi, P. Kanerva, L. Benini, and J. M. Rabaey. Efficient biosignal processing

using hyperdimensional computing: Network templates for combined learning and

classification of exg signals. Proceedings of the IEEE, pages 1–21, 2018. ISSN

0018-9219. doi: 10.1109/JPROC.2018.2871163.

[296] Abbas Rahimi, Pentti Kanerva, José del R Millán, and Jan M. Rabaey. Hy-

perdimensional computing for noninvasive brain–computer interfaces: Blind and

one-shot classification of EEG error-related potentials. 10th ACM/EAI Interna-

tional Conference on Bio-inspired Information and Communications Technologies

(BICT), 3 2017. doi: 10.4108/eai.22-3-2017.152397.

[297] D. Rossi et al. Energy-efficient near-threshold parallel computing: The pulpv2

cluster. IEEE Micro, 37(5):20–31, September 2017. ISSN 0272-1732. doi: 10.

1109/MM.2017.3711645.

[298] P. Davide Schiavone et al. Slow and steady wins the race? a comparison of ultra-

low-power risc-v cores for internet-of-things applications. In PATMOS, pages 1–8,

Sept 2017. doi: 10.1109/PATMOS.2017.8106976.

[299] Sidharth Pancholi and Amit M Joshi. Portable emg data acquisition module for

upper limb prosthesis application. IEEE Sensors Journal, 18(8):3436–3443, 2018.

[300] M. R. Ahsan, M. I. Ibrahimy, and O. O. Khalifa. Electromygraphy (emg) signal

based hand gesture recognition using artificial neural network (ann). In 2011 4th

International Conference on Mechatronics (ICOM), pages 1–6, May 2011. doi:

10.1109/ICOM.2011.5937135.

[301] Janne M Hahne, F Biessmann, Ning Jiang, H Rehbaum, Dario Farina, FC Mei-

necke, K-R Müller, and LC Parra. Linear and nonlinear regression techniques for

simultaneous and proportional myoelectric control. IEEE Transactions on Neural

Systems and Rehabilitation Engineering, 22(2):269–279, 2014.

[302] Ning Jiang, Kevin B Englehart, and Philip A Parker. Extracting simultaneous

and proportional neural control information for multiple-dof prostheses from the

Bibliography 174

surface electromyographic signal. IEEE transactions on Biomedical Engineering,

56(4):1070–1080, 2009.

[303] Kevin R Wheeler, Mindy H Chang, and Kevin H Knuth. Gesture-based control

and emg decomposition. IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews), 36(4):503–514, 2006.

[304] D. Farina and A. Holobar. Characterization of human motor units from surface

emg decomposition. Proceedings of the IEEE, 104(2):353–373, 2016.

[305] Yu Hu, Yongkang Wong, Wentao Wei, Yu Du, Mohan Kankanhalli, and Weidong

Geng. A novel attention-based hybrid cnn-rnn architecture for semg-based gesture

recognition. PloS one, 13(10), 2018.

[306] Umberto Barone and Roberto Merletti. Design of a portable, intrinsically safe

multichannel acquisition system for high-resolution, real-time processing hd-semg.

IEEE Transactions on Biomedical Engineering, 60(8):2242–2252, 2013.

[307] Jian Wu, Lu Sun, and Roozbeh Jafari. A wearable system for recognizing american

sign language in real-time using imu and surface emg sensors. IEEE J. Biomedical

and Health Informatics, 20(5):1281–1290, 2016.

[308] Xilin Liu, Jacob Sacks, Milin Zhang, Andrew G Richardson, Timothy H Lucas, and

Jan Van der Spiegel. The virtual trackpad: An electromyography-based, wireless,

real-time, low-power, embedded hand-gesture-recognition system using an event-

driven artificial neural network. IEEE Trans. Circuits Syst. II Express Briefs, 64:

1257–1261, 2017.

[309] Paolo Gentile, Marco Pessione, Antonio Suppa, Alessandro Zampogna, and Fer-

nanda Irrera. Embedded wearable integrating real-time processing of electromyo-

graphy signals. In Multidisciplinary Digital Publishing Institute Proceedings, page

600, 2017.

[310] Simone Benatti, Filippo Casamassima, Bojan Milosevic, Elisabetta Farella,

Philipp Schönle, Schekeb Fateh, Thomas Burger, Qiuting Huang, and Luca Benini.

A versatile embedded platform for emg acquisition and gesture recognition. IEEE

transactions on biomedical circuits and systems, 9(5):620–630, 2015.

[311] Mohammadreza Asghari Oskoei, Huosheng Hu, et al. Support vector machine-

based classification scheme for myoelectric control applied to upper limb. IEEE

Trans. Biomed. Engineering, 55(8):1956–1965, 2008.

[312] Haoshi Zhang, Yaonan Zhao, Fuan Yao, Lisheng Xu, Peng Shang, and Guanglin

Li. An adaptation strategy of using lda classifier for emg pattern recognition. In

Bibliography 175

Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual Inter-

national Conference of the IEEE, pages 4267–4270. IEEE, 2013.

[313] Asim Waris, Imran Khan Niazi, Mohsin Jamil, Kevin Englehart, Winnie Jensen,

and Ernest Nlandu Kamavuako. Multiday evaluation of techniques for emg based

classification of hand motions. IEEE journal of biomedical and health informatics,

2018.

[314] Asim Waris, Irene Mendez, Kevin Englehart, Winnie Jensen, and Ernest Nlandu

Kamavuako. On the robustness of real-time myoelectric control investigations: A

multiday fitts’ law approach. Journal of Neural Engineering, 2018.

[315] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training al-

gorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Work-

shop on Computational Learning Theory, COLT ’92, pages 144–152, New York,

NY, USA, 1992. ACM. ISBN 0-89791-497-X. doi: 10.1145/130385.130401. URL

http://doi.acm.org/10.1145/130385.130401.

[316] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to

handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[317] Halima Bensmail and Gilles Celeux. Regularized gaussian discriminant analysis

through eigenvalue decomposition. Journal of the American statistical Association,

91(436):1743–1748, 1996.

[318] R. Meattini, S. Benatti, U. Scarcia, D. De Gregorio, L. Benini, and C. Melchiorri.

An semg-based human–robot interface for robotic hands using machine learning

and synergies. IEEE Transactions on Components, Packaging and Manufacturing

Technology, 2018.

[319] Simone Benatti, Bojan Milosevic, Elisabetta Farella, Emanuele Gruppioni, and

Luca Benini. A prosthetic hand body area controller based on efficient pattern

recognition control strategies. Sensors, 17(4):869, 2017.

[320] Z Zainuddin, N Mahat, and Y Abu Hassan. Improving the convergence of the

backpropagation algorithm using local adaptive techniques. In International Con-

ference on Computational Intelligence, pages 173–176. Citeseer, 2004.

[321] A. J. Ishak, S. A. Ahmad, A. C. Soh, N. A. Naraina, R. M. R. Jusoh, andW. Chika-

mune. Design of a wireless surface emg acquisition system. In 2017 24th Inter-

national Conference on Mechatronics and Machine Vision in Practice (M2VIP),

pages 1–6, Nov 2017.

http://doi.acm.org/10.1145/130385.130401

Bibliography 176

[322] Marie-Françoise Lucas, Adrien Gaufriau, Sylvain Pascual, Christian Doncarli, and

Dario Farina. Multi-channel surface emg classification using support vector ma-

chines and signal-based wavelet optimization. Biomedical Signal Processing and

Control, 3(2):169–174, 2008.

[323] Sebastian Bitzer and Patrick Van Der Smagt. Learning emg control of a robotic

hand: towards active prostheses. In Robotics and Automation, 2006. ICRA 2006.

Proceedings 2006 IEEE International Conference on, pages 2819–2823. IEEE,

2006.

[324] Ahmet Alkan and Mücahid Günay. Identification of emg signals using discriminant

analysis and svm classifier. Expert Systems with Applications, 39(1):44–47, 2012.

[325] Claudio Castellini, Emanuele Gruppioni, Angelo Davalli, and Giulio Sandini. Fine

detection of grasp force and posture by amputees via surface electromyography.

Journal of Physiology-Paris, 103(3-5):255–262, 2009.

