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Abstract

Today we live in an age where the internet and artificial intelligence al-
low us to search for information through impressive amounts of data, open-
ing up revolutionary new ways to make sense of reality and understand our
world. However, it is still an area of improvement to exploit the full po-
tential of large amounts of explainable information by distilling it automat-
ically in an intuitive and user-centred explanation. For instance, different
people (or artificial agents) may search for and request different types of
information in a different order, so it is unlikely that a short explanation
can suffice for all needs in the most generic case. Moreover, dumping a
large portion of explainable information in a one-size-fits-all representa-
tion may also be sub-optimal, as the needed information may be scarce and
dispersed across hundreds or thousands of pages. The aim of this work is,
therefore, to investigate how to automatically generate (user-centred) ex-
planations from heterogeneous and large collections of data, with a focus
on the concept of explanation in a broad sense, as a critical artefact for
intelligence, regardless of whether it is human or robotic. Our approach
builds on and extends Achinstein’s philosophical theory of explanations,
where explaining is an illocutionary (i.e., broad but relevant and deliberate)
act of usefully answering questions. Specifically, we provide the theoretical
foundations of Explanatory Artificial Intelligence (YAI), formally defining
a user-centred explanatory tool and the space of all possible explanations,
or explanatory space, generated by it. We present empirical results in sup-
port of our theory, showcasing the implementation of new YAI tools and
strategies for assessing explainability. To justify and evaluate the proposed
theories and models, we considered case studies and examples at the inter-
section of artificial intelligence and law, particularly European legislation.
Ultimately, our tools helped produce better explanations of software doc-
umentation and legal texts for humans and complex regulations for rein-
forcement learning agents.
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Introduction

THE MAIN research question answered with this work is how to al-
gorithmically generate user-centred and goal-oriented explanations
about something to explain (also called explanandum) from a suffi-

ciently large and heterogeneous collection of explainable information when
no assumptions are available about the recipient of the explanation (also
called explainee). In particular, we study what defines and constitutes
Explanatory Artificial Intelligence (YAI) as a presentation logic capable of
selecting information that can be used to explain and effectively convey
knowledge to an end-user. To do so, we build on and extend philosoph-
ical theories of explanations, framing the act of explaining as answering
questions (plural) with the specific intent (also called illocution) of con-
cretely producing understanding in someone. We also present new theo-
retical models and concrete software applications to generate and assess
explanations for human and artificial intelligence.

In this work, we explore various case studies and examples to justify
and evaluate our proposed theories and tools. Our focus lies primarily on
the intersection of artificial intelligence and law, with additional considera-
tion given to finance, healthcare, and robotics. By applying our theory, we
aim to achieve the following objectives:

• Develop explanatory software that complies with the European Gen-
eral Data Protection Regulation;

• Assess the compliance of software documentation in finance and health-
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Introduction

care against Business-to-Consumer and Business-to-Business require-
ments established by European legal provisions;

• Improve educational textbooks to more effectively explain legal con-
cepts to students, with a focus on teaching them how to write a legal
memorandum according to the U.S. legal system;

• Enhance the performance and adaptability of Reinforcement Learn-
ing agents, allowing for a more efficient learning process in under-
standing and adhering to (road) regulations.

Notably, there are two main benefits from this research. First, it can
foster the deployment of automated decision-making systems in the EU
landscape by defining workable methods for the production and evalua-
tion of human-centred and lawful explanations. Second, it provides new
formalisms for the design of efficient, user-centred explanatory processes,
providing insights into how these can be adapted to enhance machine learn-
ing. In other words, this research is relevant to the current social, legal and
technological context and addresses long-studied problems.

The production of explanations is central to the ability of human be-
ings to make sense of reality, communicate and produce scientific discov-
eries. For this reason, it has been studied since ancient times1, assuming an
ever-increasing importance for various disciplines, including the sciences
of education, philosophy, law and also computer science (with Artificial
Intelligence).

In computer science, interest in the concept of explanation has grown
with the importance of Artificial Intelligence (AI) in our society and the
increasing need to explain the complexity of modern software systems. In-
deed, not being able to explain the decisions provided by an automated
decision-maker could have disruptive effects on the welfare of society, in-
dustry and public administration, negatively affecting the lives of billions
of people. This need gave rise to Explainable Artificial Intelligence (XAI),
as a discipline whose aim is to explain AI [9], and to numerous political ini-
tiatives to prevent the potential damage that a lack of explainability could
have in a complex society such as ours.

Governments have started to act towards the establishment of ground
rules of behaviour for complex systems. It has happened, for instance,

1One of the first known philosophers to (indirectly) work on the concept of explanation
was Aristotle with his theory of causation [204].
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with the enactment of the European General Data Protection Regulation
(GDPR)2, which establishes fairness, lawfulness and transparency as fun-
damental principles for data processing tools, identifying a new right to
explanation for individuals whose legal status is affected by an algorithm.
As a result, several expert groups, including those acting for the European
Commission, have started asking the AI industry to adopt an ethics code of
conducts as quickly as possible [43, 74], drawing a set of expectations to
meet in order to guarantee citizens a right to explanation.

Today, the EU has several laws in force, which establish obligations
of explainability based on who uses AI (e.g., public authorities, private
companies) and the degree of automation of the decision-making process
(e.g., fully or partially automated) [22]. Existing European laws (e.g., the
GDPR, or the proposed Artificial Intelligence Act3) require AI developers
to explain the logic of their software and produce ad hoc documentation.

Since, in theory, there can be an infinite number of different and het-
erogeneous types of explanations, identifying a minimum set of properties
that all reasonable explanations should possess is not trivial. Though laws,
legislators, industry and policy-makers have tried (directly or indirectly) to
address this issue. For instance, the High-Level Expert Group on Artificial
Intelligence (AI-HLEG) [147] was established in 2018 by the European
Commission to identify a list of core ethical principles for trustworthy AI
tools. According to the AI-HLEG, explanations should be “adapted to the
expertise of the stakeholder concerned” (e.g., layperson, regulator or re-
searcher). Moreover, they should be “highly dependent on the context”
[147], putting individual’s needs at the centre and indicating a preferred
(user-centred) direction on how to shape explanations.

However, fully explaining complex (e.g., an AI system) or large (e.g.,
the Internet) amounts of information in an intuitive and user-centred man-
ner is still an open problem. For instance, different explainees may search
for and request different types of information, even if explanatory docu-
ments (e.g., books, articles, web pages, technical documentation) usually
have predefined exposition and content. Different books on the same sub-
ject expound the same knowledge in different ways and with different levels

2Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April
2016 on the protection of natural persons concerning the processing of personal data and
the free movement of such data, and repealing Directive 95/46/EC, https://eur-le
x.europa.eu/eli/reg/2016/679/oj

3https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:
52021PC0206
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Introduction

of detail. Not to mention that the background knowledge of different ex-
plainees can vary considerably, so even the most common concepts have
to be explained in depth every time an explainee needs to acquire them or
refresh his/her memory.

Most of the available explanatory content is static (i.e., generated once
and for all, regardless of the needs and background of the readers), with
information that may be scattered over hundreds or thousands of pages and
indirectly dependent on external knowledge to be understood by the reader.
This type of static representation in the most generic scenario is suboptimal
and time-consuming because helpful information may be sparse or absent.
As a metaphor, consider the goal-oriented aspects of explaining a complex
project akin to searching for information about a bank robbery using the
recording of a Closed-Circuit Camera (CCC) in front of the bank entrance.
The fact that the CCC system can store hours of good-quality video is in-
strumental, but more is needed to determine the usefulness of the CCC
service. For instance, investigators may know the time of the robbery but
not the face of the robbers. They may know their faces but not how long
they waited outside of the entrance, or the number of people that entered,
or the direction they fled to, or the licence plate of the car they drove, or
whether they had been there before for recognisance of the place, or even
the same questions could be made not for the bank robbery but for a night
burglary at the liquor store two doors down the bank. It is the investiga-
tor’s specific goal, not the recording machine’s quality and technicalities,
that determines the questions that the CCC system must answer. Therefore,
more is needed than providing 48 hours of good quality video with no tool
for navigating it other than watching it at 1x speed.

In practice, the difference between explainable information and expla-
nations becomes more apparent when the size of explainable information
is sufficiently large. One can imagine many examples (besides the CCC
system) where searching for an explanation is equivalent to looking for a
needle in a haystack of explainable information. For example, suppose that
the user of a complicated AI-based credit approval system deployed by a
bank needs to know why the system rejected his/her loan application and
what to do to change that outcome. In this case, the bare output of a XAI
might not be enough to entirely understand how to change a loan applica-
tion’s outcome. At the same time, the documentation about how a credit
score is computed and used for approval might be too burdensome, com-
plicated and technical for a layperson. Indeed, the XAI might be able to
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tell the applicant that she/he was rejected because of an excessive amount
of “credit inquiries”. However, it cannot tell how to reduce the number of
such inquiries, nor that only the “hard (credit) inquiries” should be avoided,
or what “hard inquiries” are.

In other words, static or (relatively) short explanations alone do not pro-
vide enough information to answer all the possible questions. Instead, their
output needs to be reorganised and enriched with additional information.
So, generally speaking, what happens is that explaining to intelligent be-
ings (e.g., humans) is a highly challenging task, regardless of whether what
has to be explained (i.e., the explanandum) is an AI, its documentation, a
scientific article, a regulation, or a textbook. Additionally, the complexity
of this task is increased by the elusiveness of the concept of explanation,
being hard to define formally in a computer-friendly way, considering the
abstract nature of current theories of explanations, which come mainly from
philosophy.

In particular, the concept of explanation in philosophy started to have a
more precise role in the 20th century, with the growth and development of
the philosophy of science driven by Hempel and Oppenheim [88]. Even-
tually, this gave rise to several competing theories. Some of them fo-
cus mainly on scientific approaches and causality. For example, Causal
Realism [176] frames explanations as descriptions of causes and effects,
while Constructive Empiricism [210] defines explanations as descriptions
of causality that are statistically plausible. Some others (e.g., Achinstein’s
[2]) advocate a theory of explanation that is more grounded in the way peo-
ple carry out explanations [131], thus opening up to types of explanations
other than causality (cf. Chapter 2).

This work starts from the work of the AI-HLEG, identifying user-centrality
as the cornerstone of any framework for explanatory tools, and uses Achin-
stein’s theory of explanations [2] from Ordinary Language Philosophy to
define a model of the user-centred explanatory process. In particular, this
dissertation broadly focuses on the concept of explanation as a crucial arte-
fact for intelligence, regardless of whether it is human or robotic.

This document aims to address five primary research questions con-
cerning explaining, explanations, and explainability in the context of artifi-
cial intelligence. Each research question is labelled as RQ1, RQ2, and so
on, and is accompanied by a set of more specific sub-questions:

RQ1. How can one define explaining, explanations and explainability?

a) What are the philosophical theories of explanation that align with
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the expectations set forth in laws and ethical guidelines, such as
those found in European regulations like the GDPR and the pro-
posed AI Act?

b) Can a philosophical theory be interpreted in a computer-friendly
way?

RQ2. How to quantitatively evaluate explanations and explainability?

a) Is evaluating explanations the same of evaluating explainability?

b) How can a formal definition of explanation be used to construct
a metric to objectively measure the degree of explainability of
textual information?

RQ3. How to model an automatic (user-centred) explanatory process?

a) How can a philosophical theory of explanations be adapted to a
computational context?

b) What are the key components of a user-centred explanatory tool,
and how can the space of all possible explanations, or explana-
tory space, generated by such a tool be formally defined and nav-
igated?

RQ4. How to algorithmically generate explanations for humans?

a) How can linguistic theories, data mining, and AI techniques be
employed to implement the identified model of explanatory pro-
cess?

b) How can the algorithmic explanation generation process be adapted
for different domains, such as legal or educational contexts?

RQ5. Would a better understanding of what constitutes an explanatory pro-
cess help improve artificial intelligence (i.e., machine learning)?

a) How can the identified model of explanatory process be applied
to improve the learning efficiency of artificial intelligence, specif-
ically Reinforcement Learning (RL) agents?

The methodology adopted to answer the above research questions com-
prises the following steps and publications. First, we conducted an ex-
ploratory literature review and analysis of theories of explanation in con-
temporary philosophy, looking for intersections with legal requirements

7



Introduction

(stemming from the GDPR and the AI Act) and ethical guidelines (pub-
lications: [192, 196, 188, 198, 202]). We then identified a definition of
explanations, explainability and explainable information, and the mecha-
nisms for evaluating them (publications: [187, 188, 190, 191]). Next, we
defined the properties and characteristics that an explanatory process should
possess, defining a user-centred explanatory process and the space of all
possible explanations generated by it (publications: [196, 189]). Finally,
we designed a model to concretely implement the explanatory tools, thus
creating different YAI for humans and artificial intelligence, evaluating the
quality and generality of the model (publications: [196, 194, 195, 188, 189,
199, 190, 200, 201]).

More specifically, the work of this thesis contributes new theory,
models and concrete tools, including:

C1. A computer-friendly extension of Achinstein’s theory that starts from
the definition of explanatory illocution as the main mechanism respon-
sible for anticipating unformulated questions. See Chapter 3.

C2. A formal definition of explanatory tool (alternatively called YAI) and
a new model, called the SAGE-ARS4 model, to concretely implement
legally compliant and user-centred YAI software by defining: i) the
heuristics for efficiently and effectively exploring an explanatory space
(ARS: Abstraction, Relevance and Simplicity); ii) the set of (SAGE:
Sourcing, Adapting, Grounding and Expanding) commands for an ex-
plainee to interact with the explanatory process. See Chapter 5.

C3. DoX: the first metric based on Ordinary Language Philosophy to mea-
sure explainability and able to objectively quantify the Degree of Ex-
plainability of any textual information written in natural language (e.g.,
English). See Chapter 4 and Chapter 8.

C4. YAI4Hu: an implementation of the SAGE-ARS model (evaluated with
two user studies involving more than 190 participants) based on AI
for question-answering, for better explaining AI systems and software
documentation (in accordance with the GDPR). See Chapter 6 and
Chapter 7.

C5. Two new algorithms for question-answering (SyntagmTuner and Dis-
coLQA), on technical documents, without expensive datasets and train-

4“Ars” means art in Latin.

8



Introduction

ing procedures, together with a new evaluation dataset for answer re-
trieval that includes more than 70 questions and 200 answers on 6 dif-
ferent European norms. These algorithms are based on linguistic theo-
ries of discourse [157] and sentential meaning representation [15]. See
Chapter 9.

C6. YAI4Edu: an intelligent interface that extends YAI4Hu and uses DoX,
SyntagmTuner and DiscoLQA to improve the explanatory power of a
textbook for teaching how to write a legal memorandum according to
the U.S. legal system. See Chapter 10.

C7. XAER: a novel AI mechanism using the ARS heuristics for intelli-
gently explaining complex regulations and reward functions more ef-
ficiently and effectively to single-agent automated decision makers
based on seminal off-policy RL algorithms (i.e., DQN, TD3, SAC).
See Chapter 12.

C8. DEER: an extension of XAER for multi-agent RL algorithms. See
Chapter 13.

All these contributions demonstrate that user-centred explanations are bet-
ter understood as individual, goal-driven paths within a vast, possibly un-
limited explanatory space. Moreover, each path’s direction, length and
components depend directly and substantially on the type of need, objective
and background of the explainee for whom it is intended.

Considering the nature of the contributions, this dissertation is struc-
tured in three main parts: i) theoretical contributions; ii) explanatory
tools for humans; iii) explanatory tools for robots.

In Part I (Theoretical Contributions) we introduce the theoretical un-
derpinnings of YAI, providing an answer to RQ1, RQ2 and RQ3. To do so,
in Chapter 1 we first perform an in-depth overview of the right to expla-
nation of the GDPR, the AI-HLEG guidelines for trustworthy AI, and the
role of explainability in the proposed AI Act. Thus we identify some types
of explanations required by the law and the property of user-centrality as
one of the main characteristics of a good explanatory process. In Chapter
2 we provide the necessary background to understand which philosophi-
cal definitions of explanations are compatible with the requirements set by
European regulations. We focus on Achinstein’s theory and explain the dif-
ference between explainable information and explanation. Soon after, in
Chapter 3, we discuss how Achinstein’s theory should be adapted to use
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for the design of practical explanatory software. To do so, we introduce the
concepts of explanatory illocution and archetypal questions, also explain-
ing why usability metrics are a good choice for evaluating explanations and
illocution in this case. Next, in Chapter 4 we show how the identified expla-
nation theory can be used to quantify the Degree of Explainability (DoX)
of information objectively. We define DoX as an explainability metric by
formalising the concept of explanatory illocution. In that chapter, we also
discuss how DoX can help to verify law compliance better than other ex-
plainability metrics. Finally, Chapter 5 defines YAI as a discipline separate
from XAI, discussing the differences between user-centred and one-size-
fits-all explanations. Here we introduce the concept of explanatory space
as a hypergraph5 of explanations, modelling an explanatory tool as a mech-
anism for decomposing such space into a sequence of information (i.e., a
tree-like structure). We also propose the SAGE-ARS model for generating
user-centred sequence decompositions, showing a proof of concept of how
it can be used to create YAI software compliant with the GDPR.

In Part II (Explanatory Tools for Humans) we answer RQ4, evalu-
ating the theoretical models discussed in Part I through concrete software
applications for humans. In particular, in Chapter 6, we explain how to
use AI algorithms for answer retrieval and information extraction to im-
plement YAI4Hu, an example of YAI system based on the SAGE-ARS
model. In Chapter 7, we experimentally validate YAI4Hu, showing that
it is statistically more effective at explaining than one-size-fits-all explana-
tory tools. We prove it by performing two between-subjects user studies
involving hundreds of participants and comparing the user-centrality (mea-
sured in terms of usability) of the explanatory systems. As case studies for
the evaluation, we considered two scenarios where the documentation and
the automated decisions of AI systems for credit approval and heart disease
prediction are explained to comply with the law or to help system users
achieve their goals. Then, Chapter 8 describes how to use the technology
behind YAI4Hu to implement DoXpy, a software implementation for esti-
mating DoX scores. DoXpy is used to demonstrate through experiments
that explainability changes according to DoX and that DoX is a reasonable
metric for explainability. In Chapter 9, we deal with how to specialise ex-
isting question-answering algorithms to work on particular collections of
texts written in technical languages such as legal English, without resort-

5A hypergraph is a generalization of a graph in which an edge (or hyperedge) can join any
number of vertices [30].
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ing to expensive training datasets and procedures. Specifically, Chapter 9
presents Q4EU (a dataset for evaluating answer retrieval on European legis-
lation), SyntagmTuner (a strategy for combining shallow and deep learning
approaches to cope with the lack of a training set) and DiscoLQA (a mech-
anism that uses discourse theory to help an answer retriever identify and
isolate the unique discursive constructs used by a technical language). Fi-
nally, in Chapter 10, we present YAI4Edu, an intelligent interface that uses
DoX, SyntagmTuner and DiscoLQA to build intelligent textbooks for edu-
cation automatically. We show how YAI4Edu can increase the explanatory
power of a textbook, anticipating the needs of an explainee, by automat-
ically identifying a set of helpful (implicit) questions that a reader might
have about the textbook and reorganising the contents of the textbook ac-
cordingly. We also evaluate YAI4Edu with a case study in legal writing
and a within-subjects user study involving more than one hundred English-
speaking students.

In Part III (Explanatory Strategies for RL Agents) we answer RQ5,
showing how to implement the SAGE-ARS model on seminal RL algo-
rithms. In Chapter 11, we provide the technological background to under-
stand what RL is and what it means to explain to an RL agent. Then, in
Chapter 12, we present XAER, an YAI mechanism for explaining to (off-
policy) RL agents through a training procedure called experience replay.
We show how XAER can model the experience buffer of an RL agent as an
explanatory space, extracting explanatory sequences of experience through
the ARS heuristics so that the agent can learn faster and (sometimes) even
better. As a case study, we also show how XAER can explain dense road
rules at different levels of complexity. Finally, in Chapter 13, we discuss the
main problems associated with using a technique such as XAER in multi-
agent RL, thus proposing DEER as a solution capable of scaling XAER to
a larger number of agents.

Eventually, we conclude the dissertation with a brief analysis of the con-
tributions, discussing the answers to each research question. We summarise
the overall results obtained, defending the generality of the theoretical and
algorithmic models and arguing that they are generic enough to broadly
capture the nature of explanations as we have tested them not only with
humans but also with artificial intelligence.
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Summary

IN THIS part of the thesis, we provide the theoretical background and
contributions to answer the first three research questions set out in the
introduction: i) what is meant by explaining, explanation and explain-

ability, ii) how to quantitatively evaluate explanations and explainability,
iii) and how to model an algorithmic explanatory process.

As already anticipated, we begin from Chapter 1 with an analysis of
existing legal and ethical interpretations of explanations, focusing on Euro-
pean regulations such as the GDPR and the proposed AI Act. Furthermore,
we study the work of the High-Level Expert Group on Artificial Intelli-
gence, an expert group of the European Commission that has proposed eth-
ical guidelines for trustworthy AI. Accordingly, we identify user-centred
explanatory tools as essential for reliable AI. In Chapter 2, we look for
contemporary philosophical theories of explanations that can be compatible
with the expectations outlined in the laws and ethical guidelines mentioned
above. We do this on the premise that the idea of a user-centred explanatory
process has its roots in (contemporary) philosophy.

Among these philosophical theories, we identify Achinstein’s, from Or-
dinary Language Philosophy, as a suitable candidate for defining an expla-
nation as an illocutionary (i.e., broad, but relevant and deliberate) act of
answering questions in a useful way for the explainee. Furthermore, we

The content of Part I is a reworking and extension of the following articles by the same
author of this thesis: [192, 196, 188, 187, 198, 202, 190, 191, 189].
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differentiate explanations from explainable information, arguing that there
is a subtle but critical difference between them. Since our primary goal is
to model explanatory software for the automatic generation of user-centred
explanations, in Chapter 3, we extend Achinstein’s theory by defining ex-
planatory illocution in a computer-friendly way. Then, in Chapter 4, we
show how a formal definition of explanatory illocution can help construct a
metric to objectively measure the degree of explainability of textual infor-
mation. We also discuss how such a metric could facilitate the assessment
of compliance with the proposed European AI Act. Finally, in Chapter 5,
we provide the theoretical basis of Explanatory Artificial Intelligence, for-
mally defining a user-centred explanatory tool and the space of all possible
explanations, or explanatory space, generated by it.
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CHAPTER1
Legal Background: AI,

Explanations, Ethics and Law

This chapter provides some background information to understand the ex-
isting legal requirements and ethical guidelines on explanation in Europe.
We start with the famous right to explanation introduced by the GDPR and
then move on to the work of the AI-HLEG and the forthcoming Artificial
Intelligence Act. The main objective is thus to understand what character-
istics explanations should have to comply with ethics and (European) law.

1.1 The Right to Explanation

The GDPR is a relevant 2016 European regulation on protecting personal
data and related rights and freedoms. Since the GDPR is technology-
neutral, it does not directly refer to AI. However, several provisions are
highly relevant to the use of AI (or any other software) for automated
decision-making processes. For instance, according to the Information
Commissioner’s Office of the United Kingdom [97], the most important
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1.1. The Right to Explanation

of these provisions are:

• Article 5(1) point (a), that requires personal data processing to be fair,
lawful, transparent, necessary and proportional.

• Article 12, which defines the obligations for transparent communica-
tion and the modalities for data subjects to exercise their rights.

• Articles 13, 14 and 15, that give individuals the right to be informed
of solely automated decision-making, meaningful information about
the logic involved, and the significance and envisaged consequences
for the individual.

• Article 22, that gives individuals the right not to be subject to a solely
automated decision producing legal or similarly significant effects.

• Article 22(3), that obliges organizations to adopt suitable measures
to safeguard individuals when using solely automated decisions, in-
cluding the right to obtain human intervention, to express his or her
view, and to contest the decision.

Altogether, these provisions are the source of a debate over the so-called
right to explanation [105]. More specifically, the right to explanation is a
right that individuals might exercise when their legal status is affected by a
solely automated decision-making process.

The reasons for decisions must be adequately explained to put European
citizens in a position to challenge an automated decision and thus exercise
their right to contest it. Specifically, in case of contract or consent, Arti-
cle 22, paragraph 3 introduces the “right to obtain human intervention on
the part of the controller, to express his or her point of view and to contest
the decision”. Here explanations seem to be provided only after decisions
have been made (ex-post explanations) and are not a required precondition
to protest decisions. Instead, Articles 13, 14 and 15 of the GDPR require
an overview of a system prior to processing (ex-ante explanations), with
the obligation to inform about the “the existence of automated decision-
making, including profiling, referred to in Article 22(1) and (4) and, at least
in those cases, meaningful information about the logic involved (Recital1

63), as well as the significance and the envisaged consequences of such pro-
cessing for the data subject”. In other words, the GDPR defines (indirectly)
1A Recital is supposed to cast light on the interpretation to be given to a legal article/rule
but it cannot, per se, constitute such a rule [105].
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1.1. The Right to Explanation

two modalities of explanation: explanations can be offered before (ex-ante;
Articles 13, 14 and 15) or after decisions have been made (ex-post; Article
22, paragraph 3).

It is not clear from the GDPR whether a “right to an explanation” should
imply user-centred personalised explanations. Regardless of the answer,
according to the GDPR, the data controller must provide “meaningful in-
formation about the logic involved” in an automated decision, explaining
it. See Art. 13(2)(f), 14(2)(g), 15(1)(h).

For each modality, the GDPR defines goals and purposes of explana-
tions, thus providing a set of explanatory contents. Additionally, the white
paper on Artificial Intelligence [53] by the European Commission stressed
the need to monitor and audit not only automated decision-making algo-
rithms but also the data records used for training, developing, and running,
the AI systems in order to fight the opacity and to improve transparency.
Hence, from a technical point of view, technology-specific information
must be considered to meet the GDPR explanation requirements fully.

Fundamentally, ex-ante, we should provide information that guaran-
tees the transparency principle, describing: i) the algorithms and models
pipeline composing the automated decision-making process; ii) the data
used for training (if any), developing and testing the automated decision-
making process; iii) the background information (e.g., the jurisdiction of
the automated decision-making process); iv) the possible consequences of
the automated decision-making process on the specific data subject.

Ex-post the data subject should be able to contest a decision fruitfully,
so he/she should be given access to: i) the justification about the final de-
cision; ii) the run-time logic flow (causal chain) of the process determin-
ing the decision; iii) the data used for inferring; iv) information (metadata)
about the physical and virtual context in which the automated process hap-
pened.

Therefore, the GDPR draws a set of expectations to meet in order to
guarantee the right to explanation. These expectations are meant to define
the goal of explanations and, thus, explanatory content that may evolve to-
gether with technology. This explanatory content identifies at least three
different types of explanations: causal, descriptive, justificatory. These
are the minimal explanations required for explaining automated decision-
making systems under the GDPR. In fact, in the case of GDPR, we have
that:

• Descriptive explanations are primarily required in the ex-ante phase
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1.1. The Right to Explanation

to explain business models, the possible effects of automated decision-
making systems on a user, and the characteristics and limitations of
the algorithms.

• Causal explanations are primarily required in the ex-post phase to
explain the causes of a solely automated decision.

• Justificatory explanations are required in both the ex-ante and ex-
post phases to justify decisions, for example, through permissions
and obligations.

The explanations mentioned above can be provided to the user through
one or more explanatory tools as part of the whole AI system. Nonetheless,
despite the variety of required explanatory contents, the GDPR does not
specify what qualifies and formally constitutes an explanation. In the likely
attempt to overcome this issue, the Think Tank of the European Parlia-
ment [61] listed the following qualities that a reasonable explanation should
possess: intelligibility, understandability, fidelity, accuracy, precision, level
of detail, completeness and consistency. Nevertheless, the debate is still
open as to whether explanations should be personalised and user-centred.
Indeed, Article 22 lends itself to different interpretations [149, 151] as
to whether providing personalised explanations is mandatory or just good
practice. To this end, Recital 71 provides interpretative guidance of Article
22. However, two items are missing in Article 22 relative to Recital 71:
the provision of “specific information” and the “right to obtain an explana-
tion of the decision reached after such assessment”. The second omission,
in particular, raises the issue of whether controllers are required by law to
provide an individualised explanation. This issue is partially tackled by
the guidelines of the High-Level Expert Group on Artificial Intelligence
(endorsed by the European Commission), giving further reason to believe
that there is the intention to prefer user-centred explanations as soon as
the technology is mature enough to guarantee them. Instead, Recital 63
requires ex-ante that the data subject should have the right to know and
obtain communication, in particular about “the logic involved in any auto-
matic personal data processing”.
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1.2. Transparency and Ethical Guidelines for Trustworthy AI

1.2 Transparency and Ethical Guidelines for Trust-
worthy AI

The High-Level Expert Group on Artificial Intelligence (AI-HLEG), inde-
pendent of political parties and representing academia and industry, was
commissioned by the European Union to identify a set of “Ethical Guide-
lines for Trustworthy AI”. These guidelines were published in April 2019
[147] and then finalised in 2020 by the same AI-HLEG into a self-assessment
checklist called Assessment List for Trustworthy AI (ALTAI). Notably, the
guidelines identified by the AI-HLEG are not enforced by law like the
GDPR. However, they are more specific than the GDPR about the prop-
erties that a good explanation and a good explanatory tool should have for
reliable AI.

According to the AI-HLEG, good explanations should be “adapted to
the expertise of the stakeholder concerned” (e.g., layperson, regulator or
researcher) and “highly dependent on the context”, putting individual’s
needs at the centre and indicating a preferred (user-centred) direction on
how to shape explanations. The AI-HLEG vision of a user-centred AI
seems to incorporate the GDPR principles. It tries to expand them into
a broader framework based on four consolidated ethical principles (i.e., re-
spect for human autonomy, prevention of harm, fairness and explicability)
from which seven key requirements for trustworthy AI are derived, includ-
ing: human agency and oversight, transparency (including traceability, ex-
plainability and communication), diversity, non-discrimination and fairness
(including the avoidance of unfair bias, accessibility and universal design,
and stakeholder participation), accountability (including auditability, min-
imisation and reporting of negative impact, trade-offs and redress).

The ethical principle of explicability [74] is typically associated with
the requirements of transparency and accountability, taking clear inspira-
tion from Articles 13, 14, 15 and 22 of the GDPR. Hence, in a way, the
AI-HLEG applies to AI the technologically neutral GDPR by defining rel-
evant guidelines on how transparency can be achieved in trustworthy sys-
tems, also through accessibility and universal design. The transparency
requirement, in particular, covers the transparency of relevant elements for
an AI system (data, algorithms and business models), including:

• Traceability: “the datasets and the processes that yield the AI sys-
tem’s decision, including data gathering and labelling and the algo-
rithms used, should be documented”.
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• Explainability: is defined as “the ability to explain both the technical
processes of an AI system and the related human decisions (e.g., ap-
plication areas of a system)”, thus explicitly implying also “business
model transparency”.

• Communication: “AI system’s capabilities and limitations should be
communicated to AI practitioners or end-users in a manner appropri-
ate to the use-case at hand”.

1.3 The Role of Explainability in the Proposed AI
Act

The discussion towards “explainability and law” has departed from the con-
tested existence of a right to explanation in the GDPR to embrace contract,
tort, banking law [85], and judicial proceedings [69]. While these legal
sectors present significant differences in the applicable law and jurisdic-
tion, they all highlight the significance of algorithmic transparency within
existing legal sectors.

On April 21, 2021, the European Commission proposed the AI Act,
the first legal framework on AI to address the risks posed by this emerging
method of computation. The proposed AI Act considers not only machine
learning but expert systems and statistical models long in place. Differently
from other domains, the AI Act is specific to AI systems and requires an ad
hoc discussion rather than the framing of these systems in the discussion
of other legal domains. It is because AI technologies are not placed within
an existing legal framework (e.g., banking), but the whole legal framework
(i.e., the AI Act) is built around AI technologies. Under the proposed AI
Act, new obligations are set to ensure transparency, lawfulness and fair-
ness. Their goal is to establish mechanisms to ensure quality at launch
and throughout the whole life cycle of AI-based systems, thus ensuring
legal certainty that encourages innovation and investments on AI systems
while preserving fundamental rights and values. Specifically, the AI Act

The work presented in Section 1.3 and Section 4.2 was developed in collaboration with
Salvatore Sapienza from the University of Bologna [198]. S. Sapienza: legal analysis
constituting this Section 1.3, part of the introduction of [198]. S. Sapienza and F. Sovrano:
definition of the four main principles for explainability metrics introduced in Section 4.2.
F. Sovrano: the remaining part of [198], including the analysis of philosophical theories
of explanation, all the tables and the analysis of explainability metrics.
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sets some “new” minimum requirements of explicability (transparency and
explainability) for a list of AI systems labelled as high-risk in Annex IV.
These requirements include many technical explanations of different types.

If explainability is often instrumental to achieving some legislative goals,
it could likely be meant to foster specific regulatory purposes also under the
AI Act. From the joint reading of a series of provisions, it will be argued
that explainability in the AI Act is both user-empowering and compliance-
oriented: on the one hand, it serves to enable users of the AI system to
use it correctly; on the other hand, it helps to verify adequacy to the many
obligations set by the AI Act. Indeed, Recital 47 and Art. 13(1) state that
high-risk AI systems shall be designed and developed so that their opera-
tion is comprehensible by the users. They should be able to interpret the
system’s output and use it appropriately. This is a form of user-empowering
explainability. Then, the second part of Art. 13 specifies that “an appropri-
ate type and degree of transparency shall be ensured, with a view to achiev-
ing compliance (emphasis added) with the relevant obligations of the user
and of the provider [...]”. This provision specifies that these explainabil-
ity obligations (i.e., transparent design and development of high-risk AI
systems) are compliance-oriented. The twofold goal of Art. 13(1) is then
echoed by other provisions. As regards the user-empowering interpreta-
tion, Art. 14(4)(c) relates explainability to “human oversight” design obli-
gations. These measures enable the individual supervising the AI system
to interpret its output correctly. Moreover, this interpretation shall put him
or her in the position to decide whether it might be the case to “disregard,
override or reverse the output”, Art. 14(4)(d).

The compliance-oriented explainability interpretation becomes evident
in the technical documentation to be provided according to Article 11.
Compliance is based on a presumption of safety if the system is designed
according to technical standards (Art. 40), conformity with which is doc-
umented. In contrast, third-party assessment only appears after placing
on the market or in specific sectors (see Chapter IV). The contents of the
dossier are those detailed in Annex IV. Among other things, Annex IV(2)(b)
include “the design specifications of the system, namely the general logic
of the AI system and the algorithms” among the information to be provided
to show compliance with the AI Act before placing the AI system in the
market. Hence, the system should be explainable in a manner that allows an
evaluation of conformity by the provider in the first instance and, when nec-
essary, by post-market monitoring authorities. Since the general approach
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1.3. The Role of Explainability in the Proposed AI Act

taken by the proposed AI Act is a risk-reduction mechanism (Recital 5), this
form of explainability is ultimately meant to minimise the level of potential
harmfulness of the system.

User-empowering and compliance-oriented explainability overlap in Art.
29(4). When a risk is likely to arise, the user shall suspend the use of the
system and inform the provider or the distributor. This provision entails
understanding the system’s working (in real-time) and making predictions
on its output. Suspending in the case of likely risk is the overlapping be-
tween the two nuances of explainability: the user is empowered to stop
the AI system to avoid contradicting the rationale behind the AI Act, i.e.,
risk-minimisation. Unlike the GDPR, no explicit provision enables the per-
son affected by the system to exercise rights against the provider or the
system user or to access explanations about how the system works. More-
over, explainability obligations are solely limited to high-risk AI systems:
medium-risk (Art. 52) follows “transparency obligations” that consists of
disclosing the artificial nature of the system in the case of chat-bots, the
exposition to specific recognition systems, the “fake” nature of the image,
audio or video content.
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CHAPTER2
Philosophical Background:

Explanations in Contemporary
Philosophy

As discussed in Chapter 1, the AI-HLEG tries to extend the GDPR expecta-
tions, targeting AI and giving further guidelines: accessibility and universal
design should be a requirement for trustworthy AI, with user-centrality at
the core. Furthermore, the proposed AI Act suggests that explainability (for
high-risk systems) should be user-empowering, enabling the user to sus-
pend the use of the system whenever it is no more compliant with the law.
Consequently, one of the goals of the analysed legal and ethical frameworks
is to put users in control and at the centre of explanatory processes. This
implies that law-compliant explanations are more than just about shedding
light on the chain of causes and effects of particular events. They should
also justify and describe (e.g., data, processes, decisions) in a meaningful
way (cf. Section 1.1). Importantly, this idea of a user-centred explanatory
process not limited to causality is familiar to and finds its roots in contem-
porary philosophy, e.g., in the theories coming from Ordinary Language
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Philosophy (i.e., Achinstein’s [2]) and Cognitive Science (i.e., Holland’s
[91]).

Therefore, in the following sections, we will briefly summarise several
recent and less recent approaches to the theories of explanation and explain-
ability to highlight major philosophical understandings. We will mainly
focus on Carnap’s and Achinstein’s.

2.1 Philosophical Definitions of Explainability and
Explanation

If explainability is “the potential of information to be used for explaining”,
we envisage that a proper understanding of how to measure explainability
must pass through a thorough definition of what constitutes an explanation
and of the act of explaining.

In 1948 Hempel and Oppenheim published their “Studies in the Logic
of Explanation” [88], giving rise to what is considered the first theory of ex-
planation: the deductive-nomological model. After this work, many modi-
fied, extended, or replaced this model, which was considered fatally flawed
[33, 176]. Indeed, Hempel’s epistemic theory of explanations is not empiri-
cist: it is concerned (mistakenly) only with logical form, so an explanation
can be such regardless of the actual processes and entities conceptually
required to understand it. Several more modern and competing theories
of explanation have been the result of this criticism [131]. For example,
Salmon’s realist theory [176], called Causal Realism, emphasises that ac-
tual processes and entities are conceptually necessary to understand pre-
cisely why an explanation works. Instead, the Constructive Empiricism of
Van Fraassen [210] relies more on a Bayesian interpretation of probability,
framing explanation as a creative process of building models that are likely
true.

In contrast to these theoretical and primarily scientific approaches, other
philosophers have favoured a theory of explanation that is more grounded in
how people perform explanations [131]. For example, Achinstein’s theory
[2], based on Ordinary Language Philosophy, emphasises the communica-
tive or linguistic aspect of an explanation and its usefulness in answering
questions and fostering understanding between individuals. The theory of
Holland et al. [91] instead, based on Cognitive Science, frames the process
of explaining as a purely cognitive activity and explanations as a certain
kind of mental representation. Conversely, Sellars [183] suggests a differ-
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ent way of thinking about the epistemic meaning of the explanatory act,
making it more of a utilitarian process of constructing a coherent belief
system.

In particular, Hempel’s, Salmon’s, and Van Fraassen’s theories frame
the act of explaining more as a locutionary act [12], whereby an explana-
tion is such because it utters something. Differently, Achinstein’s theory
explicitly frames explaining as an illocutionary act [12] so that an explana-
tion is such because of the intention to explain. The theories of Holland and
Sellars, on the other hand, frame explaining more as a perlocutionary act
[12], thus with an explanation being such because of the effects it produces
in the interlocutor.

Thus, each of these theories devises different definitions of explana-
tion and explainability, sometimes in a complementary way. A summary of
these definitions is shown in Table 2.1, shedding light on the fact that there
is no complete agreement on the nature of explanations. Nevertheless, ac-
cording to [131], fundamental disagreements on the nature of explanations
are just of two types, metaphysical and meta-philosophical, and mainly
unrelated to their logical and cognitive structure. This gives room to un-
derstandings of “explanations” that may be complementary, some focusing
more on cognition and others on logic.

If we analyse the specific features of these philosophical theories, we
can discover that many of them are explainee-centred (or user-centred).
This means that they involve customising explanations for specific explainees.
Interestingly, most of them also envisage the process of answering ques-
tions as part, or foundation, of the act of explaining. While Causal Realism
and Constructive Empiricism are rooted in causality, Ordinary Language
Philosophy, Cognitive Science and Scientific Realism study explaining as
a possibly iterative process involving broader forms of question-answering.
In particular, Cognitive Science and Scientific Realism focus more on the
effects of an explanation on the explainees rather than on the structure of
the explanation itself.

We observe that when explaining is not considered a locutionary act
and thus it is intended to meet someone’s needs, explainability differs from
explaining. As a result, many philosophical traditions offer definitions of
“explainable information” that slightly differ from those of “explanation”,
as shown in Table 2.1. Indeed, pragmatically satisfying someone (e.g., user-
centrality) is achieved when explanations are designed for a specific person
or audience. This implies that the same explainable pieces of information
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Table 2.1: Philosophical definitions of explanation and explainable in-
formation. In this table, we summarise the definitions of explanation
and explainable information for each one of the identified theories of
explanations.

Theory Explanations Explainable Infor-
mation

Causal Real-
ism [176]

Descriptions of causality, expressed
as chains of causes and effects.

What can fully de-
scribe causality.

Constructive
Empiricism
[210]

Contrastive information that answers
why questions, allowing one to cal-
culate the probability of a particular
event relative to a set of (possibly
subjective) background assumptions.

What provides plau-
sible answers to
contrastive why
questions.

Ordinary
Language
Philosophy [2]

Answers to questions (not just why
ones) given with the explicit intent of
producing understanding in someone,
i.e., the result of an illocutionary act.

What can be used
to pertinently answer
questions about rele-
vant aspects with illo-
cutionary force.

Cognitive Sci-
ence [91]

Mental representations resulting from
a cognitive activity. They are infor-
mation which fixes failures in some-
one’s mental model.

What can have a per-
locutionary effect, fix-
ing failures in some-
one’s mental model.

Naturalism
and Scientific
Realism [183]

Information which increases the co-
herence of someone’s belief system,
resulting from an iterative process of
confirmation of truths aimed at im-
proving understanding.

What can have a per-
locutionary effect, in-
creasing coherence of
someone’s belief sys-
tem.

can be presented and re-elaborated differently across different individuals
as different explanations. The type and order of explainable information
matter and directly impact the quality of the resulting explanations. In sim-
pler terms, not every combination of explainable information qualifies as
an explanation according to illocutionary and perlocutionary theories.

These theories are rooted in the intent of the explainer and the subse-
quent effect on the listener. For instance, illocutionary theories such as
Achinstein’s emphasize the explainer’s objective of promoting understand-
ing. Conversely, perlocutionary theories, like Holland’s, concentrate on
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the actual influence explanations have on the listener. Thus, while illocu-
tionary explanations aspire to generate a perlocutionary effect, the desired
outcome is not always guaranteed. Achinstein’s theory, while supporting a
user-centred approach, doesn’t underscore the role of the user as markedly
as Holland’s theory or other theories that perceive explanations as perlocu-
tionary acts. From an illocutionary standpoint, the true intent to clarify
can render information as an explanation. However, perlocutionary theo-
ries argue that an explanation is one that accomplishes its intended effect
on the recipient. This divergence between intention and result emphasizes
the intricate nature of explanations, both theoretically and practically.

From a pragmatic viewpoint, it is crucial to recognize that the explainer
cannot fully anticipate or control the recipient’s interpretation of the pro-
vided explanation or entirely comprehend their past experiences. Conse-
quently, the intended outcomes may not always align with the actual re-
sults. This discrepancy makes illocutionary theories of explanations seem
more practical, and thus more suitable for implementation in software ap-
plications. However, this is not to suggest that under Achinstein’s theory
an explanatory act cannot be perlocutionary. Rather, it posits that the fun-
damental action required to classify information as an explanation differs
from other theories.

2.2 Explainability According to Ordinary Language
Philosophy

In 1983, Achinstein was one of the first scholars to analyse the process
of generating explanations, introducing his philosophical model of a prag-
matic explanatory process. According to the model, explaining is an illocu-
tionary act coming from a clear intention of producing new understandings
in an explainee by providing a correct content-giving answer to an open-
ended question. In particular, explanatory illocution is the deliberate intent
of producing understandings [12]. Therefore, according to this view, an-
swering by “filling the blank” of a pre-defined template answer prevents
the act of answering from being explanatory by lacking illocution. These
conclusions are straightforward and explicit in Achinstein’s last works [3],
consolidated after a few decades of public debates.

More precisely, according to Achinstein’s theory, an explanation can
be summarized as a pragmatically correct content-giving answer to ques-
tions of various kinds, not necessarily linked to causality. In some contexts,
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pointing out logical relationships may be the key to making the person un-
derstand. In other contexts, pointing out causal connections may be suf-
ficient. In still other contexts, other types of information may be needed.
This is justified by the critical assertion that explanations have a pragmatic
character so that what exactly has to be done to make something under-
standable to someone may (in the most generic case) depend on the inter-
ests and background knowledge of the person seeking understanding [66].

In this sense, the strong connection of Achinstein’s theory to natural
language and (natural) users is quite evident, for example, in the Achin-
steinian concepts of:

• Ellipses or elliptical information [3, pp. 112-114]: intended as an
explanation that is purposely shrunk to a very minimal sentence to
avoid information that might be redundant for the explainee (i.e., for
his/her background knowledge or common-sense).

• U-restrictions [3, pp. 114-119]: the meaning of an utterance/ex-
planation u is restricted to the common interpretation of it, usually
defined by grammar or rhetoric.

Indeed, according to Achinstein [2, pp. 48-53] “S explains Q to E by utter-
ing U” is true if and only if either:

• U is constructed in a way that allows anyone to easily restrict (i.e.,
disambiguate, interpret) the meaning of U to that of a sentence ex-
pressing a complete content-giving proposition for Q.

• U is elliptical (or an ellipsis): it is enough for the specific E to un-
derstand a sentence expressing a complete content-giving proposition
for Q.

In other words, Achinstein’s definition of explanations considers not only
the typical omissions of content possible under grammar and rhetoric (e.g.,
co-references, anaphora). It also considers all those omissions of infor-
mation used to simplify an explanation, reducing the amount of redundant
information for a specific explainee or common sense.

Despite this deep connection to natural (non-formal) language, Achin-
stein does not reject at all the utility of formalisms, hence suggesting the
importance of following instructions (protocols, rules, algorithms) for cor-
rectly explaining some specific things within specific contexts. In this
sense, Achinstein’s concept of instructions [2, pp. 53-56] could be usefully
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adopted to address the question of how deep or broad explanations should
go. Instructions are “rules imposing conditions on answers to a question”,
or also a mechanism to check whether an answer is correct1 in a given con-
text. For example, they might be framed with legal requirements (as in the
case of XAI [22]), ethical guidelines (i.e., [147]), or mathematics.

2.3 Adequacy of Explainability: Carnap’s Criteria

In philosophy, the most important work about the criteria of adequacy of
explainable information is likely to be Carnap’s [42]. Even though Carnap
studies the concept of explication rather than that of explainable informa-
tion, we assert that they share a common ground making his criteria fitting
in both cases. Explication in Carnap’s sense is the replacement of a some-
what unclear and inexact concept, the explicandum, by a new, clearer, and
more exact concept, the explicatum2, and this is exactly what information
does when made explainable.

Carnap’s main criteria of explication adequacy [42] are: similarity, ex-
actness and fruitfulness3. Similarity means that the explicatum should be
detailed about the explicandum, in the sense that at least many of the in-
tended uses of the explicandum, brought out in the clarification step, are
preserved in the explicatum. In contrast, exactness means that the expli-
cation should be embedded in some sufficiently clear and exact linguistic
framework. Instead, fruitfulness implies that the explicatum should be use-
ful and usable in a variety of other good explanations (the more, the better).

Carnap’s adequacy criteria possess preliminary characteristics for any
information to be adequately considered explainable. Interestingly, the
property of truthfulness (being different from exactness) is not explicitly
mentioned in Carnap’s desiderata. That is to say that explainability and
truthfulness are complementary but different, as also discussed by Hilton
[89]. An explanation is such regardless of its truth (high-quality but ulti-
mately false explanations exist, especially in science). Vice versa, highly
correct information can be inferior at explaining.

1Please note that Achinstein stresses that a correct answer does not necessarily produce
understanding. So, correctness is not sufficient for an answer to be an explanation.

2Explicatum means “what has been explained”, in Latin.
3Carnap also discussed another desideratum, simplicity. However, this criterion is pre-
sented as subordinate to the others (especially exactness).
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CHAPTER3
A Computer-friendly Interpretation

of Illocution in Explanations

Among the philosophical theories not limited to causality (i.e., Ordinary
Language Philosophy, Cognitive Science and Scientific Realism; cf. Sec-
tion 2.1), the only one that is open to non-subjective (thus reproducible)
evaluations of explainability is Ordinary Language Philosophy. Indeed,
Cognitive Science and Scientific Realism frame explaining more as a per-
locutionary act than an illocutionary one, imposing a direct measurement
of the effects that explainable information has on people (i.e., on average).
This suggests that Achinstein’s theory might be the most suitable candi-
date to provide the theoretical background needed to objectively assess
explainability (e.g., for law compliance) and algorithmically identify the
best explainable information that an explanatory process should use for an
explanation. Furthermore, Achinstein’s theory is founded on a question-
answering process, and computer scientists and engineers have already dis-
covered how to automate such a process. Differently from other theories,
this would make Achinstein’s theory concretely implementable in real soft-
ware applications as soon as the role of illocution (i.e., a deliberate intent
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Science

of producing the “conventional consequences” of the act [12]) can be better
formalised.

Therefore, in this chapter, we will elaborate on how explaining as an-
swering questions is widespread in computer science, motivating why Achin-
stein’s theory is not far from the current state of the art. Next, we will dis-
cuss how to interpret the concept of explanatory illocution in a computer-
friendly way. To do so, we will also provide the notion of archetypal ques-
tion, explaining why usability metrics are a good choice for evaluating ex-
planations and explanatory illocution.

3.1 Explaining as Answering Questions in XAI and
Computer Science

Computer science, through XAI, has long studied the topic of explanations
and how to generate them (e.g., for explaining complex software computa-
tions, for law compliance), frequently drawing from philosophy and social
sciences [138]. Two distinct types of explainability are predominant in the
literature of XAI: rule-based and case-based. Rule-based explainability is
when explainable information is a set of formal logical rules describing in-
formation related to cause and effects. For example, the inner logic of a
model, its causal chain, how it behaves, why that output gave the input, and
what would happen if the input were different. While case-based explain-
ability is when the explainable information is a set of input-output examples
(or counter-examples) meant to give an intuition of the model’s behaviour.
For example, counterfactuals, contrastive explanations, or prototypes1.

The idea of answering questions as explaining is familiar to XAI and
compatible with everyone’s intuition of what constitutes an explanation. In
fact, despite the different types of explainability one can choose, it is al-
ways possible to frame the information provided by explainability with one
or (sometimes) more questions. In particular, it is common to many works
in the field [167, 125, 138, 80, 62, 217, 164, 99, 127] the use of generic
(e.g., why, who, how, when) or more punctual questions to clearly de-
fine and describe the characteristics of explainability [124]. For example,
Lundberg et al. [126] assert that the local explanations produced by their
TreeSHAP (a XAI algorithm for estimating the importance of features as

1Prototypes are instances of the ground-truth considered similar to a specific input-output
for which the similarity explains the model’s behaviour.
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input to an AI model) might enable “agents to predict why the customer
they are calling is likely to leave” or “help human experts understand why
the model made a specific recommendation for high-risk decisions”. Simi-
larly, Dhurandhar et al. [62] state that they designed CEM (a XAI algorithm
for the generation of counterfactuals and other contrastive explanations) to
answer the question “why is input x classified in class y?”.

These are just some examples, among many, of how Achinstein’s theory
of explanations is already implicit in existing XAI literature, highlighting
how deep the connection between answering questions and explaining is in
this field. A connection that has been implicitly identified also by Lim et al.
[125], Miller [138] and Gilpin et al. [80] that analysing XAI literature were
able to hypothesise that a good explanation, about an automated decision-
maker, answers at least the following questions:

• What did the system do?

• Why did the system do P?

• Why did the system not do X?

• What would the system do if Y happens? ,

• How can one get the system to do Z, given the current context?

• What information does the system contain?

In particular, from a preliminary analysis, it appears that most classical
XAI algorithms focus more on the production of explainable software and
explanations that generally follow a one-size-fits-all approach, answering
one (or sometimes a few) predefined questions well. However, one-size-
fits-all explanations tend to lack user-centrality, usually failing to answer
all the questions an explainee might have. This is also suggested by Liao
and Varshney [123], who show that no single XAI seems to be able to cover
all identified user needs and that various XAI algorithms may be needed to
explain a system better. Indeed, users’ needs in terms of explainability are
multiple and challenging to capture [124], e.g., they may concern terminol-
ogy, system performance, system outputs, and inputs.

User-orientedness is challenging and sometimes not connected to the
primary goal of XAI: “opening the black box”, i.e., understanding how and
why an opaque AI model works. Compared to creating explanations for AI
experts, generating user-centred explanations is more challenging since, in
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many cases, it is unrealistic to ask them to interpret internal parameters, and
complex computations of AI models [100]. For example, a layperson trying
to receive a loan might be interested in knowing that her/his application was
rejected (by an AI) mainly because of a high number of inquiries on her/his
accounts (as TreeSHAP or CEM can tell). However, this information alone
may not be enough for her/him to reach her/his goals. These goals may be
out of the scope of XAI, as to understand: how to effectively reduce the
number of inquiries in order to get the loan, which types of inquiries may
affect his/her status (the hard or the soft ones?), etc. We point the reader to
the sketches presented in [100] for more examples of how end-users may
have complex needs to satisfy.

A reasonable attempt to understand what constitutes a user-centred ex-
planatory process in computer science is likely given by Human-Centred
XAI, where proper explaining involves a conversation between the ex-
plainer and the explainee. For instance, Madumal et al. [127] formalised
a model of the explanatory process using an agent dialogue framework,
analysing several hundred human-human and human-agent interactions un-
der the lens of grounded theory. Not surprisingly, the resulting model con-
sists of an iterative question-answering process involving argumentation
but not capturing illocution, considering a small range of possible explana-
tory contents focused on causes, justifications and processes. Similarly,
also Vilone and Longo [213] proposed a conversational, argument-based
explanation system for a machine-learned model to enhance its degree of
explainability by employing principles and techniques from computational
argumentation. Moreover, on the same line of Madumal et al., also Rebanal
et al. [164] proposed and studied (only through a Wizard-of-Oz test though)
an interactive approach using question-answering, to explain deterministic
algorithms to non-expert users. Nonetheless, as Madumal et al. and Vilone
and Longo, also Rebanal et al. focused on a small subset of possible types
of explanations (i.e., why, what, how), avoiding illocution, as suggested
by a few of the comments given by their user study participants: “it an-
swers everything accurately and it gives the information that I asked for but
it does so like sounding more like a glossary like a dictionary”, “... like a
robot’s answers ... If I asked someone to explain it, it would not give me all
this”.
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3.2 Illocution as Answering to Archetypal Questions:
Why Usability is a Good Metric for Explanations

Despite its compatibility, practically none of the works in XAI ever ex-
plicitly mentioned Ordinary Language Philosophy, preferring to refer to
Cognitive Science [138, 90] instead. This is probably because Achinstein’s
illocutionary theory of explanations is seemingly difficult to implement into
software by being utterly pragmatic and missing a precise definition of il-
locution as intended for a computer program. Therefore, in this section,
we discuss how the notion of explanatory illocution can be interpreted in a
more computer-friendly way.

Achinstein’s theory of explanations frames the act of explaining as an
illocutionary act of answering questions (cf. Section 2.2). In this sense,
questions are the primary mechanism for an explainee to express her/his
own needs, favouring the user-centrality of explanations. Some questions
may be explicit and others not, and some may lose importance over time
or vice versa. However, users are usually satisfied with explanations only
when they effectively convey coverage of relevant answers for all of their
goals of understanding. Though, modelling an explanatory process as a
standard question-answering process gave us the first impression of being
slightly unrealistic.

Think of the following example of the “university lecture”: students
(the explainees) follow the lessons to acquire (initially obscure) information
provided by the professor (the explainer). A lesson can typically include the
intervention of students in the form of observations or questions, but these
interventions are, in practice, always after an initial phase of information
acquisition. In other words, the professor’s initial overview may not answer
any preliminary questions, especially if the students know very little about
what the professor is supposed to say. Regardless of this apparent lack of a
question, we might all agree that the professor could still explain something
good to the students.

At this point, Achinstein’s theory, based on question-answering, may
seem to fail to capture the need for preliminary overviews during an ex-
planatory process, as in the “university lecture” example. Despite this first
impression, we assert that overviews can also be generated as answers, par-
tially confirming Achinstein’s original theory. Indeed, for the generation of
an overview, it is necessary (for the professor) to select and group informa-
tion appropriately to facilitate the production of different explanatory paths
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for different users (the students). We hypothesise that the way these clus-
ters of information are created is by anticipating and answering implicit and
archetypal questions, e.g., why, what for, how, when. In particular, we
leverage a subtle and essential difference between “answering questions”
and “explaining”: illocution.

According to Achinstein, illocution in explaining is when “S utters u
with the intention that his utterance of u renders q understandable by pro-
ducing the knowledge of the proposition expressed by u, that it is a correct
answer to Q” [3]. The problem with this philosophical understanding of
illocution is that it is too abstract to be implementable into software, requir-
ing one to find a way to formally frame what a deliberate intent of explain-
ing is. This is why we propose a more precise denotation of explanatory
illocution (for a formal definition, read Section 4.1.1).

Definition 1 (Explanatory Illocution - Informal Definition). Explaining is
an illocutionary act that provides answers to an explicit question on some
topic along with answers to several other implicit or unformulated ques-
tions deemed necessary for the explainee to understand the topic prop-
erly. Sometimes these implicit questions can be inferred through a thorough
analysis of the explainee’s background knowledge, history, and objectives,
also considering Frequently Asked Questions (FAQs). However, in the most
generic case, no assumption can be made about the explainee’s knowledge
and objectives. The only implicit questions that can then be exploited for
illocution are the most generic ones, called archetypal questions.

For example, if someone asks “How are you doing?”, an answer like “I
am good” would not be considered an explanation. By contrast, a different
answer, such as “I am okay because I was worried I could have tested posi-
tive to COVID-19, but I am not and [...]” would generally be considered an
explanation because of the intent to produce an understanding about “how
you are”. In other words, it answers other archetypal questions together
with the main question.

We will refer to the act of explaining as illocutionary question-answering.
Thus, we depart from Achinstein’s definition, asserting that illocution is the
primary mechanism responsible for anticipating unformulated or implicit
questions (i.e., goals). This particular understanding of illocution makes
Achinstein’s theory practically implementable in real software applications
as soon as it is possible to identify a set of archetypal questions. This is
because we frame explanatory illocution as a question-answering process,
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which we already know how to automate with AI (as better explained in
Chapter 6).

Illocution is responsible for shaping the underlying explanatory pro-
cess as more user-centred, helping both the explainee and the explainer
consume fewer resources while communicating, thus reducing the number
of explanatory steps. More precisely, we hypothesise that given an arbi-
trary explanatory process, increasing its ability to answer both explicit and
implicit questions results in more usable explanations. In other words, the
more an explanatory process is implemented as an illocutionary act of pro-
ducing content-giving answers to questions, the more it is likely to meet the
explanatory goals of a user and the more it will be usable.

A reasonable degree of usability is usually achieved when the (explana-
tory) system meets a user’s specific needs. In short, we adopt the definition
of usability as the combination of effectiveness, efficiency, and satisfac-
tion, as per ISO 9241-210. ISO 9241-210 defines usability as the “extent
to which a system, product or service can be used by specified users to
achieve specified goals with effectiveness, efficiency and satisfaction in a
specified context of use” [76]. Effectiveness (“accuracy and completeness
with which users achieve specified goals”) and efficiency (“resources used
for the results achieved”, e.g., time, human effort, costs and materials) can
be assessed through objective measures. Instead, satisfaction, defined as
“the extent to which the user’s physical, cognitive and emotional responses
that result from the use of a system, product or service meet the user’s needs
and expectations”, is a subjective component, and it needs a confrontation
with the user. Satisfaction is typically measured with standardised ques-
tionnaires. One of these is System Usability Scale (SUS) [34], that (despite
its sometimes confusing name) is used to measure the subjective satisfac-
tion2 (or perceived usability) and not the usability (that according to the
ISO standard is the combination of both objective and subjective metrics:
effectiveness, efficiency and satisfaction) [26].

What is of utmost importance for proper user-centrality is to help the
user in the process of achieving her/his own goals. So, if one agrees with
Achinstein’s interpretation of explanations, then in an explanatory process
user’s goals are identified by questions. Some questions may be explicit
and others not, and some may lose importance over time or vice-versa.
However, users are usually satisfied with explanations only when they effi-

2SUS is considered one of the most widely used standardised questionnaires for the as-
sessment of post-test satisfaction [178, 4, 119].
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ciently convey a full coverage of pertinent answers for all their objectives.
Hence, since pragmatism is achieved when explanations meet the user’s
goal, any good explanatory tool should provide plausible mechanisms for
explainees to specify their questions. Problems arise when these questions
are not explicitly posed, requiring the explanatory tool to infer them au-
tomatically. It is certainly not trivial to correctly elicit the user’s implicit
goals, and it sometimes takes time for the user to express or understand the
goals intelligibly or accurately. Sometimes these implicit questions can be
deduced. However, in the most generic case, the only implicit questions that
can be exploited for illocution are the archetypal ones. Specifically, when
the explainee provides a precise initial question, illocution is embedded in
the consequent explanation through digressions, answering other implicit
questions (i.e., the archetypal ones). Instead, when the explainee gives no
question but an explanandum, illocution is about providing an overview as
an aggregation of different answers to implicit questions about the aspects
of that explanandum, as in the example of the “university lecture” previ-
ously described.

Definition 2 (Explanandum Aspect). Given a subject to be explained or ex-
planandum (E) under examination, an explanandum aspect (ai; or simply
aspect) denotes a distinct characteristic, feature, or element pertaining to
E. Let A = a1, a2, ..., an be the set of aspects associated with E. These as-
pects facilitate the analysis of E by partitioning it into smaller, more man-
ageable parts. For each aspect ai, several (archetypal) questions can be
formulated, enabling a comprehensive and detailed investigation of E.

Definition 3 (Archetypal Question). An archetypal question is an archetype
applied to a specific aspect of the explanandum. Examples of archetypes
are the interrogative particles (e.g., why, how, what, who, when, where),
or their derivatives (e.g., why not, what for, what if, how much),
or also more complex interrogative formulas (e.g., what reason, what
cause, what effect). Accordingly, the same archetypal question may
be rewritten in several different ways, as “why” can be rewritten in “what
is the reason” or “what is the cause”.

For example, if the explanandum would be “heart diseases”, there would
be many aspects involved, including “heart”, “stroke”, “vessel”, “diseases”,
“angina”, “symptoms”. Some archetypal questions, in this case, are “what
is angina” or “why a stroke”.
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Notably, archetypal questions prevent by design any “filling the blank”
answer, thus meeting the tricky but reasonable assumption of illocution
given by Achinstein for his pragmatic theory of explanations (cf. Section
2.2). What is of interest to us is that the assumption of explaining as perti-
nently answering (also) archetypal questions is simple and precise, remov-
ing from the “equation” the need for a model of human intention. Illocution
is about anticipating the (conceivably mostly unknown) explainee’s needs
for an explanation by providing, as an explanation, possibly expandable
summaries of (more detailed) pertinent information. In other words, the
more explicit and implicit questions an explanatory process answers, the
more likely the resulting explanations will meet the explainee’s objectives
and the more usable (effective, efficient and satisfactory) the explanatory
tools. Therefore we make the following hypothesis.

Hypothesis 1 (Explanatory illocution is about answering archetypal ques-
tions). If the following premises are true:

• An explanatory process is an illocutionary act of providing content-
giving answers to questions;

• Illocution is about correctly answering not just some explicit ques-
tions but also all the implicit questions that the explainee might need.

Then, given an arbitrary explanatory process, increasing its goal-orientedness
or illocutionary force results in the generation of more usable explanations.
Where the goal-orientedness of an explanatory process is its ability to an-
swer the explicit questions of an explainee, and the illocutionary force is
its ability to anticipate and answer the implicit (archetypal) questions of an
explainee.

To verify this hypothesis, we designed some experiments described in
Part II, using the models presented in Chapter 5.

3.3 Archetypal Questions in Linguistic Theories

Casting the semantic annotations of individual propositions as narrating
an archetypal question-answer pair recently gained increasing attention in
computational linguistics [87, 73, 135, 160], especially in discourse theory
and the theory of sentential meaning representations.
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On the one hand, discourse theory is a branch of linguistics that studies
how coherence and cohesion make up a text to form a discourse. So, dis-
course is said to be coherent if all its pieces belong together, while it is said
to be cohesive if its elements have some common thread. In recent years,
many different discourse models have been spelt out, each with different
pros and cons. Amongst them, we cite the model of the Penn Discourse
TreeBank (PDTB for short) [139, 157, 223] because it is considered one of
the most generic models of discourse. In fact, with little or no change in
the model, PDTB is usable for representing discourses of natural languages
belonging to different families [230], e.g., Chinese, Arabic, Hindi.

The central assumption behind PDTB is that “the meaning and coher-
ence of a discourse result partly from how its constituents relate to each
other”. Specifically, these relations between constituents, called discourse
relations, are defined as semantic relations between abstract objects, called
Elementary Discourse Units (EDUs), connected by implicit or explicit con-
nectives, e.g., “but”, “then”, “for example”, “although”. In PDTB, EDUs
are spans of text denoting a single event serving as a complete and distinct
unit of information that the surrounding discourse may connect to [203].
What is of interest to us is that according to Pyatkin et al. [160], all dis-
course connectives can be represented as questions: in what manner,
what is the reason, what is the result, after what,
what is an example, while what, in what case, since
when, what is contrasted with, before what, despite
what, what is an alternative, unless what, instead
of what, what is similar, except when, until when.

On the other hand, the theories of sentential meaning representation are
grammatical theories which study the relationships between predicates and
arguments in a sentence. Predicate-argument relationships support answer-
ing basic questions such as “who did what to whom”, and they can be
captured with models to separate a sentence’s meaning from its syntactic
representation. Amongst these models, we mention the theory of Abstract
Meaning Representations (AMRs) [15, 116], which can be used to represent
whole sentences as (directed and acyclic) graphs of predicates and argu-
ments that can be exploited for tasks such as machine translation 3, natural
language generation and understanding.

3Machine translation is the conversion of sentences into symbolic knowledge representa-
tions, e.g., a piece of software written in Prolog, a logic programming language.
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According to Michael et al. [135], all the AMRs can be encoded as
pairs of questions and answers involving the following archetypes: what,
who, how, where, when, which, whose, why.

Interestingly, it is possible to identify a hierarchy or taxonomy of these
archetypes, ordered by their intrinsic level of generality or specificity. In
particular, the simplest interrogative formulas, such as those used by AMRs,
can be seen as the most generic archetypes since they consist of only one
interrogative particle. Some examples of these are what, why, when, and
who. We will refer to these archetypes as the primary ones. In contrast,
the archetypes used by PDTB (e.g., what is the reason, what is
the result) are more complex and specific, building over the primary
archetypes. For this reason, we will refer to them as secondary archetypes.

Even though many more archetypes could be devised (e.g., where to
or who by), we believe that the list of questions we provided earlier is
already rich enough to be generally representative of any other question,
whereas more specific questions can always be framed by using the in-
terrogative particles we considered (e.g., why, what). Indeed, primary
archetypes can be used to represent any fact and abstract meaning [27].
Instead, the secondary archetypes can cover all the discourse relations be-
tween them (at least according to the PDTB theory).

For example, from the sentence “The existence and validity of a con-
tract, or any term of a contract, shall be determined by the law which would
govern it under this Regulation if the contract or term were valid” it is pos-
sible to extract the following discourse relation about contingency (that we
represent as a pair of question and answer for convenience and clarity) “In
what case would the law govern it under this Regulation? If the contract
or term were valid”, and the following AMR question-answer “By what is
the existence and validity of a contract determined? The law that would
govern it under this Regulation if the contract or clause were valid”. So,
a discourse relation identifies two EDUs: the first encoded in the question
and the second in the answer.
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CHAPTER4
Estimating Explainability: Theory

and Methods

Advancing Explainable Artificial Intelligence technology requires under-
standing its limitations and developing better solutions through the evalu-
ation of explainability. However, evaluation often relies on ad hoc or sub-
jective mechanisms for measuring explainability quality as indicated in lit-
erature reviews like [212]. Explainability metrics are frequently tailored
to specific XAI models [8, 171, 214, 143, 114] or depend on user studies
and Cognitive Science [142, 220, 208, 37, 156]. This raises the question
of whether explainability can be always objectively measured using fully
automated software.

Section 2.1 emphasizes that, according to theories such as Achinstein’s,
not all explainable information constitutes an explanation. This implies
that separate evaluation methods for explainability and explanations may
be required. Usability metrics, while helpful for assessing explanations (as
discussed in Section 3.2), might not be ideal for evaluating explainability
due to their subjective nature and potential high costs.

Table 2.1 highlights that certain theories, such as Holland’s [91] from
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Cognitive Science, view explanations as perlocutionary acts. This perspec-
tive necessitates explainability evaluations to be closely tied to the user’s
subjective experience or outcomes. In contrast, non-perlocutionary defi-
nitions, like Achinstein’s (discussed in Section 2.2), offer a more objec-
tive approach to evaluation. In fact, Achinstein’s theory engages users in
evaluating explanations but not necessarily explainability. This means that,
according to Achinstein, information can be deemed explainable if it can
be used to answer archetypal questions about the explanandum (that is,
explanatory illocution, as discussed in Chapter 3), irrespective of the per-
locutionary effect these answers may have.

In this section, we demonstrate how to apply Achinstein’s theory to ob-
jectively evaluate explainability. We introduce the Degree of Explainability
metric, an objective measure grounded in Ordinary Language Philosophy
that can determine if the level of explainability is objectively poor, even if
users find the resulting explanations satisfactory.

By better formalizing Definition 1 (cf. Chapter 3), we show how to
quantify the degree of explainability of a set of texts. Specifically, drawing
from Carnap’s criteria on the adequacy of an explication (cf. Section 2.3),
we define the DoX as the average explanatory illocution of information
over a set of explanandum aspects. Consequently, we propose the following
hypothesis:

Hypothesis 2 (DoX scores measure explainability). A DoX score can de-
scribe explainability, so that, given the same explanandum, a higher DoX
implies more explainability and a lower DoX implies less explainability.

It is important to note that the DoX metric does not assess the correct-
ness of explanations, which is a separate aspect that should be evaluated
alongside explainability. In fact, as highlighted in Section 2.3, correctness
and explainability are two distinct aspects. Highly effective yet incorrect
explanations can exist, and conversely, correct information may not always
be easily explained.

The primary goal of the DoX metric is to identify missing explainable
information, regardless of whether that information will be selected for a
specific explanation. As an objective measure, it does not account for the
user’s subjective experience, which is a crucial aspect of the perlocutionary
effects of explanations. Therefore, while the DoX metric can help iden-
tify gaps in explainable information, it does not provide insights into the
effectiveness of specific explanations for individual users.
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4.1. A Formula to Quantify the Degree of Explainability

In this chapter, we will explore the theory behind DoX. Hypothesis 2
will be tested in Chapter 8. Additionally, Section 8.4 will offer a detailed
discussion on the limitations of the DoX measure and potential areas for
improvement.

4.1 A Formula to Quantify the Degree of Explain-
ability

Achinstein defines the act of explaining as an act of illocutionary question-
answering, stating that explaining is more than answering a question be-
cause it requires some form of illocution. Nonetheless, without a precise
and computer-friendly definition of illocution, it is hard to go further than a
philosophical and abstract understanding of such a concept. For this reason,
as discussed in Chapter 3, we suggested that illocution (or, better, explana-
tory illocution) is in fact, the process of answering multiple generic and
primitive questions (e.g., why, how, what) called archetypal questions.

For example, if someone is asking “How are you doing?”, an answer
like “I am good” would not be considered an explanation. Differently, the
answer “I am happy because I just got a paper accepted at this important
venue, and [...]” would instead be normally considered an explanation be-
cause it answers other archetypal questions together with the main question.

We are convinced that, under these premises, we can concretely mea-
sure the degree of explainability of information quantitatively. More pre-
cisely, we hypothesise that the degree of explainability of the information
depends on the number of archetypal questions to which it can adequately
answer. In other words, we propose to estimate the degree of explainabil-
ity of a piece of information by measuring the relevance with which it can
answer a (pre-defined) set of archetypal questions.

Therefore, our theoretical contribution, set out in the following sub-
sections, consists of the precise and formal definition of: cumulative perti-
nence, explanatory illocution, Degree of Explainability (DoX), and average
DoX. We will first provide formal definitions and then explain them further
with some examples.
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4.1.1 Cumulative Pertinence, Explanatory Illocution and
DoX

Assuming the correctness of a given piece of information, explainability is
a property of that information. Explainability can be measured in terms of
explanatory illocution. To understand this concept, we first introduce the
definition of cumulative pertinence. We then provide a formal definition
of explanatory illocution and present DoX. Lastly, we discuss the need
for an average DoX metric for comparing explainability between different
systems.

Definition 4 (Cumulative Pertinence). The cumulative pertinence is an es-
timate of how pertinently and how in detail a given piece of information Φ
can answer a question about an explanandum aspect a ∈ A (cf. Definition
2). Let Da be the subset of all the details (e.g., sentences, grammatical
clauses1, paragraphs) in Φ that are about an aspect a. Let qa be a question
about a. Let p (d, qa) ∈ [0, 1] be the pertinence of a detail d ∈ Da to qa. Let
also t be a pertinence threshold in the [0, 1] range. Then, the cumulative
pertinence of Da to qa is PDa,qa =

∑
d∈Da,p(d,qa)≥t p (d, qa).

A pertinence threshold, in the context of the cumulative pertinence defi-
nition, represents a predefined level of relevance or significance that a detail
must possess to be considered while estimating the cumulative pertinence
of an information piece Φ. The threshold ranges from 0 to 1, with 0 indi-
cating no relevance and 1 representing complete relevance.

The pertinence threshold is crucial for several reasons. First, it serves
as a filter, helping to eliminate information that is not relevant or significant
enough to answer a specific question about an explanandum aspect. By
setting a threshold, only details with a pertinence value equal to or higher
than the threshold are considered in the cumulative pertinence calculation.
Second, the threshold enables a more precise estimation of the cumulative
pertinence. By excluding details with pertinence values below the thresh-
old, the cumulative pertinence becomes a better representation of how well
the information piece can answer a question about a specific explanandum
aspect.

Moreover, the pertinence threshold encourages focus on the most per-
tinent details when assessing the explanatory quality of a given piece of

1A typical clause consists of a subject and a syntactic predicate, the latter typically a verb
phrase composed of a verb with any objects and other modifiers.

48



4.1. A Formula to Quantify the Degree of Explainability

information. This is especially important when dealing with large amounts
of data, as it helps DoX concentrate on the most relevant details for the eval-
uation of explainability. Lastly, the pertinence threshold offers flexibility,
as it can be adjusted according to specific needs, allowing for customized
evaluations of explainability. For instance, a lower threshold might be used
when a broader understanding of an explanandum aspect is desired, while a
higher threshold would be more suitable when only highly pertinent details
are of interest.

Building on the definition of cumulative pertinence, we can now pro-
vide a formal definition of explanatory illocution.

Definition 5 (Explanatory Illocution - Formal Definition). The explana-
tory illocution is a set of cumulative pertinences for a pre-defined set of
archetypal questions. Let Q be a set of archetypes q and qa be the ques-
tion obtained by applying the archetype q to an aspect a ∈ A. Then
the explanatory illocution of Φ to an aspect a ∈ A is the set of tuples
{∀q ∈ Q| < q, PDa,qa >}2.

Consequently, we define DoX as follows.

Definition 6 (Degree of Explainability). DoX is the average explanatory
illocution per archetype, on the whole set A of relevant aspects to be ex-
plained. In other terms, letRD,q,A =

∑
a∈A PDa,qa

|A| be the average cumulative
pertinence of D to q and A, where D = {∀a ∈ A,∀d ∈ Da|d}, then the
DoX is the set {∀q ∈ Q| < q,RD,q,A >}.

However, DoX alone cannot help in judging whether some collections
of information have higher degrees of explainability than others. This is
because DoX is a set, and sets are not sortable. Thus we combine the
set of pertinence scores composing DoX into a single score representing
explainability, called average DoX. So, the resulting average DoX can act
as a metric to judge whether the explainability of a system is greater than,
equal to, or lower than another.

Definition 7 (Average Degree of Explainability). The Average DoX is the
average of the pertinence of each archetype composing the DoX. In other
terms, the Average DoX is

∑
q∈QRD,q,A

|Q| .

2The operator < x, y > is used here to represent tuples.
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The average DoX represents a naive approach to quantify explainabil-
ity with a single score, as it implies that all the archetypal questions and
aspects have the same weight. However, this may not necessarily be true.
As suggested by Liao et al. [124], it seems that there is a shared under-
standing that why explanations are the most important in XAI, sometimes
followed by how, what for, what if and, possibly, what. In other
words, the relevance of an explanation can be estimated by the ability to
effectively answer the most relevant (archetypal) questions for the stake-
holders’ objectives. Nonetheless, defining which (archetypal) question is
the most relevant is challenging and somewhat subjective. Therefore we
believe that average DoX is probably the only objective solution to this
dispute.

We will now discuss some examples of applying the formulas men-
tioned earlier. We will also demonstrate how these formulas can measure
Carnap’s adequacy criteria.

4.1.2 Interpreting DoX in Terms of Carnap’s Criteria
Suppose the sentence “I am happy that my article has been accepted in this
prestigious journal” is given as Φ and the set of relevant aspects {heart,
stroke, vessel, disease, angina, symptom} as A. In this case, the set of
details D contains the following details:

• “I am happy”;

• “my article has been accepted in this prestigious journal”;

• “I am happy that my article has been accepted”.

However, none of the details above is about the explanandum. Thus
Da = ∅, ∀a ∈ A, because nothing in Φ is related to A. Hence, the average
cumulative pertinence would be equal to 0 for every archetype q ∈ Q,
forcing the DoX score to be equal to 0, as expected. In other words, no
detail of Φ would explain anything about A. Therefore the explainability
of Φ for A would be zero.

On the contrary, we would not have a null DoX for A when using
the sentence “angina happens when some part of your heart does not get
enough oxygen” as Φ. That is because the new Φ contains details about at
least two relevant aspects in A: “angina” and “heart”. Such details would
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score a higher average cumulative pertinence RD,q,A for q equal to why
because they are about causality.

Eventually, when computing the DoX of the new Φ for this set of ex-
planandum aspects A with the DoXpy algorithm presented in Chapter 83,
the average DoX is 0.29. In particular, as expected, the archetypes with
the best score are the ones related to causality (i.e., what effect has a
score of 0.59; in what case, why and how have a score of 0.57). In
contrast, many of the other archetypes have a null score (i.e., who, when).

Given Definition 6, we can say that DoX is an estimate of the fruitful-
ness ofD that combines in one single score the similarity ofD toA and the
exactness of D for Q. For these reasons, DoX is akin to Carnap’s central
criteria of adequacy of explanation (introduced in Section 2.3). Although,
differently from Carnap, our understanding of exactness is not that of ad-
herence to standards of formal concept formation4 [36], but rather that of
being precise or pertinent enough as an answer to a given question.

The number of relevant explanandum aspects covered by a given piece
of information, and the number of details that are pertinent about it (i.e.,
|{∀a ∈ A, ∀d ∈ Da|d}|), roughly say how much similar that information
is to the explanandum. More precisely, the formula used for computing
the cumulative pertinence PDa,qa sums the contribution of every single de-
tail according to its pertinence to the aspects a ∈ A, telling us how much
Da is similar to a. Thus, if pertinence p (d, qa) would close to zero for all
archetypes q ∈ Q, then a detail d would have nothing to do with an as-
pect a. Furthermore, the average cumulative pertinence RD,q,A contains in-
formation about the exactness of multiple answers, aggregating pertinence
scores. As a result, by measuring RD,q,A for all the q ∈ Q, we also obtain
an estimate of how D is fruitful for the formulation of many other different
explanations intended as the result of an illocutionary act of pragmatically
answering questions.

This construction of DoX, according to Carnap’s main adequacy crite-
ria and according to the interpretation of explanatory illocution presented
in Chapter 3, is crucial because it allows for the implementation of an algo-
rithm for quantifying explainability, as discussed in Chapter 8.

Although DoX cannot be employed directly on black-box models, it

3When using the MiniLM pertinence estimator introduced in Section 8.1.
4Actually, Carnap did not specify what he means by “exactness”. Regardless, in this con-
text, “exactness” is often viewed as either lack of vagueness or adherence to standards of
formal concept formation.
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can be applied to the output of XAI algorithms or to any other explainable
information to understand how that information can be used to explain. In
this sense, DoX is the most useful when used to evaluate extensive collec-
tions of explainable information (e.g., the output of an ensemble of XAI
algorithms).

4.2 Legal Compliance: a Comparison of DoX with
other Explainability Metrics

In Section 1.3, we clarified the existence of explainability obligations and
their extent. So, in this section, we use these obligations to compare DoX
with other explainability metrics and understand to which extent these met-
rics could be used for assessing explainability in compliance with the law.

Measuring the degree of explainability of AI systems has become rel-
evant in the light of research progress in the XAI field, the proposal for
a European Regulation on Artificial Intelligence, and ongoing standardis-
ation initiatives that will translate these technological advancements in a
de facto regulatory standard for AI systems. To date, standardisation enti-
ties have proposed white papers and preliminary documents showing their
progress6, among them we mention:

• The European Telecommunications Standards Institute7: “[w]hen it
comes to AI capabilities as part of new standards, there is a need
to revise these models, by identifying appropriate reference points,
AI sub-functions, levels of explicability of AI, quality metrics in the
areas of human-machine and machine-machine interfaces, etc.”

The work presented in Section 4.2 and Section 1.3 was developed in collaboration with
Salvatore Sapienza from the University of Bologna [198]. S. Sapienza: legal analysis
constituting Section 1.3, part of the introduction of [198]. S. Sapienza and F. Sovrano:
definition of the four main principles for explainability metrics introduced in Section 4.2.
F. Sovrano: the remaining part of [198], including the analysis of philosophical theories
of explanation, all the tables and the analysis of explainability metrics.
5This table extends a similar one in [198].
6An extensive list of examples is available at https://joinup.ec.europa.eu/
collection/rolling-plan-ict-standardisation/artificial-int
elligence

7https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp3
4_Artificial_Intellignce_and_future_directions_for_ETSI.pd
f, p. 23
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Table 4.1: Comparison of different explainability metrics5. Column
“Source” points to referenced papers while “Metrics” to the names of
the metrics mentioned in the papers. The remaining columns are the
explainability dimension discussed in Section 4.2. Elements in bold are
the best column-wise.

Source
Model
Information
Format

Closest
Supporting
Theory

Subject
based

Measured
Carnap’s
Criteria

Metrics

[171] Rule-based Causal Realism No Exactness,
Fruitfulness

Performance
Difference,
Number of
Rules,
Number of
Features,
Stability

[214] Rule-based Causal Realism No Similarity,
Fruitfulness

Fidelity,
Completeness

[143]
Feature
Attribution Causal Realism No Exactness,

Fruitfulness

Monotonicity,
Non-sensitivity,
Effective
Complexity

[114] Rule-based Causal Realism No
Similarity,
Exactness,
Fruitfulness

Fidelity,
Unambiguity,
Interpretability,
Interactivity

[92] Any
Causal Realism,
Cognitive Science,
Naturalism & Co.

Yes
Exactness,
Fruitfulness

System
Causability
Scale

[90] Any Cognitive Science,
Naturalism & Co. Yes

Exactness,
Fruitfulness

Satisfaction,
Trust,
Mental Models,
Curiosity,
Performance

[63, 142]
[220, 208]
[156, 37]

Any Cognitive Science,
Naturalism & Co. Yes

Exactness,
Fruitfulness

Usability:
Effectiveness,
Efficiency,
Satisfaction

[8] Heatmap
Constructive
Empiricism No Similarity,

Exactness

Relevance
Mass Accuracy,
Relevance
Rank Accuracy

[143] Prototype-based
Constructive
Empiricism No Similarity,

Fruitfulness

Non-
Representativeness,
Diversity

DoX
Any (Natural
Language Text)

Ordinary
Language
Philosophy

No
Similarity,
Exactness,
Fruitfulness

Degree of
Explainability
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• The CEN-CENELEC8, proposing to “[d]evelop research-based met-
rics for explainability (to tie in with high-level conceptual require-
ments), which can be developed into pre-standards like workshop
agreements or technical reports”.

• ISO/IEC TR 24028:2020(E), stating that “[i]t is important also to
consider the measurement of the quality of explanations”, providing
for details on the key measurements, i.e., continuity, consistency, se-
lectivity.

Let us remind the reader that, under the proposed AI Act, adopting a
standard means certifying the degree of explainability of a given AI sys-
tem. Therefore, metrics become helpful in the course of the standardisation
process: i) ex-ante, when defining the explainability measures adopted by
the standard; ii) ex-post, when verifying in practice the adoption of a stan-
dard. From these premises, it follows that in the light of the purposes of
the AI Act set out in Section 1.3, any explainability metric should respect
at minimum the following main principles, by being:

• Risk-focused: this means that the metric should be functional to
measure the extent to which the explanations provided by the sys-
tem allow for an assessment of the risks to the fundamental rights
and freedoms of the persons affected by the system’s output. This
is necessary to ensure user-enabling (e.g., Art. 29) and compliance-
oriented (Annex IV) explainability.

• Model-agnostic: this means that the metric should be appropriate to
all the AI systems regulated by the proposed AI Act9.

• Flexible & Goal-aware: this means that the metric should be flex-
ible to the different needs of potential explainees (e.g., AI system
providers and users, standardisation entities)10 and applicable to all
high-risk AI applications listed in Annex III of the Act.

8https://ftp.cencenelec.eu/EN/News/PolicyOpinions/2020/CEN-
CLC_AI_FG_White-Paper-Response_Final-Version_June-2020.pdf,
p.8

9Annex I provides a list of the AI techniques and approaches that fall within the remit of
the Regulation.

10Since it might be hard to determine ex-ante the nature, the purpose, and the expertise
of the explainee, the metrics should consider the highest possible number of potential
explainees.
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• Intelligible & accessible: this means that if the information on the
metrics is not accessible (e.g., due to intellectual property reasons) or
the results of a metric are not reproducible (e.g., due to a subjective
evaluation), explainees will confront with a situation of uncertainty,
as an ignotum per ignotius. This would contradict the risk minimisa-
tion principle.

We now identify some pros and cons of existing metrics (and measures)
to quantitatively estimate the degree of explainability of information to un-
derstand their range of applicability across different needs and interpreta-
tions of explainability. We perform a qualitative classification of these mea-
sures based on Carnap’s desiderata, the theories of explanation presented in
Section 2.1 and the aforementioned main principles.

More specifically, in Table 4.1 we rank explainability metrics on the
following dimensions:

• Information Format: the information format supported by the metric,
e.g., rule-based, example-based, natural language text.

• Supporting Theory: the supporting philosophical theory of the met-
ric, e.g., Cognitive Science, Constructive Empiricism.

• Subjectivity: whether the metric requires evaluations given by human
subjects.

• Covered Adequacy Criteria: the adequacy desiderata (see Section
2.3) measured by the metric, i.e., similarity, exactness, fruitfulness.

Then, in Table 4.2 we align the supporting theories (thus also the metrics)
to the properties identified with the analysis of the AI Act.

Differently from ISO/IEC TR 24028:2020(E) we do not focus on met-
rics specific to ex-post feature attribution explanations, so we selected meth-
ods possibly applicable also to ex-ante or more generic types of explana-
tions. Feature Attribution is only for explainability about causality, hence
being more centred on Causal Realism, while our investigation tries to com-
pare different metrics across the supporting philosophical theories.

As shown in Table 4.1, we were able to find at least one example of
metric for each supporting philosophical theory, with a majority of metrics
focused on Causal Realism. Notably, in all the metrics supporting Causal
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Realism, measurements of exactness and fruitfulness are coincident. Com-
mon to all the metrics based on Cognitive Science and Naturalism/Scien-
tific Realism is that they require human subjects to perform measurements.
Therefore they tend to be more expensive than the others, at least in terms of
human effort. Furthermore, those proposing heuristics to measure all Car-
nap’s desiderata are just two, one for Causal Realism [114] and the other
is DoX. Interestingly, Lakkaraju et al. [114] evaluate the three desiderata
separately, while DoX is the only known metric combining all of them in a
single score.

Table 4.2: Alignment of explainability definitions to explainability prop-
erties from the AI Act. Every row stands for a different theory of ex-
planations and, therefore, for a different explainability definition. The
considered theories of explanations and definitions of explainability are
discussed in Section 2.1 and Table 2.1.

Risk-Focused Model-Agnostic Flexible &
Goal-Aware

Intelligible &
Accessible

Causal
Realism

Yes, if
understanding
risks implies
understanding
causality

Not available yet

No, it’s not
pragmatic and
it considers only
goals related to
causality

Yes, it can be

Constructive
Empiricism

Yes, if explaining
risks is
about answering
why questions

Not available yet
No, it focuses
only on why
questions

Yes, it can be

Ordinary
Language
Philosophy

Yes, it can be
Yes, if all explanations
can be represented
with natural language

Yes Yes, it can be

Cognitive
Science Yes, it can be

Yes, the evaluation
is subject-based Yes

Unlikely. All the
subject-based metrics
may be very expensive
and hard to reproduce,
this makes them less
accessible

Naturalism
and
Scientific
Realism

Yes, it can be
Yes, the evaluation
is subject-based Yes

Unlikely. It relies on
(usually) expensive
subject-based metrics

Let us now discuss the extent to which philosophy-oriented metrics
measure explainability and can match the requirements set by the proposed
AI Act. First, under the AI Act, metrics should allow the measurement
of the capability of the system to provide information related to the risks
posed to fundamental rights and freedoms of the persons affected by the
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system. This is a form of goal-aware explainability, thus calling for a prag-
matic interpretation of explanations as that of all the theories identified in
Section 2.1, but not Causal Realism. Then, metrics shall be appropriate
to the list of AI approaches listed in Annex I. This entails that only those
based on a model-agnostic approach to explainability can ease compliance
to the proposed AI Act unless a combination of different model-specific
metrics is envisaged. The results shown in Table 4.2 indicate that the met-
rics supported by both Causal Realism and Constructive Empiricism might
struggle at being model-agnostic and goal-aware. This probably limits their
applicability to particular contexts.

Furthermore, metrics shall also be adaptive to the several market sec-
tors which can observe a substantial deployment of high-risk AI systems.
Therefore, given the horizontal application of the AI Act and the contex-
tual applicability of sectoral legal frameworks, we have that any explain-
ability metric should be flexible enough to adapt to different technologi-
cal constraints and explanation objectives. Considering that explanation
objectives can be framed in terms of questions to answers, definitions of
explanations that are focused solely on specific enquiries, such as Causal
Realism and Constructive Empiricism, may struggle to meet the adaptivity
requirement. Moreover, flexibility towards all the potential explainees en-
tails that all subject-based metrics (i.e., those inspired by Cognitive Science
or Naturalism/Scientific Realism) require many explainees to be tested and
standardised.

Finally, the intelligibility, accessibility and understandability of met-
rics require a metric to also be economically accessible. However, all the
subject-based metrics may be expensive, thus making the metric less acces-
sible to some. The same goes with intelligibility and those metrics devel-
oped under standards that are not open to public scrutiny.

It follows that those metrics based on Achinstein’s theory of explana-
tions (i.e., DoX) are more likely to align with the explainability require-
ments of the proposed AI Act. This is because they would not rely on
a perlocutionary understanding of explanations (i.e., they would not be
subject-based) and would be flexible enough to consider evaluations of ex-
plainability beyond causality.

57



CHAPTER5
Explanatory Artificial Intelligence:

Theoretical Foundations

In Chapter 2, we identified different definitions of explanations and ex-
plainability. In Chapter 1, we also identified existing legal and ethical re-
quirements that some explanations should possess. So we hereby provide
the theoretical foundations of how to automatically generate user-centred
explanations or YAI for short. To do so, we discuss one-size-fits-all ex-
planations and why they are insufficient for user-centrality. Then we draw
the difference between XAI and YAI, providing a formal definition of user-
driven explanatory tool and explanatory space. Soon after, we discuss the
main properties of an explanatory space and some heuristics to explore it in
a user-centred and efficient way. Therefore, the purpose of this chapter is to
build on the growing awareness that good explanations start from, but are
not, the output of improved form of XAI, but constitute a complementary
and vastly different endeavour.
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Explanations

5.1 User-Centrality and the Problem with One-Size-
Fits-All Explanations

Computational irreducibility is typical of emerging phenomena such as
physical, biological and social ones [17]. For these systems, it is possi-
ble to simulate every step of the system’s behaviour evolution. However, it
is only possible to predict this simulation’s result by letting the system take
each evolutionary step. Thus, standing on the definition given by Zwirn
and Delahaye [231], user-centrality in explaining to humans is computa-
tionally irreducible because generally speaking, nothing besides the user
itself (while unfolding an explanation) can predict whether an explanation
is beneficial, usable or satisfactory.

Therefore, we take a strong stand against the idea that static, one-size-
fits-all approaches to explanations have a chance of being pragmatic (i.e.,
user-centred). This is to say that XAI-based tools answering just a few spe-
cific why, how and what questions are not enough for properly explaining
in a user-centred way. One-size-fits-all explanations are based on the idea
that the same piece of information can fit all, therefore assuming that it
would be usable and valuable a priori for anybody.

The main types of one-size-fits-all explanations are the following:

• Normal XAI-based explanations: answering one only question or
just few.

• Selected narratives: answering only one type of question, e.g., how-
why narratives answering only how or why questions.

• Overwhelming explanatory closures: explaining by giving large
dumps of explainable information. A 1st-level explanatory closure is
about immediately presenting all the available information. A 2nd-
level explanatory closure is about providing such information in two
rounds. 3rd-level explanatory closures are like 2nd-level ones, but all
the information is provided after two levels of interaction, and so on.

Indeed, a one-size-fits-all explanation, to fit all, should contain all the
possible answers to all the possible questions of all the possible users (e.g.,
an overwhelming explanatory closure). However, this type of explanation
would become useless for a human, being overwhelming in size and con-
tent, as soon as the complexity of the explanandum increases beyond a rel-
atively trivial threshold. In other words, an explainable dataset or system,
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per se, is not a user-centred explanation, whereas user-centrality requires a
generic nth-level explanatory closure.

A user’s interest in the output of an explanation system often lies in a
few short statements out of the hundreds of thousands that the explanation
system can generate. These few lines depend on the function the user gives
to the explanation. Hence we must assume that, in general, the purpose
of explanations is known to the user rather than to the explanation system,
and it cannot be decided in advance. However, it becomes knowable only
during the evolution of the task for which the explanation is required.

For example, a complex big-enough explainable software can be dif-
ficult to explain, even for an expert, and the optimal (or even sufficient)
explanation might change from expert to expert. In this specific example,
explainable software is necessary, but more is needed for explaining.

5.2 XAI vs YAI

A user-centred explanatory tool requires providing goal-oriented explana-
tions. Goal-oriented explanations imply explaining facts relevant to the
user, according to her/his background knowledge, interests and other pe-
culiarities that make him/her a unique entity with unique needs that may
change over time. Therefore, to model a user-centred explanatory process,
we need to:

• Disentangle making things explainable (i.e., XAI) from explaining
(i.e., YAI): in a way, this is tantamount to separating the presentation
logic from the application logic. Only explaining has to be user-
centred. In this sense, we like to say that we need both the Xs and the
Ys of AI1.

• Design a presentation logic that allows personalised explanations out
of some explainable information.

In Figure 5.1, we show a simple model of an explanatory tool, which
separates between explainability and explanations. In order to increase the
overall cohesion of the explanatory system, in this model, we require an
explicit logical separation between the functionalities related to producing
explainable information and those related to producing pragmatic explana-
tions. In addition, we envision another logical separation in the production
1XX and XY are the human chromosomes responsible for biological gender.
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Figure 5.1: XAI vs YAI: an abstract model of explanatory tool. The model
depicted in this figure shows how to decompose the flow of explanatory
information that moves from raw representations of processes/data to
the explainee (or actor). Raw data are refined into explainable datasets
(e.g., Linked Open Data, LOD for short). Raw processes are refined into
explainable processes. Explainable information can be used by YAI to
generate practical explanations.

of actual explanations between building explanations (i.e., the presentation
logic) and interfacing with users. Independently, producing explainable
information should be separated in generating explainable processes and
producing explainable datasets.

One of the most valuable benefits coming from this distinction of YAI
from XAI is that it would meet the Single Responsibility Principle2 [129],
making easier to integrate an explanatory layer in an existing application
layer (without changing the latter). We can see that nowadays, the presen-
tation logic is not explicitly separated from the application logic in many
XAI applications intended as explanatory tools.

2The principle of single responsibility is a computer programming principle that states
that each module or class must have responsibility for a single part of the functionality
provided by the software and that the class must entirely encapsulate this responsibility.
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5.3 Definition of User-Centred Explanatory Process
and Space: the SAGE Properties

We believe that an explanatory tool is an instrument for articulating ex-
plainable information into an explanatory discourse. This definition of an
explanatory tool is drawn from the essential best practices of scientific
inquiry [21], involving:

• Sense-making of phenomena: classical question-answering to col-
lect enough information for understanding, thus building an explain-
able explanandum (perhaps through XAI).

• Articulating understandings into discourses: re-ordering and ag-
gregation of explainable information to form an explanatory narrative
or, more generally, a discourse to answer research questions.

• Evaluating: pose and answer questions about the quality of the pre-
sented information (e.g., argue them in a public debate).

More formally, we propose the following definition of the explanatory pro-
cess, considering that for user-centrality, an explainee must be able to spec-
ify as input of the process her/his goals, otherwise not inferable due to the
computational irreducibility of the phenomenon.

Definition 8 (Explanatory Process). Let an explanans (plural is explanan-
tia) be a text in natural language (i.e., English) answering one or more
questions. A user-driven explanatory process or explanatory discourse ar-
ticulation (stylised in Figure 5.2) is a function p for which p (D,Et, it) =
Et+1, where:

• D is the explanandum: a set of explainable pieces of information;
a set of answers organised to build archetypal explanations that are
useful to the explainee.

• Et is the explanans, at time step t ≥ 0. Et can be any meaningful
rephrasing of the information in D.

• it is the interaction of the explainee at step t.

We can iteratively apply p, starting from an initial explanans E0, until sat-
isfaction. The user interaction i is a tuple made of an action a taken from
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the set Ap of possible actions for p and a set of auxiliary inputs required
by the action a. Whenever Ap allows any explainee to specify its needs and
goals to maximise the usability of Et+1, then p is said to be user-centred.

Figure 5.2: Stylized interactive explanatory process. A user-centred ex-
planatory process explains an explanandum to an explainee, thus pro-
ducing as output an explanans that is meaningful for the specific ex-
plainee.

To understand how to implement such a user-centred explanatory pro-
cess p, we need first to define the characteristics of the space of all the
possible explanations generated by p. We call this space of explanations
the explanatory sub-space of p.

Definition 9 (Explanatory Sub-Space). An explanatory sub-space is a hy-
pergraph Hp = (ξp, εp) of interconnected explanantia reachable by an ex-
plainee interacting with a process p, given an explanandum D, a set of
actions Ap and an initial explanans E0. Thus, the set of hyperedges εp is
the set of all possible explanantia that can be generated by p about D:

εp = {E0} ∪ {∀u > 0,∀iu ∈ Ap | p (D, iu, Eu−1)}

While the set of nodes ξp is the set of questions q and answers a covered by
the explanantia3:

ξp = {∀E ∈ εp, ∀ < q, a >∈ E | q} ∪ {∀E ∈ ε,∀ < q, a >∈ E | a}
3It is always possible to represent natural language sentences as networks of questions and
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This leads us to the definition of an explanatory space.

Definition 10 (Explanatory Space). An explanatory space is the hyper-
graph H = (ξ, ε) resulting from the union of the explanatory sub-spaces
of each p in the set of all the possible explanatory processes P . In particu-
lar, we have that:

ε = {∀p ∈ P, ∀E ∈ εp |E}
ξ = {∀p ∈ P, ∀i ∈ ξp |i}

Therefore, according to Definition 8, we have that an explanatory sub-
space Hp, in order to be user-centred, should be adaptable. More specifi-
cally, it should be:

• Sourced: bound by the explanandum D. The space should be a de-
scription of D.

• Adaptable: bound by the narrative purposes of the explainee and
his/her queries i. The space should be structured to minimise the
number of queries for the explainee to achieve its objective.