[326] Claudio Castellini and Patrick van der Smagt. Surface emg in advanced hand

prosthetics. Biological cybernetics, 100(1):35–47, Jan 2009.

[327] P. Zhang and J. Peng. Svm vs regularized least squares classification. In Pro-

ceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR

2004., volume 1, pages 176–179 Vol.1, Aug 2004. doi: 10.1109/ICPR.2004.1334050.

[328] T. Scott Saponas et al. Making muscle-computer interfaces more practical. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,

CHI ’10, pages 851–854, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-929-

9. doi: 10.1145/1753326.1753451. URL http://doi.acm.org/10.1145/1753326.

1753451.

[329] Jun Liu, Fan Zhang, and He Helen Huang. An open and configurable embedded

system for emg pattern recognition implementation for artificial arms. In 2014

36th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society, pages 4095–4098. IEEE, 2014.

[330] Xiaorong Zhang, He Huang, and Qing Yang. Real-time implementation of a self-

recovery emg pattern recognition interface for artificial arms. In 2013 35th Annual

International Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC), pages 5926–5929. IEEE, 2013.

[331] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim Hartley,

and Luc Van Gool. Ai benchmark: Running deep neural networks on android

smartphones. In Proceedings of the European Conference on Computer Vision

(ECCV), pages 0–0, 2018.

http://doi.acm.org/10.1145/1753326.1753451
http://doi.acm.org/10.1145/1753326.1753451

Bibliography 177

[332] B. Milosevic, S. Benatti, and E. Farella. Design challenges for wearable emg ap-

plications. In Design, Automation Test in Europe Conference Exhibition (DATE),

2017, pages 1432–1437, March 2017. doi: 10.23919/DATE.2017.7927217.

[333] Bojan Milosevic, Simone Benatti, and Elisabetta Farella. Design challenges for

wearable emg applications. In Design, Automation & Test in Europe Conference

& Exhibition (DATE), 2017, pages 1432–1437. IEEE, 2017.

[334] Alessio Burrello, Daniele Jahier Pagliari, Andrea Bartolini, Luca Benini, Enrico

Macii, and Massimo Poncino. Predicting hard disk failures in data centers using

temporal convolutional neural networks. In Euro-Par 2020: Parallel Processing

Workshops, volume 12480, page 277. Nature Publishing Group, 2020.

[335] T. Scott Saponas et al. Making muscle-computer interfaces more practical. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,

pages 851–854, 2010. ISBN 978-1-60558-929-9.

[336] Bernard Hudgins, Philip Parker, and Robert N Scott. A new strategy for multi-

function myoelectric control. IEEE transactions on biomedical engineering, 40(1):

82–94, 1993.

[337] Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Efficient sparse attention

architecture with cascade token and head pruning. preprint arXiv:2012.09852,

2020.

[338] https://greenwaves-technologies.com/gap8_gap9/, 2022.

[339] J Cacioppo et al. The skeletomotor system. Cambridge University Press, 1990.

[340] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-

ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al.

Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Con-

ference on Computer Vision, pages 1314–1324, 2019.

[341] Alessio Burrello, Moritz Scherer, Marcello Zanghieri, Francesco Conti, and Luca

Benini. A microcontroller is all you need: Enabling transformer execution on

low-power iot endnodes. In 2021 IEEE International Conference on Omni-Layer

Intelligent Systems (COINS), pages 1–6, 2021. doi: 10.1109/COINS51742.2021.

9524173.

[342] A Krasoulis et al. Effect of user practice on prosthetic finger control with an

intuitive myoelectric decoder. Frontiers in neuroscience, 13:891, 2019.

[343] http://ninaweb.hevs.ch/DB8, 2022.

https://greenwaves-technologies.com/gap8_gap9/
http://ninaweb.hevs.ch/DB8

Bibliography 178

[344] A Krasoulis et al. Myoelectric digit action decoding with multi-output, multi-class

classification: an offline analysis. Scientific reports, 10(1):1–10, 2020.

[345] P Koch et al. Regression of hand movements from semg data with recurrent neural

networks. In 2020 Int. Conf. EMBC, 2020.

[346] Tianzhe Bao, Yihui Zhao, Syed Ali Raza Zaidi, Shengquan Xie, Pengfei Yang, and

Zhiqiang Zhang. A deep kalman filter network for hand kinematics estimation

using semg. Pattern Recognition Letters, 143:88–94, 2021.

[347] C Lea et al. Temporal convolutional networks for action segmentation and detec-

tion. In IEEE Conf. CVPR, 2017.

[348] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The journal of machine learning research, 15(1):1929–1958, 2014.

[349] https://github.com/pulp-platform/nemo, 2022.

[350] S. Benatti, F. Montagna, V. Kartsch, A. Rahimi, D. Rossi, and L. Benini. Online

learning and classification of emg-based gestures on a parallel ultra-low power

platform using hyperdimensional computing. IEEE Transactions on Biomedical

Circuits and Systems, 13(3):516–528, 2019. doi: 10.1109/TBCAS.2019.2914476.

[351] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian,

Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised con-

trastive learning, 2021.

[352] Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Mat-

sukawa, and Hassan Ghasemzadeh. Improved knowledge distillation via teacher

assistant, 2019.

[353] Felice T Sun, Martha J Morrell, and Robert E Wharen. Responsive cortical stim-

ulation for the treatment of epilepsy. Neurotherapeutics, 5(1):68–74, 2008.

[354] Somayya Madakam, Vihar Lake, Vihar Lake, Vihar Lake, et al. Internet of things

(iot): A literature review. Journal of Computer and Communications, 3(05):164,

2015.

[355] J Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. Pro-

ceedings of the national academy of sciences, 114(13):3521–3526, 2017.

[356] S Rebuffi et al. icarl: Incremental classifier and representation learning. In Pro-

ceedings of the IEEE conference on Computer Vision and Pattern Recognition,

pages 2001–2010, 2017.

https://github.com/pulp-platform/nemo

Bibliography 179

[357] T Hayes et al. Memory efficient experience replay for streaming learning. In 2019

International Conference on Robotics and Automation (ICRA), pages 9769–9776.

IEEE, 2019.

[358] S Disabato et al. Incremental on-device tiny machine learning. In Proceedings

of the 2nd International Workshop on Challenges in Artificial Intelligence and

Machine Learning for Internet of Things, pages 7–13, 2020.

[359] D Kiyasseh et al. Clops: Continual learning of physiological signals. arXiv preprint

arXiv:2004.09578, 2020.

[360] L Pellegrini et al. Latent replay for real-time continual learning (2019). arXiv

preprint arXiv:1912.01100, 2019.

[361] L Ravaglia et al. Memory-latency-accuracy trade-offs for continual learning on a

risc-v extreme-edge node. In 2020 IEEE Workshop on Signal Processing Systems

(SiPS), pages 1–6. IEEE, 2020.

[362] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume

Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka

Grabska-Barwinska, et al. Reply to huszár: The elastic weight consolidation

penalty is empirically valid. Proceedings of the National Academy of Sciences,

115(11):E2498–E2498, 2018.

[363] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and chal-

lenges. IEEE Internet Things J., 3(5):637–646, Oct 2016. ISSN 2372-2541. doi:

10.1109/JIOT.2016.2579198.

[364] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna Das,

and Scott Mahlke. Scalpel: Customizing dnn pruning to the underlying hardware

parallelism. ACM SIGARCH Computer Architecture News, 45(2):548–560, 2017.

[365] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-

all: Train one network and specialize it for efficient deployment. In International

Conference on Learning Representations, 2020. URL https://openreview.net/

forum?id=HylxE1HKwS.

[366] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han.

Mcunet: Tiny deep learning on iot devices, 2020.

[367] ST Microelectronics. STM32 Cube IDE, 2022. URL https://www.st.com/en/

development-tools/stm32cubeide.html.

https://openreview.net/forum?id=HylxE1HKwS
https://openreview.net/forum?id=HylxE1HKwS
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubeide.html

Bibliography 180

[368] Shraman Ray Chaudhuri, Elad Eban, Hanhan Li, Max Moroz, and

Yair Movshovitz-Attias. Fine-Grained Stochastic Architecture Search.

arXiv:2006.09581, 2020.

[369] Alessio Burrello, Alberto Dequino, Daniele Jahier Pagliari, Francesco Conti, Mar-

cello Zanghieri, Enrico Macii, Luca Benini, and Massimo Poncino. Tcn mapping

optimization for ultra-low power time-series edge inference. In Proc. IEEE/ACM

ISLPED, pages 1–6, 2021. doi: 10.1109/ISLPED52811.2021.9502494.

[370] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J

Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer pa-

rameters and < 0.5 mb model size. arXiv:1602.07360, 2016.

[371] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets:

Learned quantization for highly accurate and compact deep neural networks. In

Proceedings of the European conference on computer vision (ECCV), pages 365–

382, 2018.

[372] Ahmed Elthakeb, Prannoy Pilligundla, FatemehSadat Mireshghallah, Amir Yaz-

danbakhsh, Sicuan Gao, and Hadi Esmaeilzadeh. Releq: an automatic reinforce-

ment learning approach for deep quantization of neural networks. In NeurIPS ML

for Systems workshop, 2018, 2019.

[373] Daniele Palossi, Nicky Zimmerman, Alessio Burrello, Francesco Conti, Hanna

Muller, Luca Maria Gambardella, Luca Benini, Alessandro Giusti, and Jerome

Guzzi. Fully onboard ai-powered human-drone pose estimation on ultralow-power

autonomous flying nano-uavs. IEEE Internet of Things Journal, 9(3):1913–1929,

2022. doi: 10.1109/JIOT.2021.3091643.

[374] Alessio Burrello, Daniele Jahier Pagliari, Pierangelo Maria Rapa, Matilde Semilia,

Matteo Risso, Tommaso Polonelli, Massimo Poncino, Luca Benini, and Simone

Benatti. Embedding temporal convolutional networks for energy-efficient ppg-

based heart rate monitoring. ACM Trans. Comput. Healthcare, 3(2), 2022. ISSN

2691-1957. doi: 10.1145/3487910.

[375] Brian Ramprasad, Alexandre da Silva Veith, Moshe Gabel, and Eyal de Lara.

Sustainable computing on the edge: A system dynamics perspective. In ACM

Proc. of HotMobile ’21, page 64–70, 2021. ISBN 9781450383233.

[376] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-bit quantization

of neural networks for efficient inference. In 2019 IEEE/CVF ICCVW, pages 3009–

3018. IEEE, 2019.

Bibliography 181

[377] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware

automated quantization with mixed precision. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 8612–8620, 2019.

[378] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolu-

tional neural networks. In ICML, pages 6105–6114. PMLR, 2019.

[379] Matteo Risso, Alessio Burrello, Francesco Conti, Lorenzo Lamberti, Yukai Chen,

Luca Benini, Enrico Macii, Massimo Poncino, and Daniele Jahier Pagliari.

Lightweight neural architecture search for temporal convolutional networks at the

edge. IEEE Transactions on Computers, pages 1–1, 2022. doi: 10.1109/TC.2022.

3177955.

[380] Francesco Daghero, Daniele Jahier Pagliari, and Massimo Poncino. Energy-

efficient deep learning inference on edge devices. In Shiho Kim and Ganesh Chan-

dra Deka, editors, Hardware Accelerator Systems for Artificial Intelligence and

Machine Learning, volume 122 of Advances in Computers, pages 247–301. Else-

vier, 2021. doi: https://doi.org/10.1016/bs.adcom.2020.07.002.

[381] Bert Moons, Bert De Brabandere, Luc Van Gool, and Marian Verhelst. Energy-

efficient convnets through approximate computing. In 2016 IEEE Winter Con-

ference on Applications of Computer Vision (WACV), pages 1–8, 2016. doi:

10.1109/WACV.2016.7477614.

[382] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect:

Training deep neural networks with binary weights during propagations. Adv.

Neural Inf. Process. Syst., 28, 2015.

[383] Alex Krizhevsky, Geoffrey Hinton, et al. Cifar-10, 2009. URL http://www.cs.

toronto.edu/~kriz/cifar.html.

[384] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects

in context. In Proc. ECCV, pages 740–755, 2014.

[385] Francesco Daghero, Daniele Jahier Pagliari, and Massimo Poncino. Energy-

efficient deep learning inference on edge devices. In Shiho Kim and Ganesh Chan-

dra Deka, editors, Hardware Accelerator Systems for Artificial Intelligence and

Machine Learning, volume 122 of Advances in Computers, chapter 8, pages 247–

301. Elsevier, 2021. doi: https://doi.org/10.1016/bs.adcom.2020.07.002.

[386] Elmustafa sayed ali ahmed and Zeinab Kamal Aldein Mohammed. Internet of

things applications, challenges and related future technologies. world scientific

news, 01 2017.

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

Bibliography 182

[387] Leonardo Cecconi, Sander Smets, Luca Benini, and Marian Verhelst. Optimal

tiling strategy for memory bandwidth reduction for cnns. In International Confer-

ence on Advanced Concepts for Intelligent Vision Systems, pages 89–100. Springer,

2017.

[388] Giuseppe Tagliavini, Germain Haugou, Andrea Marongiu, and Luca Benini.

Adrenaline: An openvx environment to optimize embedded vision applications on

many-core accelerators. In 2015 IEEE 9th International Symposium on Embedded

Multicore/Many-core Systems-on-Chip, pages 289–296. IEEE, 2015.

[389] Shail Dave, Youngbin Kim, Sasikanth Avancha, Kyoungwoo Lee, and Aviral Shri-

vastava. DMazeRunner: Executing Perfectly Nested Loops on Dataflow Acceler-

ators. ACM Trans. Embed. Comput. Syst., 18, October 2019. ISSN 1539-9087.

[390] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi, E. Flamand,

F. K. Gürkaynak, and L. Benini. Near-threshold risc-v core with dsp extensions for

scalable iot endpoint devices. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 25(10):2700–2713, 2017.

[391] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-

ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and

Soumith Chintala. Pytorch: An imperative style, high-performance deep learning

library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,

and R. Garnett, editors, Advances in Neural Information Processing Systems 32,

pages 8024–8035. Curran Associates, Inc., 2019.

[392] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-

enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris

Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-

war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-

aoqiang Zheng. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems, 2015. URL https://www.tensorflow.org/. Software available from

tensorflow.org.

[393] Hongxing Gao, Wei Tao, Dongchao Wen, Tse-Wei Chen, Kinya Osa, and Masami

Kato. Ifq-net: Integrated fixed-point quantization networks for embedded vision.

https://www.tensorflow.org/

Bibliography 183

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion Workshops, pages 607–615, 2018.

[394] Feng Zhu, Ruihao Gong, Fengwei Yu, Xianglong Liu, Yanfei Wang, Zhelong Li,

Xiuqi Yang, and Junjie Yan. Towards unified int8 training for convolutional neural

network. arXiv preprint arXiv:1912.12607, 2019.

[395] Bram-Ernst Verhoef, Nathan Laubeuf, Stefan Cosemans, Peter Debacker, Ioan-

nis Papistas, Arindam Mallik, and Diederik Verkest. Fq-conv: Fully quantized

convolution for efficient and accurate inference. arXiv preprint arXiv:1912.09356,

2019.

[396] Xiaying Wang, Michele Magno, Lukas Cavigelli, and Luca Benini. FANN-on-

MCU: An Open-Source Toolkit for Energy-Efficient Neural Network Inference at

the Edge of the Internet of Things. IEEE Internet of Things Journal, 2020.

[397] Daniele Palossi, Antonio Loquercio, Francesco Conti, Eric Flamand, Davide Scara-

muzza, and Luca Benini. A 64-mw dnn-based visual navigation engine for au-

tonomous nano-drones. IEEE Internet of Things Journal, 6(5):8357–8371, 2019.

[398] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Sym-

posium on Operating Systems Design and Implementation ({OSDI} 16), pages

265–283, 2016.

[399] Olakunle Elijah, Tharek Abdul Rahman, Igbafe Orikumhi, Chee Yen Leow, and

MHD Nour Hindia. An overview of Internet of Things (IoT) and data analytics

in agriculture: Benefits and challenges. IEEE Internet of Things Journal, 5(5):

3758–3773, 2018.