• Grounded: bound by the explanatory process p as illocutionary question-
answering. The space should be structured in order to effectively and
efficiently answer questions.

• Expandable: bound by the characteristics of the web of explanantia
E. The space should form a coherent information network that can be
explored and described through linguistic structures such as narration
or, more generally, discourse.

We will refer to these properties of an explanatory sub-space as the SAGE
properties, and we will use them to define a set of actionsAp to embed user-
centrality in an explanatory process.

5.4 Efficient Exploration of Explanatory Spaces: the
ARS Heuristics

In graph theory, tree decompositions are used to speed up solving some
computational issues on graphs (and more generally hypergraphs) [81]. In-
deed, many NP-difficult problems on graphs can be efficiently solved via

answers. Indeed, casting the semantic annotations of individual propositions as narrating
a question-answer pair recently gained increasing attention in computational linguistics
[87, 73, 135, 160].
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tree decomposition [13]. So, suppose an explanatory space is a hypergraph.
In that case, any efficient explanatory process p should be able to approx-
imate a decomposition of such hypergraph into some hypertree, allowing
the explainees to efficiently navigate through the vast underlying space and
find the answers they are seeking.

More specifically, decomposing an explanatory space H into a hyper-
tree is equivalent to ordering and prioritising all the explanantia and the
pieces of information within the explanantia. So that the explainee can ef-
ficiently navigate and read the explanatory space from the root (i.e., any
initial explanans) to the leaves of its decomposition as a sequence of infor-
mation. Though, several different hypertree decompositions might exist for
the same explanatory space with no assurance that all of them are effective
as they should be at explaining to a human. That is because the output of
an explanatory process should be pragmatic and user-centred. A good ex-
planatory process should be able to adapt to the needs of a human explainee
with specific background knowledge and specific goals.

To this end, we propose a few heuristics for user-driven exploration
of an explanatory space, designed to maximise the adaptability of the
explanatory process. These heuristics are namely:

• Abstraction: used to identify the nodes (also called explanandum as-
pects) of the decomposition of the explanatory space. This is done
by aggregating explanations according to some taxonomy defining a
hierarchy of abstractions.

• Relevance: used to order the information about explanandum aspects
according to its relevance (e.g., to the explainee’s objectives).

• Simplicity: used to select the viable edges of the decomposition and
information about an explanandum aspect. This can be done by fil-
tering the content of the explanandum aspects or also by prioritising
specific abstractions over others.

We will refer to these heuristics as the ARS4 heuristics.
By definition, both the SAGE properties and the ARS heuristics (the

SAGE-ARS model) pose some constraints on the ways of interaction that
allow exploring the explanatory space. In other words, these constraints
help to define a set Ap of actions that would allow the user to explore in

4“Ars” means art in Latin.
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a user-centred way a decomposition of the whole explanatory space start-
ing from an initial explanans E0 (i.e., the output of a XAI), according to
Definition 8.

Following the definition of explanatory tool drawn from the best prac-
tices of scientific inquiry described in Section 5.3, some primitive actions
that can be implemented are:

• Open-ended question-answering, for sense-making of phenomena:
the user writes a question and gets one or more relevant punctual
answers.

• Aspect overviewing, for articulating understandings: the user se-
lects an aspect of the explanandum receiving as explanation a set of
relevant answers to archetypal questions about that aspect or related
aspects. The user can control the number of answers and questions
composing the overview by increasing or decreasing the level of de-
tail following the simplicity heuristic.

• Argumentation, for evaluating: the user evaluates the explanations,
identifying counter-arguments or weak points that can be used for
further (automated) reasoning.

The first two primitive actions are said to be the main primitives for explain-
ing because they align to sense-making and articulation of understandings.
We previously defined an explanatory tool as “an instrument for articulating
explainable information”.

Specifically, an overview is an appropriate summary of an explanan-
dum aspect. In contrast, a specific answer to a question can be seen as a
sequence of information (a path) that can span more explanandum aspects.
Thus, for each SAGE property, we can identify a set of SAGE commands
that implement these primitive actions the explainee can use during the ex-
planation process:

• “Sourcing” commands: used to access the source of an explanation
fragment (e.g., a law, a scholarly paper, a rule).

• “Adapting” commands: used to provide the explanatory process with
sufficient information to model the background knowledge and the
goals of the explainee in order to personalise the content of the ex-
planations.
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• “Grounding” commands: used to ask questions.

• “Expanding” commands: used to navigate the decomposition of the
explanatory space and get a partial view of it. Examples of expanding
commands might be:

– Get Overview: it opens an explanatory overview of a concept.

– More: it shows additional details available in the explanation
but currently hidden from the interface because of the simplicity
policy.

– Less: it removes the information added with the “More” and
“Get Overview” commands.

In the following section, we will show a “proof of concept” YAI provid-
ing concrete examples of the above commands. Alternatively, more con-
crete instances of the SAGE-ARS model are YAI4Hu and YAI4Edu, two
explanatory tools approximating an nth-level explanatory closure, which
are described in Chapter 6 and Chapter 10.

In particular, we make the following hypothesis, tested with experi-
ments described in Chapter 7.

Hypothesis 3 (The SAGE-ARS model produces user-centred explanations).
An explanatory process that sufficiently implements the ARS heuristics and
the SAGE commands is more user-centred than any one-size-fits-all ex-
plainer, producing better explanations through an easy-to-navigate decom-
position of the explanatory space. In other terms, not all the decomposi-
tions of an explanatory space are equally useful to explainees if no assump-
tion is made about their background knowledge.

5.5 Proof of Concept: a YAI compliant with the GDPR

We hereby present a proof of concept5 of the SAGE-ARS model applied
to a YAI for explaining an automated decision-making system in a real-
case scenario where explanations compliant with the GDPR are required
(as described in Section 1.1).

The real-case scenario concerns the conditions applicable to minors’
consent to online information services. Article 8 of the GDPR sets the
5Real software implementations are discussed in Part II.
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minimum age for consent without parental authorisation at 16. Domestic
law could derogate this limit, and in Italy, legislative decree 101/2018 sets
it at 14 years. In order to automate the verification of the proper application
of existing rules, an online information service encodes the fact that Art.
8 of the GDPR is superseded by the Italian legislative decree 101/2018
with LegalRuleML [11, 152], representing the rules with defeasible logic
[146]. Moreover, the online information service uses the legal reasoner
SPINDle [115], a logic-based AI, to process the correct rules according to
jurisdiction (e.g., Italy) and age.

Suppose that Marco (a 14 years old Italian teenager living in Italy) uses
Whatsapp, and his father, Giulio, wants to remove Marco’s subscription to
Whatsapp without Marco’s consent because he is concerned about Marco’s
privacy when online. In this simple scenario, the automated decision-making
system based on SPINDle would reject Giulio’s request to remove Marco’s
profile because of the Italian legislative decree 101/2018. What if Giulio
wants an explanation of the automated decision? The online information
system would have to use an explanatory process.

According to the definition given in Section 5.3, a user-centred (inter-
active) explanatory process is about explaining an explanandum to an ex-
plainee (reader and narrator), thus producing as output an explanans that
is meaningful for the specific explainee. In this scenario, the explanandum
consists of the following:

• A rule-base serialised in LegalRuleML;

• A dataset of premises (the information about involved entities);

• A dataset of conclusions obtained by applying the premises to the
rule base;

• A causal chain (i.e., the ordered chain of decisions taken by SPINDle
to produce the conclusions).

Assuming that the explanandum is provided as defined above, then: How do
we define the explanatory process? How do we pick the initial explanans?
How do we pick the set of actions? To answer these questions, we use the
SAGE-ARS model.

The simplicity heuristic (the S of ARS) implies that the explanatory
process should start from a very minimal and simple explanans, adding in-
formation iteratively (and interactively) in a stepwise manner. Simplicity
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also implies that simple representations of the explanandum (e.g., natural
language descriptions) should be presented before the original representa-
tions (e.g., the XML representation of the LegalRuleML encodings). No-
tably, the simplicity heuristic is mentioned in recommendation 29.5 of the
“Policy and Investment Recommendations” of the AI-HLEG [148]: “En-
sure that the use of AI systems that entail interaction with end-users is by
default accompanied by procedures to support users [...]. These procedures
should be accompanied by simple explanations and a user-friendly proce-
dure”. Physical constraints limit the amount of information that can be
effectively provided to a human. Therefore, simpler explanations are more
likely to be accepted and understood and tend to be better than complicated
ones. Thus they should be presented earlier.

Furthermore, the heuristic of abstraction (the A of ARS) implies that
the explanans must be organised in such a way as to help the explainee
move from abstract and generic information to more specific and factual
information, or vice versa. The abstraction policy is motivated by the as-
sumption that the possibility of isolating and precisely defining aspects of
the explanandum is advantageous, as it facilitates the focusing of attention.

Finally, the relevance heuristic (the R of ARS) implies that the initial
explanans should contain the most relevant information possible and that
further details should first concern the entities directly involved in the ini-
tial explanans. Instead, other entities should be explored/presented later,
if necessary. The relevance policy ties the explanatory process to the ex-
plainer’s goals/objectives, stating that information that is more likely to be
relevant to the explainer (to achieve his or her goals) should be presented
before less relevant information. Hence, one expected effect of the rele-
vance policy is that explanations will be shorter.

In this scenario, the initial explanans should therefore contain:

• An overview of the underlying explanatory process and explanan-
dum, pointing to meta-data information (e.g., size of the explanan-
dum, language, knowledge representation conventions);

• A brief justification of the automated decision of SPINDle (required
in the ex-post phase), perhaps generated through a static explanatory
tool such as AIX360 by IBM [96].

In the considered scenario, this justification of the automated decision should
indicate that Giulio’s request was rejected because of the Italian decree.
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Figure 5.3: Stylised representation of the structure of the explanatory
space of the proof of concept of Section 5.5. In this figure, the arrows
show the flow of information, while every rectangle represents a dif-
ferent sub-stage of the space. The flow begins with an overview of the
explanatory process (EP for short) and explanandum.

Considering that the explanatory process is an instantiation of the SAGE-
ARS model, for every SAGE property, it is necessary to identify a set of
commands that the explainee may use during the explanatory process:

• Sourcing (commands): used to show the sources, i.e., the Legal-
RuleML representation of the law.

• Adapting: used to keep track of important information while explor-
ing the explanatory space, building an argumentation framework.

• Grounding: used to ask questions, e.g., what would happen if facts
would be different; what is the GDPR, and so on.

• Expanding: used to add (or remove) pieces of information to the ex-
planations.

Consequently, after defining the initial explanans and the explanatory pro-
cess, the structure of the explanatory space is also defined. The result-
ing structure (shown in Figure 5.3) is composed of the following six main
stages, where each stage of the structure is involved in a different step of
the explanans construction:
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• Incipit (explanatory process and explanandum overview).

• Core information (i.e., directly involved entities/classes).

• Marginal information (i.e., indirectly involved entities/classes).

• Counterfactual information.

• Source information.

So, in our case, the explainee (Giulio) wants to get an explanation of
the conclusions taken by SPINdle (the decision of the automated decision-
making process). To do so, Giulio can use the aforementioned explanatory
process, thus reaching the initial explanans, shown in Figure 5.4, which
provides a succinct ex-post justification of the decision taken by SPINdle.
This justification points to further explanations about relevant concepts and
information in the explanandum. However, this first-level explanation is not

Figure 5.4: Incipit stage of the proof of concept YAI of Section 5.5: ini-
tial explanans. In this figure, a simple example of initial interactive ex-
planans is shown. Coloured underlined text within round brackets rep-
resents different SAGE commands. When clicking on them, the explainee
can interactively change the content of the explanation on-demand, ex-
ploring the explanatory space.

enough for Giulio. Thus he clicks on a “what?” button to understand what
is the GDPR, thus moving to the core information stage (directly involved
entities), as shown in Figure 5.5. Now, Giulio wants to get more informa-
tion about the decision process. Thus he clicks on the “(. . . hide. . . )” button
and then on a few “(. . . more. . . )” buttons to further expand the initial ex-
planans. This time Giulio finds out which sequence of rules was applied
by SPINdle to produce the decision. So, now he can see that every rule
is linked to a LegalRuleML component and the relevant source of law that
justifies it. Giulio can also see rebuttals, as shown in Figure 5.6. If he re-
quested the explanatory process to tell more about the GDPR rebuttal, he
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Figure 5.5: Core information stage of the proof of concept YAI of Section
5.5: explanations about the GDPR. Grounding commands are shown
in orange, while expanding commands are in blue.

would find out that the “lex specialis derogat generali” was applied, caus-
ing the activation of the rule associated with the Italian decree instead of
the rule associated to the GDPR. In addition, Giulio also wants to know

Figure 5.6: Proof of concept YAI of Section 5.5: explanations about the
decision process. This figure shows the causal chain of the automated
decision. Clicking on the “(what if?)” button, it is possible to move to
the counterfactuals stage, while clicking on the “(...source...)” buttons,
it is possible to see the LegalRuleML sources. Grounding commands
are shown in orange, expanding commands are in blue, while sourcing
commands are in green.

more about the set of premises. Thus he clicks on another “(. . . more. . . )”
button, seeing that the residence in Italy is one of the premises used by
SPINdle to take its decision, as shown in Figure 5.7. Then, Giulio clicks
on the “what if?” button or on the “(...find alternative...)” button to reach
the counterfactual stage and to understand what would happen if Marco’s
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residence were different. This way, Giulio understands that if his family
moves to Luxembourg (where the minimum age for giving consent without
parental authorisation is 16) for three months, then a European judge could
reassess the case giving Giulio the right to decide for Marco.

Figure 5.7: Proof of concept YAI of Section 5.5: decision process
premises. This figure shows the premises as well as the causal chain of
the automated decision. Clicking on the “(...find alternative...)” buttons,
it is possible to move to the counterfactuals stage, while clicking on the
“(...source...)” buttons, it is possible to see the LegalRuleML sources.
Grounding commands are shown in orange, expanding commands are
in blue, while sourcing commands are in green.

With an explanatory tool based on our model, the user can explore the
explanatory space and build his explanatory narrative through a set of pre-
defined actions. The resulting tool is user-centred by design and can be
used for finding evidence to make sense of phenomena (sense-making),
articulating understandings into an explanatory narrative. We assert that
the structure of the explanatory space we have identified is sufficient to
produce the descriptive, causal, and justificatory explanations mandated by
the GDPR. Specifically:

• Descriptive explanations can be derived from the core stage and the
marginal information stage;
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• Causal explanations can be obtained through the counterfactuals stage;

• Justificatory explanations can be achieved by examining the incipit
stage and the sources stage.

The proof of concept demonstrates the potential of the SAGE-ARS
model for developing a GDPR-compliant YAI system, although certain lim-
itations must be acknowledged. Specifically, the proof of concept does not
incorporate all the primitive actions associated with SAGE commands, as
discussed in Section 5.4, particularly open-ended question-answering. This
limitation may affect the depth and detail of explanations provided. While
this approach works well for the specific scenario considered, it might not
be universally applicable to all XAI or YAI situations. Users may need to
search for information relevant to their particular query, as the model’s lack
of parsimony could create additional steps in finding the desired explana-
tion. However, for the identified real-world scenario, the proof of concept
demonstrates the feasibility of using the SAGE-ARS model to develop a
YAI that offers explanations compliant with the GDPR.

By adhering to simplicity, abstraction, and relevance heuristics, the YAI
enables users like Giulio to navigate complex legal information and com-
prehend automated decision-making processes. The tool also allows users
to interactively explore the explanatory space and access pertinent informa-
tion tailored to their needs. This approach not only helps users understand
the decision process but also fosters trust in the system, ensuring compli-
ance with GDPR requirements and promoting transparency in automated
decision-making.

In the subsequent chapters, we will discuss more comprehensive ex-
amples of YAI implementations, including those featuring the open-ended
question-answering primitive action.
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Summary

IN THIS part of the thesis, we provide strategies, intelligent interfaces
and other software tools to answer the fourth research question posed
in the introduction: how to generate explanations for humans in an

algorithmic way.
In Chapter 6, we show how to use question-answering algorithms to

implement Explanatory Artificial Intelligence software. We then discuss
the implementation of YAI4Hu, a YAI tool for humans that relies on in-
telligent components for open-ended questions and aspect overview. To
evaluate YAI4Hu, we design and present the results of two user studies in
Chapter 7. The empirical results show that YAI4Hu surpasses all identified
baselines, supporting our theory. Next, in Chapter 8, we show how to use
some components of YAI4Hu to implement DoXpy, an algorithm capable
of quantifying the degree of explainability described in Chapter 4.

Several approaches to automatic question answering exist, but not all
of them can scale from small to extensive and heterogeneous explananda
or are fast enough to answer any question quickly with standard comput-
ing capabilities. Therefore, in Chapter 9, we identify strategies for scalable
question-answering on technical languages. These strategies rely on lin-
guistic theories, data mining and knowledge extraction techniques to effi-
ciently retrieve answers without training or fine-tuning procedures. Finally,

The content of Part II is a reworking and extension of the following articles by the same
author of this thesis: [194, 195, 188, 189, 199, 190, 200].
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in Chapter 10, we show how to construct YAI tools for education to explain
excerpts of a legal textbook. In particular, this part of the thesis is intended
to show how our technology can work with both technical (i.e., legal) and
ordinary languages, processing and explaining a wide range of documents.
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CHAPTER6
How to Use Question-Answering

Algorithms to Implement the
SAGE-ARS Model

If explaining is about answering questions, we can build an explanatory tool
on top of question-answering algorithms. From the definition of explana-
tory illocution given in Section 4.1.1, it follows that illocutionary question-
answering requires a mechanism for pragmatically:

• Estimating the pertinence of answers to (archetypal) questions;

• Identifying the relevant aspects to be explained through illocution.

The problem with this is that every user may need different information de-
pending on her or his background knowledge, making it very hard to esti-
mate the pertinence of informative content, at least pragmatically speaking.

To solve this problem, we frame pertinently answering as the process
of giving answers that are likely to be relevant to a given (archetypal) ques-
tion. The likelihood can be quantitatively estimated on strong-enough sta-
tistical evidence collected from large corpora and built in language models.
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The point is that this statistical definition of pertinence is compatible with
Achinstein’s u-restrictions (introduced in Section 2.2), and it does not pre-
clude a user-centred explanatory process that is locally non-user-centred
but globally user-centred.

It is possible to see the space of all the explanations about an explanan-
dum (or explanatory space) as a sort of manifold space where every point
within it is interconnected explainable information that is not user-centred
locally (because it is the same for every user), but globally as an element
of a sequence of information that can be chosen by users according to their
interest drifts while exploring the space. Importantly, this understanding of
an explanation as a sequence within the explanatory space is indeed fram-
ing explanations as ellipses (a concept introduced in Section 2.2), for the
explanation being a pragmatic subset of all the possible information about
an explanandum.

It is possible to see the explanatory space as a hypergraph of intercon-
nected bits of explanation (see Section 5.3 for more details) and an expla-
nation as a path within the explanatory space that can be generated through-
out question-answering. Consequently, the relevant aspects to be explained
are framed as clusters of these interconnected bits of explanation. For ex-
ample, assuming that the explanandum is a set of documents written in a
natural language (e.g., English), the relevant aspects to explain might be the
different words within the corpus so that an explanatory overview can be
associated with each word. So, in order to implement the ARS heuristics
and the SAGE actions (see Section 5.4), we may use an algorithm able to:

1. Extract from a corpus of documents a (knowledge) graph represent-
ing the different aspects (words) to be explained and the information
related to them;

2. Organise the explanandum aspects as a taxonomy1, thus ordering
them by level of abstraction;

3. Answer open-ended (English) questions relevant to the explainee,
possibly exploiting a taxonomy of aspects to drastically reduce the
size of the search space from the whole corpus of documents to only
those snippets mentioning aspects related to the question;

1A taxonomy is a hierarchical tree classification scheme in which things are organised in
terms of relationships between subclasses.

79



6.1. Efficient Answer Retrieval

4. Build at least one information cluster (or explanatory overview) per
aspect, ordering information within the cluster by relevance to archety-
pal questions;

5. Hide redundant information within clusters, favouring shorter, sim-
pler and most informative explanatory overviews.

In the following sections, we will present a practical implementation of
such an algorithm, called YAI for humans (YAI4Hu for short).

YAI4Hu is a fully automatic explanatory tool built on the model de-
scribed in Chapter 5. YAI4Hu is capable of enhancing the explanatory
power of a collection of (English) texts, representing it as a hypergraph
where information can be either explored through overviewing or searched
via open-ended questioning. On the one hand, open-ended questioning can
be performed by asking questions (in English) through a search box that
uses the (knowledge) graph for efficient answer retrieval. On the other
hand, explanatory overviewing can be performed iteratively from an initial
explanation by clicking on (automatically) annotated words that require an
explanation.

One notable limitation of the current YAI4Hu version is its inability
to generate new information. Its functionality is limited to extracting pre-
existing data, meaning it can only provide information that has been pre-
recorded and does not have the capacity to rephrase it. This is because
the YAI4Hu framework currently lacks generative AI components. Nev-
ertheless, a potential solution to overcome this limitation lies in the future
integration of advanced generative AI technology. By incorporating such
technology, YAI4Hu could be equipped not only to extract information but
also to generate and rephrase it. This advancement would significantly ex-
pand the capabilities of the tool.

6.1 Efficient Answer Retrieval

The task of answering questions using an extensive collection of docu-
ments about diverse topics or from different domains is called open-domain
question-answering [47, 94]. There are at least three main software ar-
chitectures for open-domain question-answering: the retriever-reader, the
retriever-generator and the generator-only architecture. The first two archi-
tectures combine information retrieval techniques and neural reading com-
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prehension or text generation models. In particular, the latter does not in-
volve classical information retrieval, thus being completely end-to-end.

A famous example of generator-only architecture could be OpenAI’s
ChatGPT2, an adaptive and intelligent dialogue system. This type of algo-
rithm usually relies on large deep neural networks that are trained in an un-
supervised manner to memorise facts and in a supervised manner to answer
questions in a meaningful and coherent way. Even though generator-only
architectures are capable of impressive results, they tend to write plausible-
sounding but incorrect or nonsensical answers. One of the reasons for this
problem is that this type of architecture is fully end-to-end and needs to
perform fact-checking.

In contrast, the retriever-generator and retriever-reader architectures cir-
cumvent the latter problem by relying on a system capable of retrieving
plausible answers from a knowledge base (or graph) of verified contents.
The retriever-reader and retriever-generator models usually have an asymp-
totic time complexity that grows linearly with the number of answers con-
sidered for retrieval. That number does not necessarily have to be equal to
the number of all the retrievable texts. In other words, the time complexity
of the answer retrieval system can be intelligently controlled by making it
fit the memory and time constraints of a personal computer, e.g., by filter-
ing out all texts unrelated to a question. In particular, the retriever-generator
rewrites and reprocesses the retrieved information, while the retriever-reader
limits itself to extracting it (as it is) and reclassifying it properly.

This thesis focuses not on question-answering or chatbot technology
but on how to model and design user-centred AI regardless of the algo-
rithm pipeline adopted. In other words, at this research stage, we are not
interested in end-to-end opaque explanatory systems but rather in build-
ing an Explanatory AI that reflects the identified theoretical insights and
allows us to verify them empirically. Therefore, as a question-answering
paradigm for YAI4Hu, we considered a retriever-reader, shown in Figure
6.1, capable of exploiting the structure of a knowledge graph to filter an-
swers in order to perform an efficient (i.e., on average, sub-linear) search
across large amounts of text. Specifically, a retriever-reader architecture
was chosen because it is easier to implement and execute with standard
computing capabilities (e.g., a desktop or laptop computer). Moreover, it
does not require a generator or the fine-tuning of large and opaque deep

2https://openai.com/blog/chatgpt/
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learning models with expensive annotated datasets. Indeed, intuitively, text
generation is a more complex task than reading comprehension.

Figure 6.1: Flow diagram of the answer retriever used by YAI4Hu. This
figure summarises the answer retrieval algorithm used by YAI4Hu. A
question q about one or more topics C (i.e., explanandum aspects) is
given as input to the retriever, which analyses it to find the set of infor-
mation units about C in the knowledge graph. Then, both the identified
information units and q are embedded, and their cosine similarity (θ)
is used to rank information units according to their pertinence to the
question, selecting them as answers.

Open-domain answer retrieval systems (also called dense passage re-
trieval or question-answer retrieval [47]) based on reading comprehension
encode all the identified possible answers (e.g., parts of sentences, para-
graphs) into a numerical representation (i.e., a vector of real numbers)
with a general-purpose neural model. Then they use the encoding for fast
similarity-based retrieval. Amongst the most important answer retrieval
models, we distinguish between those that use the answer context for the
generation of embeddings3 [225, 106, 172] and those that do not [48].

3Intuitively, using the answer context should help the embedder to contextualise and dis-
ambiguate better, producing more high-quality embeddings.
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The YAI4Hu retrieval-reader mechanism, as depicted in Figure 6.1, em-
ploys a method for converting questions and answers into dense numerical
representations or embeddings. This approach uses the cosine similarity
between a question’s embedding and an answer’s embedding to gauge the
relevance of the answer to the question.

More specifically, let T be the set of topics mentioned by a question q
and u be an information unit (i.e., a grammatical clause, part of a sentence,
a sentence) and z the context paragraph from which u was taken. YAI4Hu
performs answer retrieval by retrieving all the information units u about T ,
selecting those likely to be an answer to q. The probability that u perti-
nently answers q can be estimated as the numerical similarity between the
embedding of u + z (i.e., u concatenated with z) and the embedding of q.
So that if u + z is similar enough to q, then z is said to be an answer to q
for the information unit u. Therefore, in practice, the algorithm can retrieve
any arbitrary number of answers, given that enough information units are
available.

Figure 7.4 provides an illustrative example of questions and answers
retrieved from a specific source, serving as a crucial visual aid in com-
prehending the retrieval process. By juxtaposing the posed questions with
their corresponding responses, the figure allows an easy comparison of in-
puts and outputs. It also gives insights into the system’s capabilities, the
complexity of the answers it can generate, and any potential limitations.

The process of obtaining embeddings for u + z and q involves the use
of deep language models that specialise in answer retrieval. These mod-
els are pre-trained on standard English, enabling them to associate similar
vectorial representations with a question and its appropriate answers. Two
examples of such pre-trained deep language models are the Multilingual
Universal Sentence Encoder [225] and a variant of MiniLM [219], as pub-
lished by SBERT [165]. YAI4Hu specifically employs the Multilingual
Universal Sentence Encoder, developed by Yang et al. [225], and trained
on the Stanford Natural Language Inference corpus [28].

One problem of models trained on ordinary English is that they tend
to lose effectiveness whenever applied to more technical (e.g., legal, scien-
tific) languages, as those considered in practically all our case studies. For
this reason, Chapter 9 discusses some techniques to circumvent this issue
without expensive training procedures or datasets.
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6.2 Automated Graph Extraction

Figure 6.2: Flow diagram of the automated graph extractor used by
YAI4Hu. This figure summarises the algorithm used by YAI4Hu to ex-
tract the knowledge graph for answer retrieval, as described in Section
6.2.

Knowledge graph extraction is the extraction of concepts and their rela-
tions, from natural language text, in the form of a graph where concepts are
nodes and relations are edges. When these relations are complex clusters of
information connecting more than two concepts (i.e., whole clauses or sen-
tences), the knowledge graph is called a hypergraph. Thus, we are looking
for a way to extract knowledge hypergraphs whose relations would preserve
the original natural language. So that we can make the graph easily inter-
operate with the answer retrieval algorithms and existing deep language
models described in Section 6.1.

As shown in Figure 6.2, such hypergraphs can be extracted by detect-
ing, through a dependency parser4, all the possible clauses in every sentence
of the corpus of documents considered as explanandum. By analysing the
grammatical dependencies extracted by a dependency parser, it is possible
to identify subjects and objects as explanandum aspects (or nodes) of the
hypergraph, and the clauses or sentences5 that contain them as hyperedges.
Specifically, dependency parsing involves exploring the dependencies be-
tween words in a sentence to understand their grammatical structure by
4For example: https://spacy.io/api/dependencyparser
5Complex sentences contain multiple clauses including at least one independent clause
(meaning, a clause that can stand alone as a simple sentence) coordinated either with at
least one dependent clause (also called an embedded clause) or with one or more inde-
pendent clauses.
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breaking sentences into multiple components linked together by grammat-
ical dependencies (e.g., subject, object, adverb, verb) to form clauses.

In our case, for simplicity and efficiency, we decided to represent these
clauses as special triplets, called template-triplets, containing a: subject,
template, and object. Specifically, templates are composed by the ordered
sequence of tokens connecting a subject to an object (or nominal modifier6)
in a clause. In particular, the subjects and the objects are represented in
these templates with the placeholders “{subj}” and “{obj}”. An example
(taken from the proof of concept of Section 5.5) of template-triple is:

• Subject: “Giulio’s request”

• Template: “{subj} to remove Marco’s profile has been denied be-
cause of {obj}”

• Object: “the Italian legislative decree 101/2018”

Alternatively, these template-triplets can be seen as a function, where the
template is the body and the object and the subject are the parameters. So
that obtaining a natural language representation of them (i.e., an informa-
tion unit to be used for answer retrieval) is straightforward by design, re-
placing the instances of the parameters in the body.

Eventually, collecting all these template-triplets makes it possible to
extract a binary decomposition of a knowledge hypergraph from any col-
lection of textual documents. Each template is a binary edge (between a
subject and an object) standing for a hyperedge which connects the subject
and the object as well as all the other concepts and entities mentioned in
the template.

In order to increase the interoperability of these knowledge graphs with
external resources, it is also possible to serialise them as RDF graphs. RDF
is a standard model for binary graph representations and data interchange
on the Web [6]. Importantly, RDF has features that facilitate data merging
even if the underlying schemas differ. This property of compositionality
of RDF graphs (i.e., two RDF graphs can be combined without compli-
cated merging procedures) gives the possibility to manually correct any
error produced during the graph extraction and easily integrate it with addi-
tional knowledge (graphs) in order to manually fine-tune the behaviour of
an answer retriever.
6A nominal modifier is a noun (or noun phrase) functioning as a non-core (oblique) argu-
ment or adjunct.
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In order to format a graph of template-triplets as an RDF graph, it is
sufficient to:

• Assign a Unique Resource Identifier (URI, for short) to every node
(i.e., subject and object) and edge (i.e., template) of the graph by
lemmatising the associated text. Each URI points to an RDFS label
corresponding to the associated text;

• Add special triplets to keep track of the sources from which the
template-triplets were extracted so that for each node and edge is
possible to go back to the source document or paragraph;

• Add a sub-class or is-an-instance-of relation between composite con-
cepts (syntagmas) and the simplest concepts (if any) composing the
syntagm. For example, “contractual obligation” is a sub-class of
“obligation”, while “Giulio’s request” is an instance of “request”.

6.3 Overview Generation via Answer Retrieval

As discussed in Section 5.4, an overview is an explanation consisting of a
sequence of relevant answers to (possibly interesting) archetypal questions
about an explanandum aspect. In particular, overviewing is the primitive ac-
tion identified for articulating understandings and allowing the user to ex-
plore an explanatory sub-space iteratively. An example of an overview gen-
erated by ChatGPT, answering several archetypal questions about Christo-
pher Columbus7, is:

“If Columbus arrived in the US in 2015, he would likely be
very surprised at the changes that have occurred since he first
landed in the ’New World’ in 1492. For one, he would proba-
bly be shocked to discover that the land he ’discovered’ was al-
ready inhabited by Native Americans and that now the United
States is a multicultural nation with people from all over the
world. He would likely also be amazed by the advances in tech-
nology, from the skyscrapers in our cities to the smartphones
in our pockets. Lastly, he might be surprised that many people

7Christopher Columbus was an Italian explorer and navigator who completed four voyages
across the Atlantic Ocean, opening the way for the widespread European exploration and
colonisation of the Americas.
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do not view him as a hero anymore; some argue that he was a
brutal conqueror who enslaved and killed native people. Over-
all, it would be a very different experience for Columbus than
the one he had over 500 years ago.”8

According to Hypothesis 1 (cf. Section 3.2), it is possible to generate
an explanatory overview through the answer retrieval algorithm described
in Section 6.1 by clustering and ordering information according to its per-
tinence to a set of (predefined) archetypal questions, such as those listed
in Section 3.3. Answering different archetypal questions implies providing
different explanatory nuances that can shed light on causes and justifica-
tions (if the considered archetype is why) as well as finality (what for),
time (when), space (where), properties (what), and so on.

Figure 6.3: Flow diagram of the overview generator used by YAI4Hu.
As shown in this figure, once the user selects an explanandum as-
pect to overview, the question generator identifies a meaningful set of
(archetypal) questions about that, and it uses them for organising the
overview through the answer retriever described in Section 6.1. Re-
sulting overviews are simplified, removing redundant information as ex-
plained at the end of Section 6.3.

In practice, an algorithm for overview generation can be obtained by
simply piping a question generator with an answer retriever and an algo-
rithm (called overview simplifier) for adequately cleaning and formatting
the output of the answer retriever, as shown in Figure 6.3. The question
generator takes as input an explanandum aspect (e.g., “constitution”). It

8This snippet of text has been taken from https://openai.com/blog/chatgpt/
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produces as output a set of archetypal questions about that aspect (e.g.,
“What is the constitution?”, “What is the purpose of the constitution?”). In
particular, YAI4Hu uses a naive but effective question generator that em-
ploys a predefined set of templates of archetypal questions (e.g., “What is
{x}?”, “Why {x}?”), replacing the template placeholder with a label of the
explanandum aspect (e.g., the “{x}” in “What is {x}?” is replaced with
“constitution”).

Let Q be a set of archetypal questions, q ∈ Q an archetypal question,
and c an explanandum aspect, YAI4Hu generates an explanatory overview
by: extracting, from the knowledge graph produced by the algorithm of
Section 6.2, all the information units related to c, including those of the
sub-classes or instances of c; and selecting, through the answer retriever
described in Section 6.1, the information units that are more likely to be an
answer to q, for each q ∈ Q.

Considering that an answer might be associated with more than one
archetypal question, the overview simplifier is responsible for filtering out
redundant answers, according to the simplicity heuristic. Specifically, if
the answer retriever gives the same answer to more than one question, the
overview simplifier assigns it to the most pertinent question. Moreover,
the overview simplifier is also responsible for sorting the questions by de-
creasing pertinence (i.e., the questions whose first answer has the highest
pertinence score are ranked first) and guaranteeing that each question does
not have more than a answers (a is called answer horizon).

To further guarantee the abstraction policy, the overview simplifier could
also integrate the overview with taxonomical information (if any) about the
explanandum aspect, e.g., super-classes, sub-classes and instances.

For a practical demonstration of these principles in action, refer to Fig-
ure 7.5 in Section 7.2 where an example of such an overview is provided.

6.4 Smart Annotation: Selection of Which Aspects
to Explain

An explainee can visualise overviews by selecting an aspect to overview
(e.g., by clicking on annotated words on the screen). However, not all words
are aspects for which it makes sense to produce an explanatory overview.
That is because, in practice, only a tiny fraction of the words in a text are
helpful to explain. Indeed, the meaning of many words belongs to common
sense (e.g., the words: “January”, “and”, “first”, “figure”) and therefore
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should not be explained. Otherwise, the explainee might be overwhelmed
by largely redundant and pointless information that would only hinder the
usability of the YAI. A good YAI should be able to avoid redundant ex-
planations and favour shorter, simpler and most informative explanatory
contents, thus making use of ellipses (cf. Section 2.2).

Figure 6.4: Flow diagram of the smart annotator used by YAI4Hu. As
shown in this figure, every time the user visualises some explanation
provided by YAI4Hu, the textual content of it is sent to the smart anno-
tator. The smart annotator tokenises the input text, looking for words to
annotate so the user can click on them and overview them. Examples of
automatically annotated words (i.e., the underlined words) are shown in
Figure 7.5.

Therefore, to intelligently avoid producing unnecessary explanations,
YAI4Hu enforces that users can only overview the most explainable words.
These words are shown on the screen with a special distinguishable mark
(i.e., an annotation; an underline) automatically generated by YAI4Hu.
Specifically, the annotation mechanism of YAI4Hu (summarised in Figure
6.4) annotates only those concepts and words that are the most explained by
the content of the knowledge graph used for answer retrieval. More specif-
ically, to understand whether a word should be annotated, the algorithm
executes the following instructions.

1. It identifies words using a tokeniser.
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2. It checks whether the word is a stop word (i.e., a commonly used
word such as “and” or “or”) and if that is the case, then the word
is not annotated. Specifically, stop words are associated with gen-
eral knowledge of the world, and they can be heuristically identified
by analysing word frequency in the Brown corpus [181] or similar
corpora.

3. If the word is not a stop word, the algorithm generates its overview,
and it passes it to the annotation identifier.

4. The annotation identifier aggregates the pertinence scores of the an-
swers composing the overview, thus computing the cumulative perti-
nence score. If the cumulative pertinence score of a word overview
is greater than a given threshold o, the word is selected for annotation
and associated with a node of the knowledge graph (i.e., an explanan-
dum aspect).

This annotation mechanism is intended to significantly remove noisy
annotations and distractors so that the reader can focus only on the most
central and well-explained concepts. Moreover, the cumulative pertinence
score used to understand whether a word should be annotated can also be
used to understand the most explained topics in the corpus of documents.
The cumulative pertinence score is a variation of the average DoX described
in Chapter 4.
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CHAPTER7
Experimental Validation of the

SAGE-ARS Model: YAI vs
One-Size-Fits-All Explainers

Our proposed model of YAI is defined around the idea that explaining is
somewhat akin to exploring a possibly unbounded hypergraph of questions
and answers called explanatory space. This explanatory space, to be effi-
ciently explored through an explanatory process, is then broken down into a
kind of hypertree decomposition to allow the explainee to navigate through
the vast underlying space and find the answers he or she is looking for.

In particular, Hypothesis 3 (cf. Section 5.4) states that an explanatory
process implementing the ARS heuristics and the SAGE commands pro-
duces better explanations than any one-size-fits-all explainer, generating an
easy-to-navigate decomposition of the explanatory space. In other words,
Hypothesis 3 is equivalent to saying that not all the decompositions of an
explanatory space are equally useful to a human subject (if no assumption
is made about the background knowledge of the explainee), and that the
SAGE-ARS model can produce a decomposition that is user-centred and
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useful (e.g., for data subjects). Moreover, Hypothesis 1 (cf. Section 3.2)
further specifies that the usability (as per ISO 9241-210) of these decompo-
sitions is directly affected by the illocutionary force and goal-orientedness
of the explanatory process.

In order to test these two hypotheses, we gathered some empirical re-
sults, which are presented in this chapter. Specifically, the hypotheses were
tested through between-subjects user studies involving hundreds of partic-
ipants and comparing the user-centrality (measured in terms of usability)
of baseline, one-size-fits-all explanatory tools with that of tools adhering to
the SAGE-ARS model (i.e., YAI4Hu). As case studies for the evaluation,
we considered two separate scenarios in which the automated decisions of
AI-based systems for credit approval and prediction of heart diseases are
explained to laypersons for compliance with the law (cf. Chapter 1) or to
help them achieve their objectives.

7.1 The Explananda: Two XAI-Based Systems for
Finance and Healthcare

The two AI-based systems we considered as case studies concern health-
care and finance. They are, respectively: a heart disease predictor based
on XGBoost [49] and TreeSHAP [126]; a credit approval system based on
a simple artificial neural network and CEM [62].

7.1.1 Finance: the Credit Approval System
IBM designed the credit approval system under consideration to present
AIX3601. It uses an artificial neural network to predict a customer’s credit
risk (and thus decides whether or not to approve a loan) together with an
XAI algorithm (called CEM [62]) to provide post-hoc static explanations
of the neural network’s predictions. These explanations aim at helping cus-
tomers understand whether they have been treated fairly, providing insights
into ways to improve their qualifications so as the likelihood of future ac-
ceptance can be increased.

A typical use case of this system is the following one. A customer (e.g.,
John) applies for a loan from the bank. The bank collects sufficient infor-
mation about the customer. It transmits it to the artificial neural network,
1https://aix360.mybluemix.net/explanation_cust
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which uses it to estimate the probability that the customer will repay the
loan. If the customer’s credit risk is low, the loan application is approved,
but if the credit risk is too high, the system uses CEM to explain why.

The artificial neural network behind this credit approval system is trained
on the FICO HELOC dataset2, containing anonymized information about
loan applications made by real homeowners, to answer the following ques-
tion: “What is the decision on the loan request of applicant X?”.

The main goal of the users of this credit approval system is to under-
stand the causes behind a loan rejection and what to do to get a loan ac-
cepted. It is because of the specific characteristics of this system and the
right to contest an automated decision set by the GDPR. This is why CEM
is deployed to answer the following questions:

• What are the factors to consider to change the result of the application
of applicant X?

• How should factor F be modified in order to change the result of the
application of applicant X?

• What is the relative importance of factor F in changing the result of
the application of applicant X?

Nonetheless, many other relevant questions might be answered before the
user is satisfied and reaches his/her objective. Generally speaking, all these
questions can be shaped by contextually implicit instructions (cf. Section
2.2) set by specific legal or functional requirements, such as those identi-
fied by Bibal et al. [22]. These questions may be: “How to perform those
minimal actions?”, “Why are these actions so important?”, and so on.

Interpreting the internal parameters and complex calculations of an AI
model such as this credit approval system is not easy. For example, a layper-
son trying to obtain a loan might undoubtedly be interested to know that
her/his application was rejected (by the AI) mainly due to a high number
of credit inquiries on his/her accounts (as CEM can tell). However, this
information alone might not be sufficient to achieve her/his goals. These
objectives may be beyond the reach of the AI, such as understanding: how
to effectively reduce the number of inquiries in order to obtain the loan,
what type of credit inquiries may affect his status, what is the difference
between a hard and a soft inquiry.
2https://fico.force.com/FICOCommunity/s/explainable-machine
-learning-challenge?tabset-3158a=a4c37
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To summarise, the output of the credit approval system is composed by:

• Context: a titled heading section kindly introducing the user to the
system.

• AI output: the decision taken by the artificial neural network for the
loan application (i.e., “denied” or “accepted”).

• XAI output: a section showing the output of the CEM. This output
consists of a minimally ordered list of factors deemed to be the most
important to change for the outcome of the artificial neural network
to be different.

A screenshot of a web application implementing this credit approval system
is shown in Figure 7.1.

7.1.2 Healthcare: the Heart Disease Predictor
The explanandum of the heart disease predictor is about health, and a first-
level responder of a help-desk for heart disease prevention uses the system.
More specifically, the first-level responder is responsible for handling the
requests for assistance of a patient, forwarding them to the correct physician
in the eventuality of a reasonable risk of heart disease.

First-level responders get basic questions from callers; they are not doc-
tors but have to decide on the fly whether the caller should speak to a real
doctor. So, they quickly use the heart disease predictor to determine what
to answer the callers and the following actions to suggest. In other words,
this system is used directly by the responder and indirectly by the caller
through the responder. These two types of users have different but overlap-
ping goals and objectives. It is reasonable to assume that the responders’
goal is to answer the questions of a caller in the most efficient and effective
way.

The considered heart disease predictor uses an AI algorithm called XG-
Boost [49] to predict the likelihood of a patient having a heart disease given
its demographics (gender and age), health (e.g., diastolic blood pressure,
maximum heart rate, serum cholesterol, presence of chest-pain) and the
electrocardiographic (ECG) results. This likelihood is classified into three
different risk areas: low (probability p of heart disease below 0.25), medium
(0.25 < p < 0.75) or high. Therefore, XGBoost is used to answer the fol-
lowing questions:
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Figure 7.1: Screenshot of the credit approval system.

• How likely is it that patient X has heart disease?

• What is the risk of heart disease for patient X?

• What is the recommended action for patient X to treat or prevent
heart disease?

The dataset used to train XGBoost is the UCI Heart Disease Data [59, 5].
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On top of XGBoost, the heart disease predictor uses TreeSHAP [126], a
famous XAI algorithm specialised in tree ensemble models (e.g., XGBoost)
for post-hoc explanations. In particular, TreeSHAP is used to understand
the contribution of each input feature to the output of XGBoost. Therefore,
TreeSHAP is used to answer the following questions:

• What would happen if patient X had factor Y (e.g., chest pain) equal
to A instead of B?

• What are the most important factors contributing to the predicted
likelihood of heart disease for patient X?

• How factor Y contributes to the predicted likelihood of heart disease
for patient X?

However, many other important questions should be answered. These in-
clude “What is the easiest thing the patient could do to change his heart
disease risk from medium to low?”, “How could the patient avoid raising
one of the factors, preventing his heart disease risk from raise?”.

Finally, to summarise, the output of the heart disease predictor is com-
posed by:

• Context: a titled heading section kindly introducing the responder
(the user) to the system.

• AI inputs: a panel for entering the patient’s biological parameters.

• AI outputs: a section displaying the likelihood of heart disease esti-
mated by XGBoost and a few generic suggestions about the subse-
quent actions to take.

• XAI outputs: a section showing each biological parameter’s contribu-
tion (positive or negative) to the likelihood of heart disease generated
by TreeSHAP.

A screenshot of a web application implementing this heart disease predictor
is presented in Figure 7.2.
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Figure 7.2: Screenshot of the heart disease predictor.
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7.2 The Explanatory Tools: YAI and One-Size-Fits-
All Explainers

During the user studies, the two explananda described in Section 7.1 are ex-
plained to human subjects with different tools to find out which explainer
is the most usable and thus user-centred. The explanatory tools consid-
ered for the experiment are implemented as web applications and are the
following ones.

A normal XAI-based explainer: a one-size-fits-all explanatory mecha-
nism providing the bare output of a XAI as a fixed explanation for all
users, together with the output of the wrapped AI, a few extra details
to ensure the readability of the results and a minimum of context.
Without further changes, the credit approval system and the heart
disease predictor are an example of normal XAI-based explainers.

A 2nd-level explanatory closure, or two-level explainer, or overwhelm-
ing static explainer: another static, one-size-fits-all explanatory tool
that does not attempt to answer any direct questions. However, unlike
normal XAI-based explainers, this type of explainer also uses exter-
nal documentation to explain the AI-based system (e.g., its features,
how to modify them, their meaning, and any background informa-
tion), dumping large portions of text on the user. Hence, an over-
whelming static explainer has more illocutionary force than a normal
XAI-based explainer, being able to answer a broader set of (implicit)
questions but little or no goal-orientedness.

A how-why narrator: an interactive version of the normal XAI-based
explainer designed to provide (on-demand) causal and expository
explanations, answering exclusively to how and why (archetypal)
questions through overviewing, and not allowing users to perform
open-ended question-answering. The how-why narrator uses and re-
elaborates the same external documentation used by the overwhelm-
ing static explainer. Therefore, this explainer has less illocution-
ary force (because it can answer only how and why questions) and
more goal-orientedness than the two-level explainer (because it al-
lows users to request overviews about topics of their choice).

YAI4Hu (the system described in Chapter 6): an example of YAI ap-
proximating a nth-level explanatory closure and implementing the
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SAGE-ARS model, by answering a wide range of archetypal ques-
tions (not just how and why) through overviewing, also allowing
open-ended question-answering. For this purpose, YAI4Hu uses and
re-elaborates the same external documentation used by the how-why
narrator and the two-level explainer. Thanks to open-ended question-
answering, YAI4Hu has more goal-orientedness than the how-why
narrator. Moreover, thanks to the inclusion of more archetypal ques-
tions in its overviews, it also has an illocutionary force greater than
the previous explanatory tools.

The use (by the two-level explainer, how-why narrator and YAI4Hu) of
an extensive collection of external documentation to better explain the two
explananda is because the succinct amount of information provided by the
AI and XAI algorithms used by the systems is unlikely to be sufficient to
cover all the explanatory needs of their users. This is better explained in
Sections 5.1 and 7.1. Precisely, the set of external resources carefully se-
lected to cover the topics of the heart disease predictor consists of 103 web-
pages, 75 of which come from the website of the U.S. Centers for Disease
Control and Prevention3, while the remaining from the American Heart
Association4, Wikipedia, MedlinePlus5, MedicalNewsToday6 and other mi-
nor sources. Instead, the external resources used for the credit approval
system consist of 58 webpages, 50 of which come from the website of My-
FICO7, while the remaining come from Forbes8, Wikipedia, AIX3609, and
BankRate10. We took more information (almost double) for the heart dis-
ease predictor because, intuitively, it is a more complex explanandum than
the credit approval system, requiring much more questions to be covered
with different levels of detail.

In the two-level explainer, these external resources are attached to the
explanation of the XAI and used as they are (i.e., without any user-driven
reorganisation), while the how-why narrator and YAI4Hu intelligently re-
elaborate them as overviews or outputs of a question-answering process.
Indeed, the two-level explainer is a one-size-fits-all explanatory tool con-
3https://www.cdc.gov
4https://www.heart.org
5https://medlineplus.gov
6https://www.medicalnewstoday.com
7https://www.myfico.com
8https://www.forbes.com
9http://aix360.mybluemix.net
10https://www.bankrate.com
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Figure 7.3: A 2nd-level explanatory closure for the heart disease predic-
tor. A screenshot showing the connection between the first and the sec-
ond levels of information used by the two-level explainer for the heart
disease predictor.

sisting of two levels of information, as suggested by the name. The first
level is the initial explanans, providing the same output of a normal XAI-
based explainer, plus a list of hyperlinks to reach the second level. Instead,
the second level consists of a complete and verbose (i.e., more than 50
pages per system, if printed) set of autonomous static explanatory resources
for the user to understand the explanandum further. Specifically, the con-
nection between these second and first levels is simply the aforementioned
list of hyperlinks, as shown in Figure 7.3.

Differently, the how-why narrator and YAI4Hu augment the normal
XAI-based explainers through open-ended question-answering or overview-
ing. Open-ended question-answering is for users to explicit their own goals
and is supposed to be used by those knowing what to ask and how. In other
terms, open-ended question-answering is clearly intended as a mechanism
for localisation of information, and this is possible by entering questions in
a simple text input (at the top of the system’s landing page; see Figure 7.4),
linked to a Python server that exposes the necessary API to interact with
the pipeline described in Section 6.1.

In contrast, overviewing is a mechanism for exploring information and
articulating understandings. Ideally, through overviewing, a user can navi-
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Figure 7.4: Answers generated by YAI4Hu for the credit approval system.
A screenshot illustrating the process of open-ended question answering
within YAI4Hu.

gate the whole explanatory sub-space reaching explanations for every iden-
tified aspect of the explanandum. Therefore, each sentence presented to the
user by the web application is automatically annotated through a JavaScript
module (described in Section 6.4) that makes the text interactive so that
the user can choose which aspect to overview by clicking on the annotated
words.