[400] Moeen Hassanalieragh, Alex Page, Tolga Soyata, Gaurav Sharma, Mehmet Aktas,

Gonzalo Mateos, Burak Kantarci, and Silvana Andreescu. Health monitoring and

management using internet-of-things (iot) sensing with cloud-based processing:

Opportunities and challenges. In 2015 IEEE International Conference on Services

Computing, pages 285–292. IEEE, 2015.

[401] SONY. Spresense, 2019. URL https://developer.sony.com/develop/

spresense/.

[402] Naser Hossein Motlagh, Miloud Bagaa, and Tarik Taleb. UAV-based IoT platform:

A crowd surveillance use case. IEEE Communications Magazine, 55(2):128–134,

2017.

https://developer.sony.com/develop/spresense/
https://developer.sony.com/develop/spresense/

Bibliography 184

[403] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick

Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Da-

ley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra

Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg,

John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,

Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Ku-

mar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan

Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Ma-

hony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,

Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan

Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov,

Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-

gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard

Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter perfor-

mance analysis of a tensor processing unit. SIGARCH Comput. Archit. News,

45(2):1–12, June 2017. ISSN 0163-5964. doi: 10.1145/3140659.3080246. URL

https://doi.org/10.1145/3140659.3080246.

[404] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick

Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Da-

ley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra

Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg,

John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,

Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Ku-

mar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan

Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Ma-

hony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,

Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan

Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov,

Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-

gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Wal-

ter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter performance

analysis of a tensor processing unit. In Proceedings of the 44th Annual Inter-

national Symposium on Computer Architecture, ISCA ’17, page 1–12, New York,

NY, USA, 2017. Association for Computing Machinery. ISBN 9781450348928. doi:

10.1145/3079856.3080246. URL https://doi.org/10.1145/3079856.3080246.

https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3079856.3080246

Bibliography 185

[405] Francesco Conti, Manuele Rusci, and Luca Benini. The Memory Challenge in

Ultra-Low Power Deep Learning. In NANO-CHIPS 2030, pages 323–349. Springer,

2020.

[406] James Manyika. The Internet of Things: Mapping the value beyond the hype.

McKinsey Global Institute, 2015.

[407] Mohammad Saeid Mahdavinejad, Mohammadreza Rezvan, Mohammadamin

Barekatain, Peyman Adibi, Payam Barnaghi, and Amit P. Sheth. Machine learn-

ing for internet of things data analysis: a survey. Digital Communications and

Networks, 4(3):161–175, 2018. ISSN 2352-8648. doi: https://doi.org/10.1016/j.

dcan.2017.10.002.

[408] Alessio Burrello, Francesco Conti, Angelo Garofalo, Davide Rossi, and Luca

Benini. Work-in-Progress: DORY: Lightweight Memory Hierarchy Management

for Deep NN Inference on IoT Endnodes. In 2019 International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ ISSS), pages 1–2.

IEEE, 2019.

[409] Neil Tan et al. µtensor, 2019. URL https://github.com/uTensor/uTensor.

[410] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guen-

ther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark

Charlebois, William Chou, et al. Mlperf inference benchmark. arXiv preprint

arXiv:1911.02549, 2019.

[411] Google AI. Or tools, 2015. URL https://developers.google.com/

optimization/.

[412] Christian Pinto and Luca Benini. A highly efficient, thread-safe software cache

implementation for tightly-coupled multicore clusters. In 2013 IEEE 24th Interna-

tional Conference on Application-Specific Systems, Architectures and Processors,

pages 281–288. IEEE, 2013.

[413] Maurice Peemen, Arnaud AA Setio, Bart Mesman, and Henk Corporaal. Memory-

centric accelerator design for convolutional neural networks. In 2013 IEEE 31st

International Conference on Computer Design (ICCD), pages 13–19. IEEE, 2013.

[414] Arthur Stoutchinin, Francesco Conti, and Luca Benini. Optimally scheduling cnn

convolutions for efficient memory access. arXiv preprint arXiv:1902.01492, 2019.

[415] Francesco Conti, Davide Rossi, Antonio Pullini, Igor Loi, and Luca Benini. PULP:

A Ultra-Low Power Parallel Accelerator for Energy-Efficient and Flexible Embed-

ded Vision. Journal of Signal Processing Systems, 84(3):339–354, 2016.

https://github.com/uTensor/uTensor
https://developers.google.com/optimization/
https://developers.google.com/optimization/

Bibliography 186

[416] Selma Saidi, Pranav Tendulkar, Thierry Lepley, and Oded Maler. Optimizing

two-dimensional DMA transfers for scratchpad Based MPSoCs platforms. Micro-

processors and Microsystems, 37(8), 2013.

[417] Anjali S Yeole and Dhananjay R Kalbande. Use of internet of things (iot) in health-

care: A survey. In Proceedings of the ACM Symposium on Women in Research

2016, pages 71–76, 2016.

[418] Hao-Yu Jan, Mei-Fen Chen, Tieh-Cheng Fu, Wen-Chen Lin, Cheng-Lun Tsai, and

Kang-Ping Lin. Evaluation of coherence between ecg and ppg derived parameters

on heart rate variability and respiration in healthy volunteers with/without con-

trolled breathing. Journal of Medical and Biological Engineering, 39(5):783–795,

2019.

[419] Neurosky, 2020. URL ’http://neurosky.com/wp-content/uploads/2016/06/

TOF-side-by-side-competitor-comparison.pdf’.

[420] Aaron Lefohn, Mike Houston, Johan Andersson, Ulf Assarsson, Cass Everitt,

Kayvon Fatahalian, Tim Foley, Justin Hensley, Paul Lalonde, and David Luebke.

Beyond programmable shading (parts i and ii). In ACM SIGGRAPH Courses,

pages 1–312, 2009. doi: 10.1145/1667239.1667246. URL http://doi.acm.org/

10.1145/1667239.1667246.

[421] Anna Shcherbina, C Mikael Mattsson, Daryl Waggott, Heidi Salisbury, Jeffrey W

Christle, Trevor Hastie, Matthew T Wheeler, and Euan A Ashley. Accuracy in

wrist-worn, sensor-based measurements of heart rate and energy expenditure in a

diverse cohort. Journal of personalized medicine, 7(2):3, 2017.

[422] Maarten Falter, Werner Budts, Kaatje Goetschalckx, Véronique Cornelissen, and

Roselien Buys. Accuracy of apple watch measurements for heart rate and energy

expenditure in patients with cardiovascular disease: Cross-sectional study. JMIR

mHealth and uHealth, 7(3):e11889, 2019.

[423] NXP. Nxp lpc4300, 2022. URL https://www.nxp.com/

products/processors-and-microcontrollers/arm-microcontrollers/

general-purpose-mcus/lpc4300-cortex-m4-m0.

[424] STMicroelectronics. Mlcore, 2022. URL

https://www.st.com/resource/en/application_note/

dm00563460-lsm6dsox-machine-learning-core-stmicroelectronics.pdf.

[425] BiosignalsPLUX. Respiban professional 2019, 2019. URL https://

biosignalsplux.com/products/wearables/respiban-pro.html.

'http://neurosky.com/wp-content/uploads/2016/06/TOF-side-by-side-competitor-comparison.pdf'
'http://neurosky.com/wp-content/uploads/2016/06/TOF-side-by-side-competitor-comparison.pdf'
http://doi.acm.org/10.1145/1667239.1667246
http://doi.acm.org/10.1145/1667239.1667246
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc4300-cortex-m4-m0
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc4300-cortex-m4-m0
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc4300-cortex-m4-m0
https://www.st.com/resource/en/application_note/dm00563460-lsm6dsox-machine-learning-core-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00563460-lsm6dsox-machine-learning-core-stmicroelectronics.pdf
https://biosignalsplux.com/products/wearables/respiban-pro.html
https://biosignalsplux.com/products/wearables/respiban-pro.html

Bibliography 187

[426] Empatica. E4 wristband 2014, 2022. URL https://www.empatica.com/en-eu/

research/e4/.

[427] Zhilin Zhang. Iee signal processing cup 2015 dataset, 2022. URL https://sites.

google.com/site/researchbyzhang/ieeespcup2015.

[428] Apple. Apple watch series, 2022. URL https://www.apple.com/lae/watch/.