After clicking on an annotation, a modal opens (see Figure 7.5), show-
ing a navigation bar of tabs containing explanatory overviews of the clicked
annotated words. The information shown in an overview by the how-why
narrator and YAI4Hu is obtained by the systems interrogating a Python
server exposing an API to interact with the pipeline described in Section
6.3, and it consists of: i) a short description of the explanandum aspect;
ii) the list of taxonomically connected aspects (i.e., instances, types, sub-
classes or super-classes); iii) a list of archetypal questions and their respec-
tive answers ordered by estimated pertinence.

All information shown within the modal is also annotated. This means
(for example) that by clicking on the super-class of an aspect, the user can
open a new overview (in a new tab) displaying relevant information about
it, as shown in Figure 7.5.

As set Q of archetypal questions, YAI4Hu uses pre-defined templates
from which questions can be generated by replacing the placeholder “X”
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Figure 7.5: Overviews generated by YAI4Hu for the heart disease predic-
tor. A screenshot showing how overviews are displayed in YAI4Hu. The
first overview (left) is about an explanandum aspect called “Heart Dis-
ease”, and the second one is about “Disease” (a super-class of “Heart
Disease”).

with a label of the aspect to overview. The templates used by YAI4Hu
are “what is X”, “why X”, “what is X for”, “how is X”, “who is X”,
“where is X” and “when is X”. Also, the how-why narrator uses pre-
defined question templates, but these are only: “why X” and “how is X”.

7.3 User Study Design: Quizzes and Questionnaires
to Quantify Usability

To test Hypotheses 1 and 3 (cf. Sections 3.2 and 5.4, respectively), it may
be sufficient to perform one or more user studies on the two explananda
described in Section 7.1, collecting the usability scores of the four explana-
tory tools presented in Section 7.2. As discussed in Section 3.2, usability
scores can be used as a proxy for measuring user-centrality in terms of ef-
fectiveness, efficiency, and satisfaction. Thus, we designed a user study that
follows a between-subjects experimental design so that each participant can
test and evaluate both explananda (starting with the credit approval system,
the simplest) but is randomly assigned to only one explanatory instrument
(the normal XAI-based explainer, the two-level explainer, the how-why, or
YAI4Hu) and not to multiple instruments.

The effectiveness and efficiency of explanations are measured by giv-
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ing the explanations to the participants of the user studies and asking them
questions to see whether the given explanations helped them to understand
the explananda. To this end, two domain-specific multiple-choice quizzes
(one per explanandum) are used, each consisting of questions represent-
ing plausible information goals for the system users. Being impossible and
unfeasible to identify all the possible questions a real user would ask to
reach its goals, we decided to select only a few representative questions for
the sake of the study. In particular, it appears from preliminary studies, as
the one by Liao et al. [124], that users are interested in asking a variety of
different questions about an AI system, pointing to complex and heteroge-
neous needs for explainability that go beyond the output of a single XAI.
Therefore, we picked different types of questions, with different complex-
ity and archetypes, using as reference for each explanandum the main user
objectives discussed in Section 7.2.

The heart disease predictor and the credit approval system have different
but well-defined purposes. Most importantly, many of the questions were
selected so that:

• Providing the correct answers would require the exploration of at
least 2 or 3 different overviews, with the how-why narrator and YAI4Hu;

• The answers reachable via open-ended question-answering (in YAI4Hu)
are not always as accurate as required (with the correct ones not
ranked first) or are wrong (i.e., questions 1 and 6 of Table 7.1 and
questions 1, 2 and 3 of Table 7.2).

We selected 4 to 8 plausible answers for each question, of which only one
was (the most) correct. One of the (wrong) answers was always “I do not
know”.

Importantly, we decided to use the number of correct answers as at-
tention check, discarding all participants with less than one correct answer
per quiz. That is because people failing to answer at least one question are
likely to be answering (more or less) randomly/nonsensically, paying no
attention to the task. Indeed, it is sufficient to read the initial explanations
provided by the systems to answer some of the questions (e.g., the first one
of the credit approval system).

The questions selected for the quiz on the heart disease predictor are
given in Table 7.2. Instead, the questions selected for the quiz on the credit
approval system are given in Table 7.1, where the last two questions are
about the specific technology used by the system. In fact, in this specific
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Table 7.1: Quiz of the credit approval system. This table contains the quiz
used to evaluate a tool’s effectiveness in explaining the credit approval
system. Column “QB Type” is the type of question according to the
taxonomy of user needs for explainability proposed by Liao et al. [124]
in their XAI Question Bank (QB). Column “Steps” indicates the mini-
mum number of steps (in terms of links to click, overviews to open or
questions to pose) required by each explanatory tool (“XAI” is the XAI-
based explainer, “HWN” is the how-why narrator, and 2EC is the two-
level explainer) to provide the correct answer. Negative steps means that
the correct answer cannot be found, while 0 steps mean that the answer
is immediately available in the initial explanans. Instead, “no OQA”
means that open-ended question-answering does not answer the ques-
tion correctly. Column “Archetype” indicates which archetypes repre-
sent the question. Many questions are polyvalent in that they can be
rewritten using different archetypes.

StepsQuestion Archetype QB Type [124] XAI 2EC HWN YAI4Hu
What did the Credit Approval System decide for
Mary’s application?

what, how Output 0 0 0 0

What is an inquiry (in this context)? what Terminological -1 1 1 1
What type of inquiries can affect Mary’s score, the
hard or the soft ones?

what, how How (global) -1 1 1 1

What is an example of hard inquiry? what Terminological -1 1 -1 1
How can an account become delinquent? how, why How to be that -1 1 1 1
Which specific process was used by the Bank to auto-
matically decide whether to assign the loan?

what, how How (global) 0 0 0 0 (no OQA)

What are the known issues of the specific technol-
ogy used by the Bank (to automatically predict Mary’s
risk performance and to suggest avenues for improve-
ment)?

what, why Performance -1 1 1 1 (no OQA)

context, the data subject (the loan applicant) should be aware of the tech-
nological limitations and issues of the automated decision maker (i.e., the
credit approval system), as pointed out in Section 1.1.

At the end of an effectiveness quiz, answers are automatically scored as
correct (score 1) or not (score 0), and the resulting scores are added together
to form the effectiveness score. For example, for the question “What did
the Credit Approval System decide for Mary’s application?”, the correct
answer is “It was rejected”, and some of the wrong answers are “Nothing”
or “I do not know”.

Intuitively, the heart disease predictor is a much more complex ex-
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Table 7.2: Quiz of the heart disease predictor. This table contains the quiz
used for evaluating the explainers of the heart disease predictor. For
further details about interpreting this table, read the caption of Table
7.1.

StepsQuestion Archetype QB Type [124] XAI 2EC HWN YAI4Hu
What are the most important factors leading that pa-
tient to medium risk of heart disease?

what, why Why 0 0 0 0 (no OQA)

What is the easiest thing the patient could do to change
his heart disease risk from medium to low?

what, how How to be that 0 0 0 0 (no OQA)

According to the predictor, what serum cholesterol
level is needed to shift the heart disease risk from
medium to high?

what, how How to be that 0 0 0 0 (no OQA)

How could the patient avoid raising bad cholesterol,
preventing his heart disease risk from shifting from
medium to high?

how How to be that -1 1 2 2

What tests can be done to measure bad cholesterol lev-
els in the blood?

what, how Input -1 1 -1 1

What are the risks of high cholesterol? what, why not Output, What if -1 1 2 1
What is LDL? what Terminological -1 1 2 1
What is Serum Cholesterol? what Terminological -1 1 1 1
What types of chest pain are typical of heart disease? what, how How to still be this -1 1 1 1
What is the most common type of heart disease in the
USA?

what Social -1 1 1 1

What are the causes of angina? what, why Why -1 1 2 1
What kind of chest pain do you feel with angina? what, how Terminological -1 1 1 1
What are the effects of high blood pressure? what, why not Why not, Follow-up -1 1 1 1
What are the symptoms of high blood pressure? what, why, how How (global), Input -1 1 1 1
What are the effects of smoking on the cardiovascular
system?

what, why not Why not, Follow-up -1 1 3 1

How can the patient increase his heart rate? how How to be that -1 1 3 1
How can the patient try to prevent a stroke? how How to be that -1 1 3 2
What is a Thallium stress test? what, why Terminological -1 1 3 1

planandum with many more resources and questions to answer. So, we
kept the size of the two quizzes proportional to the complexity and richness
of the explananda. However, this pushed some participants not to test the
heart disease predictor because too burdensome in terms of the minimum
time required to complete the quiz.

Furthermore, in order to better understand the relevance to XAI of the
questions considered for this user study, we aligned each question to the
types of explainability needs identified by Liao et al. [124] in their XAI
Question Bank.

Though, it could be argued that these questions were arbitrarily cho-
sen and might not be of interest to every explainee. Moreover, the answers
to these questions might not always be correctly given by the explanatory
tools (i.e., for the adopted AI and XAI providing approximate or wrong
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information). However, with these quizzes, we can analyse the quality of
the considered explanatory tools and their presentation logic on a large va-
riety of different explainability needs (i.e., almost all of those mentioned in
[124], as shown in Tables 7.1 and 7.2). This is regardless of the correct-
ness of the explainable information used for generating the explanations
and without making assumptions about the background knowledge of the
explainee11.

In addition to the two aforementioned quizzes, during the experiment
all participants are also asked to complete a SUS questionnaire (see Sec-
tion 3.2) per explanandum (used to measure satisfaction), a (short) Need
for Cognition Score (NCS) questionnaire, and to optionally provide some
qualitative feedback in the form of a comment.

NCS [39, 56] is a user characteristic that refers to the user’s tendency to
engage in and enjoy thinking. NCS has become influential across social and
medical sciences, and it is not new to the human-computer interaction com-
munity either [137]. According to de Holanda Coelho et al. [56], NCS can
be measured through a specific questionnaire of 6 items, which responses
are given on a 5-point scale (1 = extremely uncharacteristic of the user; 5
= extremely characteristic of the user). NCS scores are computed by sum-
ming the given points (from 1 to 5 for questions 1,2,5, and 6; from -5 to -1
for questions 3 and 4) for each questionnaire item.

The relevance of NCS in our study stems from the potential variability
in the usability of an explanatory tool across people with low, normal, or
high NCS. It is plausible that individuals with a high NCS, often character-
ized by their dedicated and focused approach, may be more willing and able
to navigate a comprehensive explanatory tool like the two-level explainer.
Conversely, those with a low NCS might shy away from tasks that require
considerable cognitive effort, such as understanding a complex explanan-
dum, potentially leading to dissatisfaction with any explanatory tool that
demands more than minimal engagement. Given these considerations, it is
important to assess the usability of a user-centred explanatory tool across
the entire spectrum of NCS. The term “normal” here denotes scores that
are neither extremely high nor low. Moving forward, we aim to examine
the correlation between NCS and the effectiveness or satisfaction scores to
provide a more representative evaluation. This approach can offer valuable
insights into how users with different cognitive inclinations interact with
the tool, and help us understand whether individuals with higher NCS, who

11The only assumption that is made is that explainees can read and understand English.
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might mirror the dedication of actual credit officers, report higher satisfac-
tion or effectiveness scores.

To find out whether a person has a “normal” NCS, it should be enough
to calculate the interquartile range of a sufficient number of NCS scores.
NCS scores that fall within the interquartile range can be called “normal”
because the interquartile range is the range of scores that are neither too
high nor too low. The interquartile range is meaningful when no assump-
tions can be made about the distribution of scores in the population of users
participating in the study.

Finally, during the user study, it should be clear to all participants what
their expected goal is (e.g., to obtain an explanation; to complete a quiz with
the best possible score). So that satisfaction can be adequately measured
as the system’s ability to meet the user’s goals. This could be achieved
by explicitly and immediately informing the participants when they fail or
succeed in achieving the intended goals so that the user can know whether
he or she has indeed acquired the explanation he or she was looking for, thus
being satisfied. Consequently, participants should not be paid or rewarded
to correctly measure satisfaction in this context. If participants participate
in the study only to be paid or rewarded, their objective would be to obtain
money as quickly as possible rather than an actual explanation.

7.4 Experiments and Results Discussion

To verify Hypotheses 1 and 3 (cf. Sections 3.2 and 5.4, respectively), we
performed the user study presented in Section 7.3 on more than 190 differ-
ent human subjects coming from two different pools. More specifically, we
performed two variations of the same study, one for each user group.

The first user study involved 89 unique participants amongst university
students of the following courses of study12: bachelor’s degree in com-
puter science or in management for informatics (students between 19 and
23 years old); master’s degree in digital humanities or in artificial intel-
ligence (students between 21 and 25 years old). In the end, there were
approximately 20 participants per explainer.

Participants were told that completing the quizzes and questionnaires
(on both the explananda) would have taken an average time that varies from

12All study courses took place at the University of Bologna, and only the master’s degrees
were international, i.e., with English teachings and students from countries other than
Italy.
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10 to 25 minutes and to use a desktop or laptop because the explanatory
tools were not designed for touchscreens or small devices. They were also
informed, in a simple and very concise way, that the goal of the survey was
to understand which explanatory mechanism (amongst many) is the best,
without going into further details. Therefore, participants knew that other
versions of the explanatory tool were available and that other users may
have received a different one.

Furthermore, participants were explicitly asked to use only the infor-
mation reachable from within the systems (i.e., by following the hyperlinks
there). In other terms, they were clearly instructed not to use Google or
other external tools. Participants were also:

• Instructed to click on “I don’t know” in case they did not know an
answer;

• Informed that there is only one correct answer for each question, and
when multiple answers seem to be correct, only the most precise is
considered to be the correct one;

• Noticed when a wrong answer was given, showing them the correct
one to make them aware of their success or failure in reaching a goal.

Questions were shown in order, one by one, separately, and answers
were randomly shuffled. For the credit approval system, we got 89 partic-
ipants, as shown in Table 7.3, while for the heart disease predictor, we got
70 participants. Eventually, we collected 70 valid participants taking the
NCS test for the credit approval system and 48 for the heart disease predic-
tor. As shown in Figure 7.6, the resulting NCS median score14 was 8 with a
lower quartile of 5 and an upper quartile of 11. Therefore participants with
a “normal” NCS s were those with 5 ≤ s ≤ 11. The mean NCS was 7.55.

As shown in Figures 7.7 and 7.8, YAI4Hu is visibly the most effective
and satisfactory explanatory tool in both the explananda, followed by the
how-why narrator, while the XAI-based explainer seems to be the worst

13The statistics shown in Table 7.3 for the heart disease predictor are slightly different
from those presented in [190] because we identified and corrected a bug that caused the
script to identify some respondents as having failed the attention check.

14In [189], the median score mentioned is different because the user study considers a
smaller number of participants.

15The results shown in Figure 7.8 for the heart disease predictor are slightly different from
those presented in [190] for the same reason as Table 7.3.
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Table 7.3: Statistics on the participants to the user study.13This table
shows the number of participants adhering to the user study for both the
heart disease predictor (HD) and the credit approval system (CA) and
each explanatory approach: the normal XAI-based explainer (XAI, for
short), the two-level explainer (2EC, for short), the how-why narrator
(HWN, for short) and YAI4Hu. The first column (“Respondents”) shows
the total number of respondents. The second column (“Check”) shows
only the number of respondents that passed the attention check. The
third column (“Check+NCS”) shows only the number of respondents
that passed the attention check and completed the NCS questionnaire.
The box-plots of Figures 7.6 and 7.7 consider only the respondents of
the third column, while the box-plot of Figure 7.8 also considers the
respondents of the second column.

Respondents Check Check+NCS
XAI 21 20 16
2EC 21 21 19
HWN 18 18 15CA

YAI4Hu 29 26 20
XAI 15 14 8
2EC 17 16 16
HWN 17 16 12HD

YAI4Hu 21 20 12

overall, followed by the two-level explainer. This is true, even if YAI4Hu
does not perfectly implement the SAGE-ARS model, i.e., by not imple-
menting sophisticated mechanisms for adaptivity (the A of SAGE) or by
implementing in a naive way the relevance heuristic.

The difference in usability between participants with normal and those
with non-normal NCS can be noted by observing the differences between
Figures 7.7 and 7.8. As expected, there is a decrease in satisfaction for
the more user-centred tools and an increase in effectiveness for the two-
level explainer (at least with regard to the heart disease predictor). Only
people with a high NCS are more effective with a two-level explainer. As
shown in Figures 7.7 and 7.8, YAI4Hu is visibly the most effective and
satisfactory explanatory tool in both the explananda, followed by the how-
why narrator, while the XAI-based explainer seems to be the worst overall,
followed by the two-level explainer. The difference in usability between
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Figure 7.6: NCS scores of those participants that passed the attention
check for both the credit approval system (CA) and the heart disease
predictor (HD). Results are shown as box plots (25th, 50th, 75th per-
centile, and whiskers covering all data and outliers). The numerical
value of the medians is shown inside pink boxes. The results for the nor-
mal XAI explainer are in blue. For the two-level explainer, they are in
orange. For the how-why narrator, they are in green. For YAI4Hu, they
are in red. For all explainers together, they are in purple.

participants with normal and those with non-normal NCS can be noted by
observing the differences between Figures 7.7 and 7.8. As expected, there
is a decrease in satisfaction for the more user-centred tools and an increase
in effectiveness for the two-level explainer (at least concerning the heart
disease predictor). Only people with a high NCS are more effective with
overwhelming explanatory closures.

These trends are in line with our expectation, derived from Hypothesis
1 (cf. Section 3.2) that greater illocutionary force and goal-orientedness im-
ply greater usability. On the one hand, the normal XAI-based explainer has
the smallest degree of explanatory illocution. In contrast, both the two-level
explainer and YAI4Hu have the greatest because their contents can be used
to answer more implicit questions as well as all quiz questions (as shown in
Tables 7.1 and 7.2). Although slightly smaller, the how-why narrator also
has a similar illocutionary force as the two-level explainer and YAI4Hu. On
the other hand, YAI4Hu has the greatest degree of goal-orientedness (be-
cause it implements both open-ended question-answering and overview-
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Figure 7.7: Usability scores - All vs YAI4Hu - Normal NCS. Only par-
ticipants with a normal NCS are considered in this figure. Results are
shown as box plots (25th, 50th, 75th percentile, and whiskers covering
all data and outliers). The numerical value of the medians is shown in-
side pink boxes. The 1st row is for the heart disease predictor (HD),
while the 2nd for the credit approval system (CA). Satisfaction is shown
in the 1st column, effectiveness in the 2nd, and elapsed seconds in the
3rd. In this picture, we abbreviate the XAI-based explainer as XAI, the
two-level explainer as 2EC and the how-why Narrator as HWN. Effec-
tiveness scores are normalised in [0, 100].

ing), followed by the how-why narrator, the two-level explainer and the
normal XAI-based explainer.

Furthermore, the obtained results highlight a good correlation between
objective (i.e., effectiveness) and subjective (i.e., satisfaction) metrics in
both the explananda, even if it is more evident in the credit approval system.
We believe that this difference between the results of the credit approval
system and the heart disease predictor is because the latter is much more
complex, considering that no participant was able to obtain effectiveness
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Figure 7.8: Usability scores - All vs YAI4Hu - Any NCS.15In this figure,
participants with any NCS are considered (i.e., the respondents of the
second column in Table 7.3), not just those with a NCS within the in-
terquartile range. For more details about how to read this figure, see
Figure 7.7. Effectiveness scores are normalised in [0, 100].

scores higher than 80%. Indeed, the average number of minimally required
steps (to reach the information containing an answer) is higher in the heart
disease predictor, as shown in Table 7.2. This may suggest that the intrinsic
complexity of the explanandum influences satisfaction with an explanatory
process in a different way than effectiveness.

Nonetheless, the results indicate that Hypothesis 3 (cf. Section 5.4) is
also correct, as not all decompositions of the explanatory space are max-
imally helpful for a generic human subject. Both the how-why narrator
and YAI4Hu implement the ARS heuristics, but YAI4Hu outperforms the
how-why narrator in terms of effectiveness and satisfaction. The main dif-
ference between the two explanatory tools is that the how-why narrator is
less grounded (the G of SAGE), not fully implementing the explanatory
process as an illocutionary act of answering questions.
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Similarly, the how-why narrator outperforms a two-level explainer that
is even less grounded, implementing neither relevance nor simplicity. This
indicates that, as expected, an overwhelming and superficial decomposition
of the explanatory space may not be helpful for a human subject. Thus, al-
though several decompositions of the explanatory space can be found, not
all are equally useful and explanatory, suggesting that a full implementa-
tion of both the ARS heuristics and SAGE commands may be necessary to
explain effectively.

Figure 7.9: Effectiveness scores - All vs YAI4Hu - Normal NCS on ques-
tions that can be answered with the information provided by the XAI-
based explainer. The questions that can be answered with the informa-
tion provided by the XAI-based explainer are shown in Tables 7.2 and
7.1. For more details about interpreting this figure, read the caption of
Figure 7.7. Effectiveness scores are normalised in [0, 100].

Specifically, these experiments show that illocution can lead to a sig-
nificant increment in effectiveness on both the considered explananda and
that this increment is improved by goal-orientedness. Even though the two-
level explainer can technically answer all the questions in the quiz (having
a greater illocutionary force), it still performed worse than the how-why
narrator and YAI4Hu. Moreover, it seems that implementing explanatory
illocution without goal-orientedness (as the two-level explainer does) or
goal-orientedness without enough illocutionary force (as the how-why nar-
rator) might be even harmful. This is shown in Figure 7.9, where the per-
formance of the XAI-based explainer is better than that of the two-level
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explainer and the how-why narrator.
The performance of YAI4Hu is better (in the case of the heart disease

predictor) or equal (in the case of the credit approval system) to that of the
normal XAI-based explainer, in terms of median effectiveness score, on
the explanations provided by the XAI-based explainer (questions 1, 2 and
3 in the heart disease predictor quiz). This further indicates that explana-
tions can be more than a textual or visual presentation of the information
provided by a XAI.

These insights are also supported by the qualitative feedback provided
by participants. Specifically, the feedback was:

• Overall negative for the two-level explainer, i.e., “I did not under-
stand the website’s purpose for this quiz, as I did not feel it helped
anything. If the point was to use the available links at the site, there
were too many of them, so it was no longer useful”;

• Overall neutral for the how-why narrator. Most of the comments
were like “I have no comment”, except a few negative ones, i.e., “Too
long, too difficult, strange way to ask the question... it was not very
clear!”;

• Overall positive for YAI4Hu, i.e., “This time, the accuracy was sur-
prisingly great: most of the time, the correct answer was the first to be
given. However, in a couple of cases, the answer wasn’t even among
the ones given (and the system still counted them as sufficient). I no-
ticed that this happens especially with more general questions, such
as "what is ..." and therefore had to click on the name to know the
right answer, while more specific questions (such as "what causes..."
or "who suffers most...") were easier for the system to find”. Though
some suggestions for improvements were also given, i.e., “The given
information for each answer was a lot, and not always the answer
I was looking for was among the first; also, there could have been
more possible answers with for the same question, but separated in
the list”.

We performed a few one-sided Mann-Whitney U-tests [128] (a non-
parametric version of the t-test for independent samples) on the global
(between-subjects) scores. We did it to thoroughly verify Hypotheses 1
and 3, discarding the possibility that the outcomes are the result of luck.
The results shown in Figure 7.8 indicate that the distribution of scores is
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skewed, with medians usually closer to one of the other quartiles. There-
fore, due to the limited number of samples, we chose not to make assump-
tions of parametrisation in the data16 collected throughout the user study,
which forced us to rely on non-parametric tests (i.e., Mann-Whitney).

Table 7.4: One-sided Mann-Whitney U-tests - All vs All - Any NCS.17This
table shows the results of one-sided Mann-Whitney statistical tests (with-
out Bonferroni correction) comparing each explainer involved in the ex-
periment without filtering the NCS scores. The columns indicate the
alternative hypotheses (U is the Mann-Whitney statistics, while p is the
p-value). Instead, the rows indicate that the statistical tests were per-
formed on the effectiveness or satisfaction scores of the credit approval
system (CA) or the heart disease predictor (HD). P-values lower than
.05 are shown in bold and considered statistically significant.

YAI4Hu > HWN YAI4Hu > 2EC YAI4Hu > XAI HWN > 2EC HWN > XAI 2EC > XAI

Satisfaction
U=184.5
p=.12

U=217
p=.11

U=182
p=.06

U=180.5
p=.41

U=155
p=.31

U=190.5
p=.4

CA
Effectiveness

U=145.5
p=.01

U=159
p=.006

U=111.5
p=.0007

U=173.5
p=.33

U=146
p=.22

U=201.5
p=.52

Satisfaction
U=166
p=.58

U=184
p=.78

U=117
p=.21

U=150
p=.8

U=90
p=.18

U=77.5
p=.07

HD
Effectiveness

U=116.5
p=.08

U=121.5
p=.11

U=45
p=.0004

U=143
p=.72

U=70
p=.04

U=50.5
p=.005

The results of the statistical tests (without Bonferroni correction) on
the effectiveness and satisfaction scores shown in Figure 7.8 are given in
Table 7.4. In particular, assuming that a p-value lower than .05 is enough
for asserting statistical significance18, we have that YAI4Hu is significantly
more effective than the how-why narrator, the two-level explainer and the
normal XAI-based explainer on the credit approval system. We also have
that the normal XAI-based explainer is significantly less effective than all
the other explainers on the heart disease predictor.

Considering that we are doing three multiple statistical tests per score,
the chances of having a test that falsely results as expected increase. Some
16The anonymised data is available at https://github.com/Francesco-Sovra
no/YAI4Hu, for reproducibility purposes.

17Differently from [190], in Table 7.4 we show statistical tests without filters on the NCS
of participants. This way, tests should be more reliable since filtering on NCS reduces
the number of data samples.

18Note that a p-value greater than or equal to .05 does not imply that the null hypothesis is
valid.
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statistical tools that are used in this case to reduce the chance of a type I er-
ror (false positive) are: the Bonferroni correction, the Holm–Bonferroni
method, or the Dunn–Šidák correction. Though these tools are known
to increase type II errors (false negatives) [7]. Regardless, if we used a
Bonferroni or Dunn correction to adjust for three multiple comparisons per
score, then the minimum p-value for claiming a statistically significant re-
sult would not be .05 but something close to .016. However, even with these
corrections, all the claims of statistical significance would still hold, except
for the one of the how-why narrator being more effective than the normal
XAI-based explainer on the heart disease predictor.

In order to further validate our results from a statistical point of view,
we repeated the same experiment with 103 new participants (57 males, 44
females, two unknown, aged between 18 and 55, resident in the UK, US
or Ireland), recruited through the online platform Prolific [150]. Consid-
ering that the participants were paid £7.56 per hour, we decided to repeat
the between-subjects user study presented in Section 7.3 on the credit ap-
proval system only. We did it without measuring satisfaction and compar-
ing only the normal XAI-based explainer with YAI4Hu without open-ended
question-answering. Once again, results showed that the global (between-
subjects) effectiveness of YAI4Hu is significantly greater than the normal
XAI-based explainer19 (U=931, p=.03), even without open-ended question-
answering.

However, these experiments have some limitations to highlight. Firstly,
our evaluation of the explanatory mechanisms is intertwined with the user
interface, making it difficult to understand the primary sources of usability
problems. Secondly, the algorithm pipeline relies on several heuristics and
approximations that may hinder the explanatory systems’ usability. For
instance, the answer retrieval mechanism could be better and, on several
occasions, fails to provide the best answer, as pointed out by several users.
Therefore, in the following chapters, we will discuss how to implement ex-
plainability evaluation mechanisms independent of the user interface and
strategies to improve answer retrievers’ performance on technical docu-
mentation even without expensive (training) procedures and datasets.

One strength but also another possible limitation of YAI4Hu is that we
evaluated it only on generic laypersons, without making any assumption
on the background knowledge of the explainee. Though, tools such as
YAI4Hu might be less effective with different types of users (e.g., field

19For more details about this second experiment, read [188].
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experts and regulators). That is because the relevance of information is
different for expert users. For example, they might be more interested
in having more specific and complex information first. However, open-
ended question-answering might easily overcome the issue, suggesting that
a combination of overviewing with open-ended questioning is needed. Nev-
ertheless, as future work, more intelligent and more adaptive strategies for
aspect overviewing might be designed to improve the user experience of an
expert explainee on YAI4Hu.
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CHAPTER8
Objective Quantification of Textual

Explainability: an Empirical
Analysis of the DoXpy Algorithm

In a recent attempt to capture the “legal requirements on explainability in
machine learning”, Bibal et al. [22] identified four primary explainability
requisites for Business-to-Consumer and Business-to-Business, analysing
the provisions of European law. Specifically, in these cases, explanations
about a solely-automated decision-making system should at least provide
information about the following:

• The main features used in a decision taken by the AI;

• All features processed by the AI;

• The specific decision taken by the AI;

• The underlying logical model followed by the AI.
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Interestingly, if Hypothesis 2 (cf. Chapter 4) is valid, then it would be
possible to use the work of Bibal et al. [22] to objectively quantify through
DoX (cf. Chapter 4) how much of the information required by the law is
explained by an AI system.

To test Hypothesis 2, we performed two experiments, both aimed at
showing that explainability changes following DoX. To conduct the exper-
iments, we considered the XAI-based systems and explanatory tools pre-
sented in Chapter 7. To do so, we used the answer retrieval mechanism
described in Chapter 6 to implement DoXpy, an algorithm capable of esti-
mating the DoX of any arbitrary piece of textual information.

The first experiment followed a direct approach, comparing the DoX
of the XAI-based systems with their non-explainable counterpart. This ap-
proach is said to be direct because the amount of explainability of an XAI-
based system is, by design, clearly and explicitly dependent on the output of
the underlying XAI. Therefore, by filtering away the output of the XAI, the
overall system can be forced to be not explainable enough by construction.

On the contrary, the second experiment followed an indirect approach,
analysing the expected effects of explainability on the explainees. If Hy-
pothesis 2 is correct, the lower DoX is, the fewer explanations can be ex-
tracted, the less effective (as per ISO 9241-210) the explainee is likely to
be in reaching those explanatory goals that are not covered by the expla-
nations. To show this, we borrowed the results of the user studies used to
evaluate YAI4Hu (cf. Chapter 7), studying how DoX correlates with the
effectiveness scores measured by the user studies.

In this chapter, we will explain the details of the previous experiments
(also discussing how we implemented DoXpy), which pertinence functions
p and threshold t we considered for computing the DoX scores, and how
we identified the set A of explanandum aspects.

8.1 The Pipeline of DoXpy

Throughout this section, we will explain how to use existing algorithms
for answer retrieval and information extraction to implement DoXpy, an
algorithm for computing DoX. For reproducibility purposes, we publish
the DoXpy source code at https://github.com/Francesco-Sov
rano/DoXpy.

Given Definition 6 (cf. Section 4.1.1), we argue that it is possible to
write an algorithm that can approximately quantify the Degree of Explain-
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ability of information representable with natural language (e.g., English)
by adapting existing technology for question-answering. According to Def-
inition 5, in order to implement an algorithm capable of computing the (av-
erage) DoX of Φ, we need to:

• Define a set A of explanandum aspects;

• Identify the set of all possible archetypes Q;

• Define a mechanism to identify the set D of details contained in Φ
and the subset Da for every a ∈ A;

• Define the question-answering process: the function p to compute
the pertinence of an individual detail d to an archetypal question qa.

Notably, the set of aspectsA is task-dependent and must be defined for each
explanandum (e.g., manually listing all aspects or automatically extracting
the list of aspects from a textual description of the explanation with a to-
kenizer). Instead, the set of archetypes Q, the pertinence function p, and
the mechanism for extracting D and Da from Φ may always be the same
for all explananda. For example, as Q, it may be sufficient to consider
the archetypal questions identified in Section 3.3, being generic and rich
enough to capture all elementary discursive units and abstract meaning of
any (English) text.

In particular, the set A of explanandum aspects is a collection of (lem-
matised) words, and it can be different from the set I of aspects explained
by Φ. What is of utmost importance for a Φ to be a good explanandum
support material is that A ⊆ I .

A detail d is a snippet of text called information unit, a relatively small
sequence of words about one or more aspects (i.e., a sub-set of I) that is
usually extracted from a more complex information bundle (i.e., a para-
graph, a sentence). In other terms, these details should carry enough infor-
mation to describe different parts of an aspect (possibly connected to many
other aspects). So, we can use them to answer some (archetypal) questions
about an a ∈ A and to correctly estimate a level of detail, as required by
Definition 6 (cf. Section 4.1.1).

Considering the characteristics of D and I mentioned above, the most
natural representation of them is a (knowledge) graph. A graph is a set
of nodes I connected by a set of edges D. Therefore, we believe that the
simplest way to identify the set of details D may be to extract a graph of
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information units from Φ on which efficient question-answering could be
performed.

Thus, an approach such as the one described in Chapter 6 for (archety-
pal) question-answering could be suitable for our purposes. It would allow
the identification of meaningful information units and also suggest a mech-
anism for estimating pertinence by extracting from Φ a graph of D and I
designed for answer retrieval. Importantly, as information units, YAI4Hu
uses grammatical clauses (meaningful decompositions of grammatical de-
pendency trees) to ensure that the units represent the smallest granularity
of information.

As a consequence, using this type of information units for DoX guaran-
tees:

• A disentanglement of complex information bundles into the most
simple units, to correctly estimate the level of detail covered by the
information pieces, as per Definition 6;

• A better identification of duplicate units scattered in the information
pieces to avoid an over-estimation of the level of detail.

All these properties satisfy the requirements that a good detail d ∈ D
should possess for generating a DoX score. This motivates our decision
to use YAI4Hu’s answer retrieval algorithm as the main component of the
DoXpy pipeline.

YAI4Hu’s answer retrieval algorithm consists of a pipeline of AI tools
specifically designed to measure the pertinence p of D to a set of (archety-
pal) questions Q on A. As shown in Figure 6.1, DoXpy’s answer retrieval
algorithm relies on mechanisms for embedding questions and answers in
dense numerical representations so that the cosine similarity between the
embedding of a question and that of an answer is a measure of the latter’s
relevance to the former.

More specifically, let a be the explanandum aspect of a question qa,
m =< s, t, o > be a template-triplet, d = t(s, o) be the natural language
representation of m also called information unit, and z the context (i.e.,
a paragraph, a sentence) from which m was extracted. DoXpy performs
answer retrieval by retrieving the set Da of all the template-triplets about
a and selecting amongst the natural language representations d of the re-
trieved template-triplets those that are likely to be an answer to qa. The
probability that d pertinently answers qa can be estimated as the similarity
between the embedding of < d, z > and the embedding of qa. Therefore,
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Figure 8.1: DoXpy pipeline. The pipeline starts with extracting a graph
from the explanandum support material Φ that is then converted into a
set of details D. The set of details is combined with the explanandum A
and the set of archetypesQ to compute the DoX. To do this, we use some
deep language models for answer retrieval.

in practice, the algorithm can retrieve an unbounded number of details (i.e.,
answers).

In particular, a detail is said to be redundant (i.e., duplicated) whenever
it contains information that answers an archetypal question qa ∈ Q in a
manner too similar to that of other (more pertinent) details. For example,
the detail “P is the probability of having a heart disease” is different but
similar to “the score P is the probability of having a disease”. However, the
former detail is more precise (it speaks of heart diseases instead of generic
diseases) and relevant than the latter in answering the archetypal question
“What is probability P?”. Therefore, to prevent DoXpy from considering
two details expressing the same information differently, the second detail
must be discarded as redundant. To do this, DoXpy uses the same deep
neural networks used for retrieval to compute the similarity between two
answers, discarding those with the lowest relevance scores that share a sim-
ilarity greater than a threshold r.

Consequently, as shown in Figure 8.1, the pipeline of DoXpy consists
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of the following four steps. First, a knowledge graph is extracted from the
explanandum support material Φ using the algorithm described in Section
6.2, thus defining the set of details D and the set of known aspects I . Sec-
ondly, the explanandum aspects A and archetypes Q are used to generate
the questions qa for each a ∈ A and q ∈ Q, and also to identify allDa ⊆ D.
Third, the answer retriever described in Section 6.1 is used to associate a
pertinence score with each d ∈ Da for each qa, and (importantly) to iden-
tify and filter out duplicate answers. Fourth, the formulas in Section 4.1
are used to aggregate the relevance scores and estimate the (average) DoX
without considering duplicate details.

Moreover, according to Definition 6, we need to define a pertinence
function p and pick a threshold t to compute the DoX. As previously dis-
cussed, we will use as pertinence function p a deep language model for
answer retrieval. The point is that many different deep language models
exist for this task, i.e., [83, 194, 106], and each one of them has different
characteristics producing different pertinence scores. So, which model is
the right one for computing the DoX? Can we use any model?

To answer these questions, we decided to study the behaviour of more
than one deep language model as pertinence function p. Assuming that
these models get good results on state-of-the-art benchmarks for pertinence
estimation, we believe that the results of the computation of DoX should be
consistent across them. Hence the models we considered are:

• MiniLM: published by [106, 165] and trained on Natural Questions
[113], TriviaQA [103], WebQuestions [19], and CuratedTREC [16].

• Multilingual Universal Sentence Encoder: published by [225] and
trained on the Stanford Natural Language Inference corpus [28].

In Chapter 7, we conducted experiments on two XAI-based systems and
determined that for both of the language models mentioned above, a suit-
able relevance threshold can be t = 0.15 and an appropriate duplication
threshold can be r = 0.85.

8.2 1st Experiment: Direct Evaluation on Normal
XAI-generated Explanations

In Chapter 4, we argued that the degree of explainability of any collection of
text (e.g., the output of an XAI-based system) could be measured in terms
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of DoX on a set of chosen explanandum aspects. In order to verify this
assertion and Hypothesis 2 (cf. Chapter 4), we have to show that there is a
strong correlation between DoX and the perceived amount of explainability.
To this end, we devised two experiments.

As anticipated at the beginning of Chapter 8, with the first experi-
ment, we measure explainability directly to shed more light on how a few
changes to the explainability of a system affect the estimated DoX. Specif-
ically, XAI-based systems are considered for this experiment because their
amount of explainability is, by design, clearly and explicitly dependent on
the output of the underlying XAI. So, by masking the output of the XAI,
the overall system can be forced to be less explainable. Hence, this char-
acteristic can be exploited to (at least partially) verify the hypothesis in a
straightforward but effective way.

In other words, a XAI-based system is composed of a black-box AI
system wrapped by a XAI. So, with this experiment, we compare the DoX
of a normal XAI-based explainer with that of the same system without the
XAI, also called normal AI-based explainer. As a result, we expect the
(average) DoX of the XAI-based explainer to be higher than its wrapped
AI.

For this experiment, we used the XAI-based systems defined in Section
7.1. Therefore, by simply removing the output of the XAI (respectively
CEM and TreeSHAP) from these systems, it is possible to obtain the AI-
based explainers we need.

In order to compute the (average) DoX of these systems, we take as a
set of explanandum aspects those targeted by the credit approval system
and the heart disease predictor. More precisely, the main explanandum as-
pectsA targeted by XGBoost [49] and TreeSHAP [126] in the heart disease
predictor are five:

• The recommended action for patient X;

• The most important factors Y that contribute to predicting the likeli-
hood of heart disease;

• The likelihood of heart disease;

• The risk R of having a heart disease;

• The contribution of Y to predict the likelihood of heart disease for
patient X .
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While the main explanandum aspects A targeted by the artificial neural
network and CEM [62] in the credit approval system are four:

• The factors F to consider for changing the result;

• The relative importance of factors F in changing the result;

• The risk performance of applicant X;

• The result of the application of applicant X .

Eventually, after properly converting the images produced by the XAI-
based explainers to textual explanations, the resulting explanandum aspects
coverage (i.e., the ratio of |A ∩ I| to |A|) of both the heart disease predictor
and the credit approval system is 100%. In contrast, the aspects coverage
of their AI-based explainers is 48% and 43%, respectively.

By calculating the DoX through DoXpy, we obtained the results shown
in Table 8.1. As expected, for both the heart disease predictor and the credit
approval system, the experiment results indicate that the (average) DoX of
all XAI-based explainers is significantly higher than that of AI-based ex-
plainers, regardless of the deep language model adopted. Although, we can
see that MiniLM and the Universal Sentence Encoder (the two adopted lan-
guage models) produce comparable but different DoX scores, suggesting
that the choice of the pertinence function p can sensibly impact the value
of DoX.

In this first experiment, we arbitrarily chose a simple set of explanan-
dum aspects. However, what would happen if we considered different and
more complex explananda and explanatory contents? Furthermore, the re-
sult of this experiment is based on comparing the DoX of an unexplained
system (i.e., the AI-based explainers) with that of a more explainable sys-
tem, and this is an exceptional and naive case to consider. Therefore, to
thoroughly test Hypothesis 2 (cf. Chapter 4), we must understand whether
DoX behaves as expected even when explainability is present in different
and non-zero quantities. To this end, explainability can be measured indi-
rectly by studying the effectiveness of the resulting explanations on human
subjects, as shown in Section 8.3.

1The numerical values in this table are different from those reported in [191] because
we used DoXpy v3.0 instead, which includes several improvements in the information
retrieval algorithm that prevent details duplication, as described in Section 8.1.
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Table 8.1: Results of the 1st experiment on DoXpy1. In this table, DoX
and average (Avg) DoX are shown for the credit approval system (CA)
and the heart disease predictor (HD). As columns, we have the normal
AI-based explainers (AI, for short) and the normal XAI-based explain-
ers (XAI, for short). As rows, we have different explainability estimates
using MiniLM (ML) and the Universal Sentence Encoder (TF). For sim-
plicity, for DoX, we show only the primary archetypes.

CA HD
AI XAI AI XAI

ML 0.22 0.83 0.34 0.79
Avg DoX

TF 0.19 0.63 0.24 0.61

ML

"what": 0.24
"how": 0.23
"who": 0.23
"which": 0.23
"why": 0.23
"whose": 0.22
"when": 0.21
"where": 0.21

"how": 0.87
"which": 0.86
"what": 0.86
"why": 0.84
"when": 0.81
"who": 0.80
"where": 0.78
"whose": 0.77

"why": 0.37
"which": 0.35
"what": 0.34
"how": 0.34
"whose": 0.32
"when": 0.31
"who": 0.31
"where": 0.31

"why": 0.85
"which": 0.84
"what": 0.82
"how": 0.81
"whose": 0.80
"who": 0.77
"when": 0.74
"where": 0.74

DoX
TF

"what": 0.21
"when": 0.20
"which": 0.18
"who": 0.15
"how": 0.14
"where": 0.14
"why": 0.11
"whose": 0.08

"what": 0.71
"when": 0.67
"which": 0.54
"where": 0.51
"how": 0.48
"who": 0.46
"why": 0.41
"whose": 0.31

"what": 0.28
"when": 0.24
"who": 0.17
"where": 0.17
"why": 0.17
"how": 0.16
"which": 0.15
"whose": 0.10

"what": 0.73
"when": 0.57
"how": 0.48
"which": 0.45
"who": 0.44
"where": 0.43
"why": 0.43
"whose": 0.30

8.3 2nd Experiment: A Study of the Effects of Ex-
plainability on Human Subjects

This second experiment aims to show whether there is a correlation be-
tween DoX and the effects of explainability on human subjects. A higher
explainability implies a greater capacity to explain, hence a greater number
of explanations. In other words, the lower the DoX, the fewer explanations
can be produced, and the less effective the explainer is in explanandum-
related tasks. To verify this point, we borrowed the user studies presented
in Chapter 7, which involved more than 190 human subjects. Notably, these
user studies considered the same explanandum support materials of the first
experiment, analysing the effectiveness of explanations given by different
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explainers when changing the explanandum support material and the way
explanations are presented to the explainee.

Figure 8.2: 2nd user study: effectiveness scores on questions that can-
not be answered with the information provided by the XAI-based ex-
plainer. This figure shows a comparison of the median effectiveness
scores obtained on the credit approval system (CA) with the normal XAI-
based explainer (XAI; the blue one) and YAI4Hu without open-ended
question-answering (called overview-based explainer or OBE for short;
the orange one) on those questions whose answer is not provided by the
XAI-based explainer. Results are shown as box plots (25th, 50th, 75th
percentile, and whiskers covering all data and outliers). The numerical
value of the medians is shown inside pink boxes. Differently from [188],
here effectiveness scores are normalised in [0, 100].

Both the results of the (first) user study (which involved 89 partici-
pants; cf. Section 7.4) and the (second) user study (which involved 103
participants; cf. Section 7.4) indicate that a more explainable explanandum
support material implies an explainer capable of producing more effective
explanations. As also shown in Figure 8.2, according to a one-sided Mann-
Whitney U-Test, there is enough statistical evidence to claim that the in-
stance of YAI4Hu considered for the second user study is more effective on
the credit approval system (U=849.5, p=.007) than the XAI-based explainer
on those questions that cannot be answered by the XAI (i.e., questions num-
ber 2, 3, 4, 5 and 7 in Table 7.1).

Moreover, as shown in Figure 8.3, the same can be said for the heart
disease predictor in the first user study. As expected, also in this case,
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Figure 8.3: 1st user study: effectiveness scores on questions that can-
not be answered with the information provided by the XAI-based ex-
plainer. Comparison of the results achieved on the heart disease predic-
tor (HD) with the normal XAI-based explainer and the other explainers,
only on those questions whose aspects are not covered by the informa-
tion presented by the XAI, without filters on NCS scores. The other ex-
plainers are the two-layered explainer (2EC), the how-why explainer
(HWN) and YAI4Hu. For more details about interpreting this figure,
read the caption of Figure 7.7.

we see the median effectiveness score of the normal XAI-based explainer
being significantly lower than the other explainers on the questions that the
XAI cannot answer (i.e., the questions with negative steps in Table 7.2).
More precisely, according to some one-sided Mann-Whitney U-tests, there
is enough statistical evidence to claim that YAI4Hu is better than the XAI-
based explainer (U=40, p=.0002) on those questions. The same can be said
about the two-level explainer (U=48, p=.003) and the how-why explainer
(U=65.5, p=.02).

The difference between a normal XAI-based explainer and the other
explainers is twofold. First, the explanations produced by YAI4Hu and the
how-why explainer are interactive and more user-centred, while those of
the normal XAI-based system are not. Secondly, the normal XAI-based
explainer considers a smaller amount of explainable information. YAI4Hu,
the how-why explainer and the two-level explainer produce their explana-
tions using more than 50 extra web pages that the XAI-based explainer does
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not see. In particular, the amount of information the normal XAI-based ex-
plainer handles is 1

100
of all the other explainers. This last difference allows

us to exploit these user studies further to test Hypothesis 2 (cf. Chapter 4).
In order to show that an increment in DoX causes a consequent incre-

ment in the effectiveness of explanations, we have to compute the DoX
scores of the normal XAI-based explainer and the DoX scores of the other
explainers involved in the user study. To do so, we identified the set of
explanandum aspects A from the quizzes used to generate the effectiveness
scores (see Tables 7.1 and 7.2). These quizzes define what the users should
know to be effective, indirectly defining what is essential for the system to
explain: the explanandum aspects.

Eventually, if Hypothesis 2 holds, we would expect that the greater DoX
is, the greater the effectiveness of an explainer. Notably, the opposite is not
necessarily correct. Two explainers (with different presentation logics; e.g.,
the two-layered explainer and YAI4Hu) might have different effectiveness
scores despite having the same DoX.

Computing the DoX scores for this second experiment, we got the re-
sults shown in Table 8.2. Importantly, these results confirmed our expecta-
tions for them. They indicate that the two-level explainer, the overview-
based explainer, the how-why explainer and YAI4Hu have higher DoX
scores than the normal XAI-based explainer regardless of their presenta-
tion logic.

8.4 Discussion and Analysis of Empirical Results:
How to Use DoX for Assessing Law Compliance

The results of all experiments and user studies showed that Hypothesis 2
(cf. Chapter 4) is valid. We see that DoX increases whenever a black-box
AI is enclosed in a XAI and that an increase in DoX corresponds to a sta-
tistically significant increase in the effectiveness of the explanatory system.
Therefore, our technology for estimating the DoX might be used for an ob-
jective and lawful algorithmic explainability assessment as soon as what is
needed to be explained can be identified under the requirements of the law
in the form of a set of precise explanandum aspects. To guarantee the re-
producibility of the experiments, we published the source code of DoXpy2,
as well as the code of the XAI-based systems, the user study questionnaires

2https://github.com/Francesco-Sovrano/DoXpy
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Table 8.2: Results of the 2nd experiment on DoXpy. The scores in this
table are different from those of the first experiment (Table 8.1) because
a different explanandum is considered for the second experiment. In this
table, DoX and average (Avg) DoX are shown for the credit approval
system (CA) and the heart disease predictor (HD). As columns, we have
the normal XAI-based explainers (XAI, for short) and the other explain-
ers, i.e., YAI4Hu, the two-level explainer and the how-why narrator. For
more details about interpreting this table, read the caption of Table 8.1.

CA HD
XAI Others XAI Others

ML 0.5 7.45 0.17 8.65
Avg DoX

TF 0.22 6.41 0.09 9.03

ML

"how": 0.53
"which": 0.53
"what": 0.52
"why": 0.51
"when": 0.49
"who": 0.48
"where": 0.46
"whose": 0.46

"how": 7.94
"what": 7.89
"which": 7.76
"why": 7.64
"when": 7.63
"whose": 7.06
"where": 6.88
"who": 6.76

"which": 0.19
"whose": 0.18
"how": 0.18
"what": 0.17
"why": 0.17
"when": 0.17
"where": 0.17
"who": 0.17

"why": 9.48
"which": 9.31
"how": 9.11
"what": 8.72
"whose": 8.55
"when": 8.45
"where": 8.02
"who": 7.93

DoX
TF

"what": 0.28
"when": 0.25
"how": 0.20
"who": 0.19
"where": 0.17
"which": 0.17
"whose": 0.13
"why": 0.11

"what": 8.41
"when": 7.10
"how": 5.77
"who": 5.75
"where": 5.23
"which": 5.01
"why": 3.97
"whose": 3.81

"what": 0.11
"when": 0.09
"how": 0.09
"who": 0.09
"where": 0.09
"why": 0.08
"which": 0.08
"whose": 0.07

"what": 11.00
"when": 9.17
"how": 8.34
"who": 8.09
"which": 8.01
"where": 7.64
"why": 7.44
"whose": 6.17

and the remaining data mentioned within this chapter.
The results of the first experiment tell us that whenever new information

about different aspects to be explained is added to the explanandum support
material, the DoX scores increase, and this is also true when changing the
set of explanandum aspects, as we did with the second experiment. Further-
more, the results of the second experiment tell us that whenever the DoX
scores increase, the overall effectiveness of the explanations generated from
the explanandum support material increases as well. This is true even for
the two-level explainer, even though it is not interactive and does not re-
organize information to make it simpler and easier to access, dumping on
the user dozens of pages of content.
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Our user studies involved more than 190 participants and were consis-
tent across two somewhat different and broad user pools, producing statis-
tically significant results (with p-values lower than .05). Therefore, con-
sidering that explainability is fundamentally the ability to explain, the two
experiments combined tell us that our (average) DoX can quantitatively
approximate the degree of explainability of information. In other words,
we conclude from our experiments that DoX can be used as a proxy for
measuring the explainability of an explanatory system, as long as a set of
explanandum aspects can be defined. Moreover, DoX is deterministic and
fully objective, and it could be used as a cheaper alternative to expensive
non-deterministic user studies.