[429] Fitbit. Fitbit charge 4, 2022. URL https://www.fitbit.com/global/us/

products/trackers/charge4.

[430] ARM. Arm helium, 2017. URL https://www.arm.com/why-arm/technologies/

helium.

[431] ST Microelectornics. Stm32h7, 2022. URL https://www.st.com/en/

microcontrollers-microprocessors/stm32h7-series.html.

[432] ST Microelectornics. Stm32l476, 2022. URL https://www.st.com/resource/

en/datasheet/stm32l476je.pdf.

[433] Steven N. Baldassano, Benjamin H. Brinkmann, Hoameng Ung, Tyler Blevins,

Erin C. Conrad, Kent Leyde, Mark J. Cook, Ankit N. Khambhati, Joost B. Wage-

naar, Gregory A. Worrell, and Brian Litt. Crowdsourcing seizure detection: algo-

rithm development and validation on human implanted device recordings. Brain,

140(6):1680–1691, 2017.

[434] M. A. Bin Altaf and J. Yoo. A 1.83µj/classification, 8-channel, patient-specific

epileptic seizure classification soc using a non-linear support vector machine. IEEE

Transactions on Biomedical Circuits and Systems, 10(1):49–60, Feb 2016. ISSN

1932-4545. doi: 10.1109/TBCAS.2014.2386891.

[435] D. Sopic, A. Aminifar, and D. Atienza. e-Glass: A wearable system for real-time

detection of epileptic seizures. In 2018 IEEE International Symposium on Circuits

and Systems (ISCAS), pages 1–5, May 2018. doi: 10.1109/ISCAS.2018.8351728.

[436] Kaspar Schindler, Christian Rummel, Ralph G. Andrzejak, Marc Goodfellow,

Frédéric Zubler, Eugenio Abela, Roland Wiest, Claudio Pollo, Andreas Steimer,

and Heidemarie Gast. Ictal time-irreversible intracranial eeg signals as markers of

the epileptogenic zone. Clinical Neurophysiology, 127(9):3051–3058, 2016. ISSN

1388-2457. doi: https://doi.org/10.1016/j.clinph.2016.07.001.

[437] P. P. Muhammed Shanir, Kashif Ahmad Khan, Yusuf Uzzaman Khan, Omar Fa-

rooq, and Hojjat Adeli. Automatic seizure detection based on morphological fea-

tures using one-dimensional local binary pattern on long-term EEG. Clinical EEG

and Neuroscience, 49(5):351–362, 2018. doi: 10.1177/1550059417744890.

https://www.empatica.com/en-eu/research/e4/
https://www.empatica.com/en-eu/research/e4/
https://sites.google.com/site/researchbyzhang/ieeespcup2015
https://sites.google.com/site/researchbyzhang/ieeespcup2015
https://www.apple.com/lae/watch/
https://www.fitbit.com/global/us/products/trackers/charge4
https://www.fitbit.com/global/us/products/trackers/charge4
https://www.arm.com/why-arm/technologies/helium
https://www.arm.com/why-arm/technologies/helium
https://www.st.com/en/microcontrollers-microprocessors/stm32h7-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32h7-series.html
https://www.st.com/resource/en/datasheet/stm32l476je.pdf
https://www.st.com/resource/en/datasheet/stm32l476je.pdf

Bibliography 188

[438] W. Zhou, Y. Liu, Q. Yuan, and X. Li. Epileptic seizure detection using lacunarity

and bayesian linear discriminant analysis in intracranial EEG. IEEE TBME, 60

(12):3375–3381, Dec 2013. ISSN 0018-9294. doi: 10.1109/TBME.2013.2254486.

[439] Z. Zhang and K. K. Parhi. Low-complexity seizure prediction from iEEG/sEEG

using spectral power and ratios of spectral power. IEEE Transactions on Biomed-

ical Circuits and Systems, 10(3):693–706, June 2016. ISSN 1932-4545. doi:

10.1109/TBCAS.2015.2477264.

[440] Daniel M. Goldenholz, Amanda Kuhn, Alison Austermuehle, Martin Bachler,

Christopher Mayer, Siegfried Wassertheurer, Sara K. Inati, and William H.

Theodore. Long-term monitoring of cardiorespiratory patterns in drug-resistant

epilepsy. Epilepsia, 58(1):77–84, 2017. doi: 10.1111/epi.13606.

[441] Judith van Andel, Constantin Ungureanu, Johan Arends, Francis Tan, Johannes

Van Dijk, George Petkov, Stiliyan Kalitzin, Thea Gutter, Al de Weerd, Ben Vled-

der, Roland Thijs, Ghislaine van Thiel, Kit Roes, and Frans Leijten. Multimodal,

automated detection of nocturnal motor seizures at home: Is a reliable seizure

detector feasible? Epilepsia Open, 2(4):424–431, Dec 2017. ISSN 2470-9239. doi:

10.1002/epi4.12076.

[442] Xiang Zhang, Lina Yao, Xianzhi Wang, Jessica Monaghan, David Mcalpine, and

Yu Zhang. A survey on deep learning based brain computer interface: Recent

advances and new frontiers. arXiv preprint arXiv:1905.04149, 2019.

[443] Alessio Burrello, Simone Benatti, Kaspar Anton Schindler, Luca Benini, and Ab-

bas Rahimi. An ensemble of hyperdimensional classifiers: Hardware-friendly short-

latency seizure detection with automatic ieeg electrode selection. IEEE journal of

biomedical and health informatics, 2020.

[444] Oh-Young Kwon and Sung-Pa Park. Depression and anxiety in people with

epilepsy. Journal of Clinical Neurology, 10:175–188, 2014. ISSN 1738-6586.

[445] Ramy Hussein, Hamid Palangi, Rabab Ward, and Z Jane Wang. Robust detection

of epileptic seizures using deep neural networks. In Proc. IEEE ICASSP, 2018.

[446] A. Page, C. Sagedy, E. Smith, N. Attaran, T. Oates, and T. Mohsenin. A flexible

multichannel EEG feature extractor and classifier for seizure detection. IEEE

Transactions on Circuits and Systems II: Express Briefs, 62(2):109–113, Feb 2015.

ISSN 1549-7747. doi: 10.1109/TCSII.2014.2385211.

[447] M. Shoaran, M. Farivar, and A. Emami. Hardware-friendly seizure detection with

a boosted ensemble of shallow decision trees. In Proc. IEEE EMBC, pages 1826–

1829, 2016. doi: 10.1109/EMBC.2016.7591074.

Bibliography 189

[448] Benjamin H. Brinkmann, Joost Wagenaar, Drew Abbot, Phillip Adkins, Simone C.

Bosshard, Min Chen, Quang M. Tieng, Jialune He, F. J. Muñoz-Almaraz, Paloma

Botella-Rocamora, Juan Pardo, Francisco Zamora-Martinez, Michael Hills, Wei

Wu, Iryna Korshunova, Will Cukierski, Charles Vite, Edward E. Patterson, Brian

Litt, and Gregory A. Worrell. Crowdsourcing reproducible seizure forecasting in

human and canine epilepsy. Brain, 139(6):1713–1722, 2016. doi: 10.1093/brain/

aww045.

[449] G. K. Bergey. Neurostimulation in the treatment of epilepsy. Exp. Neurol., 244:

87–95, Jun 2013.

[450] P. Afra, C. C. Jouny, and G. K. Bergey. Duration of complex partial seizures: an

intracranial EEG study. Epilepsia, 49(4):677–684, Apr 2008.

[451] Joel Mendez, Sarah Hood, Andy Gunnel, and Tommaso Lenzi. Powered knee and

ankle prosthesis with indirect volitional swing control enables level-ground walking

and crossing over obstacles. Science Robotics, 5(44), 2020.

[452] Alessio Burrello, Kaspar Anton Schindler, Luca Benini, and Abbas Rahimi. Hyper-

dimensional computing with local binary patterns: One-shot learning for seizure

onset detection and identification of ictogenic brain regions from short-time ieeg

recordings. IEEE transactions on bio-medical engineering, 67(2):601–613, 2020.