We are convinced that DoX may have a role in all applications where it
is essential to evaluate explainability objectively. Indeed, the main benefit
of DoX is that it works with any set of explanandum aspects A. Therefore
it can be used to quantify how the explanations given by an AI system are
aligned with any of the Business-to-Business and Business-to-Consumer
requirements identified by Bibal et al. [22].

For each Business-to-Business and Business-to-Consumer require-
ment we may have the following set of explanandum aspects A:

• Providing the main features used in a decision by the AI: A can
be the set of main feature labels used for a decision. This list can be
generated with a XAI like CEM, TreeSHAP or others.

• Providing all features processed by the AI: in this case, A is the
set of all the feature labels considered by the AI.

• Providing a comprehensive explanation of a specific decision taken
by the AI: A can be the set of aspects deemed relevant to the deci-
sion of the AI, i.e., what is the AI, what are the known issues of the
AI, or all the other aspects discussed in Chapter 1.

• Providing the underlying logical model followed by the AI: in this
case, A can be the set of all the nouns or noun/verbal phrases used in
the textual description of the logical model of the AI.

Hence, the benefits of using DoX over a normal user study are manifold, in
fact:

• DoX reduces testing costs normally sustained during subject-based
evaluations.
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• DoX allows the direct measurement of the degree of explainability of
any piece of information for which a meaningful textual representa-
tion is written in a natural language (i.e., English).

• DoX disentangles the evaluation of the explanandum support mate-
rial from that of the explainer (or presentation logic) and the interface.

In other words, DoX is a fully objective metric that could be used to un-
derstand whether a piece of information is sufficient to explain something
regardless of whether the resulting explanations have been perceived as sat-
isfactory and good by the explainees. We deem this characteristic of DoX
to be very important. A poor degree of explainability objectively implies
poor explanations, no matter how good the adopted explanatory process
is (or how it is perceived): “Users also do not necessarily perform better
with systems they prefer and trust more. To draw correct conclusions from
empirical studies, explainable AI researchers should be wary of evaluation
pitfalls, such as proxy tasks and subjective measures” [37].

The results of the second experiment show that explanatory systems
with the same DoX could be usable and effective in different ways. This
indicates that DoX should not be considered as a total replacement to user
studies but rather as a cheaper alternative to consider while developing com-
plex explanatory systems. In other words, DoX cannot fully replace sub-
jective metrics (i.e., usability) if one wants to evaluate the user-centrality
of an explanatory system or interface. Instead, DoX is probably better than
subjective metrics if one wants to objectively evaluate the contents of an
explanatory system to understand how many questions can be adequately
answered. The higher DoX, the greater the chances to sufficiently explain
to various users.

Furthermore, we emphasize the benefits of using DoX as an early test-
ing metric for designs. If DoX is low for a particular approach, it is highly
unlikely to score well on usability (effectiveness) later on. Given the rela-
tive ease with which DoX can be measured compared to usability studies,
this advantage should not be underestimated.

Despite the considerable benefits of DoX, which are supported by both
theoretical and empirical evidence, we must also acknowledge its limita-
tions. One such limitation is the challenge of accurately defining the ex-
planandum aspects. We must also consider the potential sensitivity of our
algorithm for calculating DoX scores to the selection of a deep language
model for relevance estimation. This is suggested by the numerical dis-
crepancies between the DoX scores in Tables 8.1 and 8.2.
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On the one hand, we see that the difference in terms of DoX between
the normal XAI-based explainers and the other explainer tend to differ from
MiniLM to the Universal Sentence Encoder slightly. On the other hand, we
also see that in all the considered experiments, the DoX scores increase as
expected, with both MiniLM and the Universal Sentence Encoder, suggest-
ing that the alignment of DoX to explainability is independent of the chosen
deep language model. This intuition is supported by the fact that the deep
language models, on average, perform reasonably well on existing bench-
marks for evaluating answer retrieval algorithms. In other words, if the
average DoX aggregates enough archetypes, aspects and details, then dif-
ferent pertinence functions performing similarly on standard benchmarks
may produce proportionally similar scores. This does not exclude the fact
that some deep language models might be better than others for computing
DoX scores or that multiple standardized deep language models should be
adopted for a thorough estimate of the DoX. We leave this analysis for
future work.

Another possible limitation of DoX is that its scores cannot be easily
normalised in a [0, 1] range. In fact, according to Definition 6 (cf. Chapter
4), DoX is computed by performing a sum (called cumulative pertinence)
over the set of details D extracted from an explanandum support material.
So, DoX can measure the similarity of the explanandum support material
to the explanandum. Unfortunately, it is not possible to know in advance
the total number of details of any possible explanandum support material.
Therefore, it is impossible to normalize the score by dividing the cumu-
lative pertinence by such a number. It is worth noting that such a sum is
necessary. Indeed, suppose the cumulative pertinence was a mean instead
of a sum. In that case, the resulting score for an explanandum support ma-
terial could not be compared to that of any larger (in terms of the number
of details) explanandum support material, making pointless the use of DoX
in the first place.

Furthermore, it is essential to mention that DoX, alone, is not sufficient
for a thorough quantification of how much of the information is explained
by an AI system. Our definition of DoX does not consider the correctness
of information of the explanandum support material, assuming that truth
is given and that it is different from explainability. In other words, DoX
should always be used with other metrics that can evaluate the correctness
of available information.

Finally, although DoX can be used to verify many of the requirements
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defined by Bibal et al. [22], it is still unclear how to apply DoX to verify
also Government-to-Citizen legal requirements. Additionally, selecting a
reasonable threshold of DoX scores for law compliance is undoubtedly one
of the following challenges we envisage for a proper standardization of
explainability in the industrial context. We also leave these analyses for
future work.
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CHAPTER9
Identification and Evaluation of

Strategies for Retrieving Answers
from Technical Documents

In the previous chapters, we have seen how to use question-answering al-
gorithms based on neural reading comprehension to explain different top-
ics (e.g., finance and healthcare). To do so, we relied on deep language
models1 pre-trained on a large variety of (mostly) non-technical textual re-
sources: i) the Stanford Natural Language Inference corpus [28], ii) the

The work presented in Chapter 9 was developed in collaboration with Salvatore Sapienza,
and Vittoria Pistone from the University of Bologna [200]. F. Sovrano: conceptualization,
methodology, software, original draft preparation, visualization, investigation, validation,
review and editing. S. Sapienza: the methodology used for the creation of the Q4Eu
dataset. S. Sapienza: the Q4eIDAS and Q4GDPR datasets. V. Pistone: the Q4EAW dataset
and assistance with the error analysis of DiscoLQA. The Q4PIL comes from [197], created
by B. Distefano from the University of Bologna and S. Sapienza.
1A (deep) language model is a deep neural network trained in an unsupervised manner to
capture and represent a language domain, learning how words are statistically distributed
in collections of documents.
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Natural Questions corpus [113], iii) TriviaQA [103], iv) the WebQuestions
corpus [19] and v) CuratedTREC [16].

Neural reading comprehension models and (more generally) data-centred
machine learning can learn from raw data, with performance improving
in proportion to the quantity and quality of the data acquired. When not
enough data is available or completing an entire training procedure is too
expensive in terms of computational effort, a commonplace in natural lan-
guage processing is to fine-tune (deep) language models. These models are
usually pre-trained on generic non-technical documents and then trained in
a supervised manner on downstream tasks [93].

Nevertheless, what if only a small dataset is available that is insuffi-
cient to train or retrain a pre-trained language model? This situation is not
uncommon when legal English (i.e., legalese) or other specialised variants
of natural languages are involved in tasks requiring automated processing
or understanding. Neural reading comprehension of legal or other technical
texts is challenging because legalese and technical languages are rarer, mer-
curial and in many ways different from commonly used natural languages.

Specialised language variants share many similarities with their corre-
sponding base languages. Thus, fine-tuning a general-purpose pre-trained
model can undoubtedly aid in handling those aspects of the technical lan-
guage that are similar to its ordinary language. However, it is hard to be-
lieve that fine-tuning general-purpose language models with small datasets
would suffice, or it would be even beneficial, to train specialised models
capable of generalising on unseen data [46].

Indeed, the difference between technical and ordinary languages fos-
ters issues when applying or fine-tuning general-purpose language models,
i.e., for open-domain question-answering. This is especially true when the
meaning of a technical document (e.g., a textbook or a law) is encoded in
its (discourse) structure in a way that is different from the spoken language,
e.g., the one used daily in social media, forums and blogs. For example,
long sentences or more “formal” writing may be preferred in legal English
(e.g., Brussels I bis Regulation EU 1215/2012) to reduce potential ambigu-
ities and improve comprehensibility. Nevertheless, the noise introduced by
the excessive length of the sentence or their unusual structure can distract
a language model trained in ordinary English, pushing it to commit more
errors.

Consequently, in these language variants, it is common to find out that
the minimal training set that needs to be annotated manually for adequate
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deep-learning tasks ends up being the same size as the whole corpus. An
example of this could be the corpus of the United Nations General Assem-
bly Resolutions, comprising only a few thousand resolutions written over
several years by different authors and with various language constructs and
vocabulary choices.

Therefore, we hereby investigate some mechanisms to perform “zero-
shot” question-answering on technical documents to apply it effectively to
our YAI and case studies. We do so by focusing on legalese because it is
the main subject of the case study presented in Chapter 10. It is also the
technical language used by the GDPR, the AI Act and other legislative texts
to which many YAI should be compliant (cf. Chapter 1).

Specifically, “zero-shot” means that question-answering is performed
through pre-trained language models without fine-tuning them on the down-
stream (technical) task of question-answering. In this sense, zero-shot
question-answering can be a necessary solution for all those tasks char-
acterised by a paucity of data (e.g., European hard laws, the resolutions
of the United Nations General Assembly) and for which we want to train
AI-based solutions through machine learning without having enough infor-
mation for effective fine-tuning. Conversely, zero-shot question-answering
might be less useful whenever data are abundant (e.g., American case law
or privacy policies).

Zero-shot question-answering is an alternative approach to few-shot
question-answering, where few (in the order of 10) examples are used to
fine-tune a language model. Although few-shot learning may be a good
compromise solution to the data scarcity problem, as pointed out by Chowd-
hery et al. [51] or Wang et al. [221], for now, it seems to be a viable solution
only with huge language models, such as PaLM2 [51], pre-trained on thou-
sands of billions of tokens of high-quality text. In practice, this technology
can only be used with highly specialised hardware and sophisticated com-
puting capabilities like those of companies such as Google, Microsoft, and
Meta.

Conversely, we address the problem of data scarcity in processing and
understanding texts written using various technical legalese constructs by
starting from the following hypothesis.

Hypothesis 4. Technical language (i.e., legalese) is similar to its base lan-
guage, and its meaning does not deviate much from the spoken language,

2The number of parameters learned by PaLM is 540 billion.
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except for certain constructions of words. In particular, legalese constructs
play with syntagmatic relations3 in a unique way. This fact can be exploited
to tackle the data scarcity problem.

In addition, we delve into the role of discourse structure in technical
languages, particularly legalese, seeking to understand and exploit its im-
portance in encoding the meaning of technical documents. Specifically, we
study what happens when changing the type of information to consider for
answer retrieval during question-answering. Therefore we also make the
following hypothesis.

Hypothesis 5. Suppose a language model is not specialised in legalese
or other technical languages. In that case, it may likely fail to identify and
capture the importance of specific grammatical sub-trees (i.e., clauses) that
are not common to a spoken language. Hence, by selecting those grammat-
ical sub-trees deemed the most important, we should be able to help the
information retriever and question-answering system by partially hiding
noise within answers. To identify these grammatical sub-trees, we can use
theories of discourse [157] and sentential meaning representation [15].

In the following sections, we will present new technological solutions,
based on Hypotheses 4 and 5, for more affordable YAI tools based on an-
swer retrieval. To evaluate them, we considered English legalese as the
technical language for the case study, using a new dataset called Questions
for European Legislation (Q4EU for short).

9.1 Q4EU: a Dataset for Evaluating Answer Retrieval
on European Legislation

Q4EU is a dataset for evaluating answer retrieval algorithms. It comprises
72 unique questions4 and 225 expected answers (i.e., articles and recitals)
on 6 heterogeneous European norms spanning from Private International
Law to Human Rights Law (i.e., the General Data Protection Regulation,
UE 2016/679), from regulations of electronic signatures to the European
arrest warrant. For simplicity of exposition, Q4EU can be divided into
the following datasets.
3Syntagmatic associations indicate compatible combinations of words (i.e., the word “rot-
ten” combined with “apple”), excluding others (i.e., the syntagm “curdled apple”).

4The minimum number of queries required for a good information retrieval test set, in
order to obtain statistically significant results, usually is 50 [52].
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Q4PIL (see Table 9.5): containing questions about 3 private international
laws: Rome I Regulation EC 593/2008; Rome II Regulation EC
864/2007; Brussels I bis Regulation EU 1215/2012. These regula-
tions are, respectively, on the law applicable to contractual obliga-
tions, on the law applicable to non-contractual obligations, on juris-
diction and the recognition and enforcement of judgements in civil
and commercial matters. In particular, they aim to provide a tool
for identifying the applicable law and the jurisdiction in cases when
two or more legal systems connect and generate complex relation-
ships (e.g., a sale of goods contract between an Italian and a German
citizen regarding commodities situated in Spain).

Q4EAW (see Table 9.3): containing questions about the Council Frame-
work Decision of 13 June 2002 on the European arrest warrant and
the surrender procedures between Member States5. This framework
decision increases the efficiency of extradition procedures for crime
suspects. Furthermore, it also determines the abolition of formal ex-
tradition procedures between member states of the EU for persons
who are fugitives from justice after being finally convicted. The
framework decision represents the first concretisation of the principle
of free movement of judicial decisions in criminal matters, encom-
passing both pre-judgement and final decisions by fostering judicial
cooperation and the development of a single area of freedom, security
and justice in the EU.

Q4GDPR (see Table 9.4): containing questions about the GDPR (cf. Sec-
tion 1.1), the most relevant piece of legislation in the EU legal frame-
work with regards to data protection law. Its goal is to foster the fun-
damental right to data protection, enshrined by the Charter of Fun-
damental Rights of the European Union (Art. 8), while harmonising
rules in data processing, profiling, and risk management.

Q4eIDAS (see Table 9.2): containing questions about Regulation (EU)
No 910/2014 of the European Parliament and of the Council of 23
July 2014 on electronic identification and trust services for electronic
transactions in the internal market and repealing Directive 1999/93/EC,

5https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=C
ELEX:02002F0584-20090328&from=EN
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also known as eIDAS Regulation6. This legislation tackles several is-
sues in electronic identification, electronic signature, electronic seals,
and trust services. Its goal is to provide legal certainty for cross-
border transactions in the EU Single Market.

Some statistics on the sets mentioned above are shown in Table 9.1.

Table 9.1: Statistics on Q4EU. The column “Art./Rec.” counts the number
of recitals and articles. The column “Questions” counts the number of
different questions, and the column “Tokens per Art./Rec.” counts the
mean number of tokens per article/recital, and so on. Please note that
Q4EU is the sum of Q4PIL, Q4EAW, Q4GDPR and Q4eIDAS.

Questions Expected
Answers

Answers
per
Question

Norms Art./Rec. Tokens Tokens
per
Art./Rec.

Q4PIL 17: 5 low; 7 normal; 5
high

65 3.82 3 269 27,280 101.41

+ Q4EAW 21: 7 low; 7 normal; 7
high

68 3.23 1 50 8,426 168.52

+ Q4GDPR 17: 4 low; 7 normal; 6
high

55 3.23 1 272 45,138 165.94

+ Q4eIDAS 17: 5 low; 7 normal; 5
high

37 2.17 1 129 17,283 133.97

= Q4EU 72: 21 low; 28 normal;
23 high

225 3.12 6 720 98,127 136.28

To build the Q4EU dataset, the pieces of legislation (i.e., the norms)
kept into account are conceived as self-contained legal environments. While
legal interpretation is often grounded on external legal factors (e.g., ju-
risprudence, scholars’ opinions), we opted for a “black letter” approach
to the law that only considers the legislative legal formant. Therefore, the
point of view assumed in our analysis is the perspective of the lawmakers.
This has a twofold implication for question-and-answer drafting.

Questions have been modelled to be answered solely within the legal
text under scrutiny. They do not refer to legal concepts that are not explic-
itly mentioned in the regulations, such as the hierarchy of legal sources or
competence. Moreover, not all the (legal) questions are the same. While
some accept as an answer a provision that exactly matches the question,
others rely on more complex interpretations (i.e., legal reasoning) to be
6https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:
32014R0910
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answered. Therefore, questions have been classified depending on their
context specificity, which can either be low, normal, or high.

First, specific questions whose answer is precisely in the domain of
the regulations were labelled as highly specific. An example of a question
with high specificity is “In what court can an employee sue its employer?”
because it perfectly falls within the scope and goals of Regulation Brussels
I-bis and finds its exact answer in the provisions of Articles 21 and 23.

Questions whose answer falls within the scope of the regulations while
requiring an abstraction of multiple legal provisions were labelled as nor-
mally specific. For instance, “What is the applicable rule to protect the
weaker party of a contract?” was labelled as normally specific. This is
because its answer also relies on the concept of “weaker party” mentioned
across two regulations (Recital 23 Rome I and Recital 18 Brussels I) con-
cerning any contract (as a legal concept) rather than specific contractual
types.

Finally, broad questions whose tentative answer is found through an
articulate combination of articles and recitals were labelled as having low
specificity. For instance, a question with low specificity is “Can the par-
ties choose a different applicable law for different parts of the contract?”.
While Rome I Regulation provides for a discipline on the applicable law to
contract, it does not contain any provision concerning individual parts. The
answer is ultimately open to interpretation in such a question, whereas the
Regulation suggests norms that could serve as a reference point.

Since such classification might be subjective and dependent on each ju-
rist, three legal experts independently evaluated the level of context speci-
ficity and decided by the majority about the final level.

Instead, the answers to the questions provided by legal experts are ob-
tained by mirroring the question-drafting methodology. Three legal ex-
perts, different from the question-drafters, provided answers to the legal
questions by looking for the following: i) specific, punctual, and explicit
answers in the case of high-specific questions; ii) general and conceptual,
yet text-based, answers to normally specific questions; iii) prima facie tex-
tual references to be used as interpretative points of reference in the case of
low specific questions.

These experts only provided textual references in the legislation at the
article or recital level (e.g., Rome I Art. 8; B Rec. 18). When at least
two experts agreed on a given answer, their response was considered valid
without further enquiry. If one expert provided a different answer, another
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expert validated this response. In drafting the validation answers, no other
articles or recitals were considered except those provided by the original
validators.

Table 9.2: Q4eIDAS Subset. Here, “E” is the eIDAS Regulation. “Rec.”
means Recital, while “Art.” means Article. The column “S.” indicates
the specificity of the questions: “L” means low specificity, “N” means
normal and “H” means high. The column “T.” indicates which norm
(i.e., regulation or decision) a question targets. If no norm is indicated
next to the article/recital, then the norm of the article/recital is indicated
in the “T.” column.

Question S. Expected Answers T.
How is a qualified electronic signature validated? H Art.32, Art.33, Rec.57 E
Can an electronic signature be expressed in the form of a pseudonym? N Art.3.14, Art.32 E
Can a minor obtain a qualified electronic signature? L Art.3, Art.25 E
From when qualified certificates lose their validity in the case of revoca-
tion?

N Art.24, Art.28 E

Is a graphometric signature qualified as an advanced electronic signature? L Art.3.11, Art.26 E
How should access to trust services be granted to persons with disabilities? N Rec.29, Art.15 E
How can the identity of a natural person be verified in the issuing of a
qualified certificate?

H Art.24.1 E

Do electronic contracts have the same validity as paper contracts? L Rec.21, Art.2.3 E
Why is there a specific discipline for the notification of security breaches? H Rec.38, Art.19.2 E
When shall a trust service provider notify affected individuals and users? H Art.19.2 E
What is the applicable law to the trust service provider which provides
its trusted services in a Member State different from the one where it is
established?

L Rec.22, Rec.42, Art.4,
Art.6, Art.24

E

How can qualified certificates be temporally limited? N Rec.53, Art.24.4, Art.28,
Art.38.5

E

What are the requirements for website authentication? N Rec.67, Art.45 E
When do electronic signatures qualify as "advanced electronic signatures"? N Art.3.11, Art.26 E
Which subject has the competence to maintain trusted lists? H Art.22 E
How should liability be determined for Member States that are non-
compliant with provisions about electronic identification schemes?

N Rec.18, Art.11 E

What is a security breach? L Art.10, Art.19 E
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Table 9.3: Q4EAW Subset. Here, “W” is the Council Framework Decision
on the European arrest warrant. For more details on how to read this
table, please see the caption of Table 9.2.

Question S. Expected Answers T.
What is the European arrest warrant? N Art.1.1, Art.8, Art.9.3,

Rec.11, Rec.6
W

Can the execution of the European arrest warrant be refused when the law
of the executing Member State does not impose the same type of tax or
duty or does not contain the same type of tax rules as the law of the issuing
Member State?

L Art.2.2, Art.2.4, Art.4.1,
Rec.6

W

Who decides precedence in the event of a conflict between a European
arrest warrant and a request for extradition from a third country?

N Art.16.3, Rec.8, Art.10.6 W

Which law is used to record the consent to surrender of a requested person? H Art.13.3, Art.11 W
Is the arrest warrant based on the principle of mutual recognition? L Rec.2, Rec.6, Rec.5,

Art.1.1, Art.1.2, Rec.10
W

Does a requested person have the right to an interpreter? H Art.11.2 W
Can the consent to the surrender of the arrested person be revoked? N Art.13.4, Art.17 W
Is the surrender of the arrested person always subject to the verification of
the double criminality of the act?

L Art.2.2, Art.2.3, Art.2.4,
Art.4.1, Art.5, Art.33

W

Which authority should be informed in case of repeated delays by a Mem-
ber State in executing European arrest warrants?

H Art.17.7 W

Can the Member States also apply other agreements in addition to the
Framework Decision?

L Art.31, Rec.5, Art.33,
Art.32

W

Can the European arrest warrant be ordered for the execution of a non-
custodial sentence?

N Art.2.1, Art.1.1, Rec.12,
Art.5

W

Can the executing judicial authority refuse to execute the European arrest
warrant when the person who is the subject of the European arrest warrant
is being prosecuted in the executing Member State for the same act as that
on which the European arrest warrant is based?

N Art.4.2, Rec.8, Art.24,
Rec.13

W

What right is applied by the judicial authority to decide whether the re-
quested person should remain in detention or be provisionally released?

H Art.12.1, Rec.8, Rec.10 W

Can the constitutional rules of the Member States be applied? L Rec.7, Rec.12, Art.1.3,
Art.34

W

Should the European arrest warrant be translated into the official language
or one of the official languages of the executing Member State?

H Art.8.2, Rec.8 W

Can the executing judicial authority request the opinion of Eurojust in case
of multiple requests?

H Art.16.2, Rec.8 W

Can the executing judicial authority, on its own initiative, seize and hand
over property acquired by the requested person as a result of an offence?

N Art.29.1, Rec.5 W

Is an alert in the Schengen Information System equivalent to a European
arrest warrant?

N Art.9.3, Art.8.1, Art.1.1 W

What are the time limits for the surrender of the requested person? L Art.23, Art.15, Art.17,
Art.20, Art.24, Rec.1

W

How are the expenses of executing the European arrest warrant allocated? H Art.30 W
What claims can be made to the judicial authority by the interested party
who has not previously received any official information on the existence
of the criminal proceedings against him/her?

L Art.4a, Rec.12, Art.11 W
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Table 9.4: Q4GDPR Subset. Here, “G” is the GDPR. For more details on
how to read this table, please see the caption of Table 9.2.

Question S. Expected Answers T.
Does the GDPR provide a right to explanation? L Rec.71, Art.12.3, Art.15.1 G
When is it mandatory to carry out a Data Protection Impact Assessment? H Art.35.1, Art.35.3 G
What are the possible security measures that can be adopted to mitigate the
risks related to personal data processing?

N Art.32.1, Art.32.2 G

What are the applicable rules to the processing of personal data for archiv-
ing purposes in the public interest, for scientific or historical research pur-
poses or for statistical purposes?

L Rec.156, Art.5.1.b,
Art.9.2.j, Art.14.5.b,
Art.17.3.d, Art.89

G

How should a data processor be appointed? N Art.26, Art.38 G
When is the consent of the data subject explicit? L Rec.51, Rec.71, Rec.111,

Art.7.1, Art.9
G

What elements shall the European Commission keep into account to autho-
rise the transfer of personal data to a third country through an Adequacy
Decision?

N Art.45.2, Art.45.3,
Rec.104

G

What are the rules applicable to biometric data? H Rec.51, Rec.53, Art.9 G
When does the public interest override data subject rights? L Rec.45, Rec.46, Rec.50,

Rec.65, Rec.69, Art.9.2.i,
Art.17.3, Art.89

G

To what data is the right to portability applicable? H Art.20 G
How should a data processing record be drafted? H Art.30 G
What data processing poses significant risks to the fundamental rights and
freedoms of natural persons?

N Rec.51, Rec.75, Art.9,
Art.10

G

What elements should be included in a Code of Conduct? N Rec.81, Art.40 G
What are the obligations of the data controller when the legal basis for the
data processing is the consent of the data subject?

N Art.7, Art.13, Art.14,
Art.20

G

Which legal entity can impose fines on data controllers? H Rec.130, Art.58.2.i, Art.83 G
Who can exercise the right to lodge a complaint before the supervisory
authority?

N Rec.141, Rec.142, Art.77 G

What is the procedure to follow in the event of a data breach? L Rec.85, Rec.86, Rec.87,
Rec.88, Art.33, Art.34

G
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Table 9.5: Q4PIL Subset. Here, “B” is Brussels I, “RI” is Rome I, and
“RII” is Rome II. For more details on how to read this table, please see
the caption of Table 9.2.

Question S. Expected Answers T.
Who determines disputes under a contract? L Art.7.1, Art.8.3, Art.8.4,

Art.17
B

What factors should be taken into account for conferring the jurisdiction
to determine disputes under a contract?

N Art.7.1, Art.17, Art.20,
Art.25

B

Which parties of a contract should be protected by conflict-of-law rules? N Rec.23, Art.6, Art.8,
Art.13

RI

In which case are claims so closely connected that it would be better to
treat them together in order to avoid irreconcilable judgments?

H Art.8, Art.30, Art.34 B

What kind of agreement between parties is regulated by these Regulations? L B Rec.6, B Rec.10, B
Rec.12, B Art.1, RI Rec.7,
RI Art.1

B,
RI,
RII

In which court is celebrated the trial in case the employer is domiciled in a
Member State?

H Art.21, Art.22, Art.23 B

How should a contract be interpreted according to Regulation Rome I? L Rec.22, Rec.12, Rec.26,
Rec.29, Art.12

RI

Which law is applicable to a non-contractual obligation? N Rec.17, Rec.18, Rec.26,
Rec.27, Rec.31, Art.4-20

RII

Can the parties choose the applicable law in consumer contracts? H Rec.11, Rec.25, Rec.27,
Art.6

RI

What factors should be taken into account for conferring the jurisdiction
to determine disputes under a consumer contract?

N Rec.18, Art.17, Art.18,
Art.19, Art.26

B

Can the parties choose a different applicable law for different parts of the
contract?

L Rec.11, Art.3.1
RI

What non-contractual obligations fall into the scope of Regulation Rome
II?

H Rec.10, Rec.11, Art.1,
Art.2

RII

What is the applicable rule to protect the weaker party of a contract? N RI Rec.23, B Rec.18 B,
RI

What is the applicable law to determine the validity of consent? L Art.3.5, Art.10, Art.11,
Art.13

RI

When are two actions to be considered related according to the Regulation
Brussels I Bis?

N Rec.21, Art.30.3
B

What court has jurisdiction in case of a counter-claim? N Art.8.3, Art.14.2, Art.18.3,
Art.22.2

B

Where can an employee sue their employer? H Rec.14, Rec.18, Art.21.1,
Art.22.1, Art.23

B
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9.2 SyntagmTuner: Combining Shallow and Deep
Learning Approaches against Data Scarcity

State-of-the-art natural language processing is often based on statistical se-
mantics, which has its roots in what is called distributional hypothesis.
The distributional hypothesis is a rather important concept according to
which the meaning of words depends statistically on their context and co-
occurrences [86]. The distributional hypothesis can be rephrased as fol-
lows: “a word is characterised by the company it keeps” [72].

The use of statistical semantics over text documents has led to the dis-
covery of technologies capable of encoding the meaning of words and doc-
uments as numerical representations. These numerical representations are
called embeddings, i.e., mathematical objects that can be represented as
multi-dimensional points in a mathematical (e.g., Euclidean) space so that
classical mathematical operations can be operated on them. For example,
by computing the distance (or the cosine similarity) between two of these
embeddings (i.e., points in a mathematical space), it is possible to quan-
titatively estimate the degree of similarity between the meaning of their
corresponding words or document fragments.

The distributional hypothesis is one of the fundamental gears behind the
performance of deep language models. Its impressive compatibility with
deep learning technologies is why the distributional hypothesis, originating
in computational linguistics, is now receiving attention also in Cognitive
Science [133].

Several techniques exist for learning numerical representations of texts
from their occurrence information. Some specialise in words, others in
longer text fragments such as sentences or entire documents. Existing mod-
els could be broadly grouped into two categories [174]. The first category
leverages more on the syntagmatic relations between words, which relate
to words that co-occur within the same text region [205]. In contrast, the
second one leverages more on the paradigmatic relations, which relate to
words that occur within similar contexts but may not co-occur anywhere in
the text.

One of the oldest and most basic techniques for sentence embedding is
probably Bag of Words (BoW for short) [86]. A BoW is a non-ordered set
of words representing individual occurrences, disregarding grammar and
even word order but paying attention only to frequency. An example of
Bag of Words embedding for the sentence “This sentence is cool even if a
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sentence” could be:
t h i s = 1 ;
s e n t e n c e = 2 ;
i s = 1 ;
and = 0 ;
g i b b e r i s h = 0 ;
c o o l = 1 ;
even = 1 ;
i f = 1 ;
a = 1 .

As we can see in the example, Bag of Words tokenises documents, count-
ing the number of token occurrences and then returning them as a (sparse)
numerical matrix.

Another technique for sentence embeddings is Term Frequency–Inverse
Document Frequency (TF-IDF) [102]. Specifically, TF-IDF is computed as
the product of two statistics: Term Frequency (TF) and Inverse Document
Frequency (IDF). Term Frequency is the output of a Bag of Words model.
For a specific document, TF estimates how important a word is by look-
ing at how frequently it appears. The Inverse Document Frequency, on the
other hand, is based on the idea that essential words for a specific docu-
ment (also called signature words) frequently appear inside this document
but likely less often inside other documents. The frequency of signature
words is usually low across different documents; thus, its Inverse Docu-
ment Frequency must be high. Therefore, the similarity between TF-IDF
embeddings is said to be syntagmatic [174, 205] since it concerns words
that co-occur within the same text region (e.g., the same sentence, para-
graph, or document).

One of the main issues with (vanilla) TF-IDF is that it is biased against
long documents [186], tending to favour retrieval of short documents and
suppressing the retrieval of long documents. Nonetheless, techniques exist
such as pivoted document length normalisation [186] to counteract this un-
wanted bias by intelligently giving a smaller weight to shorter documents
and a larger weight to longer documents.

Another issue with TF-IDF and Bag of Words is that they usually gen-
erate very sparse embedding matrices, depending on the size of the con-
text snippets [155], which are difficult to handle efficiently on large-scale
datasets. To this end, techniques such as Latent Semantic Analysis (LSA)
[68] can reduce the sparsity of embeddings. Nonetheless, TF-IDF, as well
as LSA, perform poorly on capturing the meaning of words encoded in
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paradigmatic relations, also not being sensitive to word order.
More paradigmatic approaches for document embedding capable of con-

sidering word order are the encoder-decoder models based on neural net-
works, e.g., paragraph vectors [117] or skip-thought vectors [110]. Re-
cently, with the realisation that deeper neural networks can perform better
embeddings, researchers have started to devise more complex and perfor-
mant sentence/document embedding techniques, such as the Transformers
[211], or other derivative works, e.g., BERT [60], Universal Sentence En-
coder [225, 44], T5 [161].

To summarise, on the one hand, there are shallow syntagmatic tech-
niques for text embedding, such as TF-IDF, that are easy to train in an
unsupervised manner. On the other hand, there are also deeper and paradig-
matic techniques, such as BERT or the Universal Sentence Encoder. These
are based on deep learning techniques, which can be as effective as they are
complex and expensive, requiring, in many cases, large amounts of train-
ing data, specialised hardware and many hours (e.g., weeks) of learning to
achieve the best performance.

However, if Hypothesis 4 is correct, we could improve the performance
of pre-trained general-purpose deep language models by simply combining
them with ad hoc models for capturing the patterns of syntagmatic relations
across texts. It would be possible without the need to re-train any deep lan-
guage model. The point is that such syntagmatic relations can be identified
even with little data, e.g., by shallow machine learning techniques such as
TF-IDF. These simple tools can be quickly trained in an unsupervised man-
ner on the available data. They can capture a part of the meaning that, in
legalese or other technical languages, is encoded into syntagmatic informa-
tion. On the contrary, more sophisticated tools (e.g., deep neural networks)
(pre-)trained on generic natural language can capture parts of meaning that
are not peculiar to the technical variant of the base language.

In particular, we could use TF-IDF to model domain-specific informa-
tion in combination with a Universal Sentence Encoder (or any other state-
of-the-art deep language model) to model generic information (e.g., se-
mantic relations between non-domain-specific words). Interestingly, com-
bining TF-IDF with deep language models is not entirely new. For exam-
ple, Kowsari et al. [112] and Du et al. [67] proposed to exploit TF-IDF
for improving the training of an artificial neural network. While others
[229, 117, 10] proposed to use TF-IDF for computing weighted word em-
beddings (i.e., a type of averaged word embedding).
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In contrast, we propose to combine similarities instead of embeddings
and to exploit pre-trained paradigmatic models without resorting to retrain-
ing or fine-tuning procedures for downstream tasks. We call this technique
SyntagmTuner. Specifically, in SyntagmTuner, the similarity between snip-
pets of text is computed as a (linear) combination of: the embedding ob-
tained with pre-trained general-purpose language models, and the embed-
ding of a shallower model (i.e., TF-IDF with pivoted document length nor-
malisation) capable of generating more syntagmatic similarities. In this
way, the TF-IDF similarity plays out as a kind of topic-related similarity ex-
tracted by populating the embeddings with information about the “regions
of the text in which the linguistic elements are found”. On the contrary, the
similarity between the embeddings of a deep language model plays out as
a kind of paradigmatic similarity extracted by populating the embeddings
with information about “which other linguistic elements the items co-occur
with”. In other words, the idea behind SyntagmTuner is to combine the
unique and different properties of the similarities mentioned above to ob-
tain a new paradigmatic similarity potentially expressing a topic-related
similarity in a domain on which the deep language model has not been
trained.

SyntagmTuner is a pipeline of AI techniques, consisting of two main
phases, as shown in Figure 9.1. The syntagmatic model (i.e., TF-IDF) is
built during the first phase, together with the knowledge graph of the an-
swer retriever. This phase consists of unsupervised training of the TF-IDF
model on a corpus of documents in order to identify the signature words7

contained within it. Notably, the TF-IDF model is constructed only once
(unless the corpus changes over time) and before any input is given to the
system. This phase is also responsible for normalising documents and ma-
nipulating the syntagmas according to task-specific heuristics (e.g., filtering
out stop words). Specifically, normalisation involves tokenisation, lemma-
tisation, and stemming8.

In the second phase, the user input (i.e., the question to answer) is used
for answer retrieval. In particular, the answer retriever described in Sec-
tion 6.1 is modified to consider also the TF-IDF model. Thus, the new
answer retriever performs the following steps. First, it converts the input
question into an embedding using both the syntagmatic and deep language

7Words that are characteristic of the topics discussed by the corpus.
8In linguistic morphology, stemming is the process of reducing inflected words to their
word stem, base or root form (e.g., the stem of “argue” and “arguing” is “argu”).
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Figure 9.1: Flow diagram of SyntagmTuner. Sketch of the pipeline used
in our experiments for both text classification and question-answering.
Precisely, phase 1 is executed only once when SyntagmTuner is instan-
tiated. This phase mainly consists of creating a syntagmatic (TF-IDF)
model. Instead, phase 2 is executed each time the user queries Syntagm-
Tuner. This figure differs from Figure 6.1 in that it involves a syntagmatic
model builder, two answer/question embedders and a similarity aggre-
gator.

models. Then, the question is analysed to identify the topics mentioned by
it and extract all the information units about them in the knowledge graph.
Next, these information units are embedded with both the syntagmatic and
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deep language models. The embeddings are compared to those from the
questions to produce the syntagmatic and paradigmatic similarity scores.
Similarity scores are then linearly combined to understand which informa-
tion units have the most similar embedding to the input. Subsequently, the
units with the embedding most similar to the input are ranked and returned
to the user.

The similarity scores are combined linearly by adding the TF-IDF sim-
ilarity to the similarity from the deep language model. In particular, both
similarities are weighted with task-dependent weights. For example, the
query q is embedded by TF-IDF in the vector Vq and by the deep language
model in the vector V̄q. Instead, the text fragment p (contained in the cor-
pus) is embedded in the vectors Vp and V̄p. Let s be a similarity function
(e.g., the cosine similarity), wS a default weight for the syntagmatic model
and wP the weight for the deep language model, the similarity s(Vq, Vp)
of q with p is S. Instead, the similarity s(V̄q, V̄p) is P . Therefore, the final
combined similarity between p and q is given by the formulawS ·S+wP ·P .

9.3 DiscoLQA: Using Discourse Theory for more Scal-
able Answer Retrievers

The baseline answer retriever described in Section 6.1 is composed of a
pipeline of algorithms for efficient question-answering through the extrac-
tion of a knowledge graph from a set of information units. If Hypothesis 5
is correct, it would be possible to specialise such a general-purpose answer
retriever to technical languages. This can be done simply by integrating its
knowledge graph with external information about the structure of discourse
of technical texts without costly training procedures otherwise hampered
by the scarcity of data. The overall idea is that using EDUs and AMRs (cf.
Section 3.3) as information units for retrieval would help to partly crys-
tallise into the question-answering system the structure of discourse used
by technical texts. In other words, it would make the structure of discourse
invariant and prevent the answer retriever from using the discourse schemes
learned from a common language instead. Therefore, we hereby propose a
novel pipeline of algorithms called DiscoLQA, short for Discourse-based
Legal Question-Answering, based on Hypothesis 5.

DiscoLQA is composed by the baseline answer retriever described in
Section 6.1 extended with a new component responsible for the extrac-
tion of special information units representing EDUs and AMRs. In this
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Figure 9.2: Sketch of the pipeline used in the baseline and DiscoLQA.
The baseline uses only clauses as information units, while DiscoLQA
extracts and uses discourse relations and AMRs. Information units are
then inputted to the knowledge graph extractor (the template-triplets
builder and RDF serializer blocks of Figure 6.2) which then outputs the
knowledge base used by the answer retriever.

sense, the main difference between DiscoLQA and the baseline is (as shown
in Figure 9.2) the type of information units considered by the knowledge
graph extractor. In particular, the baseline uses as information units all the
clauses of the source documents. Instead, DiscoLQA can use as informa-
tion units not only such clauses but also the AMRs and discourse relations
extracted from them.

In other words, DiscoLQA supports more types of information units
and allows the retrieval of answers from any combination of clauses, AMRs
and discourse relations. Specifically, discourse relations are meant to cap-
ture how EDUs are connected, while AMRs are meant to capture the in-
formative components within the EDUs by possibly supporting answering
to basic questions such as “who did what to whom, when or where”, as
explained in Section 3.3.

Most importantly, by changing the type of information units in Dis-
coLQA, it is also possible to control the size of the underlying knowledge
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graph and the time complexity of the answer retrieval algorithm. Ideally,
a smaller knowledge graph with fewer distractors can produce more ac-
curate answers by hiding redundant information units and significantly re-
duce the time it takes the information retriever to find the correct answers.
In other words, DiscoLQA can be used both to increase the accuracy of
the question-answering system and to effectively scale to larger corpora by
reducing the size of the knowledge base used for answering questions.

The AMRs and EDUs used by DiscoLQA are extracted from sentences
and paragraphs through a T5-based deep language model9 pre-trained on
a multi-task mixture of unsupervised and supervised tasks. Vanilla T5 is
not trained to extract AMRs or EDUs, so we had to fine-tune T5 on some
public datasets designed for this task. These datasets are QAMR [135] for
the extraction of AMRs and QADiscourse [160] for EDUs and discourse
relations. Interestingly, as discussed in Section 3.3, both of these datasets
encode AMRs and EDUs as question-answer pairs.

The two considered datasets are tuples of < s, q, a >, where s is a
source sentence, q is a question (implicitly) expressed in s, and a is an an-
swer expressed in s. So that T5 is fine-tuned to tackle at once the following
four tasks per dataset:

1. Extract a given s and q;

2. Extract q given s and a;

3. Extract all the possible q given s;

4. Extract all the possible a given s.

Specifically, we fine-tuned the T5 model on QAMR and QADiscourse for
five epochs10. The objective of the fine-tuning was to minimise a loss func-
tion measuring the difference between the expected output and the output
given by T5. A mathematical definition of the loss function is given by
Raffel et al. [161].

At the end of the training, the average loss was 0.41, meaning that our
fine-tuned T5 model cannot perfectly extract AMRs or EDUs from the text
composing the training set. On the one hand, this is a good thing because
it is likely that the model did not over-fit on the training set. On the other

9T5 is an encoder-decoder model based on the assumption that natural language processing
problems can be converted into a text-to-text problem [161].

10An epoch is one complete cycle through the entire training dataset
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hand, this points to the fact that the AMRs and EDUs extracted by our
T5 model can be imperfect, containing errors that could propagate to the
answer retrieval system.

9.4 Evaluation of SyntagmTuner and DiscoLQA: a
Case Study in European Legislation

As a technical language for the case study and evaluation of SyntagmTuner
and DiscoLQA, we chose legal English, also known as legalese.

Legalese is not repetitive. Instead, it adopts vocabulary that is used
punctually in particular contexts as if very formal rules govern the sen-
tences they form. It is often canonical and tends to avoid terms with multi-
ple meanings. For example, in legalese, significant fragments tend never to
be ambiguous, to have associated definitions, and to make use of combina-
tions of specific nouns and verbs. Applying these formal rules impacts lo-
cal meanings by constraining the relationships (also known as syntagmatic
relations) that words have with others when co-occurring in the writing se-
quence. Moreover, the classical linguistic structures based on discourse
connectives tend to be used differently in law. Legal connectives do not
have the same semantic value as everyday discourse. They are operators
of deontic rules with multiple meanings (e.g., “xor”, “or”, “and”). Also,
some discourse structures tend not to be used at all because they are not a
good practice in legal drafting (e.g., “but” and “for example”).

In other words, the relationship between discourse theory and legalese
is complicated and still open to discussion. The application of PDTB to
legalese has been explored by some [169, 38], but has yet to have much
follow-up. The point is that ordinary discourse theory is better suited to
judgments, Hansard reports11, testimonies and reports of debates. Instead,
it seems unsuited to legislative texts and contracts, for which a specific
vocabulary (e.g., definitions) or textual structure (e.g., hierarchy) is used
to identify meaning through interpretation theory. Indeed, legislative texts
have a deeper structure than common sentences. For example, a list has a le-
gal meaning of conditions linked together by specific semantics. Nonethe-
less, capturing discourse patterns within legal texts can be beneficial for an
answer retrieval algorithm such as the one described in Section 6.1.

11Hansard reports are the transcripts of parliamentary debates in U.K. and many Com-
monwealth countries.
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Considering all these legalese insights in support of Hypotheses 4 and 5,
we decided to evaluate both SyntagmTuner and DiscoLQA on Q4EU (cf.
Section 9.1). We performed an ablation study to see if they can improve
the baseline answer retrieval system described in Section 6.1 without an ad
hoc fine-tuning of the deep language models on the downstream task. If
those hypotheses are valid, we expect the performance of any generic deep
language model to outperform SyntagmTuner and DiscoLQA on technical
corpora, such as the European legislative texts of Q4EU.

Notably, the QAMR and QADiscourse datasets used for DiscoLQA are
not related to any of the technical domains covered by Q4EU. They do
not contain legal documents or text fragments written in legalese. In other
words, by fine-tuning T5 on QAMR and QADiscourse, we did not refine
T5 on legal texts. Legal fine-tuning would require the costly extraction of
a dataset of AMRs and EDUs from legal texts, also considering ad hoc
adaptations of discourse theories and abstract meaning representation to
legal language.

Specifically, the setup of the experiment is as follows. On the one hand,
to test Hypothesis 5, we compare the performance of the baseline answer
retriever on the Q4EU dataset with that of DiscoLQA using different com-
binations of information units. We study the following instances of Dis-
coLQA:

• Clause+EDU+AMR: DiscoLQA which uses clauses, discourse rela-
tions and AMRs as information units, all together.

• Clause+EDU: DiscoLQA using clauses and discourse relations but
not AMRs.

• Clause+AMR: DiscoLQA using clauses and AMRs.

• EDU+AMR: discourse relations and AMRs.

• EDU: discourse relations.

• AMR.

Therefore, if one combination of information units performs better than
the others, the performance gain can be attributed to the only difference
between the instruments: the type of information units adopted. Therefore,
if one of the instances of DiscoLQA performs better than the baseline, we
would have enough evidence to support Hypothesis 5.
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On the other hand, to test Hypothesis 4, we perform the same evaluation
on Q4EU, but studying what happens to answer retrievers when they use
SyntagmTuner during retrieval. SyntagmTuner and DiscoLQA are com-
patible because the former is about how the similarity between answers
and questions is calculated, and the latter is about the information used to
construct the knowledge graph used by the retriever. In particular, for the
experiment, we set SyntagmTuner to have wS = 0.5 and wP = 0.5.

The baseline is equivalent to SyntagmTuner with wS = 0 and wP = 1,
and to DiscoLQA using only clauses as information units. We consider as
baseline only the answer retrieval system described in Section 6.1. This
is because it is the only system we know of to perform legal question-
answering on arbitrary pieces of (English) text without ad hoc fine-tuning
or training procedures. We do not have a large enough dataset to train end-
to-end question-answering systems on specific European legislation.

To show that the results generalise across different deep language mod-
els, we also decided to run the experiment on different state-of-the-art deep
neural networks for answer retrieval:

• The Universal Sentence Encoder Q&A model, by TensorFlow [225,
Google];

• A variation of MiniLM [219, Microsoft] trained by SBERT [165] on
answer retrieval.

We decided to consider only the two models above because they are some of
the best available on TensorFlow and SBERT (two state-of-the-art reposito-
ries for deep neural networks easily accessible through user-friendly APIs).
Unfortunately, we have yet to learn of any deep language model trained
specifically on legal answer retrieval. The only exception could be the
work by Vold and Conrad [215], though their language model was trained
on privacy policies, which are usually written with more plain English than
European legislation.

Considering that, with the Q4EU dataset, a single answer is not suffi-
cient12 to respond to a test query fully, we relied on top-k precision, F1,
Normalised Discounted Cumulative Gain (NDCG) and Mean Reciprocal
Rank (MRR) as evaluation metrics. The top-k precision, or P@k, is the
fraction of expected answers amongst the top-k retrieved instances. The

12DiscoLQA, SyntagmTuner and the baseline have no constraints on the minimum or max-
imum number of retrievable responses.

156



9.4. Evaluation of SyntagmTuner and DiscoLQA: a Case Study
in European Legislation

top-k F1 score, or F1@k, is given by 2 R@k·P@k
R@k+P@k

, where the top-k recall, or
R@k, is measured as the fraction of correct answers retrieved in the top-k
instances. In contrast, the top-k NDCG [175] is a measure of ranking qual-
ity normalised in [0, 1] that measures the usefulness, or gain, of an answer
based on its position in the result list. Instead, the top-k MRR [216] only
cares about the single highest-ranked relevant item. It shows what system
does the best job at placing a relevant document/passage in to highest rank.

It is important to note that the main difference between precision, F1,
MRR and NDCG is that the last two are used to assess the ability of an
answer retrieval system to rank correct answers first. Conversely, the other
metrics measure how precise and accurate the system is. For these reasons,
all selected metrics are considered complementary measurements that may
present different lenses into the problem of understanding answer retrieval
systems [55].

In Tables 9.6 and 9.7, we show the macro13 top-k evaluation scores for
k = {5, 10}14, studying how different types of information units and deep
language models affect answer retrieval with and without SyntagmTuner
and DiscoLQA. The evaluation was performed by running the answer re-
trieval algorithm on all the 6 norms of Q4EU, even though questions in
Q4EU usually target only 1 or 2 norms.

These results show that independently of the choice of k, using dis-
course relations (EDUs) as information units gives the best top-k F1 scores,
especially when in combination with clauses and AMRs. DiscoLQA using
only discourse relations and AMRs as information units (i.e., EDU+AMR)
in many cases outperforms the baseline in terms of precision. This happens
especially with the Universal Sentence Encoder and with SyntagmTuner,
even though the underlying knowledge graph is smaller than the baseline
(as shown in Table 9.8). This fact suggests that EDUs and AMRs can re-
tain most of the relevant information of the corpus of technical documents,
supporting Hypothesis 5 and helping to create faster and more scalable an-
swer retrievers. Moreover, the fact that the best answer retriever in terms
of MRR is overall Clause+EDU+AMR further corroborates Hypothesis 5,
showing that the considered deep language models tend to be distracted by
longer clauses. Indeed, the information within EDUs and AMRs is a sub-

13Here, the term “macro” means that precision, F1 and NDCG scores are computed in-
dependently for each test query and then averaged, to put an equal weight upon the
contribution of each query.