[453] K. Schindler, H. Gast, L. Stieglitz, A. Stibal, M. Hauf, R. Wiest, L. Mariani, and

C. Rummel. Forbidden ordinal patterns of periictal intracranial EEG indicate

deterministic dynamics in human epileptic seizures. Epilepsia, 52(10):1771–1780,

Oct 2011.

[454] Colin Lea, Rene Vidal, Austin Reiter, and Gregory D Hager. Temporal con-

volutional networks: A unified approach to action segmentation. In European

Conference on Computer Vision, pages 47–54. Springer, 2016.

[455] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. Long short

term memory networks for anomaly detection in time series. In Proceedings, vol-

ume 89, pages 89–94. Presses universitaires de Louvain, 2015.

[456] Alessio Burrello, Davide Brunelli, Marzia Malavisi, and Luca Benini. Enhancing

structural health monitoring with vehicle identification and tracking. In 2020 IEEE

International Instrumentation and Measurement Technology Conference (I2MTC),

pages 1–6. IEEE, 2020.

[457] Lei Ren, Yuxin Liu, Xiaokang Wang, Jinhu Lü, and M Jamal Deen. Cloud-

edge based lightweight temporal convolutional networks for remaining useful life

prediction in iiot. IEEE Internet of Things Journal, 2020.

Bibliography 190

[458] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for sequence

tagging. arXiv preprint arXiv:1508.01991, 2015.

[459] Thorir Mar Ingolfsson, Michael Hersche, Xiaying Wang, Nobuaki Kobayashi,

Lukas Cavigelli, and Luca Benini. Eeg-tcnet: An accurate temporal convolutional

network for embedded motor-imagery brain-machine interfaces, 2020.

[460] Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-

danpur. Extensions of recurrent neural network language model. In 2011 IEEE in-

ternational conference on acoustics, speech and signal processing (ICASSP), pages

5528–5531. IEEE, 2011.

[461] Yuan Shangguan, Jian Li, Qiao Liang, Raziel Alvarez, and Ian McGraw. Optimiz-

ing speech recognition for the edge, 2019.

[462] D. J. Pagliari, Roberta Chiaro, Yukai Chen, E. Macii, and M. Poncino. Opti-

mal input-dependent edge-cloud partitioning for rnn inference. 2019 26th IEEE

International Conference on Electronics, Circuits and Systems (ICECS), pages

442–445, 2019.

[463] Victor Kartsch, Giuseppe Tagliavini, Marco Guermandi, Simone Benatti, Da-

vide Rossi, and Luca Benini. Biowolf: A sub-10-mw 8-channel advanced brain–

computer interface platform with a nine-core processor and ble connectivity. IEEE

transactions on biomedical circuits and systems, 13(5):893–906, 2019.

[464] K. Schindler, C. Rummel, R. G. Andrzejak, M. Goodfellow, F. Zubler, E. Abela,

R. Wiest, C. Pollo, A. Steimer, and H. Gast. Ictal time-irreversible intracranial

EEG signals as markers of the epileptogenic zone. Clin Neurophysiol, 127(9):

3051–3058, 09 2016.

[465] C. Geier, S. Bialonski, C. E. Elger, and K. Lehnertz. How important is the seizure

onset zone for seizure dynamics? Seizure, 25:160–166, Feb 2015.

[466] C. Harden, T. Tomson, D. Gloss, J. Buchhalter, J. H. Cross, E. Donner, J. A.

French, A. Gil-Nagel, D. C. Hesdorffer, W. H. Smithson, M. C. Spitz, T. S. Wal-

czak, J. W. Sander, and P. Ryvlin. Practice guideline summary: Sudden unex-

pected death in epilepsy incidence rates and risk factors: Report of the Guideline

Development, Dissemination, and Implementation Subcommittee of the American

Academy of Neurology and the American Epilepsy Society. Neurology, 88(17):

1674–1680, Apr 2017.

[467] J. S. Naftulin, O. J. Ahmed, G. Piantoni, J. B. Eichenlaub, L. E. Martinet, M. A.

Kramer, and S. S. Cash. Ictal and preictal power changes outside of the seizure

focus correlate with seizure generalization. Epilepsia, 59(7):1398–1409, Jul 2018.

Bibliography 191

[468] N. M. Wetjen, W. R. Marsh, F. B. Meyer, G. D. Cascino, E. So, J. W. Brit-

ton, S. M. Stead, and G. A. Worrell. Intracranial electroencephalography seizure

onset patterns and surgical outcomes in nonlesional extratemporal epilepsy. J.

Neurosurg., 110(6):1147–1152, Jun 2009.

[469] C. C. Jouny, P. J. Franaszczuk, and G. K. Bergey. Characterization of epileptic

seizure dynamics using Gabor atom density. Clin Neurophysiol, 114(3):426–437,

Mar 2003.

[470] S. Wiebe, W. T. Blume, J. P. Girvin, and M. Eliasziw. A randomized, controlled

trial of surgery for temporal-lobe epilepsy. N. Engl. J. Med., 345(5):311–318, Aug

2001.

[471] Y. Nagahama, A. J. Schmitt, D. Nakagawa, A. S. Vesole, J. Kamm, C. K. Kovach,

D. Hasan, M. Granner, B. J. Dlouhy, M. A. Howard, and H. Kawasaki. Intracranial

EEG for seizure focus localization: evolving techniques, outcomes, complications,

and utility of combining surface and depth electrodes. J. Neurosurg., pages 1–13,

May 2018.

[472] Benjamin W Nelson, Carissa A Low, Nicholas Jacobson, Patricia Areán, John

Torous, and Nicholas B Allen. Guidelines for wrist-worn consumer wearable as-

sessment of heart rate in biobehavioral research. NPJ Digital Medicine, 3(1):1–9,

2020.

[473] M. Schmuck, L. Benini, and A. Rahimi. Hardware Optimizations of Dense Bi-

nary Hyperdimensional Computing: Rematerialization of Hypervectors, Binarized

Bundling, and Combinational Associative Memory. ArXiv e-prints, July 2018.

[474] H. Shiao, V. Cherkassky, J. Lee, B. Veber, E. E. Patterson, B. H. Brinkmann,

and G. A. Worrell. Svm-based system for prediction of epileptic seizures from

iEEG signal. IEEE Transactions on Biomedical Engineering, 64(5):1011–1022,

May 2017. ISSN 0018-9294. doi: 10.1109/TBME.2016.2586475.

[475] Felix Rosenow and Hans Lüders. Presurgical evaluation of epilepsy. Brain, 124

(9):1683–1700, 2001. doi: 10.1093/brain/124.9.1683. URL http://dx.doi.org/

10.1093/brain/124.9.1683.

[476] Matthew A. Kelly, Dorothea Blostein, and D. J. K. Mewhort. Encoding struc-

ture in holographic reduced representations. Canadian Journal of Experimental

Psychology, 67(2):79–93, 2013. doi: 10.1037/a0030301.

[477] Stephen Wolfram. Random sequence generation by cellular automata. Advances

in Applied Mathematics, 7(2):123–169, 1986. ISSN 0196-8858.

http://dx.doi.org/10.1093/brain/124.9.1683
http://dx.doi.org/10.1093/brain/124.9.1683

Bibliography 192

[478] Turkey N. Alotaiby, Saleh A. Alshebeili, Tariq Alshawi, Ishtiaq Ahmad, and

Fathi E. Abd El-Samie. EEG seizure detection and prediction algorithms: a sur-

vey. EURASIP Journal on Advances in Signal Processing, 2014(1):183, Dec 2014.

ISSN 1687-6180. doi: 10.1186/1687-6180-2014-183.

[479] Yinxia Liu, Weidong Zhou, Qi Yuan, and Shuangshuang Chen. Automatic

seizure detection using wavelet transform and svm in long-term intracranial EEG.

IEEE transactions on neural systems and rehabilitation engineering, 20(6):749–

755, 2012.

[480] Thomas De Cooman, Carolina Varon, Anouk Van de Vel, Katrien Jansen, Berten

Ceulemans, Lieven Lagae, and Sabine Van Huffel. Adaptive nocturnal seizure

detection using heart rate and low-complexity novelty detection. Seizure, 59:48–

53, 2018. ISSN 1059-1311.

[481] Arends Johan B. A. M. Movement-based seizure detection. Epilepsia, 59(S1):

30–35, 2018. doi: 10.1111/epi.14053.