14In general, a k greater than or equal to the average number of answers per question (e.g.,
the score shown in Table 9.1) is recommended.
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Table 9.6: Q4EU - Scores of Universal Sentence Encoder. This table
shows the macro mean (with standard deviation) of the top-k precision
(P), F1, NDCG and MRR of each combination of information units, with
and without SyntagmTuner. We show the values for k = {5, 10}. The
best column scores are shown in bold, while darker shades of blue indi-
cate higher precision column-wise.

Top5 Scores Top10 ScoresUniversal Sentence
Encoder No TF-IDF (Baseline) SyntagmTuner No TF-IDF (Baseline) SyntagmTuner

Clause (Baseline)

P: 0.385 ± 0.325
F1: 0.28 ± 0.212
NDCG: 0.301 ± 0.234
MRR: 0.529 ± 0.42

P: 0.516 ± 0.323
F1: 0.383 ± 0.202
NDCG: 0.425 ± 0.25
MRR: 0.675 ± 0.373

P: 0.504 ± 0.339
F1: 0.252 ± 0.176
NDCG: 0.298 ± 0.219
MRR: 0.546 ± 0.401

P: 0.614 ± 0.31
F1: 0.331 ± 0.166
NDCG: 0.412 ± 0.226
MRR: 0.686 ± 0.355

AMR

P: 0.318 ± 0.321
F1: 0.247 ± 0.239
NDCG: 0.301 ± 0.305
MRR: 0.478 ± 0.446

P: 0.434 ± 0.309
F1: 0.322 ± 0.209
NDCG: 0.397 ± 0.314
MRR: 0.582 ± 0.417

P: 0.401 ± 0.34
F1: 0.218 ± 0.196
NDCG: 0.304 ± 0.292
MRR: 0.489 ± 0.436

P: 0.537 ± 0.339
F1: 0.29 ± 0.186
NDCG: 0.417 ± 0.314
MRR: 0.587 ± 0.411

EDU

P: 0.454 ± 0.345
F1: 0.326 ± 0.241
NDCG: 0.361 ± 0.288
MRR: 0.59 ± 0.419

P: 0.518 ± 0.325
F1: 0.364 ± 0.205
NDCG: 0.412 ± 0.268
MRR: 0.677 ± 0.366

P: 0.596 ± 0.342
F1: 0.304 ± 0.192
NDCG: 0.366 ± 0.253
MRR: 0.607 ± 0.397

P: 0.635 ± 0.296
F1: 0.353 ± 0.191
NDCG: 0.434 ± 0.245
MRR: 0.686 ± 0.349

EDU+AMR

P: 0.459 ± 0.337
F1: 0.332 ± 0.226
NDCG: 0.379 ± 0.301
MRR: 0.588 ± 0.424

P: 0.528 ± 0.32
F1: 0.383 ± 0.204
NDCG: 0.442 ± 0.279
MRR: 0.694 ± 0.371

P: 0.569 ± 0.339
F1: 0.299 ± 0.201
NDCG: 0.364 ± 0.279
MRR: 0.603 ± 0.405

P: 0.649 ± 0.299
F1: 0.359 ± 0.186
NDCG: 0.439 ± 0.244
MRR: 0.703 ± 0.356

Clause+AMR

P: 0.422 ± 0.313
F1: 0.318 ± 0.224
NDCG: 0.359 ± 0.269
MRR: 0.603 ± 0.423

P: 0.547 ± 0.324
F1: 0.396 ± 0.203
NDCG: 0.423 ± 0.25
MRR: 0.682 ± 0.358

P: 0.555 ± 0.331
F1: 0.285 ± 0.194
NDCG: 0.345 ± 0.244
MRR: 0.618 ± 0.404

P: 0.63 ± 0.312
F1: 0.352 ± 0.19
NDCG: 0.421 ± 0.234
MRR: 0.685 ± 0.353

Clause+EDU

P: 0.467 ± 0.353
F1: 0.34 ± 0.243
NDCG: 0.356 ± 0.262
MRR: 0.592 ± 0.415

P: 0.535 ± 0.339
F1: 0.396 ± 0.226
NDCG: 0.426 ± 0.26
MRR: 0.688 ± 0.38

P: 0.572 ± 0.348
F1: 0.291 ± 0.197
NDCG: 0.334 ± 0.239
MRR: 0.605 ± 0.399

P: 0.666 ± 0.301
F1: 0.368 ± 0.187
NDCG: 0.417 ± 0.222
MRR: 0.699 ± 0.361

Clause+EDU+AMR

P: 0.457 ± 0.328
F1: 0.348 ± 0.234
NDCG: 0.381 ± 0.288
MRR: 0.604 ± 0.413

P: 0.526 ± 0.323
F1: 0.39 ± 0.215
NDCG: 0.425 ± 0.258
MRR: 0.697 ± 0.37

P: 0.586 ± 0.332
F1: 0.303 ± 0.201
NDCG: 0.358 ± 0.264
MRR: 0.618 ± 0.394

P: 0.665 ± 0.293
F1: 0.368 ± 0.185
NDCG: 0.419 ± 0.221
MRR: 0.705 ± 0.357

set of the information within the set of clauses composing the knowledge
graph of the baseline.

Furthermore, as expected, we can see that the precision of Syntagm-
Tuner exceeds the baseline in all cases (especially with the Universal Sen-
tence Encoder). This supports Hypothesis 4, suggesting that general-purpose
deep language models may have difficulty capturing syntagmatic relations
within technical texts such as the European legislative texts. Furthermore,
evidence gathered in [200, 193] indicates that Hypothesis 4 also applies to
other technical texts, i.e., UN General Assembly resolutions.
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Table 9.7: Q4EU - Scores of MiniLM. For further details on interpreting
this table, read the caption of Table 9.6.

Top5 Scores Top10 ScoresMiniLM
No TF-IDF (Baseline) SyntagmTuner No TF-IDF (Baseline) SyntagmTuner

Clause (Baseline)

P: 0.524 ± 0.343
F1: 0.4 ± 0.239
NDCG: 0.457 ± 0.29
MRR: 0.697 ± 0.391

P: 0.539 ± 0.318
F1: 0.415 ± 0.207
NDCG: 0.478 ± 0.257
MRR: 0.741 ± 0.344

P: 0.627 ± 0.296
F1: 0.347 ± 0.18
NDCG: 0.427 ± 0.26
MRR: 0.707 ± 0.374

P: 0.643 ± 0.3
F1: 0.372 ± 0.187
NDCG: 0.453 ± 0.225
MRR: 0.746 ± 0.335

AMR

P: 0.432 ± 0.325
F1: 0.332 ± 0.236
NDCG: 0.412 ± 0.32
MRR: 0.605 ± 0.43

P: 0.456 ± 0.324
F1: 0.34 ± 0.222
NDCG: 0.423 ± 0.318
MRR: 0.625 ± 0.418

P: 0.511 ± 0.345
F1: 0.29 ± 0.207
NDCG: 0.424 ± 0.31
MRR: 0.613 ± 0.42

P: 0.56 ± 0.333
F1: 0.308 ± 0.192
NDCG: 0.447 ± 0.305
MRR: 0.631 ± 0.409

EDU

P: 0.454 ± 0.35
F1: 0.328 ± 0.233
NDCG: 0.379 ± 0.295
MRR: 0.596 ± 0.415

P: 0.492 ± 0.321
F1: 0.365 ± 0.214
NDCG: 0.423 ± 0.281
MRR: 0.667 ± 0.385

P: 0.531 ± 0.365
F1: 0.286 ± 0.198
NDCG: 0.366 ± 0.272
MRR: 0.602 ± 0.407

P: 0.628 ± 0.308
F1: 0.348 ± 0.19
NDCG: 0.439 ± 0.256
MRR: 0.677 ± 0.369

EDU+AMR

P: 0.478 ± 0.342
F1: 0.371 ± 0.243
NDCG: 0.417 ± 0.295
MRR: 0.634 ± 0.415

P: 0.527 ± 0.319
F1: 0.394 ± 0.212
NDCG: 0.454 ± 0.277
MRR: 0.705 ± 0.37

P: 0.587 ± 0.346
F1: 0.323 ± 0.201
NDCG: 0.395 ± 0.26
MRR: 0.645 ± 0.399

P: 0.688 ± 0.292
F1: 0.38 ± 0.185
NDCG: 0.459 ± 0.243
MRR: 0.713 ± 0.355

Clause+AMR

P: 0.529 ± 0.337
F1: 0.407 ± 0.235
NDCG: 0.465 ± 0.287
MRR: 0.709 ± 0.386

P: 0.54 ± 0.317
F1: 0.412 ± 0.204
NDCG: 0.471 ± 0.256
MRR: 0.741 ± 0.334

P: 0.613 ± 0.318
F1: 0.341 ± 0.192
NDCG: 0.426 ± 0.266
MRR: 0.715 ± 0.376

P: 0.652 ± 0.3
F1: 0.375 ± 0.189
NDCG: 0.451 ± 0.224
MRR: 0.742 ± 0.33

Clause+EDU

P: 0.512 ± 0.361
F1: 0.401 ± 0.26
NDCG: 0.46 ± 0.304
MRR: 0.708 ± 0.408

P: 0.562 ± 0.314
F1: 0.434 ± 0.197
NDCG: 0.471 ± 0.243
MRR: 0.728 ± 0.341

P: 0.638 ± 0.312
F1: 0.349 ± 0.181
NDCG: 0.425 ± 0.256
MRR: 0.726 ± 0.379

P: 0.679 ± 0.287
F1: 0.386 ± 0.182
NDCG: 0.449 ± 0.218
MRR: 0.731 ± 0.334

Clause+EDU+AMR

P: 0.522 ± 0.355
F1: 0.408 ± 0.252
NDCG: 0.463 ± 0.295
MRR: 0.715 ± 0.4

P: 0.549 ± 0.316
F1: 0.421 ± 0.2
NDCG: 0.472 ± 0.244
MRR: 0.752 ± 0.33

P: 0.637 ± 0.319
F1: 0.356 ± 0.188
NDCG: 0.432 ± 0.256
MRR: 0.729 ± 0.377

P: 0.683 ± 0.289
F1: 0.39 ± 0.181
NDCG: 0.457 ± 0.214
MRR: 0.756 ± 0.322

Finally, despite their differences, both MiniLM (the best) and the Uni-
versal Sentence Encoder behave similarly, suggesting that the information
units we considered and SyntagmTuner play a role that is independent of
the underlying general-purpose language model used for retrieval. Over-
all, these findings support our hypotheses. They show that it is possible to
significantly improve a general-purpose language model, making it perform
better with legal texts. This is possible by better capturing syntagmatic rela-
tionships and using noiseless information units, i.e., decomposing a generic
clause into one or more discourse relations or AMRs.

In other words, as expected, the information units representing the (generic)
clauses carry enough noise to distract the answer retriever. By breaking the
sentences into EDUs and explicitly keeping their relations, we can crys-
tallise the discourse structure into the knowledge graph, making it invari-
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Table 9.8: Q4EU - Knowledge graphs size. This table shows how the
number of unique retrievable triplets in the knowledge graphs used for
question-answering change when changing information units.

Clause (Baseline) AMR EDU EDU+AMR Clause+AMR Clause+EDU Clause+EDU+AMR
Unique
Retrievable
Triplets

28,718 5,831 22,393 26,139 32,642 42,250 45,775

ant. Therefore the answer retriever is forced to “reason” over the discourse
patterns, minimising the chances of relying on common-sense discourse
schemes instead.

Examples of how EDUs and AMRs are important for some questions
of the Q4EU dataset are shown in Table 9.9. A qualitative analysis of the
responses produced by the algorithm shows that it can identify useful nor-
mative references to ensure the completeness of the answer and develop an
overview. For instance, among the answers to the question “Who decides
precedence in the event of a conflict between a European arrest warrant
and a request for extradition from a third country?” the algorithm identi-
fies Article 16.3 (the most relevant answer) and suggests Recital 8, which
helps interpret Article 16.3. Furthermore, for the same question, the algo-
rithm also suggests Article 10.6, which, while not suitable for answering
the question, leads the jurist to complementary points of reference for more
holistic reasoning and interpretation.

Both Tables 9.9 and 9.10 show errors committed by the answer retriev-
ers and the extractor of information units. These examples indicate at least
two different types of errors. The first type occurs when an information
unit is not correctly extracted so that it is semantically or grammatically
incorrect, such as in the first and fourth rows of Table 9.9. This type of er-
ror is not particularly serious since, in some cases, the underlying language
model is resistant to inaccuracies15, still allowing a correct answer to be
retrieved, as shown in Table 9.9.

This first type of error is usually caused by the automatic extraction of
AMRs and EDUs by a neural network, as described in Section 9.3. For
this reason, in both Tables 9.9 and 9.10, there are examples of information
units that do not perfectly overlap with the “answer text”. On the contrary,
the second type of error is due to mistakes in the deep language model for

15This mainly happens because the answer retriever concatenates the information units
with their context, as explained at the end of Section 6.1.
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Table 9.9: Q4EU - Examples of correct answers. This table shows a
few examples of answers correctly given by the baseline and DiscoLQA
(EDU+AMR). For each answer, we provide the key information unit (IU
for short) used by the retriever to associate the correct answer to the
question. Nonetheless, even if the answer is selected correctly, the rea-
son for selecting it might be wrong. Thus, errors in the information units
are shown with a strike-through.

Question Algo-
rithm

Answer Answer Text Answer
Perti-
nence

Key IU Type of
IU

What court has
jurisdiction in
case of a counter-
claim?

EDU+
AMR

B Art.
8.3

A person domiciled in a Member
State may also be sued: (3) on a
counter-claim arising from the same
contract or facts on which the origi-
nal claim was based, in the court in
which the original claim is pending;

49.35% In what manner
may a per-
son domiciled
in a Member
State be sued?
in the court in
which the original
claim is pending

Discourse
Relation

Where can an em-
ployee sue their
employer?

EDU+
AMR

B Art.
23.2

which allows the employee to
bring proceedings in courts other
than those indicated in this Section.

25.81% What allows the
employee to
bring proceed-
ings? courts

AMR

Who determines
disputes under a
contract?

EDU+
AMR

B Art.
17.2

Where a consumer enters into a con-
tract with a party who is not domi-
ciled in a Member State but has a
branch, agency or other establish-
ment in one of the Member States,
that party shall, in disputes aris-
ing out of the operations of the
branch, agency or establishment, be
deemed to be domiciled in that
Member State.

35.26% Who enters into a
contract with a
party? a con-
sumer

AMR

What court has
jurisdiction in
case of a counter-
claim?

EDU+
AMR

B Art.
14.2

The provisions of this Section shall
not affect the right to bring a
counter-claim in the court in which,
in accordance with this Section, the
original claim is pending.

59.30% In what case is the
right to bring a
counter-claim? in
the court

Discourse
Relation

What factors
should be taken
into account for
conferring the
jurisdiction to de-
termine disputes
under a contract?

Baseline B Art.
25.5

An agreement conferring jurisdic-
tion which forms part of a con-
tract shall be treated as an agree-
ment independent of the other
terms of the contract.

34.41% the terms of the
contract

Clause

What kind
of agreement be-
tween parties are
regulated by these
Regulations?

Baseline RI Art.
1.2.e

The following shall be excluded
from the scope of this Regu-
lation: (e) arbitration agree-
ments and agreements on the choice
of court;

37.18% the scope of this
Regulation

Clause
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Table 9.10: Q4EU - Examples of wrong answers. This table shows a
few examples of answers wrongly given by the baseline and DiscoLQA
(EDU+AMR). For more details on how to read this table, read the cap-
tion of Table 9.9.

Question Algo-
rithm

Answer Answer Text Answer
Perti-
nence

Key IU Type of
IU

What kind of
agreement be-
tween parties is
regulated by these
Regulations?

Baseline B Art.
73.3

This Regulation shall not affect the
application of bilateral conventions
and agreements between a third
State and a Member State concluded
before the date of entry into force
of Regulation (EC) No 44/2001
which concern matters governed
by this Regulation.

45.16% of conven-
tions and agree-
ments

Clause

When are two
actions to be
considered re-
lated according
to Regulation
Brussels I Bis?

EDU+
AMR

B Art.
71.2.a

The court hearing the action shall,
in any event, apply Article 28 of this
Regulation;

27.53% In what case shall
the court hearing
the action ap-
ply Article 28 of
the Regulation?
In any event

Discourse
Relation

Can the parties
choose a different
applicable law for
different parts of
the contract?

EDU+
AMR

R1
Rec.
14

Should the Community adopt,
in an appropriate legal instru-
ment, rules of substantive contract
law, including standard terms and
conditions, such instrument may
provide that the parties may
choose to apply those rules.

41.28% What may the
parties choose
to apply? sub-
stantive contract
law

AMR

answer retrieval. As shown in Table 9.10, this type of error can be rather
severe, causing wrong answers to be selected by the retriever.

We also studied how (top10) precision scores vary when the context
specificity changes. The results partly confirmed our expectations. We can
see a trend where average top10 precision increases proportionally to the
context specificity. This is clear in almost all instances of DiscoLQA (with
SyntagmTuner) and shown in Table 9.11.

Our expectations are based on the fact that:

• The specificity of a question is low when it asks something that can-
not be explicitly found in the Regulations but requires a holistic anal-
ysis of principles, competence rules, and so forth;

• Questions with low specificity usually tend to have more expected
answers, and it may be harder to find all of them;
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Table 9.11: Q4EU - P@10 by context specificity. Mean top10 preci-
sion scores (with standard deviation) grouped by context specificity, for
MiniLM with SyntagmTuner. The best column results are in bold, while
darker shades of blue indicate higher precision column-wise.

SpecificityP@10 on MiniLM
with SyntagmTuner High Normal Low
Clause (Baseline) 0.772 ± 0.304 0.62 ± 0.301 0.542 ± 0.244
AMR 0.52 ± 0.387 0.612 ± 0.327 0.535 ± 0.267
EDU 0.764 ± 0.291 0.599 ± 0.306 0.527 ± 0.277
EDU+AMR 0.798 ± 0.251 0.677 ± 0.321 0.593 ± 0.254
Clause+AMR 0.749 ± 0.304 0.661 ± 0.307 0.542 ± 0.244
Clause+EDU 0.821 ± 0.245 0.655 ± 0.301 0.567 ± 0.248
Clause+EDU+AMR 0.821 ± 0.245 0.667 ± 0.306 0.567 ± 0.248

Table 9.12: Q4EU - Percentage of answers more/less precise than the
baseline. Percentage of queries for which DiscoLQA (with Syntagm-
Tuner and MiniLM) made a positive/negative difference from the base-
line in terms of top10 precision. Percentages are grouped by context
specificity. The best column deltas are in bold, while darker shades of
blue indicate higher positive deltas (the difference between “more” and
“less”) column-wise.

SpecificityP@10 on MiniLM
with SyntagmTuner High Normal Low

AMR
More: 13.64%
Less: 45.45%

More: 21.43%
Less: 17.86%

More: 13.64%
Less: 18.18%

EDU
More: 13.64%
Less: 13.64%

More: 14.29%
Less: 21.43%

More: 22.73%
Less: 22.73%

EDU+AMR
More: 9.09%
Less: 9.09%

More: 25.0%
Less: 7.14%

More: 22.73%
Less: 9.09%

Clause+AMR
More: 0.0%
Less: 4.55%

More: 17.86%
Less: 0.0%

More: 0.0%
Less: 0.0%

Clause+EDU
More: 9.09%
Less: 4.55%

More: 14.29%
Less: 3.57%

More: 9.09%
Less: 4.55%

Clause+EDU+AMR
More: 9.09%
Less: 4.55%

More: 21.43%
Less: 3.57%

More: 9.09%
Less: 4.55%
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• Multi-hop reasoning is usually required to answer questions with low
specificity, but the considered answer retrievers are not equipped for
that kind of reasoning (yet).

For example, the question “How should a contract be interpreted ac-
cording to Regulation Rome I?” has very low specificity. It requires pin-
pointing both recitals and articles for a proper answer, therefore, more dis-
tinct and distant paragraphs. Most of the questions regarding hermeneutics
would probably require a broader view of the subject, having a low speci-
ficity to the Regulation, therefore requiring multi-hop reasoning.

Furthermore, we also show in Table 9.12 the percentage of queries for
which the best instance of DiscoLQA made a positive/negative difference
from the baseline in terms of top10 precision grouped by specificity. In
particular, EDU+AMR (the version of DiscoLQA using only AMRs and
EDUs) was able to produce 19.4% more precise top10 answers than the
baseline, using MiniLM and SyntagmTuner. This percentage rises to 22.7%
and 25% when considering only questions with low and normal specificity,
respectively.

We tested and evaluated DiscoLQA on specific European legislative
texts and a relatively small dataset without comparing our results with deep
language models pre-trained on legal corpora. Nonetheless, even though
Q4EU is about different legal sub-domains (respectively: Private Inter-
national Law, the European arrest warrant, data protection and electronic
signatures), our instances of DiscoLQA and SyntagmTuner were able to
generalise well across them, exceeding the baselines in all cases.

Notably, that happened even though we built DiscoLQA and Syntagm-
Tuner to perform zero-shot question-answering without any training proce-
dure involving European legislation or (more generally) legal documents.
Therefore, in practice, DiscoLQA and SyntagmTuner can potentially be de-
ployed on a wide variety of domains for which data scarcity is unavoidable
(e.g., the use cases considered for showcasing our YAI). In particular, for
deploying DiscoLQA and SyntagmTuner, one would not need to manually
create any new time-consuming dataset like Q4EU.

As future work, we point to the possibility of specialising the algorithm
for the extraction of EDUs and AMRs to legislative texts or other technical
texts, taking into account what we already know about (legal) connectors
and discourses.

164



CHAPTER10
How to Improve the Explanatory

Power of an Intelligent Textbook: a
Case Study in Legal Writing

In the previous chapters, we discussed how YAI could help produce more
usable explanations of the software documentation of AI systems. How-
ever, if the theory expounded in Part I is correct, YAI should also be usable
for education. As pointed out by UNESCO, the United Nations specialised
agency for education, in one of its recent publications [134], the opportu-

The work presented in Chapter 10 was partially supported by the European Union’s
Horizon 2020 research and innovation programme under the MSCA grant agreement
No 777822 “GHAIA: Geometric and Harmonic Analysis with Interdisciplinary Appli-
cations”. It was developed in collaboration with prof. Kevin Ashley and prof. Peter L.
Brusilovsky, from the University of Pittsburgh. F. Sovrano: conceptualization, methodol-
ogy, software, data curation, original draft preparation, visualization, investigation, vali-
dation, formal analysis. K. Ashley: conceptualization, review, editing and supervision. P.
L. Brusilovsky: supervision. We thank the copyright holders of [35] for allowing us to use
(parts of) the book to conduct the experiments, carry out the case study and present this
research work.

165



nities and challenges that AI offers for education in the AI era are yet to be
fully understood. For this reason, in this chapter, we examine applications
of YAI to increase the explanatory power of educational textbooks. In par-
ticular, we consider a case study in the legal domain related to the United
States’ legal system. Therefore, we extend the work done for YAI4Hu
(cf. Chapter 6), employing the question-answering strategies explained in
Chapter 9 and proposing new heuristics to improve the illocutionary force
of the YAI system.

Empirical evidence gathered in Chapter 7 suggests that explanatory illo-
cution consists of answering implicit (archetypal) questions. So, if Hypoth-
esis 1 (cf. Section 3.2) is true (as it seems), it follows that the explanatory
illocution of a YAI system can be improved by adequately identifying those
implicit questions that are the most interesting for the explainee. Though,
anticipating these questions is not a trivial task, not even for the explainee.

Nonetheless, assuming that the content of a textbook (or any other col-
lection of texts) properly explains a given explanandum, then:

• Any question falling outside the scope of the collection of documents
could not be answered, thus not being useful for the explainee;

• Whoever wrote the textbook tried to explain as well as possible (for
her/his narrative purposes) the most important topics at hand, thus,
according to the adopted definition of explanation (cf. Chapter 3),
implicitly identifying the most important questions whose answers
provide a good overview of the topics.

Therefore, we make the following hypothesis:

Hypothesis 6. The most useful implicit questions a user may have about a
collection of texts are those best answered by the whole collection. These
questions are neither too detailed (because they would otherwise only be
answered in a minor part of the collection) nor too general (because they
would be answered inaccurately in the more detailed textual content).

Throughout this chapter, we will discuss how to leverage Hypothesis 6
to identify the questions best answered by a collection of texts, thus algo-
rithmically organising educational explanations accordingly as intelligent
overviews. As a case study for our proposed YAI for education (YAI4Edu,
for short), we considered a teaching scenario where the excerpts of a text-
book, “United States Legal Language and Culture: An Introduction to the
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Figure 10.1: Example of intelligent explanatory overview generated by
YAI4Edu. This figure contains an example of interactive overview in the
form of a scrollspy showing relevant questions and answers as explana-
tions. The reader can select a new topic to overview by clicking on any
underlined word.

U.S. Common Law System” [35], together with the encyclopaedia of the
Legal Information Institute of the Cornell Law School and thousands of
cases of the Board of Veterans’ Appeals (BVA)1 are used for teaching how
to write a legal memorandum2 in support of a disability claim for Post-
Traumatic Stress Disorder (PTSD) according to the U.S. legal system. For
an example of an intelligent explanation generated by YAI4Edu in this sce-
nario, see Figure 10.1.

As an example to clarify what Hypothesis 6 means in this case, let us
suppose we want to explain what a legal memorandum is. The selected
textbook [35] does it by describing what a memo is in a legal sense, what
it is for, what the proper form of a legal memorandum is and what sections
it should include. The textbook also provides secondary details, explain-
1The BVA is an administrative tribunal within the United States Department of Veterans
Affairs that determines whether U.S. military veterans are entitled to claimed veterans’
benefits and services.

2A legal memorandum is an organised document that summarises relevant laws to support
a conclusion on a particular legal issue.
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ing each step of drafting a memorandum, why writing a memo is difficult,
what the heading of a memorandum contains, and so on. Hence, in this
case, Hypothesis 6 implies that the most useful implicit questions to ask
about a legal memorandum for the textbook are not those whose answers
are only secondary details. This is because they are too specific to represent
the textbook’s explanatory content adequately. Instead, the best choices are
the primary questions such as “what is the proper form of a legal memoran-
dum”, “what is a memo in a legal sense”, because they best represent the
content of the textbook.

To evaluate YAI4Edu and verify Hypothesis 6, we conducted a within-
subjects user study, comprising more than 100 students. This was done to
study how different strategies to identify helpful implicit questions impact
the quality of the resulting explanations. In particular, during the study,
different explanations were given to English-speaking students about the
task of writing a legal memorandum.

We compared the explanations generated by the overview generator of
YAI4Edu (called Intelligent Explanation Generator; relying on Hypothesis
6) with those of the following two baseline algorithms:

• A random explanation generator: an algorithm that organises ex-
planations by randomly selecting implicit questions from those an-
swered by the corpus of considered texts;

• A generic explanation generator: the explainer adopted by YAI4Hu
to generate overviews (see Section 6.3), which uses very generic
questions (e.g., why, how, what) instead of questions extracted from
the textbook, under the assumption that all possible (implicit) ques-
tions are instances of such generic questions.

The following sections will describe the differences between YAI4Edu and
YAI4Hu, how the Intelligent Explanation Generator works, the case study
and experiment considered, and discuss the empirical results and limita-
tions. We also release the source code of YAI4Edu3 and the anonymised
data collected to evaluate it under MIT license at https://github.c
om/Francesco-Sovrano/YAI4Edu.
3We cannot release the textbook excerpts [35] because they are copyrighted.
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10.1. YAI4Edu: a YAI for Improving the Explanatory Power of
an Intelligent Textbook

10.1 YAI4Edu: a YAI for Improving the Explanatory
Power of an Intelligent Textbook

Some studies suggest that using intelligent textbooks4 and interactive e-
books leads to an increase in use, motivation, and learning gains versus
static e-books [70]. Of the several streams of work on the topic of inter-
active e-books and intelligent textbooks, most focus on the cognitive pro-
cess of the reader, studying how to enhance the pedagogical productivity of
textbooks through expert systems or sophisticated interfaces. They usually
accomplish this by:

• Showing personal progress through open learner models [107, 108];

• Specialising on ad hoc tasks through some domain modelling [18, 58,
45, 130];

• Modelling a student through questions, in order to identify and sug-
gest personalised contents [209, 141, 130];

• Associating pedagogically valuable quizzes and exercises to portions
of the e-book [222, 184, 40, 41];

• Providing tools for manually creating new interactive e-books [218,
159, 111].

The use of AI for the automatic generation of interactive e-books seems to
be under-explored.

The benefit of answering questions for learning has been shown in many
studies [168, 153], further supporting the assertion that explaining is akin
to question-answering and that organising contents on a question-answer
base might be beneficial for the explainee. However, creating questions
with a proper level of detail that effectively helps students’ learning usually
requires experience and extensive efforts [184]. Hence, we hereby pro-
pose YAI4Edu, an extension of YAI4Hu (cf. Chapter 10) to automatically
transform static educative e-books (in PDF, XML or HTML format) into
interactive intelligent textbooks by increasing their explanatory power.

In contrast to all the previously mentioned literature examples, we in-
vestigate how to use YAI to fully automatically enhance (static) educational
4Intelligent textbooks extend regular textbooks by integrating machine-manipulable
knowledge [218].
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books by making them interactive, thus reducing the sparsity of relevant
information and increasing the explanatory power of the medium. More
specifically, we are not interested in the task of generating verbatim5 ques-
tions for quizzes or exercises as [222, 184, 40, 41], but instead, we pur-
sue the different idea that questions (even non-verbatim ones) can be an
effective criterium to organise and categorise the content of explanations.
Moreover, instead of considering any question as a suitable candidate for
this task, we empirically show that some questions are more helpful than
others and that the best questions for explanatory overviews are neither too
generic nor too specific.

The differences between YAI4Edu and YAI4Hu are mainly three. First,
for answer retrieval, YAI4Edu relies on SyntagmTuner (see Section 9.2)
and DiscoLQA (Clause+EDU+AMR; see Section 9.3), using MiniLM as
pre-trained deep language model (the best, according to the empirical re-
sults discussed in Section 9.4). SyntagmTuner and DiscoLQA are likely
to produce better explanations considering that, as previously anticipated
and described in the following subsections, the chosen case study is about
legal writing and legal English. Secondly, YAI4Edu relies on a more ad-
vanced mechanism for producing overviews, called intelligent overviewing
(an example of intelligent overview is shown in Figure 10.1). Intelligent
overviewing is designed to extract the most helpful questions a textbook
(or supplementary text) is answering by exploiting parts of the DiscoLQA
pipeline. Third, YAI4Edu uses a more advanced algorithm for identifying
which words are to be overviewed, called smart annotation generator, au-
tomatically identifying a glossary of words representing the most explained
textbook contents.

Assuming that the goal of a textbook is to explain something to the
reader, and based on the theoretical understandings expressed in Chapter
3, our YAI4Edu is designed around the idea that organising the explana-
tory space (i.e., the space of all possible bits of explanation) as clusters of
archetypal questions and answers is beneficial for an explainee. In particu-
lar, as shown in the flow chart of Figure 10.2, YAI4Edu uses the following
predefined interactions inherited from YAI4Hu to allow the user to ex-
plore this explanatory space:

• Open-ended question-answering: the user writes a question, and
then it gets one or more relevant punctual answers;

5The verbatim question is a question for which an answer can be literally identified in a
related instructional text (i.e., source text) [184].
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Figure 10.2: Simplified flow diagram of YAI4Edu. This diagram shows
the main components of YAI4Edu. As in YAI4Hu, the user can ask ques-
tions and get overviews. However, differently, YAI4Edu uses a new com-
ponent for generating overviews, as described in Section 10.1.

• Aspect overviewing: the user selects an aspect of the explanandum
(i.e., contained in an answer), receiving as explanation a set of rele-
vant answers to archetypal questions involving other different aspects
that can be explored as well. Answers can also be expanded, increas-
ing the level of detail.

In other words, interaction is given by: i) word glosses that can be clicked
to open an overview, ii) a special kind of search box that allows the reader
to get answers about any open-ended English question.

As hypothesised (cf. Hypothesis 6), archetypal questions that are too
generic are unlikely to represent the explanatory goals of a sufficiently com-
plex and elaborated collection of texts. The archetypal questions originally
used by YAI4Hu for overviewing are too generic and predefined, frequently
not adhering to the explanatory requirements of the overview. Therefore,
considering the need for YAI4Edu to be pedagogically helpful, we designed
a novel theoretically grounded AI algorithm able to quantify how much an
archetypal question is likely to be representative of the explanatory goals of
a collection of texts. We called this algorithm the Intelligent Explanation
Generator.

Instead of considering only predefined generic archetypal questions,
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Figure 10.3: Flow diagram of the Intelligent Explanation Genera-
tor. This diagram shows how an explainee can obtain an intelligent
overview. First, the user decides which aspect of the explanandum to
overview (i.e., by clicking on an annotated word available on the screen).
Then the system extracts an explanation from the textbook or any other
collection of texts (e.g., other textbooks, an encyclopedia) by using an
AI algorithm for question extraction and an AI algorithm for answer
retrieval as described in Section 6.1.

the Intelligent Explanation Generator also considers more domain-specific
(archetypal) questions automatically identified by the AI for question-answer
extraction used by DiscoLQA and described in Section 9.3. More specifi-
cally, the workflow of the Intelligent Explanation Generator consists of
the following three steps (summarised in Figure 10.3).

Step 1. The algorithm computes the DoX of all snippets of text about
a given explanandum (i.e., an aspect to overview), finding the top k
snippets with the highest DoX and finding also the archetypal ques-
tions extracted from them by the algorithm described in Section 9.3;

Step 2. The algorithm identifies a set of pertinent answers within the text
snippets for each question selected in the previous step. An answer is
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said to be pertinent to a question when its pertinence score6 is greater
than a given pertinence threshold p;

Step 3. The algorithm filters the pertinent answers, keeping the best q
questions and a answers by executing the following sub-steps: i) ques-
tions that are too long are removed, i.e., questions whose length
(without considering the length of the explanandum label) exceeds
a threshold L; ii) if a question has some grammatical error, it is
automatically corrected via Gramformer7, a deep neural network;
iii) questions that are too similar are removed,8 prioritising the ques-
tions extracted from the most explanatory snippets (i.e., those with
the highest DoX) and the shortest questions; iv) answers that are too
short or too long are removed; v) the questions with no valid answers
are removed; vi) the answers that could be assigned to several ques-
tions are given to the question with the highest estimated pertinence;
vii) for each question, only the a answers with the highest pertinence
score are kept; viii) the questions are sorted by the decreasing perti-
nence of the first answer, and only the top q questions are kept.

Importantly, step 1 is performed before step 2 to reduce the asymptotic
time complexity of step 2. Selecting the questions best answered by the
corpus (step 2) has an asymptotic complexity O(|Qc| · |S|) that grows with
the number of questions extracted from the snippets of text, where Q is the
set of questions about an aspect c to be explained and S is the set of snippets
of text. Therefore, this complexity in the worst-case scenario (without step
1) can be quadratic in the size of the textbook or collection of texts, i.e.,
O(|S|2).

Rather than having a quadratic complexity, a computationally simpler
approach can perform an initial filtering procedure to consider only those
questions coming from the paragraphs with the highest DoX (as step 1
does), thus converting |Qc| into a constant number independent from |S|.
Hence, considering that computing the DoX of |S| snippets of text has an
asymptotic time complexity equal to O(|S|), it follows that step 1 reduces
the complexity of the Intelligent Explanation Generator to O(|S|).
6Pertinence scores are numbers in [0, 1] computed by measuring the cosine similarity be-
tween vectorial representations of question and answer obtained through deep neural net-
works specialised for answer retrieval.

7https://github.com/PrithivirajDamodaran/Gramformer
8A question is said to be similar to another when its similarity score is above a given
threshold s. Similarity scores are calculated like pertinence scores.
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10.2. Case Study: A Textbook for Teaching How to Write Legal
Memoranda

If Hypothesis 6 is true, then the Intelligent Explanation Generator will
be able to produce better and more satisfying explanatory overviews (than
the baseline YAI4Hu). This is because it will be able to anticipate, in a
sense, a lot of implicit questions the user may have.

Not all words, though, require an overview. That is because, in prac-
tice, only a tiny fraction of the words in a text are helpful to explain. Indeed,
many words have common-sense meanings (e.g., the words: “and”, “first”,
“figure”) and, therefore, should not be explained, as discussed also in Sec-
tion 6.4.

To intelligently avoid jotting down unnecessary words, YAI4Edu com-
prises an intelligent annotation mechanism that annotates only those con-
cepts and words that can be explained by (the knowledge graph extracted
from) the textbook and other supplementary texts. More specifically, to un-
derstand whether a word should be annotated, the algorithm executes the
following instructions:

• It checks whether the word is a stop word (i.e., a commonly used
word such as “and” or “or”). If so, the word is not annotated.

• If the word is not a stop word, the algorithm generates its overview
through the Intelligent Explanation Generator. Then, it computes the
cumulative pertinence score of the answers composing the overview;
if the score is greater than a given threshold, it annotates the word.

This annotation mechanism is intended to remove noisy annotations and
distractors so that the reader can focus only on the most central and well-
explained concepts. Moreover, the cumulative pertinence score, which is
used to understand whether a word should be annotated, can also be used
as an alternative to DoX to find out which topics are best explained in the
corpus of documents.

10.2 Case Study: A Textbook for Teaching How to
Write Legal Memoranda

To showcase and evaluate YAI4Edu, we considered a case study in the in-
tersection between AI and law. In particular, we applied YAI4Edu to the
following material explaining, among other things, how to write a le-
gal memorandum in a U.S. legal context for a veteran’s PTSD disability
claim:
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Figure 10.4: Landing page of YAI4Edu on the case study. This figure
contains a screenshot of the annotated textbook [35] and the input for
open-ended questioning. Clicking on underlined words opens an ex-
planatory overview, an example of which is shown in Figure 10.1.

• 22 pages excerpted from the textbook “United States Legal Lan-
guage and Culture: An Introduction to the U.S. Common Law Sys-
tem” [35, pp. 47-60, 93-96, 101-103, 131-132].9

• 5,407 open access web pages about concepts related to the U.S.
legal system coming from the encyclopaedia of the Legal Informa-
tion Institute of the Cornell Law School10 (5,406 web pages) and
Wikipedia11 (1 web page).

• 11,198 legal cases on PTSD disability claims taken from the official
website of the Board of Veterans’ Appeals (BVA).12

9We received explicit consent from the copyright holder to use excerpts of this textbook
for our experiments and the related scientific publications.

10https://www.law.cornell.edu
11https://en.wikipedia.org/wiki/Law_of_the_United_States
12https://search.usa.gov/search?affiliate=bvadecisions&sor
t_by=&query=PTSD&commit=Search
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Altogether, the included material, comprising more than 16,000 docu-
ments, complements the primary teaching material on which YAI4Edu fo-
cuses, i.e., the excerpts of the selected textbook. In particular, the textbook
is used in “Applied Legal Analytics and AI”13, an interdisciplinary course
at the University of Pittsburgh, co-taught by instructors from the University
of Pittsburgh School of Law and Carnegie Mellon University’s Language
Technologies Institute. It provides “a hands-on practical introduction to the
fields of artificial intelligence, machine learning and natural language pro-
cessing as they are being applied to support the work of legal professionals,
researchers, and administrators.”

Teaching how to write a legal memorandum for the U.S. legal system
is a course objective, in part, because in a common law system, such as
the American one, the use of AI assists practitioners in efficiently retriev-
ing legal cases for constructing arguments [154]. A legal memorandum is
an organised document that summarises relevant laws to support a conclu-
sion on a particular legal issue. Writing it can require legal practitioners
to navigate through large databases of cases, i.e., to retrieve the definitions
of technical and specific concepts or to understand which argumentation
patterns are most common in a specific context. Indeed, some of the dis-
tinguishing features of legal writing are:

• Authority. The writer must back up assertions and statements with
citations of authority (i.e., precedents and other decided cases).

• Argument re-use. A more effective memorandum may reuse exist-
ing documents as templates or argumentation patterns.

• Formality. The written legal document should be properly formatted
according to existing standards.

Hence, legal practitioners may now be required to learn how to efficiently
and effectively interact with existing AI-based technological solutions for
information retrieval to speed up legal writing and to learn the complexities
of legal writing. Given the task’s complexity and the course’s goals, we
envisaged that it might be of utmost relevance and utility to design and cre-
ate a tool such as YAI4Edu that could ease the acquisition of the necessary
knowledge for a student to learn legal writing.

Specifically, YAI4Edu should help students understand, from real ex-
amples, how to write a legal memorandum comprising legal arguments to
13https://www.law.pitt.edu/academics/courses/catalog/5719
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defend or attack a claim. In particular, students have to understand how to
use statues, read and summarise cases, synthesise cases, draft a legal mem-
orandum, and use legal concepts in writing. This may involve learning legal
concepts and skills of making arguments with concrete cases selected using
legal information retrieval tools, as is typical in the U.S. legal context.

Table 10.1: Useful statistics about the case study. Column “Documents”
indicates the number of documents. “Extracted Questions” provides
the number of different questions extracted by the algorithm described
in Section 9.3. “Concepts” is the number of different concepts/topics
identified in the collection of documents. “YAI Concepts” provides the
number of topics that can be explained by the algorithm described in
Section 10.1. “KG Size” indicates the number of RDF triplets compos-
ing the knowledge graph (KG) extracted by the algorithm described in
Section 6.2. “Tokens” shows the total number of tokens (e.g., words) in
the collection of documents. “Tokens per Doc” shows the mean number
of tokens per document.

Documents Extracted
Questions

Concepts YAI Con-
cepts

KG Size Tokens Tokens
per Doc

Textbook & Web
Pages

5,408 246,747 115,110 3,407 2,059,145 707,317 130.79

+ Legal Cases 11,198 1,062,716 1,410,694 4,579 52,987,778 28,630,575 2,556.75
= Total 16,606 1,309,463 1,525,804 7,986 55,046,923 29,337,892 1,766.7

Applying YAI4Edu to the collection of documents mentioned above,
we extracted a knowledge graph of 52,987,778 RDF triplets from the BVA
cases and a knowledge graph of 2,059,145 RDF triplets from the textbook
excerpts and the other web pages; other statistics are shown in Table 10.1.
Thanks to the property of compositionality of RDF graphs (introduced in
Section 6.2), we also manually added a few (in the order of 10) RDF triplets
to integrate missing knowledge such as the fact that the word “memo” is a
synonym of “memorandum”. We believe that this property of composition-
ality of the knowledge graph used by YAI4Edu is of utmost importance; it
enables manually correcting any error produced during the graph extraction
and easily integrating it with additional knowledge.

This knowledge graph helped to build an interactive and intelligent ver-
sion of the textbook, as described in Section 10.1 and shown in Figure
10.2, where an input box for open-ended questioning and annotated (i.e.,
underlined) words for overviewing (shown in Figures 10.4 and 10.1) pro-
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Figure 10.5: Screenshot of the web application used during the exper-
iment. This figure shows what the participants in the user study see
during the experiment.

vide the user with interactive elements to obtain intelligent explanations
without breaking the structure of the textbook.

The choice of hyper-parameters (described in Section 10.1) is focused
on generating concise and compact explanations. In particular, the hyper-
parameters chosen for this instance of YAI4Edu are the following: i) k = 10
snippets with the highest DoX considered; ii) answer pertinence threshold
p = .57; iii) maximum overview question length L = 50; iv) question
similarity threshold s = .95; v) minimum and maximum answer length
equal to 150 and 1000, respectively; vi) maximum number of questions per
overview q = 4; vii) maximum number of answers per overview question
a = 2.

10.3 Evaluation of YAI4Edu with Students

Explanations and explanatory tools may be complex artefacts whose quality
depends on a wide range of different factors [195], including:

• The quality of the explainable information;

• The presentation logic with which the explainable information is used
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to explain;

• The quality of the interface.

With this experiment, we are interested in evaluating the presentation logic
used by YAI4Edu for selecting and reorganising questions and answers into
explanations.

In Chapter 7, we already showed, with several examples and experi-
ments, that a user-centred YAI is better than one-size-fits-all and static ex-
planations. Instead of evaluating the interactive e-book with a rather time-
consuming and repetitive test, we decided to focus on evaluating the one
feature of YAI4Edu that should be responsible for improving the explana-
tory power of the e-book: the Intelligent Explanation Generator. Indeed,
according to theory (cf. Chapter 3), what makes a YAI good at explain-
ing is its ability to identify implicit and relevant questions to answer, i.e.,
its illocutionary force. Therefore, we devised an experiment where we di-
rectly asked real students to rate explanations for how well they adequately
explain a given topic (i.e., explanandum aspect), as shown in Figure 10.5.
We did it to understand the extent to which the explanations generated by
our Intelligent Explanation Generator are satisfactory and whether they are
better than baseline explanatory strategies (cf. Hypothesis 6).

The experiment consists of a 10-minute within-subjects user study where
the explanations generated by two baseline explainers and YAI4Edu are
evaluated by English-speaking students collected with Prolific14, an online
platform that helps recruit paid participants for online research. Partici-
pants are required to be fluent in English, be resident in English-speaking
countries (i.e., USA, UK, Ireland, Australia, Canada, New Zealand, South
Africa), use a device with a large screen (e.g., a laptop, a desktop computer,
a tablet in landscape mode), be at least 18 years old, possess a student status
and a minimum approval rating of 75% on Prolific.

The two baselines against which the Intelligent Explanation Generator
is compared are slight variations. They use the same sequence of steps of
the Intelligent Explanation Generator to generate their explanations, apart
from the step responsible for selecting the explanatory questions, which is
different. These two baselines are:

• An explainer that uses randomly chosen questions to organise the
contents of an overview. This explainer randomly selects q = 4 ques-
tions, setting the maximum question length to L = ∞ and using a

14https://www.prolific.co
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lower answer pertinence threshold p = .3 (and not p = .57 as in
the Intelligent Explanation Generator). This prevents the number of
questions from diminishing too much due to not finding sufficiently
relevant answers.

• The generic overview generator of YAI4Hu, that uses pre-defined
and very generic archetypal questions instead, always using the
same four questions (i.e., what is it, how is it, where is it and
why).

The participants were shown the explanations generated by all three
explainers in a randomized order to prevent biases that may have been
caused by the order of presentation. The explanations generated by the
random explainer were the same for all participants, thanks to a predefined
random seed. The participants evaluated each explanation on a scale of 0
(bad) to 5 (good) stars, with the specific question (that the participants were
asked when rating the explanations) being, “Which one of the following se-
quences of questions and answers better explains the following topic?”, as
shown in Figure 10.5. The participants were also asked to anonymously
provide the following information: age; gender; experience in legal writ-
ing; their proficiency in written English, on a scale of A1 (very low) to C2
(very high); their experience in legal writing (from none to high); how they
would rate their knowledge of the U.S. legal system (on a scale of 0 (bad)
to 5 (good) stars). Qualitative feedback was also solicited at the end of the
test.
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Table 10.2: Questions used during the experiment. This table shows the
questions extracted from the three explainers of the experiment. Specif-
ically, “intelligent” stands for the Intelligent Explanation Generator,
“generic” is the YA4Hu explainer, and “random” is the explainer that
uses random questions. Note that an explainer uses fewer than four
questions (the maximum) for its explanations whenever it does not find
four questions with relevant answers in the knowledge graph. The sum
of the relevance scores of all answers that make up each explanation is
reported in the column “Cumulative Relevance”.

Topic Explainer Cumulative
Pertinence Questions

The proper form of a legal memorandum

generic 2,81
What
How
Why

random 3,79

What is the result of a memorandum
to a partner in the same firm?
In what manner is a memorandum of
points and authority usually mandatory?
What does the memorandum usually include?

intelligent 4,61

What is a memorandum in a legal sense?
What does a memorandum do?
What does the memorandum contain?
What will the memorandum predict?

The effects of a disability

generic 3,47
What
How
Why

random 4,92

What is the reason schools must determine if they
have a covered disability under the Act and if that
disability is severe enough?
What can a partial disability be?
What is an example of state statutes relating to
disability retirement?
In what manner can a partial disability be permanent?

intelligent 5,65

What is Disability Law?
What is disability?
What is the result of disability in a legal sense?
What does the disability prevent?

The elements of the legal standard
a veteran needs to satisfy for a
PTSD disability claim

generic 4,58

What
How
Why
Where

random 4,09
Why is element two met?
Who is the first element of a service connection?
Who found that the Veteran has met the first two
elements of service connection?

intelligent 5,21

What is the first element of a service connection?
What are the elements of service connection?
What are elements of the legal standard a veteran
needs to satisfy for a PTSD disability claim?
What is an element of appeal?
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Given the case study at hand (cf. Section 10.2), the main objective of the
explanatory contents is to explain how to write a legal memorandum appro-
priate for the U.S. legal system and a veteran’s PTSD disability claim. The
excerpts of the considered textbook are about legal writing, while the col-
lection of legal cases of the BVA are about PTSD disability claims. Thus,
we can say that some of the goals of the YAI for this case study are to ex-
plain: i) what is the proper form of a legal memorandum; ii) what sections
should be included in a legal memorandum; iii) what legal standard does a
veteran need to satisfy for a disability claim; iv) what are the elements of
the legal standard a veteran needs to satisfy for a disability claim; v) what
issues do the required elements of a disability claim raise; and vi) what
kinds of legal arguments are appropriate for resolving such issues.

Considering that we need an experiment lasting a maximum of 10 min-
utes (in order to minimise costs: each participant cannot be paid less than
6£ per hour on Prolific), we chose the following 3 topics (i.e., explanandum
aspects) for evaluating the explainers:

• Topic 1: The proper form of a legal memorandum.

• Topic 2: The effects of a disability.

• Topic 3: The elements of the legal standard a veteran needs to satisfy
for a PTSD disability claim.

The explanations for the first two topics are extracted from the textbook
and web pages (the first is better explained by the textbook, the second by
the web pages). Instead, the explanations for the third topic are extracted
from legal cases. For more details about the explanations used in the exper-
iment, see Table 10.2.

10.4 Discussion: Results and Limitations

We gathered 130 participants via Prolific, all of whom were students aged
between 19 and 38. Each participant was paid £1. However, 28 participants
had to be discarded for the following reasons:

• 26 participants were discarded because they were too quick (i.e., they
spent less than 4 minutes completing the evaluation of all topics) or
they skipped at least one topic (i.e., they spent less than 35 seconds
on it without being a legal expert);
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10.4. Discussion: Results and Limitations

Figure 10.6: Experiment results. This figure contains bar charts showing
the average scores and interesting p-values (indicated above the curly
brackets) for each topic and explainer. The bar plot labelled as “mem-
orandum” refers to the first topic, “disability” to the second topic and
“elements of legal standard” to the third topic. On the left side of the
figure, one can see the results obtained by aggregating the scores for all
three topics.

• 2 participants were rejected because they reported poor knowledge of
written English (i.e., A1 or A2) or wrote non-grammatical qualitative
feedback.

Eventually, 102 valid submissions were collected. Of these 102 partici-
pants:

• 46 were males, 52 females, 1 identified itself as other/non-binary, and
three preferred not to say;

• 81% stated that their written English proficiency level is C1 or C2,
while 16% indicated a B2 level;

• 86% rated their knowledge of the U.S. legal system with a score lower
than or equal to 3;

• 86 said they are not legal experts;

• 68 reported that they have low or no experience with legal writing, 29
wrote they have some experience and five that their experience with
legal writing is high.
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10.4. Discussion: Results and Limitations

The results (shown in Figure 10.6) indicate that the intelligent explainer
received the highest rates, followed by the generic one; the worst was the
random explainer. To further validate the results and verify that the im-
provements of the intelligent explainer over the baselines are statistically
significant, we performed a few one-sided Mann-Whitney U-tests (MW; a
non-parametric version of the t-test for independent samples) summarised
in Figure 10.6. Results clearly show that, assuming p < .05 as enough
for asserting statistical significance, the intelligent explainer is superior to
the baselines in terms of perceived explanatory power in all three chosen
topics.

Interestingly, looking at the topics separately, we also have statistical
evidence showing that the intelligent explainer is better than the generic
and the random explainer for the first two topics, but not enough for the
last one. This may be because the variance of the cumulative pertinence of
the explanations about the third topic (see Table 10.2) is too low. Alterna-
tively (and more likely), this may also be because the explanations about
the last topic were extracted from a corpus of legal cases rather than text-
books or other educational contents as the other two, thus being harder to
explain. In particular, this intuition is corroborated by the statistics of Table
10.1, where one can see that the legal cases have a ratio of explained con-
cepts close to 0.32%. In contrast, the textbook and web pages have 2.96%
(10 times greater). This difference in explainability between the two docu-
ments corpora may impact the quality of extracted explanations. Indeed, as
pointed out by some qualitative feedback, the explanations extracted from
the BVA cases contain too much (unexplained) technical jargon and too
long sentences (e.g., “the first topic was easy to understand also the sec-
ond one, the problem with the last one is that it was too long and was not
straight to the point.”)

Considering that we are performing multiple comparisons with MW,
the chances of having a false comparison increase. Some statistical tools
that are used in this case to reduce the chance of a type I error (false pos-
itive) are: the Bonferroni correction, the Holm–Bonferroni method, or the
Dunn–Šidák correction. These tools, however, are known to increase false
negatives [7]. Regardless, if we would use a Dunn–Šidák correction to ad-
just for 3 multiple comparisons per topic, then the minimum p-value for
claiming a statistically significant result would not be .05 but instead some-
thing close to .017.

Nevertheless, the collected findings support our hypothesis, showing
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that the most useful implicit questions a user may have about a collection
of texts are likely to be those best answered by the whole collection. Fur-
thermore, even if the random explanations have a cumulative pertinence
score greater than generic explanations (at least for the first two topics, as
shown in Table 10.2), they are evaluated as worse explanations nonetheless.
This evidence further supports Hypothesis 6 (and indirectly also Hypothe-
sis 1; cf. Section 3.2). It shows that too specific archetypal questions may
be less effective than generic ones at explaining and that intelligently bal-
ancing between generality and specificity is needed, as also suggested by
qualitative feedback:

• “All of the [random] explanations were ok but improvement is needed.
They lack a sense of direction. Its like they go round mountains to
prove one single point. All [generic] explanations were very easy to
decode and they were straight to the point. All [intelligent] explana-
tions were a mixture of first and second explanations.”

• “The [random explanations] proved to be unsatisfactory for all three
topics: the explanations do not follow a logical order, are incom-
plete and often contain incorrect or irrelevant elements. The [generic
and intelligent explanations] are quite complete. The [generic ex-
planations] seem to fit more practical questions, while [intelligent
explanations] fit more theoretical ones. In my opinion, [intelligent
explanations] are preferable for the topic at hand.”

However, it is worth noting that our evaluation method has certain lim-
itations. The assessment was primarily based on the students’ perceptions
of the quality of the explanations provided rather than measuring the actual
usefulness and impact of the explanations on the students’ mental models.
While understanding the scale of such measurements and their implemen-
tation can be challenging, incorporating these aspects would have provided
a more comprehensive evaluation of the effectiveness of our explainers.

In future work, a more in-depth analysis could be conducted to measure
the actual impact of the explanations on the students’ understanding, per-
haps by testing their knowledge before and after exposure to the different
explanations. This would help to determine the true effectiveness of the
explanations in updating the readers’ mental models, thus providing further
insights into the performance of the explainers.

Despite these limitations, our current evaluation offers valuable insights
into the students’ perceptions of the explanations, which can be used to
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guide further improvements and refinements of our approach.
Additionally, we collected qualitative feedback from the participants.

Although optional, 81% of the participants provided feedback. Among
them, 19 left positive comments (e.g., “the explanations were superb and
of good quality”) without suggesting any improvement or explaining their
ratings, while the remaining 64 users offered suggestions. We identified six
major areas for improvement:

• Avoid long and redundant explanations: suggested by 32 partici-
pants;

• Avoid or explain legal jargon: 24;

• Avoid generic or incomplete information: 18;

• Use simpler questions: 9;

• Provide examples when explaining: 7;

• Provide better organised and compartmentalised contents: 5.

On the whole, the comments suggest that the subjects were thoughtful.
The complaints are primarily about too-long explanations, unexplained le-
gal jargon, or generic/incomplete information. Some qualitative feedback
comments ask for more conciseness, and others for less. Some partici-
pants preferred generic explanations over intelligent ones. Interestingly,
one could turn this into a feature if the system could offer users a choice of
generic or intelligent explanations.

Some of the most interesting feedback examples are the following:

• “The more lengthy explanations offer more details and give the reader
a greater understanding but can feel a bit harder to read rather than
the [generic explanations].”

• “Dividing the topic into sections is good as long as the [questions] are
relevant and make sense. Relatively simple explanations supported
by evidence is better in my opinion.”

• “The longer explanations had more detail and were more understand-
able. The shorter definitions were also understandable and compact,
but law should be detailed. ”
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• “I particularly liked the layout that included ’what, why, how’, as it
made the explanations easy to follow. [...] The headings that had
long sentences, lost me before I began and I found it hard to decipher
the explanations.”

• “I would make [explanations] shorter.”

• “The answers should be less vague and focus more into details.”

• “The explanations with very long or involved subheadings were diffi-
cult to follow and often when there are large blocks of text, my mind
tends to get overwhelmed - simply making shorter subheadings and
adding more paragraph breaks to the explanations helps with this.”

• “The answers for the questions could have been more concise for
instance in the first topic on what a memorandum is, though I found
[intelligent] and [generic explanations] to be similar in their verbiage.
I found [generic explanations] always easier to understand across the
board, because of it’s simplistic presentation i did not spend time
focusing on unnecessary details”

• “The explanations are a bit difficult to follow as they are long so as a
reader you get lost in the middle of the explanation and forget what
you just read on top.”

• “They were pretty straightforward and easy to understand, especially
because descriptions relating to the law or topics that are difficult to
understand are always filled with difficult jargon, but this simplified
version made it easy to understand.”

• “Generally the explanations were full, but a bit difficult to digest.
There were cases in which not enough was explained to fully under-
stand what a specific legal term meant and encompassed. The expla-
nations that had a short and quick explanation of some legal terms
followed by a more prolonged and detailed explanation were for me
the easiest to grasp.”

While the qualitative feedback was useful in identifying potential im-
provements and limitations of YAI4Edu and the baselines, it is important
to be cautious about taking it entirely at face value. For example, the com-
plaint that explanations are “too long” may be a reflection of participants’
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reluctance to exert mental energy, rather than an inherent problem. Balanc-
ing sufficient detail with brevity can be a challenging task. Nevertheless,
the feedback does offer valuable insights for future work.

Specifically, we believe that YAI4Edu’s smart annotation mechanism
has the potential to address the jargon issue, as it can provide clear expla-
nations for technical terms. However, we could not verify this with the
experiment because it was set to last strictly 10 minutes, so intelligent an-
notations were excluded.

As for future work, we plan to conduct the experiment described in Sec-
tion 10.3 on different textbooks or other educational materials related to law
and computer science. Additionally, in response to the feedback from the
user study participants, we will work on enhancing the explanation gener-
ation pipeline. We will explore the use of algorithms for intelligent sum-
marization, paraphrasing, and text abstraction to strike a balance between
brevity and detail, while reducing technical jargon.
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Part III

Explanation Strategies for
Reinforcement Learning Agents
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Summary

IN THIS part of the thesis, we discuss how the theory of explanations pre-
sented in the previous chapters can improve the learning capabilities
of current state-of-the-art artificial intelligence. In particular, we fo-

cus on a specific type of artificial intelligence called Reinforcement Learn-
ing (RL), which learns from experience to make optimal sequences of de-
cisions. We show how the SAGE-ARS model can reduce the time steps
required for an RL agent to achieve a given goal optimally, thus being more
sample-efficient. We do it starting from the hypothesis that it is possible to
significantly increase the sample efficiency of RL agents by considering the
space of all experiences as a particular type of explanatory space in which
to apply the ARS heuristics. This is possible without changing the agent’s
loss function or the underlying problem’s definition.

First, in Chapter 11, we provide the required background to properly
understand the RL technology and our contributions. Then, in Chapter 12,
we present an implementation of the SAGE-ARS model for single-agent
RL, called Explanation-Aware Experience Replay (XAER), testing it on
different environments and with different reward functions and algorithms
(i.e., DQN, TD3 and SAC). Immediately afterwards, in Chapter 13, we
discuss Dimensionality-invariant Explanatory Experience Replay (DEER),
an extension of XAER for Multi-Agent Reinforcement Learning (MARL)

The content of Part III is a reworking and extension of the following article by the same
author of this thesis: [201].
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designed to handle better the problem of non-stationarity induced by ex-
perience replay in MARL. To show the effectiveness of DEER, we test it
on typical MARL problems (i.e., multi-agent pathfinding and decentralised
task assignment) and with different RL algorithms (i.e., DQN and SAC).
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CHAPTER11
Technological Background:

Reinforcement Learning Algorithms,
Explanations and Experience

Replay

Reinforcement Learning is one of the three major paradigms of machine
learning, alongside supervised and unsupervised learning. Through its abil-
ity to self-adapt and make decisions in dynamic environments, RL has
been applied in various contexts, such as video games, healthcare, recom-
mendation systems, natural language generation, autonomous driving and
robotics [118]. For instance, it underpins technologies such as ChatGPT1

and Google Ads2.
An RL problem is typically formalised as a Markov Decision Process

(MDP): a special type of stochastic sequential decision-making process
which assumes that the optimality of action only depends on the current

1https://openai.com/blog/chatgpt/
2https://ads.google.com/home/
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11.1. Reinforcement Learning Paradigms and the Problem of
Sample Efficiency

state of the world3 [207]. In this setting, an agent interacts at discrete time
steps with an external environment. At each time step t, the agent observes
a state st and chooses an action at according to some policy π, a map-
ping (e.g., a probability distribution) from states to actions. As a result of
its action, the agent obtains a reward rt, and the environment passes to a
new state st+1. The tuple et = 〈st, at, rt, st+1〉 is called state transition or
experience. The process is then iterated until a terminal state is reached.
The future cumulative reward Rt =

∑∞
k=0 γ

krt+k is the total accumulated
reward from time 0 to time t. γ ∈ [0, 1] is the discount factor, represent-
ing the difference in importance between present and future rewards. The
agent’s goal is to maximise the expected cumulative reward (also called
cumulative return) starting from an initial state st.

When there are multiple agents trained to interact (optimally) with each
other (e.g., cooperating, competing), we have Multi-Agent Reinforcement
Learning. In single-agent reinforcement learning scenarios, the environ-
ment changes only as a result of the actions of one agent. Instead, in MARL
scenarios, the environment is subject to the actions of all agents.

In the following sections, we will review the major RL paradigms and
discuss the problem of sample efficiency. We will also elaborate on what
explanations usually are in RL, elucidating why a technique called Priori-
tised Experience Replay is akin to our interpretation of explaining as a
user-centred process. Immediately afterwards, we will introduce MARL
and some of the most common problems in MARL.

11.1 Reinforcement Learning Paradigms and the Prob-
lem of Sample Efficiency

Two major approaches to RL are value-based and actor-critic algorithms.
Value-based algorithms, such as DQN [140, Deep Q-Networks], learn an
optimal policy indirectly after an optimal value function is learned. A value
function is a function that estimates the cumulative reward that an agent can
obtain from a given state. In particular, DQN learns an action-value func-
tion Qπ(s, a) = Eπ[Rt|s = st, a = at]

4 (also called Q-function), which
estimates the expected return for selecting action at in state st and prose-
cuting with strategy π. Given a state s and an action a, the optimal action-

3This is called Markov assumption.
4E here means expected value. The expected value of a discrete random variable is the
probability-weighted average of all possible values.
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value function Q∗(s, a) = maxπQ
π(s, a) is the best possible action-value

achievable by any policy. In contrast, actor-critic methods, such as SAC
[84, Soft Actor-Critic], directly learn a policy function π together with a
state-value function, also called V-function. The value of a state s reached
with a policy π is V π(s) = Eπ[Rt|s = st] and the optimal V-function is
V ∗(s) = maxπ V

π(s).
The Q-function and the V-function can be learned by suitable function

approximators, e.g., neural networks. We shall use the notation Q(s, a; θ)
to denote an approximated Q-function with the parameters θ of a neural
network. In DQN, we try to approximate the optimal action-value function
Q∗(s, a) ≈ Q(s, a; θ) using the Bellman equation [207] by learning the
parameters via backpropagation. This is done through experience replay,
where old state transitions are sampled from a buffer of experience popu-
lated during training. Experience is typically sampled uniformly from the
buffer and is used to form training batches and thus train the neural net-
work to estimate expected values. Therefore, Q-learning is an off-policy
reinforcement learning algorithm: it can learn from actions taken accord-
ing to a different policy. The main drawback of this method is that a reward
only directly affects the value of the state action pair< s, a > that led to the
reward. The values of other state-action pairs are affected only indirectly
through the updated value Q(s, a); backpropagation to relevant previous
states and actions may require several updates, slowing down the learning
process and making it less efficient.

In contrast to value-based methods, actor-critic algorithms such as TD3
[77, Twin-Delayed DDPG] and SAC also parametrise the policy π(a|s; θ)
and update the parameters θ by gradient ascent on E[Rt]. One consequence
of this is that they can work on continuous action spaces. In particular, the
TD3 algorithm is an extension of DQN that only works with continuous
actions. Similarly to DQN, TD3 also learns a Q-function. In DQN, the
optimal action is taken by taking argmax on the Q-values of all actions.
In TD3, the actor is a policy network that directly produces the action,
bypassing argmax. The policy is deterministic since it directly outputs the
action. In order to promote the exploration of new actions and states, TD3
adds some Gaussian noise to the action determined by the policy.

Differently, SAC learns both a V-function and a Q-function, overcom-
ing the problem of being limited by a fixed distribution by allowing the
agent to learn the distribution with which to sample actions. This is done
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through entropy5 maximisation, which allows the agent to explore more dif-
ferent strategies. In particular, SAC apprehends a unimodal Gaussian policy
via the reparametrisation trick [132], optimising for entropy maximisation
instead of exploring using a fixed stochastic process (as the others6). In
other words, a SAC actor aims to maximise expected reward while also
maximising entropy, i.e., to succeed at the task while acting as randomly as
possible. Both TD3 and SAC are off-policy as DQN.

Off-policy RL algorithms are amongst those which can better exploit
experience thanks to a replay mechanism which allows revisiting past state
transitions. Regardless, one of the main problems of RL is learning with
little examples quickly, also called sample efficiency. Sample efficiency is
the ratio of cumulative rewards to the number of time-steps required to train
the agent, i.e., the ratio of effectiveness to efficiency. Sample efficiency
indicates an algorithm that best uses the given experience samples.

Reinforcement Learning systems usually require considerable time and
experience to reach average human performance. This is usually way more
time than humans need. For example, DeepMind’s AlphaGoZero had to
play five million Go games before achieving super-human performance.
In particular, emerging applications of RL require the design of sampling-
efficient solutions to cope with the explosive growth in the dimensionality
of problems. The space of states and actions to be sampled can be enor-
mous, and without effective experience replay strategies, it could be unfea-
sible to train agents in a small amount of time [121]. In this sense, expla-
nations can be a medium for RL agents to improve their sample efficiency.

11.2 Explanations in Reinforcement Learning

The most important field studying explanations in AI and RL is Explainable
Artificial Intelligence (cf. Section 3.1). In the numerous surveys on XAI, a
typical dimension used to classify explanations is the representation mode
used to convey them. Within this domain, explanations are commonly con-
veyed via textual/visual descriptive representations of the decision criteria

5Entropy is a quantity that generally indicates how random a stochastic variable is. If a
coin is weighted in such a way that it almost always comes up heads, it has a low entropy;
if it is weighted evenly and has half the chance of getting either result, it has a high
entropy.

6For example, DQN, DDPG [185] and TD3 use respectively epsilon-greedy exploration,
Ornstein-Uhlenbeck noise and uncorrelated zero-mean Gaussian noise.
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(i.e., rule-based) or with similar examples (i.e., case-based), as also dis-
cussed in Section 3.1. An example of a rule-based explanation is “you will
get a penalty for reaching 75, which is above the speed limit of 50”, based
on the rule “if speed is above 50, you will get a penalty”. While an example
of a case-based explanation is “you get a penalty because you are in a situ-
ation similar to this other vehicle that reached speed 74 and was previously
penalised”.

Dietterich and Flann [64] frame explanation-based RL as a case-based
explanatory process where prototypical trajectories of state transitions are
used to tackle similar but unseen situations, while Chow et al. [50] im-
plement a rule-based method, constraining the Markov Decision Process
through Lyapunov functions.

Generally speaking, many rule-based methods for explaining to RL
agents usually fall under the umbrella of a sub-discipline called safe re-
inforcement learning [78]. Safe RL includes techniques for encoding rules
in the optimality criterion [50, 170] and incorporating such external knowl-
edge into the action/state space [20]. While these methods do not generate
explicit explanations, they insert safety rules into the learning process, im-
plicitly explaining to the agent what not to do.

Alternatively, a famous example of a case-based method for explaining
to RL agents is Imitation Learning [95], where demonstrations (as trajecto-
ries of state transitions generated by a human or expert algorithms) are used
to train the RL agent. These are high quality cases/examples from a human
expert or an expert algorithm. However, access to human expert data may
not scale well to every domain, and not all problems dispose of accessible
expert algorithms.

We are interested in sampling the most useful experiences to cover a
particular agent’s gap in knowledge. An agent-centred explanatory process
is an iterative process that follows the agent through the learning process,
selecting the most useful explanations for it at every time step. Below, we
look at how experience replay techniques tackle this issue in RL.

11.3 Prioritised Experience Replay

RL algorithms can be either on-policy or off-policy. In particular, off-policy
means that the experience used for training can be generated by any policy,
not necessarily by the agent. Examples of off-policy algorithms are DQN,
TD3, and SAC.
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Off-policy RL rely on a technique called experience replay that stores
the past state transitions (st, at, rt, st+1) in an experience buffer and subse-
quently samples them for training. These transitions are pooled over many
episodes into a replay memory, usually randomly sampled for a mini-batch
of experiences.

Experience sampling can be improved by differentiating important tran-
sitions from unimportant ones. In Prioritised Experience Replay [180], the
importance of transitions with high expected learning value is measured
by the the magnitude of the absolute difference between the state-value or
action-value the agent is estimating and what the true value is. This differ-
ence is called Temporal-Difference (TD) error. Experiences with a larger
TD error are sampled more frequently, as the TD error quantifies the unex-
pectedness of a given transition. This prioritisation can lead to a loss of di-
versity and introduce biases. Bias in Prioritised Experience Replay occurs
when the experience distribution is changed without control, modifying the
solution to which the estimates will converge. This bias can be corrected
through importance-sampling weights, as explained by Schaul et al. [180].
Instead, loss of diversity is mitigated with stochastic prioritisation, inter-
polating between pure greedy prioritisation and uniform random sampling.
Sampling probability is monotonic regarding transition priorities while as-
suring a non-zero probability even for minimum-priority transitions.

Notably, many approaches to Prioritised Experience Replay in RL can
be re-framed as mechanisms for achieving agent-centrality, re-ordering ex-
perience by relevance in the attempt of explaining to the agent and select-
ing the most useful experience. In particular, an agent-centred explanatory
process is an iterative process that follows the agent through the learning
process. It selects the most useful explanations for it at every time step.

Over the years, many human-inspired intuitions behind Prioritised Ex-
perience Replay drove researchers towards improved, more sophisticated
and agent-centred mechanisms to RL [206, 226, 227]. Among these works,
the closest to a fully agent-centred explanatory process is Experience Re-
play Optimisation [227], which moves towards agent-centrality by provid-
ing an external black-box mechanism (or experience sampler) for extract-
ing arbitrary sequences of information out of a flat (i.e., no abstraction
involved) experience buffer. The experience sampler is trained to select
the most “useful” ones for the learning agent. However, due to its non-
explainable nature, it is unclear whether the benefits given by Experience
Replay Optimisation are due to the overhead the experience sampler gives,
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increasing the number of neurons in the agent’s network.
Another work trying to achieve agent-centrality in this sense is Atten-

tive Experience Replay [206], suggesting the prioritisation of uncommon
experience that is also on-distribution (related to the agent’s current task).
However, as the previous one, this work also falls short of explicitly organ-
ising experience in an abstract-enough way by conveying human-readable
explanations to the agent. Conversely, Hierarchical Experience Replay
[226] has attempted to address the abstraction issue to simplify the task to
the agent, decomposing it into sub-tasks. However, Yin and Pan [226] do
not do so in an agent-centred and goal-oriented way, given that the sub-task
selection is uniform and not curricular. In contrast, a curricular approach
for training RL agents was proposed by Ren et al. [166]. They exploited
Prioritised Experience Replay and the intuition that simplicity is inversely
proportional to TD errors but did not exploit any abstract and hierarchical
representation of tasks.

11.4 Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning is a subfield of reinforcement learn-
ing. It focuses on studying the behaviour of multiple learning agents coex-
isting in a shared environment.

MARL agents can be trained in a centralised manner but executed in
a decentralised manner (and vice versa), or they can be both trained and
executed in a centralised/decentralised manner. MARL is said to have cen-
tralised execution when the actions taken by agents are chosen by a single
process, while the decentralised execution paradigm is when agents are not
coordinated by any centralised agent. To manage many agents, a decen-
tralised structure in which each agent autonomously executes its policy to
maximise individual performance is more scalable.

In centralised execution, a central controller observes the environment
and distributes actions (and rewards) to individual agents. However, this
approach becomes impractical as the number of agents increases. In par-
ticular, centralised (execution) MARL can be seen as an instance of single-
agent RL, in which there is a single meta-agent that makes all decisions in
a joint action space. In contrast, decentralised (execution) MARL poses the
following (still open) challenges that further complicate the optimal train-
ing of an agent.

Partial observability due to the unknown state of other agents. In
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a decentralised execution setting, the local decision-making system
of an individual robot is inherently incomplete, since other agents’
unobservable states may affect future values [79]. In this scenario,
simply using recurrent neural networks7 to keep track of past obser-
vations, as in [14], is not enough. Thus, one of the main solutions
to this problem is given by the adoption of a differentiable commu-
nication channel, i.e., a Graph Neural Network (GNN)8, for agents
to deal with incomplete observations through complex multi-agent
coordination. In particular, when deploying GNNs in the context of
multi-robot systems, individuals are modelled as nodes, the commu-
nication links between them as edges, and the internal state of each
robot as graph signals, as shown by Blumenkamp et al. [23] or by Li
et al. [122].

High dimensionality due to the number of transitions per episode in-
creasing with the number of agents. The dimension of the obser-
vation space often grows combinatorially with the number of agents,
making harder for a MARL agent to learn a model of the environment
and thus an optimal policy. When the observation space is too big
(i.e., high-dimensional) or the amount of observations per episode
are too many due to decentralisation, what happens is that relevant
state transitions in a relatively small or too big buffer might not be re-
played at all. One of the most famous solutions to mitigate this issue
is certainly Prioritised Experience Replay [180] (cf. Section 11.3).
A complementary solution to Prioritised Experience Replay is also
Global Distribution Matching [98], a prioritisation scheme designed
to preserve diversity in the experience buffer and guarantee a train-
ing distribution that matches the test distribution even with a small
experience buffer. In particular, this strategy consists in randomly
assigning a drop priority to every state transition inserted in the ex-
perience buffer, replacing the transitions with the lowest priority in
the buffer instead of the oldest ones, in order to maintain a random
sample over the global distribution even though experiences arrive
sequentially and the global distribution is not known in advance.

7Recurrent neural networks are a class of neural networks that are naturally suited to pro-
cessing time-series data and other sequential data [65].

8A Graph neural network is a class of artificial neural networks for processing data that
can be represented as graphs [179].
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Non-stationarity due to unpredictable changes in agents’ policies. The
action taken by one (decentralised) agent can influence the reward of
other (decentralised) agents and the evolution of the environment, in-
validating the stationarity hypothesis to establish the convergence of
RL algorithms [228]. Non-stationarity means that each agent can
enter a cycle of adaptation to other agents due to transitions and re-
wards that depend on the actions of all agents whose decision policies
are constantly changing during the learning process . The problem
of non-stationarity in decentralised execution is extremely complex
and intrinsically unavoidable. Hence, one of the most common and
naive approaches consists in employing independent learning, i.e.,
single-agent learning algorithms that intentionally ignore the effect
of other strategic agents in their environment. Even though indepen-
dent learning, in the most generic case, does not have any theoretical
convergence guarantee [228], suffering from non-stationarity and an
increased observation space (due to the fact that independent agents
have independent observations), empirically it may achieve satisfi-
able performance, as pointed out also by [75, 228]. However, using
independent learning with off-policy MARL has a further issue. In
fact, the dynamics generating the state transitions in the agent’s re-
play memory may no longer reflect the current learning dynamics,
making experience replay ineffective in practice [75].
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CHAPTER12
Explaining Rule-Dense Regulations
to Reinforcement Learning Agents

Human beings learn through explanations, and our ability to explain and
transmit knowledge is the fuel that has propelled almost all the scientific
and technological advances we have witnessed over the past millennia.
Therefore, if intelligence is indeed about being able to explain, it follows
that a correct understanding of the act of explaining can, in principle, be
used to create more intelligent machines capable of better understanding
(human) knowledge and to pass it on to (human) explainees.

We have seen in the previous chapters how the SAGE-ARS model can
help build more user-centred YAI software, supporting human explainees
in dealing with large explanatory spaces more effectively and satisfactorily.

The work presented in Chapter 12 was developed in collaboration with Alex Raymond
from the University of Cambridge [201]. F. Sovrano: conceptualization, methodology,
software (XAER and testing environments), data curation, original draft preparation, vi-
sualization, investigation, validation, review and editing. A. Raymond: conceptualization,
software (testing environments of Section 12.2 only), data curation, original draft prepa-
ration, visualization, review and editing.
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Empirical results indicate that a better understanding of how explanatory
processes work can aid human learners in acquiring information better.
Therefore, in this chapter, we discuss how the theory presented in Part I
can help improve the learning capabilities of current state-of-the-art RL, in
addition to producing more effective explanatory tools for people.

RL differs from supervised learning in that it doesn’t require examples
of desired outcomes (like an annotated dataset) or the explicit correction of
sub-optimal outputs. Instead, RL relies on a well-defined reward function
to guide the learning process. Designing this reward function can be chal-
lenging because it needs to effectively represent the desired outcomes and
encourage appropriate behaviour. The primary focus of RL is to discover
an optimal sequence of actions by striking a balance between exploration,
which seeks to fill in missing knowledge, and exploitation, which leverages
acquired knowledge.

Due to these characteristics, RL agents are well-suited for the iterative
exploration of an explanatory space. This makes them compatible with the
role of an explainee, as envisioned by the SAGE-ARS model.

Now, let us suppose we want to explain a complex rule base (e.g., a
road code) to an RL agent (e.g., a self-driving car). A first naive approach
could be to take the regulation as it is and feed it to the agent as part of the
environment. Nevertheless, this would assume the agent has some ability
to automatically understanding the regulation and use it, regardless of how
it is represented. Another naive and task-specific approach could be to en-
code the rule base as a sequence of mathematical constraints for the agent’s
policy, integrating them in the loss function of the RL algorithm. Though
this approach may not always work with every RL algorithm, it may also
result in sub-optimal performance. A conventional model-free RL agent
does not usually receive a representation of the rules of the system (i.e., the
regulations). Instead, it learns from experience encoded into state transi-
tions. In other words, the challenge of explaining written knowledge to RL
agents is that they do not speak any natural language (e.g., English) and
learn through examples rather than words and textual explanations. How-
ever, human-regulated environments often rely on legislation and complex
sets of rules.

Historically, RL methods have been typically tested in environments
with relatively sparse rules and exceptions [104]. Denser regulations ap-
pear in applications of RL for autonomous vehicle research, but such rule
sets are often fixed in terms of complexity [120]. With large numbers of
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corner cases arising as a consequence of dense rule sets, generating a suf-
ficiently diverse set of experiences and exposing these exceptions to an RL
agent can be challenging. Some works in literature propose to sample past
experiences related to those exceptions, heuristically revisiting potentially
important events. Among them, the technique of Prioritised Experience Re-
play (cf. Section 11.3) looks at over-sampling experiences that the agent’s
learned model most poorly captures. However, this mechanism does not
necessarily focus on the cause of events or their exceptional nature.

Hereby, we pursue the intuition that explanations have the potential to
boost the performance of RL agents in complex environments. This is why
we draw inspiration from user-centred explanatory processes for humans
and design a set of heuristics and mechanisms for Prioritised Experience
Replay to explain complex regulations to a generic off-policy RL agent. A
central design challenge towards this goal is integrating explanations into
computational representations. Approaches such as encoding the rule set
(or part of it) into the agent’s observation space may incur severe re-training
overhead even under minimal rule-set changes, as the semantics of the regu-
lation are explicitly provided as input [109]. This minimises compatibility
with extant methods and may need to be clarified whether differences in
performance are due to changes to the architecture or the complexity of the
rule set. On the contrary, we propose a solution that is agnostic to explic-
itly engineering state and observation spaces, using an explanation-aware
experience replay mechanism.

In our approach, we avoid explicit representations of the rule-set (i.e.,
rule-based explanations [29]) by instead representing the meaning of the
regulations as organised collections of examples (i.e., case-based explana-
tions [1]). In the traditional sense, these explanations do not need to be
understood by the agent. However, they can still convey meaning if the
example is labelled/explained in a semantic and meaningful process. In a
ludic example, suppose a young man called Luke is taking hyperspace flight
lessons from his exasperated friend Chewbacca. However, he does not un-
derstand a single word of Shyriiwook, the tutor’s language. With sufficient
repetition, Luke can associate distinct Wookiee growls (and punishments)
with categories of experienced episodes, even if the content of the message
is in an unknown language. Eventually, Luke would learn the meaning of
the most relevant utterances by associating them with the experienced con-
sequences.

Therefore, we make the following hypothesis.

203



Hypothesis 7 (Experience buffers are explanatory spaces). The experience
buffer of an off-policy RL algorithm is a special kind of explanatory sub-
space (cf. Section 5.3). So, it is possible to use the ARS heuristics (cf.
Section 5.4) on an experience buffer to generate more usable explanations
for an RL agent, thus improving its sample efficiency. These explanations
can be seen as ordered sequences of state transitions sampled through an
experience replay mechanism.

In other words, we propose to modify conventional experience replay
structures by dividing the replay buffer into several clusters/hyperedges
following the ARS heuristics, where each cluster represents a distinct ex-
planandum aspect associated with a set of experiences that serve as explana-
tory examples. We call this process Explanation-Aware Experience Replay
(XAER; see Figure 12.1) and integrate this technique into three seminal
learning algorithms: DQN, TD3 and SAC (cf. Section 11.1).

In summary, we state the following contributions:

• We show how distinct types and instances of explanations can be used
to partition replay buffers and improve the rule coverage of sampled
experiences.

• We design discrete and continuous environments (Grid Drive and
Graph Drive) compatible with modular rule sets of arbitrary com-
plexity (cultures). This leads to 9 learning tasks involving both envi-
ronments with different levels of rule complexity and reward sparsity.
These serve as a platform to evaluate how RL agents react to changes
in rule sets whilst keeping a consistent state and action space.

• We introduce XAER-modified versions of traditional algorithms such
as DQN, TD3, and SAC and test the performance of those modified
versions in our proposed environments.

Upon experimenting on the proposed continuous and discrete environ-
ments, our key insight is that organising experiences with XAER improves
the sample efficiency of an RL agent (compared to traditional Prioritised
Experience Replay) and can be able to reach a better policy where tradi-
tional Prioritised Experience Replay may fail to learn altogether.
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Figure 12.1: Overview of XAER. The explainer labels a state transition τ
with an explanation e, stored in a cluster (Ce) containing other experi-
ences labelled with the same explanation.

12.1 XAER: Explanation-Aware Experience Replay

We propose a transformation of rule-based explanations (e.g., given by a
rule-set/culture) to case-based explanations (experience), which are com-
patible with experience replay. Drawing from an epistemic [131] interpreta-
tion of explanations, we argue that a central aspect of providing case-based
explanations to an RL agent comes from meaningfully re-ordering experi-
ence to a greater degree, organising the experience buffer as an explanatory
space (cf. Definition 10). The intuition behind how these case-based ex-
planations are constructed is: “explanations for RL agents are a simple
set of relevant state transitions representing abstract-enough aspects of the
problem to be solved (i.e., the explanandum).” This intuition motivates
the heuristics of abstraction, relevance, and simplicity (ARS, for short) de-
scribed in Section 5.4.

Our use of explanations in RL is aligned to Holland’s [91], and Achin-
stein’s [2] philosophical theories of explanations (cf. Chapter 2). In fact,
in the former, explaining is framed as a process of revising belief when-
ever a new experience challenges it. In the latter, explaining is the attempt
to answer questions (such as why, what) in an agent-centred way. So,
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leaning on the concept of explanation awareness, our heuristics facilitate
information acquisition via the organisation of experience buffers.

Consider a problem where an RL agent has to learn a policy to optimally
navigate through an environment with sophisticated rules and exceptions
(e.g., a real traffic regulation with exceptions for particular types of vehi-
cles). Let the state transition τ = (st, at, rt, st+1) denote the transition from
state st to state st+1 by means of action at, yielding a reward rt. We assume
the environment is imbued with explanatory capabilities via an explainer.
For example, this explainer could be a function capable of capturing the
run-time control flow of the reward function, providing it as explanation
for a given reward. Note that the explanations generated by the explainer
can have virtually any representation, be it human-understandable or not,
provided they are distinct and serve the purpose of labelling different clus-
ters.

Definition 11 (Explainer). The explainer ε : Ω → ES is a function that
maps a list of state transition tuples τ ∈ Ω to an explanation er ∈ ES,
where Ω is the space of possible state transitions andES is the explanatory
space, i.e., the space of all possible explanations.

An agent with more diverse experiences regarding the reasons (expla-
nations) associated with rewards will have a better chance at converging to-
wards a policy that better represents the underlying rule-set. Therefore, we
posit that the more complex the environment is in terms of rules, the more
useful for an agent is to be explanation aware (XA), as it would ensure a
more even distribution of experiences with regards to different reasons jus-
tifying rewards. This diversity of explanations culminates in a clustering
that is semantic by nature, and transitions are partitioned according to the
explanation representing its reward.

Definition 12 (XA Clusters). Let τe = (st, at, rt, ert , st+1) be a XA state
transition represented by the explanation e, where τe : τ × er, τ ∈ Ω and
e ∈ ES. Let Ω be the set of all state transitions. We say C = {Ce1 , . . . , Cek}
is the set of XA clusters seen in Ω, where k is the number of different expla-
nations seen.

In other words, we argue that experience buffers may act as explanatory
spaces for RL agents. We introduce our adaptation of the ARS heuristics to
Reinforcement Learning, below.
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12.1.1 Abstraction: Clustering Strategies
The purpose of the abstraction heuristic is to regulate the granularity of
the explanations, hence of the experience clusters (or hyperedges). Our ab-
stractions are based on the understanding that explanations are answers to
questions, as discussed in Chapter 3. Hence, explanations may have differ-
ent granularity defined by the level of detail of the question they answer.

More specifically, the HOW explanations we consider answer the ques-
tion “How well is the agent performing with this reward?”. This type of ex-
planation can be produced by studying the average behaviour of an agent.
For example, if an episode has a cumulative reward greater than the running
mean, the explanation indicates that the agent behaves better than average.
Hence, these HOW explanations do not need to be designed with any spe-
cific domain knowledge, as they are governed exclusively by the agent’s
performance. On the contrary, the WHY explanations we consider answer
the question “Why did the agent achieve this reward?”. These WHY expla-
nations could depend on an explainer function with task/domain knowledge
that can distinguish and cluster types of transitions (see Example 1, below).
Furthermore, WHY and HOW explanations (or any other type) can be com-
bined so that the explanation would answer both the associated questions.

In order to compose the experience buffer, represented by the set of
experience clusters C = {Ce1 , . . . , Cek}, we consequently devise the fol-
lowing clustering strategies, for each explanation type:

1. HOW: The experience buffer is divided into 2 clustersCbetter andCworse,
where Cbetter contains batches with rewards greater than the running
mean of rewards, and vice-versa (given a sliding window of a defined
size).

2. WHY: The number of clusters is equivalent to the number of distinct
explanations available. Suppose a batch can be explained by multiple
explanations simultaneously. In that case, we select the explanation
associated with the smallest cluster (most under-represented), and the
batch is associated with the corresponding cluster.1

3. HOW+WHY: a combination of HOW and WHY strategies. There are two
custom Cbetter and Cworse clusters for every WHY explanation, formed
after their concatenation.

1Since buffers will be prioritised and clusters will be fairly represented, there is no need
for duplicating the batch across multiple clusters.
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Example 1. Suppose a hypothetical football environment with a WHY ex-
plainer function. This function could either be part of the environment (a
logical mechanism that recognises when certain states are reached and pro-
duces a state label) or an external mechanism that receives state transitions
as input and produces explanations. The explanations could be generated
by the game’s rules, such as “goal”, “offside”, or “foul”. The correspond-
ing WHY clusters would be C = {Cgoal, Coffside, Cfoul, . . .}, where each clus-
ter would contain a set of state transitions associated with each label. Al-
ternatively, clusters would be C = {Cgoal_better, Cgoal_worse, Coffside_better, . . .},
if HOW+WHY were used.

After clustering state transitions using the prior clustering strategies, we
propose mechanisms for assessing the relevance of specific state transitions
during learning.

12.1.2 Relevance: Intra-Cluster Prioritisation
Prioritisation mechanisms are used for organising information given their
relevance to the agent’s objectives.

The priority of a batch is usually estimated by computing its loss ac-
cording to the agent’s objective [180]. In DQN, TD3, and SAC, relevance
is estimated by the agent’s absolute TD error. The closer to 0, the lower the
loss and the relevance. The intuition is that batches with TD error equal to
zero are of no use since they represent an already solved challenge. In our
method, this relevance heuristic can be combined with the clustering strat-
egy mentioned above by sampling clusters in a prioritised way (by summing
the priorities of all its batches) and then performing prioritised sampling of
batches from the sampled cluster.

12.1.3 Simplicity: (Curricular) Inter-Cluster Prioritisa-
tion

Occam’s Razor [24] suggests that, given two explanations for the same
phenomenon, the simpler one should be preferred. In human explanations,
simplicity is often used as a heuristic [101, 145]. We aim to adhere to
simplicity principles by adopting a curricular learning approach, which or-
ganizes learning materials in a structured, progressive manner, and by se-
lecting minimal, straightforward explanations.
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Clustered Prioritised Experience Replay changes the real distribution of
tasks through over-sampling. Assuming that the whole experience buffer
has a fixed and constant size N and that the experience buffer contains |C|
different clusters, let Smin and Smax be the minimum and maximum size of
a cluster. Any new experience is added to a full buffer by removing the
oldest one within buffers having more elements than Smin.

Suppose all the clusters have the same size (therefore Smin = Smax). In
that case, replaying the task’s cluster with the highest (TD error) priority
might push the agent to tackle the exceptions before the most common
tasks, preventing the agent from learning an optimal policy faster. The
assumption here is that exceptional tasks (exceptions) are less frequent.

On the contrary, if Smin = 0 and Smax = ∞, the size of a cluster would
depend only on the real distribution of tasks within a small sliding win-
dow, as in traditional Prioritised Experience Replay, thus preventing over-
sampling. The presence of clusters helps over-sampling batches likely re-
lated to under-represented tasks and learning to tackle potentially hard cases
more efficiently.

Consequently, we posit that Smin shall be large enough for effective
over-sampling while having Smax > Smin being dependent on the real distri-
bution of tasks. This will push the agent towards tackling the most frequent
and relevant tasks first, analogously to curricular learning. We define a
hyper-parameter to control the cluster size proportion.

Definition 13 (Cluster Size Proportion). In order for all clusters to have a
size Smin ≤ S ≤ Smax, we set Smax = Smin + (ξ− 1) · |C| · Smin, where ξ ≥ 1
represents the cluster size proportion.

Therefore, Smin = N
|C|·ξ can be easily controlled by modifying ξ, as

shown in Figure 12.2. We enforce Smin < Smax when ξ > 1. Consequently,
for curricular prioritisation, if the cluster’s priority is (for example) com-
puted as the sum of the priorities of its batch, and ξ > 1 is not too large
(e.g., ξ = 5), the resulting cluster’s priorities will reflect the real distribu-
tion of tasks while smoothly over-sampling the most relevant tasks. This
avoids over-estimation of the priority of a task. As ξ gives us control of the
degree of on-policyness, different values of ξ might perform better on an
algorithm and environment basis2. Higher values of ξ mean that the dis-
tribution of state transitions reflects more transitions seen within the cur-
rent policy, thus advantageous for entropy-maximisation algorithms such
2However, tuning for ξ seems relatively simple, and a grid search on ξ ∈ {1, 2, 3, 4, 5, inf}
might suffice for most cases.
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Figure 12.2: Overview of the simplicity heuristic. This figure shows how
the hyper-parameter ξ impacts cluster prioritisation and can be used to
give higher priorities to simpler (i.e., less exceptional; more common)
explanandum tasks (represented by clusters).

as SAC. Likewise, fully off-policy algorithms such as DQN may exhibit
superior results with low values of ξ (e.g., ξ = 1).

With those mechanisms in place, we propose new environments to eval-
uate agents’ performance when subjected to complex rule sets.

12.1.4 Annealing the Bias
Similarly to Prioritised Experience Replay [180], sampling state transitions
from prioritised clusters might produce unwanted bias. The standard de-
biasing function of Prioritised Experience Replay weighs expected values
using the normalised weight P (τ̄)

P (τ)
∈ [0, 1], where P (τ) is the probability

of sampling a state transition τ from the whole buffer and τ̄ is the state
transition with the lowest probability for the whole buffer. We adopted the
de-biasing function of Prioritised Experience Replay by changing the for-
mula to consider that state transitions are sampled from clusters (which are,
in turn, sampled). Therefore, the de-biasing function of XAER computes
the joint probability of sampling both a cluster c and a state transition τ .
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Considering that the two events are not independent, we compute this joint
probability as P (c) · P (τ |c). Hence, the normalised weights produced by
the de-biasing function of XAER are given by P (c̄∩τ̄)

P (c∩τ)
, where P (c̄ ∩ τ̄) is

the lowest possible probability, considering any couple of clusters and state
transitions.

12.2 Environments for Evaluating XAER

OUT OF BOUNDS AREA

GridDrive GraphDrive

Figure 12.3: Diagrams representing the Grid Drive and Graph Drive en-
vironments. In Grid Drive, the agent has a discrete action space and
must observe the properties of neighbouring cells to make a decision
compatible with the rule set, choosing one direction and a fixed speed.
Graph Drive is a harder environment where the agent’s action and ob-
servation spaces are continuous. In it, kinematics are considered, and
the agent must learn the rules governing penalties and accelerate and
steer without going off-road. Both environments aim to visit as many
new roads as possible without infringing rules.

Real-life air/sea/road traffic regulations are often complex, and their
mastery is crucial to orderly navigation. Many realistic settings have several
exceptions that must be considered (e.g., ambulances are not subjected to
some rules in emergencies, and sailing boats have different priorities if on
wind power). To evaluate the effects of XAER in a diverse configuration
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space of environments, we developed modular environments that allow us
to systematically change its properties in evaluation. These environments
are namely:

• Grid Drive: a grid-like environment compatible with DQN, where
agents can take discrete actions (e.g., move left, right, up, down).

• Graph Drive: a graph-like environment compatible with TD3 and
SAC, where agents can take continuous actions (e.g., steer by 30◦,
accelerate by 0.5 m

s2
).

Diagrams representing them are shown in Figure 12.3.
Our environments allow agents to experience the same rules (our Easy,

Medium, and Hard rule sets) in discrete and continuous state-action spaces
and with frequent and sparse rewards. The agent must understand the com-
plex regulation governing the penalty system. To implement our rule sets,
we use cultures [162, 163]: a mechanism to encode human rule sets as
machine-compatible argumentation frameworks imbued with fact-checking
mechanisms. These can serve as explainer functions to produce rule-based
explanations from an agent’s behaviour which are then converted by XAER
in case-based explanations for RL agents.

In particular, every episode involves an initialisation of the grid or graph
(for Grid Drive or Graph Drive, respectively) with random roads and randomly-
sampled agent properties. The RL agent is encouraged to drive for as long
as possible until it either achieves a maximum number of steps or breaks
a rule (terminal state). All environments are instantiated in versions with
three different cultures (rule sets) according to their levels of complexity:

• Easy: 3 properties (2 for roads, 1 for agents), five distinct rules to
explain.

• Medium: 7 properties (5 for roads, 2 for agents), 12 distinct rules to
explain.

• Hard: 15 properties (9 for roads, 6 for agents), 20 distinct rules to
explain.

12.2.1 Grid Drive: a Discrete Environment for Testing
XAER on DQN

Grid Drive consists of a 15×15 grid of cells, where every cell represents
a different type of road (see Figure 12.3, left), with base types (e.g., mo-
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torway, school road, city) combined with other modifiers (roadworks, acci-
dents, weather). Each vehicle will have a set of properties that define which
type of vehicle they are (e.g., emergency, civilian, worker). Complex com-
binations of these properties will define a strict speed limit for each cell,
according to the culture.

Actions. An action (d, s) consists of a direction d ∈ {N,S,E,W} and
a speed s where 0 < s ≤ 12.

Observations. A sample in the observation space is a tuple (ov, or,M, x, y)
where ov denotes the concatenation of the vehicle’s properties (including
speed), or is the concatenation of all neighbouring roads’ properties, M
is a 15 × 15 × 2 boolean matrix keeping track of visited cells, and (x, y)
represents the vehicle’s current global coordinates.

Rewards. Let 0 < s′ ≤ 1 denote the normalised speed of the agent in
that step. Rewards are given at every step, given the following criteria:

-1 (terminal) if breaking the speed regulation
0 if on previously-visited cell
s′ otherwise (new cell, within the speed limit)

Explanations. WHY explanations are attached to state transitions. These
explanations are:

“not visiting new roads” if on previously-visited cell
the violated rules if breaking the speed regulation
“is moving” otherwise

12.2.2 Graph Drive: a Continuous Environment for Test-
ing XAER on TD3 and SAC

Graph Drive consists of a Euclidean representation of a planar graph with n
vertices andm edges (see Figure 12.3, right). The agent starts at the coordi-
nates of one of those vertices and has to drive between vertices (called “in-
tersections”) in continuous space with Ackermann-based non-holonomic
motion. Edges represent roads and are subjected to the same rules with
properties as those seen in Grid Drive, plus a few additional rules to en-
courage the agent to stay close to the edges. The incentive is to drive as
long as possible without committing speed infractions. In this setting, the
agent must learn a control input that keeps the vehicle on the road and re-
spects speed limits and restrictions that may vary on a case-by-case basis.
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We test two variations of this environment: one with dense and another
with sparse rewards.

Actions. A sample (θ, a) in the action space consists of a steering angle
θ where −π

4
≤ θ ≤ π

4
, and an acceleration a where −7 ≤ a ≤ 1. Accelera-

tion and deceleration ranges are chosen given road car standards (in m/s2)
[25, 71].

Observations. A sample in the observation space for Graph Drive is a
tuple (ov, or, oj), where ov denotes the concatenation of the vehicle’s prop-
erties (car features, position, speed/angle, distance to path, intersection sta-
tus, number of visited intersections), or is the concatenation of the proper-
ties of the closest road to the agent (likely to be the one the agent is driving
on), and oj is the concatenation of the properties of roads connected to the
next intersection.