[482] Sriram Ramgopal, Sigride Thome-Souza, Michele Jackson, Navah Ester Kadish,

Iván Sánchez Fernández, Jacquelyn Klehm, William Bosl, Claus Reinsberger,

Steven Schachter, and Tobias Loddenkemper. Seizure detection, seizure prediction,

and closed-loop warning systems in epilepsy. Epilepsy & Behavior, 37:291–307,

2014. ISSN 1525-5050.

[483] Han-Tai Shiao, Vladimir Cherkassky, Jieun Lee, Brandon Veber, Edward E Pat-

terson, Benjamin H Brinkmann, and Gregory A Worrell. Svm-based system for

prediction of epileptic seizures from iEEG signal. IEEE Trans. Biomed. Engineer-

ing, 64(5):1011–1022, 2017.

[484] Amir Hossein Ansari, Vladimir Matic, Maarten De Vos, Gunnar Naulaers,

PJ Cherian, and Sabine Van Huffel. Improvement of an automated neonatal

seizure detector using a post-processing technique. In Engineering in Medicine

and Biology Society (EMBC), 2015 37th Annual International Conference of the

IEEE, pages 5859–5862. IEEE, 2015.

[485] Piyush Swami, Tapan K Gandhi, Bijaya K Panigrahi, Manjari Tripathi, and Sneh

Anand. A novel robust diagnostic model to detect seizures in electroencephalog-

raphy. Expert Systems with Applications, 56:116–130, 2016.

[486] Paula Branco, Lúıs Torgo, and Rita P Ribeiro. A survey of predictive modeling

on imbalanced domains. ACM Computing Surveys (CSUR), 49(2):31, 2016.

[487] DE Hernández, L Trujillo, E Z-Flores, OM Villanueva, and O Romo-Fewell. De-

tecting epilepsy in EEG signals using time, frequency and time-frequency domain

Bibliography 193

features. In Computer Science and Engineering—Theory and Applications, pages

167–182. Springer, 2018.

[488] Blerim Emruli, Fredrik Sandin, and Jerker Delsing. Vector space architecture for

emergent interoperability of systems by learning from demonstration. Biologically

Inspired Cognitive Architectures, 11:53–64, 2015. ISSN 2212-683X.

[489] P. Kanerva. Fully distributed representation. In Real world computing symposium,

97:358–365, 1997.

[490] D. Kleyko, A. Rahimi, D. A. Rachkovskij, E. Osipov, and J. M. Rabaey.

Classification and recall with binary hyperdimensional computing: Tradeoffs in

choice of density and mapping characteristics. IEEE Transactions on Neu-

ral Networks and Learning Systems, pages 1–19, 2018. ISSN 2162-237X. doi:

10.1109/TNNLS.2018.2814400.

[491] Ralph G. Andrzejak, Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter

David, and Christian E. Elger. Indications of nonlinear deterministic and finite-

dimensional structures in time series of brain electrical activity: Dependence on

recording region and brain state. Phys. Rev. E, 64:061907, Nov 2001. doi: 10.

1103/PhysRevE.64.061907.

[492] T. Sunil Kumar, Vivek Kanhangad, and Ram Bilas Pachori. Classification of

seizure and seizure-free EEG signals using local binary patterns. Biomedical Signal

Processing and Control, 15:33–40, 2015. ISSN 1746-8094.

[493] V. Cherkassky, B. Veber, J. Lee, H. T. Shiao, N. Patterson, G. A. Worrell, and

B. H. Brinkmann. Reliable seizure prediction from EEG data. In Proc. IJCNN,

2015. doi: 10.1109/IJCNN.2015.7280327.

[494] O. Räsänen. Generating Hyperdimensional Distributed Representations from Con-

tinuous Valued Multivariate Sensory Input. In Proceedings of the 37th Annual

Meeting of the Cognitive Science Society, pages 1943–1948, 2015.

[495] Andriy Temko. Accurate heart rate monitoring during physical exercises using

ppg. IEEE Transactions on Biomedical Engineering, 64(9):2016–2024, 2017.

[496] Pritam Sarkar and Ali Etemad. Cardiogan: Attentive generative adversarial

network with dual discriminators for synthesis of ecg from ppg. arXiv preprint

arXiv:2010.00104, 2020.

[497] Zhilin Zhang. Photoplethysmography-based heart rate monitoring in physical ac-

tivities via joint sparse spectrum reconstruction. IEEE transactions on biomedical

engineering, 62(8):1902–1910, 2015.

Bibliography 194

[498] Mahdi Boloursaz Mashhadi, Ehsan Asadi, Mohsen Eskandari, Shahrzad Kiani, and

Farokh Marvasti. Heart rate tracking using wrist-type photoplethysmographic

(ppg) signals during physical exercise with simultaneous accelerometry. IEEE

Signal Processing Letters, 23(2):227–231, 2015.

[499] Dwaipayan Biswas, Luke Everson, Muqing Liu, Madhuri Panwar, Bram-Ernst

Verhoef, Shrishail Patki, Chris H Kim, Amit Acharyya, Chris Van Hoof, Mario

Konijnenburg, et al. Cornet: Deep learning framework for ppg-based heart rate es-

timation and biometric identification in ambulant environment. IEEE transactions

on biomedical circuits and systems, 13(2):282–291, 2019.

[500] Heewon Chung, Hooseok Lee, and Jinseok Lee. Finite state machine framework for

instantaneous heart rate validation using wearable photoplethysmography during

intensive exercise. IEEE journal of biomedical and health informatics, 23(4):1595–

1606, 2018.

[501] Dwaipayan Biswas, Neide Simões-Capela, Chris Van Hoof, and Nick

Van Helleputte. Heart rate estimation from wrist-worn photoplethysmography:

A review. IEEE Sensors Journal, 19(16):6560–6570, 2019.

[502] Hang Sik Shin, Chungkeun Lee, and Myoungho Lee. Adaptive threshold method

for the peak detection of photoplethysmographic waveform. Computers in biology

and medicine, 39(12):1145–1152, 2009.

[503] X. Chang, G. Li, L. Tu, G. Xing, and T. Hao. Deepheart: Accurate heart rate

estimation from ppg signals based on deep learning. In 2019 IEEE 16th Interna-

tional Conference on Mobile Ad Hoc and Sensor Systems (MASS), pages 371–379,

2019.

[[van Gent] t al.(2019)[van Gent], Farah, [van Nes], and [van Arem]]RollingMean2019

Paul [van Gent], Haneen Farah, Nicole [van Nes], and Bart [van Arem]. Heartpy:

A novel heart rate algorithm for the analysis of noisy signals. Transportation

Research Part F: Traffic Psychology and Behaviour, 66:368–378, 2019. ISSN

1369-8478. doi: https://doi.org/10.1016/j.trf.2019.09.015. URL http://www.

sciencedirect.com/science/article/pii/S1369847818306740.

[505] Puyudi Yang, Cho-Jui Hsieh, and Jane-Ling Wang. History pca: A new algorithm

for streaming pca, 2018.

[506] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped

variables. Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy), 68(1):49–67, 2006.

http://www.sciencedirect.com/science/article/pii/S1369847818306740
http://www.sciencedirect.com/science/article/pii/S1369847818306740

Bibliography 195

[507] Eunhyeok Park, Dongyoung Kim, Soobeom Kim, Yong-Deok Kim, Gunhee Kim,

Sungroh Yoon, and Sungjoo Yoo. Big/little deep neural network for ultra low

power inference. In 2015 International Conference on Hardware/Software Codesign

and System Synthesis (CODES+ ISSS), pages 124–132. IEEE, 2015.

[508] Leandro Giacomini Rocha, Dwaipayan Biswas, Bram-Ernst Verhoef, Sergio Bampi,

Chris Van Hoof, Mario Konijnenburg, Marian Verhelst, and Nick Van Helleputte.

Binary cornet: accelerator for hr estimation from wrist-ppg. IEEE Transactions

on Biomedical Circuits and Systems, 14(4):715–726, 2020.

[509] Z Ge, PWC Prasad, N Costadopoulos, Abeer Alsadoon, AK Singh, and A El-

chouemi. Evaluating the accuracy of wearable heart rate monitors. In 2016 2nd

International Conference on Advances in Computing, Communication, & Automa-

tion (ICACCA)(Fall), pages 1–6. IEEE, 2016.

[510] Daniele Jahier Pagliari, Enrico Macii, and Massimo Poncino. Dynamic Bit-width

Reconfiguration for Energy-Efficient Deep Learning Hardware. In Proceedings of

the International Symposium on Low Power Electronics and Design, ISLPED ’18,

New York, NY, USA, 2018. ACM. URL http://doi.acm.org/10.1145/3218603.

3218611.

[511] L. Mocerino and A. Calimera. Fast and accurate inference on microcontrollers with

boosted cooperative convolutional neural networks (bc-net). IEEE Transactions

on Circuits and Systems I: Regular Papers, pages 1–12, 2020. doi: 10.1109/TCSI.

2020.3039116.

[512] Francesco Daghero, Alessio Burrello, Daniele Jahier Pagliari, Luca Benini, Enrico

Macii, and Massimo Poncino. Energy-Efficient Adaptive Machine Learning on IoT

End-Nodes With Class-Dependent Confidence. In Proceedings of the International

Conference on Electronics Circuits and Systems, ICECS 2020, pages 1–4. IEEE,

2020.

[513] Mahmoud Tavakoli, Carlo Benussi, Pedro Alhais Lopes, Luis Bica Osorio, and

Anibal T de Almeida. Robust hand gesture recognition with a double channel

surface emg wearable armband and svm classifier. Biomedical Signal Processing

and Control, 46:121–130, 2018.

[514] Bardienus P Duisterhof, Srivatsan Krishnan, Jonathan J Cruz, Colby R Banbury,

William Fu, Aleksandra Faust, Guido CHE de Croon, and Vijay Janapa Reddi.

Learning to seek: Autonomous source seeking with deep reinforcement learning

onboard a nano drone microcontroller. arXiv preprint arXiv:1909.11236, 2019.

http://doi.acm.org/10.1145/3218603.3218611
http://doi.acm.org/10.1145/3218603.3218611

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions
	1.2 List of Publications

	2 Background
	2.1 Deep Neural Networks
	2.1.1 Temporal Convolutional Networks
	2.1.2 Attention & Transformers

	2.2 Neural Architecture Search
	2.2.1 Reinforcement Learning based NAS
	2.2.2 Differentiable NAS
	2.2.3 Dmasking NAS

	2.3 Microcontrollers: ARM & RISC-V platforms
	2.3.1 ARM Platforms
	2.3.1.1 Single-core: STM32L4 and STM32H7
	2.3.1.2 Dual-core: STM32WB55
	Hwatch

	2.3.2 RISC-V Platforms: PULP & GAP8
	2.3.2.1 MPIC
	2.3.2.2 GAP8

	2.4 Biosignals: Sensors and processing
	2.4.1 Photoplethysmography and PPG-based HR
	2.4.2 Surface Electromyographic Signal

	3 Neural Architecture Search for Efficient Deployment on MCUs
	3.1 Related Works
	3.2 Lightweight Neural Architecture Search for Temporal Convolutional Networks at the Edge
	3.2.1 Search Space
	3.2.1.1 Channels Search
	3.2.1.2 Receptive Field Search
	3.2.1.3 Dilation Search
	3.2.1.4 Joint Search

	3.2.2 Regularization
	3.2.2.1 Size Regularizer
	3.2.2.2 OPs Regularizer

	3.2.3 Training Procedure
	3.2.4 Benchmarks
	3.2.4.1 PPG-based Heart-Rate Monitoring
	3.2.4.2 ECG-based Arrhythmia Detection
	3.2.4.3 sEMG-based Hand-Gesture Recognition
	3.2.4.4 Keyword Spotting

	3.2.5 Experimental Results
	3.2.5.1 Search Space Exploration
	3.2.5.2 Ablation Studies
	Hyper-parameters
	Regularizers

	3.2.5.3 Comparison with state-of-the-art NAS tools
	3.2.5.4 Embedded Deployment

	3.3 Channel-wise Mixed-precision Assignment for DNN Inference on Constrained Edge Nodes
	3.3.1 Precision Assignment Optimization Method
	3.3.2 Training Procedure
	3.3.3 Implementation Details
	3.3.4 Experimental Results
	3.3.4.1 Setup
	3.3.4.2 Search-Space Exploration
	3.3.4.3 Results Analysis

	3.4 Multi-Complexity-Loss DNAS for Energy-Efficient and Memory-Constrained Deep Neural Networks
	3.4.1 Weighting Losses
	3.4.2 Experimental Results
	3.4.2.1 Setup
	3.4.2.2 Search-Space Exploration
	3.4.2.3 Architecture Details

	4 Deployment of Deep Neural Networks on MCUs
	4.1 Related Works
	4.1.1 Optimized software & ISA for DNN computation
	4.1.2 Memory hierarchy management
	4.1.3 DNN-oriented microcontrollers and related tools

	4.2 DORY: Automatic End-to-End Deployment of Real-World DNNs on Low-Cost IoT MCUs
	4.2.1 ONNX Decoder
	4.2.2 Layer Analyzer
	4.2.2.1 DORY Tiling Solver
	4.2.2.2 GAP8-specific Heuristics & Constraints
	4.2.2.3 DORY SW-cache Generator

	4.2.3 DORY Hybrid Model
	4.2.4 Network Parser
	4.2.4.1 Buffer allocation stack & Residual connections

	4.2.5 Results
	4.2.5.1 Single layer performance & SoA comparison
	4.2.5.2 End-to-end network performance
	4.2.5.3 End-to-end MobileNet-v1 and -v2 & SoA comparison
	4.2.5.4 In-depth analysis of MobileNet-v1 execution

	4.2.6 Ablation Study
	4.2.6.1 Single tile performance
	4.2.6.2 Hybrid optimization for Depthwise layers
	4.2.6.3 Voltage and frequency scaling
	4.2.6.4 Memory hierarchy sizing
	4.2.6.5 Single core performance on different architectures

	4.3 TCN Mapping Optimization for Ultra-Low Power Time-Series Edge Inference
	4.3.1 TCN Kernel Toolkit
	4.3.1.1 Design Choices
	4.3.1.2 1D Convolutional Kernels
	4.3.1.3 Kernel modeling and selection

	4.3.2 Experimental Results and Discussion
	4.3.2.1 Kernels Comparison
	4.3.2.2 Comparison with State-of-the-art NN backends
	4.3.2.3 Complete use cases

	4.4 A Microcontroller is All You Need: Enabling Transformer Execution on Low-Power IoT Endnodes
	4.4.1 Self-Attention Kernels
	4.4.2 Linear Layers
	4.4.3 Matrix Multiplications
	4.4.4 Kernel execution loops
	4.4.5 Quantization
	4.4.6 TinyRadar Transformer
	4.4.7 Experimental Results
	4.4.7.1 Kernel performance
	4.4.7.2 Comparison with the state-of-the-art
	4.4.7.3 TinyRadar Transformer performance

	5 Biosignal analysis with deep neural networks on the edge
	5.1 Q-PPG: Energy-Efficient PPG-based Heart Rate Monitoring on Wearable Devices
	5.1.1 Q-PPG Exploration Flow
	5.1.1.1 Input Data and Seed Network
	5.1.1.2 Architecture Optimization
	Search Protocol

	5.1.1.3 Precision Optimization
	Search Protocol

	5.1.1.4 Post-processing
	5.1.1.5 Fine-Tuning

	5.1.2 Results
	5.1.2.1 The PPG-Dalia Dataset
	5.1.2.2 Architecture Optimization Results
	5.1.2.3 State-of-the-art comparison
	5.1.2.4 Precision Optimization
	5.1.2.5 Deployment Results

	5.2 Bioformers: Embedding Transformers for Ultra-Low Power sEMG-based Gesture Recognition
	5.2.1 Bioformer: Network Topology
	5.2.2 Bioformer: Training
	5.2.3 Experimental Setup & Dataset
	5.2.4 Experimental Results
	5.2.4.1 Ninapro DB6 benchmark
	5.2.4.2 Ablation Study: pre-training & Patch Dimension
	5.2.4.3 Deployment on GAP8

	6 Conclusions
	Bibliography