Rewards (dense version). Let 0 < s ≤ 1 denote the normalised speed
of the agent in that frame, and let n be the number of unique intersections
visited in the episode. Rewards are assigned at every frame, given the fol-
lowing criteria:

-1 (terminal) if breaking the speed regulation
-1 (terminal) if off-road or U-turning outside intersection
0 if on intersection or previously-visited road
s otherwise (on the road, within the speed limit)

Rewards (sparse version). In this version, the agent will get a null
(zero) reward when moving correctly. Positive rewards only appear when
the agent manages to acquire a new intersection. Therefore, the agent must
drive the entire road correctly to get any positive reward. Rewards are given
according to the following criteria:

-1 (terminal) if breaking the speed regulation
-1 (terminal) if off-road or U-turning outside intersection
0 driving normally or on acquired intersection
1 the instant a new intersection is acquired

Explanations. WHY explanations are attached to state transitions simi-
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larly to Grid Drive (cf. Section 12.2.1). These explanations are:

“is off-road” if off-road
“is U-turning” if U-turning outside intersection
the violated rules if breaking the speed regulation
“is on a new intersection” if on a new intersection
“is on an old intersection” if on an old intersection
“is moving” otherwise

12.3 Evaluation of XAER and Results Discussion

In this section, we describe our experimental setup and present results ob-
tained in our proposed environments with XAER versus traditional Priori-
tised Experience Replay. We trained three baseline agents with traditional
Prioritised Experience Replay (DQN/Rainbow, SAC, and TD3). For each
of the three baseline algorithms, we trained three XAER versions with dif-
ferent clustering strategies, using HOW, WHY, and HOW+WHY explanations
(see Section 12.1.1).

We show results for HOW+WHY explanations without the simplicity heuris-
tic (prioritised clustering), i.e., clusters are sampled uniformly. For a to-
tal of 12 XA agents, we call the XAER-equipped versions of DQN, SAC,
and TD3 XADQN, XASAC, and XATD3, respectively. DQN and XADQN
agents are applied to Grid Drive (discrete), whilst SAC, TD3, XASAC, and
XATD33 were trained separately on Graph Drive with dense and sparse
rewards (continuous).

The neural network adopted for all the experiments is the default one
implemented in the respective baselines (although better ones can certainly
be devised), and it is characterised by fully connected layers of few units
(e.g., 256) followed by the output layers for actors and/or critics, depend-
ing on the algorithm’s architecture. XAER methods introduce the clus-
ter size proportion (ξ) hyper-parameter. We perform ablation experiments
to choose values of ξ and arrive at ξ = 1 for XADQN and XATD3 and
ξ = 3 for XASAC. We omit the detailed ablation study for brevity, but

3Their implementations come from RLlib, an open-source library for RL agents. We de-
veloped the XAER Python library, which can be easily integrated into RLlib and provides
XA facilities for obtaining XADQN, XATD3 and XASAC.
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full plots and auxiliary results can be found (together with source code) at
https://github.com/proroklab/xaer.

To evaluate the performance of XAER compared to traditional Priori-
tized Experience Replay in tasks with complex and exception-heavy regu-
lations, we trained agents in various environments, as described in Section
12.2. These environments differ in their rule density and complexity. We
trained each agent for 40 million steps.

We report our scores by analysing the learning curve of mean episode
rewards. We divide this curve into 20 segments, with each segment contain-
ing 5% of the total 40 million steps. To determine our reported scores, we
identify the best segment (with the highest median) for each agent, aiming
to compare agents at their peak performance. This approach helps us assess
the effectiveness of experience replay methods when agents are performing
at their best. Instead of relying on the overall best scores, which could be
influenced by chance, we found that examining statistics over a span of 2
million steps (5% of 40 million) offered a more reliable comparison.

The medians and interquartile ranges (25-75%) for the selected seg-
ments are presented in Table 12.1. Please note that these calculations are
based on the best segment identified for each agent, not on multiple repeti-
tions of the same process.

Results in Table 12.1 show that across all tasks and methods, XAER
versions only lose to the Prioritised Experience Replay baseline against
DQN/Rainbow in Grid Drive Easy by 0.4%. For Grid Drive Medium and
Hard, XADQN with HOW+WHY explanations exhibit significantly higher
performance (57% and 81%, respectively). WHY and HOW+WHY exhibit
similar performance in Graph Drive, being bested by HOW in Medium and
Hard Sparse cases only. Although HOW+WHY explanations have consis-
tently good results across environments, the version without the simplicity
heuristic exhibited consistently inferior results. Neither baseline SAC nor
TD3 managed to learn a policy in Graph Drive Hard Sparse (our hardest
environment). XATD3 also failed to learn a policy in this environment, but
XASAC achieved positive results.

Building upon these observations, we conducted several Mann-Whitney
U-tests, similar to the experiments detailed in Chapter II. The improve-
ments over the baseline shown in Table 12.1 all proved statistically sig-
nificant with p-values well below the 0.05 threshold. This outcome is not
totally unexpected, as different training strategies should inevitably lead to
distinct policies.
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Table 12.1: Results of the experiments on XAER. Median cumulative re-
wards after 4.0×107 steps for experiments on Grid Drive, Graph Drive,
and Graph Drive with sparse rewards (SR). Darker cells indicate better
results in the environment. Bold is the best in a row. Interquartile ranges
(25%-75%) in brackets.

DQN/Rainbow Baseline XADQN-HOW XADQN-WHY XADQN-HOW+WHY
XADQN-HOW+WHY

sans simplicity
Grid Easy 17.13 (16.02-18.03) 14.84 (12.88-15.88) 13.68 (11.73-15.29) 14.7 (13.08-15.91) 14.88 (13.33-16.04)

Grid Medium 7.99 (7.05-8.9) 7.59 (6.7-8.59) 8.06 (7.17-9.09) 11.62 (10.48-12.66) 9.21 (7.79-10.46)
Grid Hard 1.99 (1.74-2.24) 1.97 (1.72-2.24) 1.75 (1.51-2.03) 3.14 (2.73-3.62) 0.95 (0.8 - 1.14)

TD3 Baseline XATD3-HOW XATD3-WHY XATD3-HOW+WHY
XATD3-HOW+WHY

sans simplicity
Graph Easy 75.48 (68.09-80.85) 0.0 (-0.02-0.02) 88.75 (83.29-94.44) 103.72 (98.64-107.03) 84.23 (79.28-89.2)

Graph Medium 75.48 (68.09-80.85) 41.31 (33.24-47.49) 64.8 (59.44-69.47) 78.34 (73.21-83.07) 69.36 (61.01-77.58)
Graph Hard -0.01 (-0.03-0.0) -0.01 (-0.03-0.0) 20.65 (18.9-22.4) 14.54 (13.17-16.12) 10.31 (8.84-11.68)

Graph Easy (SR) 2.65 (2.28-2.93) -0.04 (-0.06-(-0.02)) 2.61 (2.43-2.75) 2.55 (2.42-2.66) 2.47 (2.34-2.62)
Graph Medium (SR) 0.34 (-1.0-0.97) -0.04 (-0.05-(-0.03)) 2.54 (2.3-2.79) 2.75 (2.58-2.96) 1.84 (1.47-2.0)

Graph Hard (SR) -0.03 (-0.05-(-0.02)) -0.04 (-0.05-(-0.03)) -0.04 (-0.06-(-0.03)) -0.05 (-0.06-(-0.03)) -0.05 (-0.6-(-0.04))

SAC Baseline XASAC-HOW XASAC-WHY XASAC-HOW+WHY
XASAC-HOW+WHY

sans simplicity
Graph Easy 65.9 (59.04-72.94) 79.46 (71.72-88.46) 138.81 (133.0-144.05) 141.11 (136.45-145.87) 116.39 (110.36-120.9)

Graph Medium 65.78 (58.43-71.92) 76.61 (69.64-83.69) 112.16 (105.87-119.1) 111.4 (106.72-116.11) 97.81 (92.91-103.1)
Graph Hard 26.85 (24.43-28.66) 22.92 (20.61-25.03) 32.14 (29.93-34.49) 32.58 (30.41-34.69) 17.85 (13.82-20.56)

Graph Easy (SR) 3.57 (3.19-4.01) 3.07 (2.82-3.21) 4.82 (4.64-4.98) 4.83 (4.58-5.09) 2.01 (1.8-2.19)
Graph Medium (SR) 2.61 (2.26-2.85) 2.66 (2.26-2.98) 2.64 (2.53-2.75) 2.47 (2.33-2.55) 2.31 (2.17-2.45)

Graph Hard (SR)4 1.15 (1.03-1.27) 1.53 (1.37-1.63) 1.11 (1.01-1.23) -0.09 (-0.12-(-0.07)) 0.81 (0.65-0.94)

Our results indicate a significant benefit achieved via explanation-aware
experience replay, in support of Hypothesis 7. In one case (TD3 Hard),
XAER enabled an agent to learn altogether where it would otherwise fail.
XAER allowed agents to learn in Medium and Hard difficulty settings, ob-
taining significantly higher rewards whilst having the same hyper-parameters
and number of learning steps.

The choice of explanation type also affected results: when superior,
HOW+WHY explanations exhibited larger margins of improvement over other
XAER methods. In other cases, when bested by WHY explanations, the
former maintained very close results, thus achieving consistently satisfac-
tory results in most cases. Also importantly, although HOW explanations
exhibited lower performance than other XAER counterparts in most envi-
ronments, it is worth noting that HOW explanations do not require an ex-
plainer and could, in theory, be used in any environment. The consistency
of HOW+WHY results suggests that the act of explaining may involve answer-
ing more archetypal questions, not just causal ones, as also hypothesised in
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Chapter 3 (see Hypothesis 1; cf. Section 3.2).
The frequency and magnitude of rewards are essential factors to con-

sider in XAER clustering. When negative rewards are more frequent (with
a similar magnitude to positive rewards), and there are more negative than
positive clusters, oversampling may cause the agent to tackle situations with
negative rewards more frequently, preventing it from maximising cumula-
tive rewards. This effect can be particularly pronounced with very sparse
rewards, such as the ones seen in the sparse version of Graph Drive.

Intuitively, this is akin to the notion that if there are few opportunities to
explain, one must choose their explanations well. The notion of explanation
engineering surfaces as a mechanism to orient the learning agent through
means of selecting which experiences (and explanations) are more critical
to the task at hand employing abstractions. Being explainable by design,
explanation engineering can be an intuitive and semantically-grounded al-
ternative to reward engineering, as the meaning of the rewards matters just
as their magnitude. Examples include increasing the number of positive
clusters or organising clusters hierarchically.

With regards to relevance, if the cumulative priority of the state tran-
sitions of a whole cluster is low, it may indicate that the agent has already
learned to handle the task represented by the cluster, so it may not need it as
an explanation (thus being less relevant). If the cumulative priority is high,
it could indicate a further need for additional explanations. The cluster
might represent either non-generic or generic tasks. If the agent needs ex-
planations for a generic task, it should also need them for a non-generic
task. In that case, the generic task is prioritised over the non-generic.
The benefits of inter-cluster prioritisation (simplicity) are higher in envi-
ronments with more complex rule sets and proportional to the complexity
of the culture [162]. This suggests that uniformly selecting an explanation
type to replay is less beneficial than selecting the simplest and most relevant
explanation.

This work foments diverse avenues for further investigation. For one,
further experiments could include the development of explainer functions
to evaluate the performance of WHY explanations in popular benchmarks.
Additionally, future work may observe the effect of XAER with on-policy
algorithms, such as PPO [182]. Moreover, the illocutionary effect of ex-
planations deriving from further archetypal questions could be explored in
advanced explanation engineering for experience clustering.

218



CHAPTER13
Extension of

Explanation-Awareness to
Decentralised Multi-Agent

Reinforcement Learning

Extending XAER to centralised (execution) MARL is straightforward since
having a centralised meta-agent can be seen as a particular instance of
single-agent RL. However, using XAER with decentralised (execution)
MARL algorithms is a different story. In fact, as discussed in Section 11.4,
using (prioritised) experience replay with decentralised MARL agents may
hinder learning.

MARL suffers from non-stationarity and experience replay exacerbates
that problem. Therefore, extending Explanation-Aware Experience Replay
to MARL is non-trivial as it would be a source of non-stationarity. More-
over, decentralised MARL suffers from high dimensionality due to the
number of transitions per episode increasing with the number of agents,
making experience replay even more challenging. Especially when the
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number of observations per episode is too many (this is typical in decen-
tralised MARL), relevant state transitions in a relatively small or too big
buffer might not be replayed. Although techniques such as Global Distri-
bution Matching (cf. Section 11.4) may address this issue in single-agent
RL, they might increase the problem of non-stationarity even further in
MARL. In other words, high dimensionality and non-stationarity tend to
erode sample efficiency directly, rendering experience replay under strict
memory constraints useless. We would need more on-policy experience for
handling non-stationarity while exploiting a lot of old and (probably) off-
policy experience would be necessary to cope with high dimensionality.

On the one hand, to address the issue of non-stationarity in MARL,
some techniques [224] try modelling non-stationarity in the objective of
new MARL algorithms, while others [75] address the problem with new ex-
perience replay schemes. Foerster et al. [75] propose a couple of Prioritised
Experience Replay strategies specific for DQN that enable agents to distin-
guish old from new state transitions. In particular, it assigns “age finger-
prints” or lower weights to old state transitions. Amongst these strategies,
according to the empirical results of [75], the most effective is multi-agent
fingerprinting, consisting in an age fingerprint added to the experience in
the replay memory. However, this technique seems unsuitable for high-
dimensional observation spaces and small experience buffers, considering
that in those cases, the buffer would be saturated only with new state transi-
tions, rendering multi-agent fingerprinting useless. Another technique is
that of Nicholaus and Kang [144]. It relies on a strategy for sampling
from the buffer only the experiences that are neither too similar nor too
different from on-policy state transitions. This technique is incompatible
with usual (replay) memory constraints, eventually requiring an experience
buffer whose size is proportional to the observation space. Furthermore, it
does not consider the need for a global distribution matching.

On the other hand, a solution to the problem of high dimensionality
is XAER (cf. Chapter 12). Indeed, XAER is designed around the idea
that some types of state transitions are so rare that neither standard Priori-
tised Experience Replay nor Global Distribution Matching can replay them.
Relevant but (initially) “rare” state transitions could be dropped out of the
buffer too soon without the agent learning from them. To address this issue
and replay rare state transitions, XAER attaches an explanatory label e to
transitions and, accordingly, partitions the experience buffer in prioritised
clusters (one per different e) with constrained minimum and maximum load
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from which experience is sampled in an unbiased way. Each one of these
clusters represents a set of experiences explaining an uncommon situation
beneficial to learning. So if one of these experience clusters is large enough,
it can fully describe through a variety of examples, “why a specific reward
is given”, or “how well the agent is behaving compared to the average
historical behaviour”, etc. In other words, XAER is based on the intuition
that oversampling those transitions capable of explaining uncommon situa-
tions is beneficial to learning.

In particular, the priority of a cluster is given by the sum of the pri-
orities of its elements so that the oversampling ratio can be controlled by
manipulating the maximum cluster size through ξ, where ξ = 1 means full
oversampling and ξ = ∞ means no oversampling. In this sense, XAER
has been proven to be beneficial with sparse rewards and relatively dense
reward functions, improving the sample efficiency of several off-policy RL
algorithms (i.e., SAC, TD3 and DQN) in a single-agent setting (cf. Chapter
12). For example, imagine that the experience buffer is like a book sum-
marising the state space, and the agent has to read it. Suppose such a book
is poorly organised and has too many pages (e.g., billions). In that case, it
would be hard for the reader to finish it and memorise its content or find
something useful by randomly selecting a few pages to read. On the con-
trary, if the book had only one page or thousands of pages containing the
same information, the reader would not be able to learn much about the
state space. In this sense, XAER is a mechanism to build a good summary
of the state space. It is designed to help the agent acquire the most relevant
minutia through explanation-aware experience oversampling.

However, XAER might strengthen the issues related to non-stationarity
on decentralised MARL problems. Thus, to address this specific problem,
we show how to combine XAER with Global Distribution Matching. Con-
sequently, we propose DEER, an extension of XAER to MARL. This chap-
ter will explain how DEER works and how it addresses the decentralisation-
related issues mentioned above through a set of strategies to cope with
the combinatorial explosion of problem complexity growing with the num-
ber of learning agents and the non-stationarity introduced by continuously
evolving policies in decentralised settings. Just like XAER, also DEER is
algorithm agnostic. This means that (differently from multi-agent finger-
printing [75]) it can work with any off-policy RL algorithm. Therefore,
to prove that DEER is sufficiently generic, we tested it with DQN and
SAC on typical MARL problems involving decentralisation. We release
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13.1. DEER: Dimensionality-invariant Explanatory Experience
Replay

the source code of DEER and the new environments used for the exper-
iments under MIT license at https://github.com/Francesco-S
ovrano/DEER.

13.1 DEER: Dimensionality-invariant Explanatory Ex-
perience Replay

Applying experience replay (especially the prioritised version) to MARL
has several drawbacks. Primarily, it introduces non-stationarity by replay-
ing old experiences that do not reflect the dynamics of the environment
due to the agents’ policies changing over time, thus violating the Markov
assumption. Secondly, experience replay in order to be effective usually
requires a buffer (of a fixed size) that is representative of the problem.
Though, if the observation space is too large, the buffer might not be able
to contain all the important experiences. This issue can be summarised by
the following exploitation problems:

EP1. The experience buffer is relatively too small in proportion to the size
of the observation space, thus losing correspondence to the real dis-
tribution of state transitions. Eventually, this might cause the agent
to learn biased expected values by replaying only on-policy or mean-
ingless experience;

EP2. The number of independent agents is too large, producing so many
different state transitions in an episode to cover the entire capacity of
the buffer or a significant fraction of it;

EP3. There are sparse rewards: these might be heavily under-sampled or
even dropped out of the buffer without ever being replayed;

EP4. Reward engineering is employed: reward shaping introduces sec-
ondary rewards that can be replayed too frequently, distracting the
agent from optimising the main objective.

So, let us suppose that we have a function that rewards n MARL agents
for different reasons. What we could do to prevent reward feedback from
being dropped from the buffer could be to organise it into clusters of experi-
ence. For example, one for each type of reward or reason, as in XAER, thus
addressing the exploitation problems 3 and 4. In particular, if we consider
XAER implementation, we can control how frequently certain rewards are
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replayed through the hyper-parameter ξ. ξ defines the minimum and max-
imum size of clusters, where ξ = 1 means full oversampling (all clusters
have the same size), ξ = 2 means moderate oversampling (there can be
clusters whose size is twice the minimum size), and ξ =∞means no over-
sampling (the size of clusters has no constraints).

However, using experience over-sampling in combination with multi-
agency might stress even more the non-stationarity issue. In addition, even
if over-sampling could globally improve the correspondence of the buffer
content to the real distribution of state transitions (by guaranteeing a cer-
tain diversity in the buffer of experience), it could not do much about the
correspondence at a cluster level, leaving the exploitation problems 1 and 2
unaddressed. In particular, any solution to exploitation problem 2 must go
through a mechanism of dropping experiences from the buffer that does not
depend on insertion time. In this sense, a naive alternative strategy could
be to consider prioritised dropping so that whenever the buffer is complete,
the transition with the lowest priority is removed instead of the oldest one
as in vanilla Prioritised Experience Replay. However, this approach may
further emphasise the exploitation problem 1.

We designed DEER to guarantee a stationarity-aware and dimensionality-
invariant correspondence of clusters to the real experience distribution. In
particular, DEER applies to each cluster the Global Distribution Match-
ing strategy of [98], but on a training-step basis. More specifically, DEER
changes the way XAER drops experience from the buffer, it does so in a
different way from prioritised dropping, thus mitigating both exploitation
problems 1 and 2 together with problems 3 and 4.

As shown in Figure 13.1, when a new state transition is created and
assigned to a cluster of a full buffer, instead of dropping the oldest state
transition or the state transition with the lowest priority (from the clusters
having reached the minimum size defined by ξ), DEER assigns to state
transitions a random (but constant) drop probability d together with a sta-
tionarity score ρ, removing the state transitions having the lowest ρ and d
(in this order). More specifically, the stationarity score ρ is the number of
training steps σ (preceding the creation of the state transition) divided by
the stationarity window size φ, as follows: ρ = bσ

φ
c.

We call this technique stationarity-aware real distribution correspon-
dence. In fact, by choosing φ, it is possible to pragmatically control the
amount of non-stationarity within the experience buffer whilst enforcing a
proper correspondence to the real distribution of state transitions thanks to
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Figure 13.1: Main differences between Global Distribution Matching,
XAER and DEER. This diagram shows how experience is dropped from
clusters (the coloured rectangles). Red clusters are those from which
no experience can be dropped because they do not contain a sufficient
number of state transitions (i.e., the minimum load), regardless of the
drop priority or insertion time. In DEER, when a state transition τ(ρ,d)

is added to a full cluster (i.e., a cluster with maximum load), the state
transition having the lowest d amongst those with the lowest stationarity
score ρ is dropped from green clusters. d is a random number assigned
once to the state transition. In XAER, the oldest state transition τt of the
green clusters is dropped instead. t is the insertion time of τ . On the
contrary, in Global Distribution Matching (GDM for short), the state
transition having the lowest d is dropped.

the random assignment of d, as explained in [98]. In this sense, DEER im-
proves over XAER and Global Distribution Matching, ensuring the correct
functioning of experience replay when scaling the number of agents and
the size of the observation space.

In particular, setting φ =∞ is equivalent to vanilla distribution match-
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ing (which does not take non-stationarity into account), while φ = 1 means
that stationarity heavily changes at every training step. Instead, a 1 < φ <
∞ (e.g., φ = 5) means that stationarity changes smoothly so that, every
φ training steps, the content of the experience buffer has to be replaced
with new state transitions. Therefore, the more frequently the stationarity
is deemed to change during training, the lower the φ should be.

13.2 Environment for Evaluating DEER

Generally speaking, decentralised MARL problems can happen in discrete
(e.g., grids) or continuous environments (e.g., graphs), on simple or com-
plex scenarios (e.g., a real city governed by strict regulations), with discrete
(e.g., go to the grid cell on the left) or continuous actions (e.g., turn 30◦ to
the left), with homogeneous or heterogeneous agents, with holonomic or
non-holonomic constraints.

We focus on problems of decentralised multi-agent pathfinding and de-
centralised task assignment under uncertainty. On the one hand, the prob-
lem of multi-robot task assignment under uncertainty is strongly NP-hard
[158] and an important research topic in multi-agent systems [136]. It is de-
fined as allocating tasks to agents that minimise an uncertain allocation cost
(e.g., time). So far, no generic poly-time algorithm is known to solve it effi-
ciently [158]. An example of task assignment problem is that of a swarm of
bots that have to coordinate for delivering items to multiple targets on a pla-
nar graph (e.g., a city). On the other hand, also multi-agent pathfinding is
an NP-hard problem, even when approximating optimal solutions [177]. In
particular, multi-agent pathfinding is an instance of multi-agent planning.
It calculates collision-free paths for a group of agents from their position to
an assigned target. An example of pathfinding problem is the one used by
Sartoretti et al. to evaluate PRIMAL [177].

What is common to these problems is that they all are NP-hard in the
most generic case due to the complexity of dealing with partial observ-
ability caused by decentralisation and uncertainty in the environment. In
other words, as anticipated in Section 11.4, such problems typically require
addressing partial observability, non-stationarity and high dimensionality
issues.

To better understand the nature of the high dimensionality problem, we
hereby present a formal analysis of the typical dimensionality of the ob-
servation space in a graph problem of decentralised task assignment under
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uncertainty. In particular, let us assume that the problem is instantiated on
a planar graph of V nodes and E edges having different lengths. In this
scenario, a task is for an agent a to navigate through a sub-set of edges for
delivering an item (e.g., a medicine) to a target node t ∈ T (e.g., a person).
Moreover, let us assume that all agents have full visibility of the graph but
not of the other agents, and let us define:

• A as the number of agents;

• V̄ ≤ V as the average number of nodes that an agent can reach;

• Ē ≤ E as the average number of edges that an agent can traverse;

• λ as the average length of the Ē edges.

We have that the number of possible observations depends on the number
Cv =

∑A
k=1

(
V̄
k

)
of possible combinations of agents on nodes and the num-

ber Ce =
∑A

k=1

(dλĒe
k

)
of possible combinations of agents on edges. An

agent can be observed either on a node or edge. Thus, considering that
the number of points of all visible edges is approximately dλĒe and that
the number of visible nodes is V̄ , it follows that the size of the observa-
tion space is directly proportional to Cv + Ce, as a partial sum of binomial
coefficients that cannot be captured in a closed form and that grows combi-
natorially in the number of agents.

To evaluate the effects of DEER in a diverse configuration space of
environments with different dimensionality issues, we developed modular
environments that allow us to systematically change its properties. These
environments are namely:

• Grid Planning: a grid-like environment compatible with DQN simu-
lating multi-agent planning problems, where agents can take discrete
actions (e.g., move left, right, up, down).

• Graph Delivery: a graph-like environment compatible with SAC
simulating multi-robot task assignment problems, where agents can
take continuous actions (e.g., steer by 30◦).

13.2.1 Graph Delivery: Decentralised Task Assignment
on Graphs

To test and validate DEER on problems of decentralised task assignment
under uncertainty, we created Graph Delivery. Graph Delivery is a new
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configurable Gym [31] environment that produces instances of multi-robot
task assignment under uncertainty (a visualisation is shown in Figure 13.2)
on randomly generated planar graphs. More specifically, the planar graphs
are built in poly-time1 from randomly generated Euclidean minimum span-
ning trees [82] extended with Delaunay triangulations [57], given as input
the desired number of nodes, the maximum number of edges per node, the
minimum distance between two nodes and the maximum width and height
of the graph.

Figure 13.2: Screenshot of Graph Delivery. Visualisation of a randomly
generated instance of Graph Delivery with 4 agents under complete par-
tial observability, spawned on 2 sources of a graph of 16 nodes (having
a minimum distance of 2.5 from each other) and 1 target with capacity
2, in a 16x16 map with maximum 4 edges per node. Agents are rep-
resented with coloured squares, their orientation with a heading vector
connected to the square, while the payload of targets is given above the
node. The field of view of agents is shown with a circular blue shade.

In Graph Delivery, A agents have to coordinate for delivering items
(e.g., food, medicines) from a set S of source nodes to a set T of target
nodes, in the minimum possible amount of time. Moreover, agents can be
1O(n log n), where n is the number of nodes.
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loaded (with an item) or unloaded, and they can be spawned in any node
of the graph. Agents are initially load free; whenever they reach (or are
spawned on) a source node, they become loaded. Each agent can carry
only one item at a time and bring it to one target t ∈ T until the target
receives a pre-defined number Nt of deliveries. Hence, the goal in Graph
Delivery is for agents to bring the Nt required deliveries to all t ∈ T as
quickly as possible.

Actions. The action space of Graph Delivery is continuous, with agents
that can only steer (with infinite angular velocity) when on nodes or decide
whether to go forward or backward (when on edges). Thus, DEER can be
tested with Graph Delivery only on RL algorithms which admit continuous
action spaces such as SAC or TD3. In particular, the steering angle chosen
by an agent can be any real number in [0, 360]. Agents can move through
other agents and might get stuck in a node if they do not steer correctly.

Heterogeneity. Graph Delivery allows casting the planar graphs into
road networks (as Graph Drive; cf. Section 12.2.2). It attaches regulations
to them and properties to agents and edges (i.e., the roads). Heterogeneity,
in this case, is measured in terms of the agent’s properties that impact the
agent’s functionality and ability to play a role in deliveries. In other terms,
heterogeneity is given by: i) roads with different characteristics and require-
ments; ii) agents with different features. In particular, we implemented two
levels of heterogeneity.

Null Heterogeneity. All agents are equal, and all roads are the same; no
heterogeneity.

Simple Heterogeneity. Agents and roads may possess a combination of 3
properties each. The road network is governed by four rules indicat-
ing which properties of agents are compatible with which properties
of roads. In particular, agents can be emergency vehicles, have spe-
cial permission, and be able to pay a fee. Instead, roads can have an
accident, require special permission, and require to pay a fee. So,
the four rules are: i) only emergency vehicles can pass through roads
with accidents; ii) only vehicles with special permissions can drive
along routes requiring special permissions; iii) only if an agent can
pay fees, or it can pass through an edge requiring to pay a fee; iv) if
an agent is an emergency vehicle, it does not have to pay any fee.

Rewards. Rewards are given at every step to each agent separately. We
designed two reward functions for Graph Delivery to test how DEER be-
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haves with different reward frequencies. The first reward function is sparser
and as follows:

+1 (terminal) when the agent delivers the last delivery
+1 when the agent unloads
0 otherwise

The second function gives rewards more frequently, as follows:

+1 (terminal) when the agent delivers the last delivery
+1 when the agent unloads
+1 when the agent get loaded
−1 when the agent violates the regulation (if any)
−1 when the agent gets stuck in a node
0 otherwise

Observations. The size of the observation space depends on the level
of heterogeneity. Agents can observe their state and the whole graph as an
ordered sequence of information about nodes. The agent’s state consists
of position, loading status, global task completion rate, and heterogene-
ity features (if any). The information about nodes consists of coordinates,
the number of received deliveries (if the node is a target), and attached
edges. Information about edges consists of the coordinates of their ends
and heterogeneity features (if any). Agents can only see and communicate
with other agents within a fixed radius, receiving fixed-size messages (e.g.,
72 bytes). In other words, agents can only sometimes get access to the
position or state of other agents. This partial observability introduces un-
certainty in task allocation times whenever agents are initially spawned on
different (source) nodes. That is because, in that case planning an optimal
assignment would be impossible with the information agents have at their
disposal at step 0. Even if travel times are deterministic, in this situation,
agents could not know if others will finish a target t ∈ T before them. This
is the source of task assignment uncertainty.

Explanations. WHY explanations are attached to state transitions in a
similar way to Graph Drive (cf. Section 12.2.2). However, there are some
differences. The following explanations are attached to an agent’s state
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transition:

“has just delivered” when the agent is unloaded
“has just taken” when the agent is loaded
the violated rules when the regulation is violated
“stuck” when the agent is stuck in a node
“is on node” when the agent is on a node
“is moving” otherwise

To summarise, what makes graph delivery suitable for testing MARL
algorithms on the problem of “decentralised task assignment under uncer-
tainty” is the fact that it supports:

• Heterogeneity: graphs and deliveries can be constrained by regula-
tions of different complexity.

• Uncertainty and decentralisation: there can be uncertainty in the
position of other agents.

• Infinite problem instances: with Graph Delivery, it is possible to
simulate, in a scalable way, realistic problems of task allocation with
continuous actions, on planar graphs of any size and density, with
edges of variable length and any arbitrary number of agents.

13.2.2 Grid Planning: Multi-agent Pathfinding on Grids
Grid Planning is a discrete environment for testing DEER with DQN on
multi-agent pathfinding problems. Specifically, Grid Planning is a 2D dis-
crete 4-connected grid world, the same environment used by Sartoretti et al.
to test their PRIMAL2 algorithm [54]. In Grid Planning, a set A of agents
has to coordinate for optimally planning the shortest path to reach a pre-
defined goal position in a grid of size 20×20. The grid is a maze that
contains walls (i.e., of a maximum length of 20). Walls are obstacles, i.e.,
non-traversable grid cells. The density of obstacles can be controlled via a
hyper-parameter. We set it to 0.3. When an agent reaches its goal, it termi-
nates the episode, while the other agents can continue to pursue their goals.
In other words, the version of Grid Planning we considered does allow for
lifelong learning. For examples of Grid Planning and more details about
this environment, read [177, 54].
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Actions. The action space of Grid Planning is discrete as Grid Drive
(cf. Section 12.2.1). Agents can only move to a neighbouring location left,
right, top, down, or stay still. At each time step, agents can only perform
one action and cannot move through walls or other agents.

Rewards. The reward function we adopted is different from [54]. Re-
wards are given at every step to each agent separately, following these cri-
teria: {

+1 (terminal) when the agent reaches its goal
0 otherwise

Observations. Grid Planning is a partially observable grid world. Agents
can see the location of their goal, wherever they are. Moreover, agents can
also observe the state of the world in a limited field of view (in practice,
11×11) centred around themselves. In this limited field of view, informa-
tion is separated into eleven channels to aid learning:

“Four binary [channels] provide information about obstacles,
positions of other agents, goals of those observable agents,
and the agent’s own current goal position if within the [field
of view]; three scalar values provide each agent with a unit
vector pointing towards its goal and the absolute magnitude of
the distance to its goal at all times. [...] A path length [chan-
nel provides information about] the (normalised) shortest-path
distance to [the] goal from each non-obstacle cell. These dis-
tances are calculated using single-agent A*2, ignoring all other
agents in the environment. [...] Three smaller spatial [chan-
nels provide] information about neighbouring corridors. [...]
[Three more channels contain the predicted future position of
other agents within its local field of view. Each one of these
last channels] refers to the number of future time steps that an
agent looks ahead to. For each time step, the predicted future
position of all visible neighbouring agents at that time step is
shown on the map. These maps are generated using single-
agent A*.”[54]

Explanations. WHY explanations are attached to state transitions in a
similar way to Grid Drive (cf. Section 12.2.1). We use the A* pathfinding

2A* is a single-agent graph traversal, and pathfinding algorithm [173].
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algorithm [173] to generate them. WHY explanations are:
“invalid action” if the agent’s action is invalid
“acting as A*” if the agent is acting as A* would
“no path” if there is no path left for the agent
“acting differently” if the agent is acting differently from A*

13.3 Evaluation of DEER and Results Discussion

DEER is designed to extend XAER to decentralised MARL. To show that
DEER is better than the baselines, we devised a few experiments on differ-
ent configurations of Graph Delivery and Grid Planning. We want to show
that DEER can cope with non-stationarity better than the baselines. This
is done by comparing the performance of DEER when changing the num-
ber of agents and the reward function in Grid Planning, Graph Delivery
and Graph Delivery with Simple Heterogeneity. Considering that multi-
ple reward functions are involved in some of the experiments, performance
scores in Graph Delivery are measured in terms of completed deliveries
(the higher, the better) instead of cumulative rewards. In contrast, in Grid
Planning, performance scores are measured in cumulative rewards.

On the one hand, Graph Delivery experiments were run with SAC using
the following configuration: a 40×40 map; maximum 4 edges per node;
40 nodes having a minimum distance of 2.5; |A| = {15, 21} independent
agents; |T | = b |A|

3
c targets with capacity ∀t ∈ T : Nt = 2; and |S| = 2

different sources; agents spawned only on sources; a visibility radius of 8;
and τ = 3e−5 (τ is a hyper-parameter specific to SAC).

On the other hand, Grid Planning experiments were run with DQN/Rain-
bow using the following environment configuration: a 20×20 grid; |A| =
{16, 20} independent agents; a maximum wall length of 20; a field of view
of 11; and an obstacle density of 0.3.

Importantly, we used a centralised experience buffer with a capacity
of 212 state transitions and episodes of maximum 28 steps. We did it to
exaggerate the exploitation problems 1 and 2 (cf. Section 13.1). In fact, the
minimum number of agents in Graph Delivery and Grid Planning is about
24. So, the state transitions of one episode (which are steps per episode ×
number of agents) are enough to fill the entire buffer.

Other important hyper-parameters common to all experiments were:
training batches of 28 state transitions, γ = 0.999, ξ = 2 and “complete
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Figure 13.3: Sketch of the neural network architectures used for Graph
Delivery and Grid Planning. On the top, we see that a vanilla archi-
tecture is used for Grid Planning. For each agent j at step t, this ar-
chitecture consists of a fully connected layer which takes as input the
state s(j, t) (which consists only of what j observes). Then it outputs
the best-estimated action a(j, t) together with its estimated value (which
we do not show here). On the bottom is the (more complex) architecture
used for Graph Delivery. Here, state s(j, t) contains the observations of
all agents visible to j. These are encoded by a fully connected layer and
aggregated by a GNN to create the messagemj for j. Then, messagemj

is concatenated with the observation of j embedded by the observation
encoder. The resulting vector is then given to the actor and critic to pro-
duce a(j, t) (together with the state-value, which we do not show here).
Both the actor and the critic are fully connected layers.

episodes” as batch mode (this means that transitions are not inserted in the
experience buffer until the episode ends).

Additionally, Graph Delivery has agents that communicate in a decen-
tralised fashion with messages of fixed size. Thus we implemented the
communication channel as a differentiable GNN (as it is typically done in
these cases; cf. Section 11.4). In particular, the neural network architec-
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Table 13.1: Results of experiments on XAER and DEER in multi-agent
problems. This table offers a comparison of the median cumulative
rewards after 100 million steps from experiments conducted on three
scenarios: Grid Planning, Graph Delivery, and Graph Delivery with
heterogeneity (termed as Hetero). The methods compared are DEER,
DEER with φ = 10, XAER, and Prioritised Experience Replay (abbre-
viated as PER). The Grid Planning experiments were conducted with
either 16 or 20 agents, while the Graph Delivery experiments involved
either 15 or 21 agents. Additionally, two distinct reward functions were
used in the Graph Delivery scenario: sparse and frequent (as detailed in
Section 13.2.1). In this table, darker cells highlight superior results for
a given environment. The best result in each row is highlighted in bold.
Furthermore, the table includes interquartile ranges (spanning from the
25th percentile to the 75th percentile) enclosed within brackets.

Grid Planning PER XAER DEER (φ = 5) DEER (φ = 10)
16 Agents 1.55 (1.45 - 1.65) 4.66 (4.34 - 4.88) 4.83 (4.57 - 4.99) 5.09 (4.92 - 5.28)
20 Agents 1.96 (1.87 - 2.05) 6.89 (6.53 - 7.17) 7.04 (6.71 - 7.32) 5.82 (5.47 - 6.23)

Graph Delivery PER XAER DEER (φ = 5) DEER (φ = 10)
15 Agents / Sparse 5.01 (4.9 - 5.13) 8.28 (8.13 - 8.4) 8.35 (8.25 - 8.44) 8.25 (8.13 - 8.32)
21 Agents / Sparse 7.84 (7.67 - 7.98) 11.84 (11.73 - 11.98) 11.94 (11.77 - 12.2) 12.0 (11.86 - 12.2)
15 Agents / Freq. 4.97 (4.82 - 5.09) 8.64 (8.49 - 8.75) 8.65 (8.56 - 8.72) 8.71 (8.63 - 8.8)
21 Agents / Freq. 7.73 (7.54 - 7.91) 12.55 (12.43 - 12.64) 12.65 (12.52 - 12.76) 12.6 (12.47 - 12.7)

Graph Delivery (Hetero) PER XAER DEER (φ = 5) DEER (φ = 10)
15 Agents / Sparse 3.33 (3.22 - 3.42) 4.81 (4.66 - 4.89) 5.27 (5.04 - 5.43) 5.02 (4.84 - 5.14)
21 Agents / Sparse 5.03 (4.87 - 5.16) 7.34 (7.2 - 7.49) 7.55 (7.24 - 7.77) 7.44 (7.22 - 7.7)
15 Agents / Freq. 5.18 (5.07 - 5.29) 5.37 (5.28 - 5.45) 5.39 (5.26 - 5.51) 5.36 (5.23 - 5.47)
21 Agents / Freq. 5.92 (5.67 - 6.25) 8.03 (7.89 - 8.17) 8.01 (7.87 - 8.17) 8.06 (7.88 - 8.17)

ture used for Graph Delivery is shown (and explained) in Figure 13.3. As
GNN we used a Graph Attention Network called GATv2Conv3 [32]. Con-
versely, the neural network architecture used for Grid Planning (also shown
in Figure 13.3) did not involve any GNN or communication channel.

To simplify training without sacrificing decentralisation at runtime, we
adopted the centralised training and decentralised execution strategy. We
did it through independent learning, where the same policy is used for all
the agents through parameter sharing without requiring a (hard-to-train)

3https://pytorch-geometric.readthedocs.io/en/latest/modules
/nn.html?highlight=GATv2Conv
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Table 13.2: Improvement Rates. This table shows how much in percentage
DEER improves over XAER and Prioritised Experience Replay (PER).
The “Fewer Agents” column means 16 agents for Grid Planning and
15 for Graph Delivery. Instead, the “More Agents” column means 20
agents for Grid Planning and 21 for Graph Delivery.

DEER over PER DEER over XAER
Fewer Agents More Agents Fewer Agents More Agents

Grid Planning +228.3% +259.1% +9.2% +2.1%
Graph Delivery

Sparse +66.6% +53% +0.8% +1.3%

Graph Delivery
Freq. +75.2% +63.6% +0.8% +0.7%

Hetero Graph Delivery
Sparse +58.2% +50% +9.5% +1.6%

Hetero Graph Delivery
Freq. +4% +36.1% +0.3% +0.3%

joint action space. For partitioning the experience buffer with XAER and
DEER, we used both WHY and HOW explanations (cf. Section 12.1.1). For
DEER we used two stationarity window sizes φ = 5, 10, thus studying how
φ impacts on performance.

Training in all experiments was performed for 108 environment steps,
with a random seed of 42. As with XAER (cf. Section 12.3), our reported
scores are obtained by segmenting the curve of mean episode deliveries
into 20 regions containing 5% of steps each. We select the best region
(highest median) for each agent to compare agents at their respective best
performances. We report those medians in Table 13.1, as well as the 25-
75% inter-quartile range for the selected region.

The empirical results once again lend support to the argument that both
XAER and DEER enhance the sample efficiency of off-policy RL algo-
rithms. This is in alignment with Hypothesis 7. XAER and DEER indeed
outperform the baseline, showing average improvements of over 200% for
Grid Planning and over 50% for Graph Delivery. Furthermore, as antici-
pated, DEER outperforms XAER, although the performance gap between
the two is relatively small; around a 5% improvement for Grid Planning and
about a 1% improvement for Graph Delivery. These findings suggest that
the HOW and WHY clustering strategies deployed by XAER might already
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encapsulate, to some extent, the global distribution of state transitions. In a
similar vein to our previous method in Section 12.3, we conducted several
Mann-Whitney U-tests. Consistently, the improvements over prioritized
experience replay, as illustrated in Table 13.1, all proved to be statistically
significant with p-values well below the 0.05 threshold.

The non-stationarity mitigation technique employed by DEER is straight-
forward yet effective. Nevertheless, managing non-stationarity optimally is
not trivial; we have just scratched the tip of the iceberg. For example,
the approach followed by DEER does not consider the magnitude of pol-
icy changes at each training step, relying solely on constant stationarity
scores that do not adjust for training events. In this sense, implementing a
system for generating adaptive stationarity scores could be the next step
forward, but we leave it as future work. Alternative and improved so-
lutions compatible with DEER and XAER could, for example, be based
on non-stationarity-aware clustering strategies to construct different expe-
rience buffers for each cooperation/defection strategy under the assump-
tion that each strategy retains some degree of stationarity. In other words,
more sophisticated strategies may be needed to deal optimally with non-
stationarity. We believe that, in this regard, DEER has several tools and a
high degree of flexibility.
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THE MAIN objective of this dissertation was to produce new theories,
models, algorithms and tools for generating user-centred and goal-
driven explanations from large and heterogeneous collections of ex-

plainable information. We achieved the objective in several ways.
To demonstrate that the identified theories are generic enough to broadly

capture the nature of explanations, we tested them not only with humans
but also with AI agents. Indeed, we have conducted various user stud-
ies (involving hundreds of human subjects) and experiments, showing that
our proposed user-centred explanatory process model is generic enough to
benefit both human and artificial intelligence. Our technology has been
able to produce more effective and satisfying explanations for various ex-
plananda (including educational textbooks, software documentation and
complex regulations), improving the state of the art of Reinforcement Learn-
ing and Human-Computer Interaction.

Specifically, this dissertation was built around the following research
questions:

RQ1. How can one define explaining, explanations and explainability?

RQ2. How to quantitatively evaluate explanations and explainability?

RQ3. How to model an automatic (user-centred) explanatory process?

RQ4. How to algorithmically generate explanations for humans?
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RQ5. Would a better understanding of what constitutes an explanatory pro-
cess help improve artificial intelligence (i.e., machine learning)?

In order to justify and evaluate the proposed theories and models, we
considered case studies and examples in the intersection of AI and law,
focusing in particular on European legislation. We started our journey
from the existing requirements and common concepts of explanations pro-
vided by the law, focusing mainly on the work produced by the European
Commission and its expert groups. Analysing the GDPR and the ethical
guidelines of the High-Level Expert Group on Artificial Intelligence, we
found that user-centred explanatory tools are considered an essential ingre-
dient for reliable AI (cf. Chapter 1). This finding prompted us to focus
on user-centred explanations and to consider explainable information and
explanations as two different things. We conducted an exploratory review
of contemporary theories of explanation in philosophy, looking for those
compatible with a user-centred view of explanations that could be practi-
cally implemented in a software application. In this sense, our work was
inspired by Miller [138], because it tries to reconcile AI, human-computer
interaction, philosophy and law.

We identified Achinstein’s theory from Ordinary Language Philosophy
as a suitable (and understudied) candidate, which frames the act of explain-
ing as an illocutionary (i.e., broad but relevant and deliberate) act of prag-
matic question answering (cf. Chapter 2). Then we expanded and adapted
Achinstein’s theory to our needs, identifying usability metrics as a suitable
way to evaluate explanations (cf. Chapter 3). Consequently, we also for-
mally defined explanatory illocution as the primary mechanism responsible
for the anticipation of unasked (archetypal) questions, proposing a mathe-
matical formula to quantify the Degree of Explainability (DoX) of textual
information on top of that (cf. Chapter 4), thus answering RQ1 and RQ2.
Importantly, DoX is the first metric based on Ordinary Language Philoso-
phy to quantify explainability objectively.

In order to answer RQ3, we delved into the differences between explain-
able information and explanations. We suggested considering as separate
things how information is made explainable (e.g., through XAI algorithms)
from how explainable information is selected and organised into expla-
nations (e.g., through Explanatory Artificial Intelligence algorithms). We
then gave a formal definition of the explanatory process as a function capa-
ble of decomposing the space of all possible explanations (or explanatory
space) in a tree-like structure for efficient exploration by an explainee. We
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also explained how existing linguistic theories could be used to represent
explanatory spaces as hypergraphs of questions and answers. Next, we
proposed a set of heuristics (the ARS heuristics) for decomposing an ex-
planatory space in a user-centred manner as well as a set of commands (the
SAGE commands) to explore it through question-answering (cf. Chapter
5). Specifically, these heuristics are designed to help users follow their
drifts of interest as they explore the explanatory space.

We then answered RQ4 by creating a YAI for humans (YAI4Hu, for
short; cf. Chapter 6), an implementation of the SAGE-ARS model based
on AI for question-answering. YAI4Hu was tested with several user studies
involving hundreds of human subjects from different user groups. By com-
paring YAI4Hu with several baseline explanatory tools, we showed that not
all explanatory space decompositions are equally helpful for humans and
that our SAGE-ARS model can produce more usable explanations (cf. Hy-
pothesis 3; Section 5.4). We also provided empirical evidence that explana-
tory illocution involves answering archetypal questions (cf. Hypothesis 1;
Section 3.2).

Eventually, we showed how to use our technology to design explana-
tory software compliant with the European GDPR (cf. Section 5.5). We
also discussed how to assess the compliance of software documentation
with Business-to-Consumer and Business-to-Business requirements estab-
lished by European legal provisions (cf. Section 8.4) or how to identify
explainability metrics which could ease the assessment of compliance with
the proposed European AI Act (cf. Section 4.2).

We also further tested Hypothesis 1 (i.e., “explanatory illocution is
about answering archetypal questions”), providing empirical evidence that
intelligently anticipating implicit questions helps produce better explana-
tions for humans. To this end, we tested our YAI on educational tasks with
a user study involving more than one hundred English-speaking students.
We assumed that the writer of an educational text tries, for narrative pur-
poses, to explain best the most important topics at hand, thus (according
to our theory) implicitly identifying the essential questions whose answers
provide a good overview of the topics. Based on this assumption (cf. Hy-
pothesis 6), we created YAI for education (YAI4Edu, for short; cf. Chapter
10), an intelligent interface that extends YAI4Hu to improve the explana-
tory power of the excerpts of an educational textbook for teaching how to
write a legal memorandum. In particular, YAI4Edu uses DoX and a couple
of new strategies (SyntagmTuner and DiscoLQA; cf. Chapter 9) to spe-
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cialise question-answering on legal English, together with an algorithm for
the automatic extraction of archetypal questions in order to produce more
intelligent explanations.

As an answer to RQ5, we showed that the SAGE-ARS model could
produce more user-centred explanations not only for humans but also for
RL agents (cf. Hypothesis 7). In Chapter 12, we presented XAER, an RL
algorithm that implements the ARS heuristics and can be used to explain
complex road regulations and to improve the sample efficiency of seminal
single-agent off-policy algorithms such as SAC, TD3 and DQN. In Chapter
13, we also showed how to extend XAER to a Multi-Agent Reinforcement
Learning context by presenting DEER.

We demonstrated how explanations to humans and machines could be
reduced to the same process of organising knowledge in clusters of answers
to implicit archetypal questions, showing how to identify such questions.
With YAI4Hu, we tested that organising explanations in terms of clusters
of answers to generic archetypal questions (e.g., what, how, why, who)
helps to produce better explanations. Instead, with YAI4Edu, we showed
how to automatically extract less generic archetypal questions from the data
by exploiting linguistic theories. Similarly, with XAER and DEER, we
showed that organising the experience buffer of an RL agent in terms of
clusters of state transitions that answer different (archetypal) questions (not
only about causality) can drastically improve the agent’s ability to absorb
knowledge and learn a better policy sooner. With XAER, we also proposed
the concept of explanation engineering as an alternative way to reward en-
gineering for improving the performance of RL agents.

Explanations play an essential role in human society and are one of
the fundamental mechanisms underlying our education and technological
advances. There still needs to be more agreement on the definition of ex-
planation and explainability, despite the joint efforts of many philosophers
and scientists. However, our work has the potential to change this situation
by creating a bridge between artificial intelligence and philosophy that will
help improve both technology and theory.

Overall, we stress that the research of explainable and explanatory AI
should emphasise a proper understanding of what constitutes the act of ex-
plaining. For this reason, we have reworked several ideas from Achinstein’s
theory of explanations. The critical link with usability is that explanations
require illocution, i.e., answering the user’s implicit questions. This re-
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quirement needs to be considered by works that treat explanations only as
a product, independent of the user’s goals or knowledge.

Therefore, we can firmly conclude that whatever approach is used to
describe an explanatory space, it should ensure that such a description is
more expressive than bare XAI outputs and at least as expressive as an nth-
level explanatory closure. Indeed, it should allow users to efficiently iden-
tify and create their own goal-driven narratives as (possibly) short paths
within the explanatory space. Consequently, explaining is hard regardless
of whether the receiver of explanations is a human or a machine. This is
because defining the ARS heuristics for optimally exploring an explanatory
space is generally not straightforward. Indeed, explaining to humans can be
arduous, as it is only sometimes possible to correctly identify what is most
relevant to a person. Similarly, explaining to RL agents can also be com-
plicated, particularly by the complexity of framing useful abstractions for
an agent. These challenges concretely shape the complexity of identifying
user-centred decompositions of explanatory spaces.
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